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The “good” Boussinesq equation is transformed into a first order differential system. A fourth order finite difference scheme is
derived for this system.The resulting scheme is analyzed for accuracy and stability. Newton’s method and linearization techniques
are used to solve the resulting nonlinear system. The exact solution and the conserved quantity are used to assess the accuracy
and the efficiency of the derived method. Head-on and overtaking interactions of two solitons are also considered. The numerical
results reveal the good performance of the derived method.

1. Introduction

In recent years, remarkable developments have taken place
in the study of nonlinear evolutionary partial differential
equations. It is realized that many such equations possess
special solutions in the form of pulses which retain their
shapes and velocities after interacting with each other. Such
solutions are called solitons. Many equations admitting
soliton solutions are as follows: sine Gordon and double
sine Gordon equations, Schrodinger equation, and KdV,
MKdV, and complexmodifiedKdV equations;many research
works have been done on these equations [1–8]. Most of
the current research is directed to solve coupled nonlinear
systems analytically and numerically [9–21]. Solitons are of
great interest in many physical areas, as, for example, in
dislocation theory of crystals, plasma and fluid dynamics,
magnetohydrodynamics, laser and fiber optics, and the study
of the water waves.

In this work we will study numerically the “good” Boussi-
nesq (GB) nonlinear equation
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which provides a balance between dispersion and non-
linearity, that leads to the existence of soliton solutions,
similar to the Korteweg-de Vries (KdV) and cubic nonlinear
Schrödinger equation [1, 8, 22].

The initial displacement associated with the partial differ-
ential equation given in (1) is assumed to take the form [23–
25]
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and the boundary conditions
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The solitary wave solution of (1) is given by [3, 14]

𝑢 (𝑥, 𝑡) = −𝐴sech2 [√𝐴
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where 𝐴 is amplitude of the pulse and 𝑏 is an arbitrary
parameter. In addition, the double soliton solution [3, 14, 24,
26] can be written as

𝑢 (𝑥, 𝑡) =
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) , 𝑖 = 1, 2, (6)

where 𝑐
𝑖
is the velocity of the 𝑖th soliton,𝐴

𝑖
is the correspond-

ing amplitude, 𝑏
𝑖
is an arbitrary parameter, and𝑥

0

𝑖
is the initial

position.The exact solution (5) represents two solitary waves
located initially at the positions 𝑥 = 𝑥

0

1
and 𝑥 = 𝑥

0

2
moving to

the right or left according to their velocities.
Many research works on Boussinesq equation have been

developed. Analytical solution of this equationwas studied by
many authors, such as the construction of𝑁-soliton solutions
using the bilinear form [4], multiple soliton solutions for the
GB equation using a simplified version of Hirotamethod [27]
and Adomian decomposition method [28]. Construction
of soliton solutions and periodic solution of Boussinesq
equation by modified decomposition method are given in
[29, 30]. A variational iteration method is developed for GB
equation [31]. A solitary wave solution of the Boussinesq
equation with power law nonlinearity is derived in [32].

Many numerical methods have been developed for solv-
ing the Boussinesq equation, such as Petrov-Galerkinmethod
[19]. Bratsos et al. [23, 24, 33] have developed finite difference
schemes and have considered the 𝑡 Bad Boussinesq (BB)
and GB equations. El-Zhoheiry has developed an implicit
finite difference scheme [34]. Aydin and Karasözen [35]
constructed second order symplectic and multisymplectic
integrators for the GB equation using the two-stage Lobatto
IIIA-IIIB partitioned Runge-Kutta method. Daripa and Hua
[36] developed finite difference method for BB equation of
second order in time and space, where they have used the
filtration and regularization techniques to control the growth
of the errors arising from the instabilities and provide better
approximate solutions of this equation. Ismail and Bratsos
[25] have derived a predictor corrector scheme for theGB and
BB equations; the scheme is fourth order in time and second
order in space, and it is conditionally stable. Matsuo [37] also
has derived conservative finite difference schemes for certain
classes of nonlinear wave equations with some applications
for the nonlinear Klein-Gordon and GB equations. Mohebbi
and Asgari [26] also have solved the GB equation using
a fourth order time stepping schemes with combination
of discrete Fourier transform. Split step Fourier method is
also used to solve Boussinesq-type equations. Dehghan and
Salehi [38] have derived a mesh free method for the classical
Boussinesq equation.

The paper is laid out as follows. In Section 2, the
GB equation is transformed into a first order differential
system in time; a finite difference scheme is derived for this
system. The method is analyzed for accuracy and stability.
In Section 3, a linearization technique is used to convert the

nonlinear system obtained into a linear block tridiagonal sys-
tem. Numerical tests are presented in Section 4. Concluding
remarks are given in Section 5.

2. The Numerical Method

In order to derive a highly accuratemethod, we transform the
GB equation (1) into the first order differential system in time
as [19]
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and boundary conditions
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By using the boundary conditions (10), the system (7) and
(8) has the conserved quantity [24–26, 38]

𝐼 = ∫

𝐿1

𝐿0

𝑢 (𝑥, 𝑡) 𝑑𝑥 = constant. (11)

In order to derive a numerical method for solving the
system (7) and (8), the region 𝑅 = [𝑡 > 0] × [𝐿
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]

with its boundary 𝜕𝑅 consisting of the lines 𝑥 = 𝐿
0
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1

and the axis 𝑡 = 0 is coveredwith a rectangularmesh of points
with coordinates [25]
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where ℎ and 𝑘 are the space and time increments, respectively.
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is used to approximate the second order space derivative
which appears in our system. By making use of (13) and the
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implicit midpoint rule, the finite difference nonlinear implicit
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is obtained. The schemes (15) and (16) can be written as
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2. On expansion of the central differences using
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By imposing the boundary conditions, a coupled nonlinear
system is obtained, which can be solved by any iterative
scheme. This system can be solved by Newton’s method or
fixed point method. Linearization method can also be used.

2.1. Accuracy of the Scheme. To study the accuracy of the
proposed schemes (19) and (20), the numerical solutions 𝑈𝑛
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By making use of the differential system (7) and (8), all
terms inside the brackets in (22) are zero. Similar analysis can
be done for (20). This will lead us to the conclusion that the
derived scheme is of second order in time and fourth order in
space, that is, O(𝑘

2
+ ℎ
4
). The numerical results confirm this.

2.2. Stability of the Scheme. To study the stability of the
derived scheme, von Neumann stability analysis will be used.
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We consider the linear version of the proposed schemes (17)
and (18) which can be given as
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𝑈
𝑛

𝑚
= 𝜆
𝑛 exp (𝑖𝛽𝑚ℎ) , 𝑊

𝑛

𝑚
= 𝛾
𝑛 exp (𝑖𝛽𝑚ℎ) , (26)

where 𝜆, 𝛾, and 𝛽 are constants. By substituting these
solutions into (23) and (24), and after somemanipulation, we
get the system

(1 −
1

3
𝑠) (𝑈

𝑛+1

𝑚
− 𝑈
𝑛

𝑚
) = −2𝑝

1
𝑠 [𝑊
𝑛+1

𝑚
+ 𝑊
𝑛

𝑚
] ,

(1 −
1

3
𝑠) (𝑊

𝑛+1

𝑚
− 𝑊
𝑛

𝑚
)

= 2𝑝
1
𝑠 [𝑈
𝑛+1

𝑚
+ 𝑈
𝑛

𝑚
] +

1

2
𝛼𝑘 (1 −

1

3
𝑠) [𝑈

𝑛+1

𝑚
+ 𝑈
𝑛

𝑚
] ,

(27)

where 𝑠 = sin2(𝛽ℎ/2). Equations (27) can be written in a
matrix vector form as

Ψ
𝑛+1

= 𝑀Ψ
𝑛
, (28)

where

Ψ = [𝑈 𝑊]
𝑡

, 𝑀 = [
𝑎 𝑏

−𝑐 𝑎
]

−1

[
𝑎 −𝑏

𝑐 𝑎
] ,

𝑎 = 1 −
1

3
𝑠, 𝑏 = 2𝑝

1
𝑠, 𝑐 = 2𝑝

1
𝑠 +

1

2
𝛼𝑘 (1 −

1

3
𝑠) .

(29)

The von Neumann necessary condition for the stability
of this system is the maximum eigenvalue of value of the
amplification matrix 𝑀 in (28) is to be less than or equal to
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with modulus equal to one, and hence the proposed scheme
is unconditionally stable.

3. Linearization Technique
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2
− 𝑢
𝑛

𝑚
) + O (𝑘

2
) ,

(31)

and this will lead us to the following approximation:

(
𝑢
𝑛+1

𝑚
+ 𝑢
𝑛

𝑚

2
)

2

= 𝑢
𝑛+1

𝑚
𝑢
𝑛

𝑚
+ O (𝑘

2
) , (32)

which preserves second order temporal accuracy. By replac-
ing the exact solution by the approximating one, we get

(
𝑈
𝑛+1

𝑚
+ 𝑈
𝑛

𝑚

2
)

2

= 𝑈
𝑛+1

𝑚
𝑈
𝑛

𝑚
. (33)

By substituting (33) into (18), we obtain the linearly
implicit finite difference scheme

(1 +
1

12
𝛿
2

𝑥
) (𝑈
𝑛+1

𝑚
− 𝑈
𝑛

𝑚
) = 𝑝𝛿

2

𝑥
[
𝑊
𝑛+1

𝑚
+ 𝑊
𝑛

𝑚

2
] ,

(1 +
1

12
𝛿
2

𝑥
) (𝑊
𝑛+1

𝑚
− 𝑊
𝑛

𝑚
)

= −𝑝𝛿
2

𝑥
[
𝑈
𝑛+1

𝑚
+ 𝑈
𝑛

𝑚

2
] + 𝑘 (1 +

1

12
𝛿
2

𝑥
)𝑈
𝑛+1

𝑚
𝑈
𝑛

𝑚

+ 𝑘 (1 +
1

12
𝛿
2

𝑥
)[

𝑈
𝑛+1

𝑚
+ 𝑈
𝑛

𝑚

2
] , 𝑚 = 1, 2, . . . , 𝑁.

(34)

By expanding the central difference operator in (34), we
obtain the linearized scheme

1

12
(𝑈
𝑛+1

𝑚−1
+ 10𝑈

𝑛+1

𝑚
+ 𝑈
𝑛+1

𝑚+1
) −

1

2
𝑝 (𝑊
𝑛+1

𝑚−1
− 2𝑊

𝑛+1

𝑚
+ 𝑊
𝑛+1

𝑚+1
)

=
1

12
(𝑈
𝑛

𝑚−1
+ 10𝑈

𝑛

𝑚
+ 𝑈
𝑛

𝑚+1
)

+
1

2
𝑝 (𝑊
𝑛

𝑚−1
− 2𝑊

𝑛

𝑚
+ 𝑊
𝑛

𝑚+1
) ,
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1

12
(𝑊
𝑛+1

𝑚−1
+ 10𝑊

𝑛+1

𝑚
+ 𝑊
𝑛+1

𝑚+1
) +

1

2
𝑝 (𝑈
𝑛+1

𝑚−1
− 2𝑈
𝑛+1

𝑚
+ 𝑈
𝑛+1

𝑚+1
)

−
1

12
𝑘 (𝑈
𝑛

𝑚−1
𝑈
𝑛+1

𝑚−1
+ 10𝑈

𝑛

𝑚
𝑈
𝑛+1

𝑚
+ 𝑈
𝑛

𝑚+1
𝑈
𝑛+1

𝑚+1
)

−
1

24
𝑘 (𝑈
𝑛+1

𝑚−1
+ 10𝑈

𝑛+1

𝑚
+ 𝑈
𝑛+1

𝑚+1
)

=
1

12
(𝑊
𝑛

𝑚−1
+ 10𝑊

𝑛

𝑚
+ 𝑊
𝑛

𝑚+1
)

−
1

2
𝑝 (𝑈
𝑛

𝑚−1
− 2𝑈
𝑛

𝑚
+ 𝑈
𝑛

𝑚+1
)

+
1

24
𝑘 (𝑈
𝑛

𝑚−1
+ 10𝑈

𝑛

𝑚
+ 𝑈
𝑛

𝑚+1
) , 𝑚 = 1, 2, . . . , 𝑁.

(35)

By utilizing the boundary conditions, the finite difference
scheme (35) produces a linear block tridiagonal system in
the unknowns {𝑈𝑛+1

𝑚
,𝑊
𝑛+1

𝑚
}, which can be solved directly by

Crout’s method. The obtained difference scheme is still of
second order in time and fourth order method in space, and
it is unconditionally stable.

4. Numerical Results

In all experiments we use the following values: 𝐿
0
= −100,

𝐿
1
= 100, ℎ = 0.1, 𝑘 = 0.01, and 𝑏 = −1/2. We study the

accuracy of the proposed method by calculating the infinity
error norm

𝐿
∞

= max
1≤𝑚≤𝑁

𝑈
𝑛

𝑚
− 𝑢
𝑛

𝑚

 . (36)

The numerical solution and trapezoidal rule are used to
calculate the error and the conserved quantity [19, 25, 26, 37].
All numerical results in this section are obtained from the
solution of the nonlinear schemes (19) and (20) using New-
ton’s method. Linearization method is used for comparison
purpose only.

4.1. Single Soliton. To test the derived method, we consider
the initial condition

𝑢 (𝑥, 0) = −𝐴sech2 [√𝐴

6
(𝑥 + 𝑥

0
)] ,

𝑐 = ±(1 −
2𝐴

3
)

1/2

,

𝑤 (𝑥, 0) = √6𝐴𝑐 tanh[√
𝐴

6
(𝑥 + 𝑥

0
)] ,

(37)

where (37) represent soliton and kink solution, respectively.
The parameters𝐴 = 0.369, 𝑥0 = 0.0, and 𝑐 = 0.86833 are used
in this test. The numerical results for the nonlinear and lin-
earized schemes are given in Tables 1 and 2, respectively. The
numerical results (amplitude and the conserved quantity)
obtained display the high accuracy of the proposed method.
The execution time required for the nonlinear scheme is
24.89 sec. compared to 11.34 sec. for the linearized scheme.

Table 1: Nonlinear scheme of single soliton 𝐴 = 0.369, ℎ = 0.1, 𝑘 =

0.01.

Time 𝐴 𝐼 𝐿
∞

𝐿
2

0.0 0.369000 −2.975902 0.0 0.0
10.0 0.368994 −2.975901 1𝐸 − 06 8𝐸 − 06

20.0 0.368975 −2.975901 2𝐸 − 06 1.3𝐸 − 05

30.0 0.368944 −2.975901 2𝐸 − 06 1.7𝐸 − 05

40.0 0.368976 −2.975903 3𝐸 − 06 2.0𝐸 − 05

50.0 0.368995 −2.975902 3𝐸 − 06 2.3𝐸 − 05

Table 2: Linearization method of single soliton with𝐴 = 0.369, ℎ =

0.1, 𝑘 = 0.01.

Time 𝐴 𝐼 𝐿
∞

𝐿
2

0.0 0.369000 −2.975902 0.0 0.0
10.0 0.369000 −2.975902 8.0𝐸 − 06 5.2𝐸 − 05

20.0 0.368987 −2.975989 1.9𝐸 − 05 1.11𝐸 − 04

30.0 0.368967 −2.976034 2.9𝐸 − 05 1.83𝐸 − 04

40.0 0.369008 −2.976080 4.4𝐸 − 05 2.71𝐸 − 04

50.0 0.369034 −2.976125 6.0𝐸 − 05 3.76𝐸 − 04

Table 3: Comparison of numerical solutions with ℎ = 0.1, 𝑘 = 0.001

at 𝑇 = 72.

Method 𝐿
∞

Present method (nonlinear) 0.970𝐸 − 07

Present method (linearization) 0.975𝐸 − 03

Bratsos [23] 0.378𝐸 − 03

Dehghan and Salehi [38] 0.488𝐸 − 03

Table 4: Rate of convergence with 𝑘 = 0.0001, 𝑇 = 5.

ℎ 𝐿
∞

Order
0.8 0.000051587 —
0.4 0.000003161 4.03
0.2 0.000000197 4.00
0.1 0.000000013 3.92

The numerical results produced in Table 1 are more accurate
than the one inTable 2, and this is due to the approximation of
the nonlinear term in the linearization process. A comparison
of some existing methods is given in Table 3, which indicates
that our method is the most accurate one. In Figures 1 and 2,
we display the numerical solutions𝑈𝑛

𝑚
and𝑊

𝑛

𝑚
moving to the

right for 𝑡 = 0, 1, . . . , 50.
To test whether the proposed numerical scheme exhibits

the expected convergence rate in space, we perform some
numerical experiments for various values of ℎ and fixed value
of 𝑘. In these experimentswe choose𝑘 = 0.0001 to ensure that
the temporal error is negligible. The rate of convergence for
the scheme is calculated using the formula

Rate of convergence =
ln [𝐿
∞

(ℎ) /𝐿
∞

(ℎ/2)]

ln 2
, (38)

where 𝐿
∞
(ℎ) is the infinity error norm. The errors and the

rate of convergence for 𝑇 = 5 are given in Table 4.
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Figure 1: Single soliton: numerical solution of 𝑈𝑛
𝑚
.

4.2. Head-On Soliton Interaction. To study the head-on
collision of two solitons, we choose the initial conditions

𝑢 (𝑥, 0) = 𝑢
1
(𝑥, 0) + 𝑢

2
(𝑥, 0) ,

𝑤 (𝑥, 0) = 𝑤
1
(𝑥, 0) + 𝑤

2
(𝑥, 0) ,

(39)

where

𝑢
𝑖
(𝑥, 0) = −𝐴

𝑖
sech2 [√

𝐴
𝑖

6
(𝑥 + 𝑥

0

𝑖
)] ,

𝑐
𝑖
= ±(1 −

2𝐴
𝑖

3
)

1/2

,

𝑤
𝑖
(𝑥, 0) = √6𝐴

𝑖
𝑐
𝑖
tanh[√

𝐴
𝑖

6
(𝑥 + 𝑥

0

𝑖
)] , 𝑖 = 1, 2.

(40)

In [19] it was reported that solution blew up numerically
when 𝐴 > 0.3691. By choosing the parameters 𝑥0

1
= −𝑥
0

2
=

50.0, 𝐴
1
= 𝐴
2
= 0.369, and 𝑐

1
= −𝑐
2
= 0.86833. The initial

conditions represent two solitons and two kinks located at
𝑥
0

1
= −50 and 𝑥

0

2
= 50. In Figures 3 and 4, we display the

interaction scenario for 𝑡 = 0 to 𝑡 = 120; we can easily observe
that the two solitons and the two kinks have been separated
completely after the interaction and restored their original
shapes and velocities.The velocity and the conserved quantity
are given in Table 5. It is noted that when the two waves
overlap (Figures 3 and 4), the joint amplitude is greater than
the sum of individual amplitudes; this is in full agreement
with [37]. By choosing 𝐴

1
= 𝐴
2

= 0.4, the situation
dramatically changes; both Figures 5 and 6 end around 𝑡 ∼ 60.
Newton’s method fails to find the solution there. This agrees
with the blowup results in [19, 37].

4.3. Overtaking Soliton Interaction. In this test we will study
the interaction of two solitons moving in the same direction.
In this case we choose the initial conditions

𝑢 (𝑥, 0) = 𝑢
1
(𝑥, 0) + 𝑢

2
(𝑥, 0) ,

𝑤 (𝑥, 0) = 𝑤
1
(𝑥, 0) + 𝑤

2
(𝑥, 0) ,

(41)
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Figure 2: Single kink: numerical solution of𝑊𝑛
𝑚
.
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Figure 3: Head-on interaction: numerical solution of 𝑈𝑛
𝑚
with𝐴

1
=

𝐴
2
= 0.369.

Table 5: Interaction of two solitons 𝐴
1
= 𝐴
2
= 0.369, 𝑐

1
= −𝑐
2
=

0.86833.

𝑇 𝐴 𝐼

0.0 0.36900 −5.951801
20 0.368975 −5.951801
40 0.368976 −5.951802
60 1.223350 −5.591803
80 0.369014 −5.951803
100 0.368973 −5.951809
120 0.368978 −5.951802

where

𝑢
𝑖
(𝑥, 0) = −𝐴

𝑖
sech2 [√𝐴

6
(𝑥 − 𝑥

0

𝑖
)] ,

𝑐
𝑖
= ±(1 −

2𝑏𝐴

3
)

1/2

,

(42)

𝑤
𝑖
(𝑥, 0) = √6𝐴

𝑖
𝑐
𝑖
tanh[√

𝐴

6
(𝑥 − 𝑥

0

𝑖
)] , 𝑖 = 1, 2.

(43)
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Figure 4:Head-on interaction: numerical solution of 𝑊𝑛
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= 0.369.

−100

−50

0

50

100

0

10

20

30

40

50

60

−0.5

0

0.5

1

1.5

x

t

−
u

Figure 5: Blowup: numerical solution of 𝑈𝑛
𝑚
with 𝐴

1
= 𝐴
2
= 0.4.

The following parameters are selected:

𝐿
0
= −𝐿
1
= −100, ℎ = 0.1, 𝑘 = 0.01,

𝐴
1
= 0.3, 𝐴

2
= 1.0, 𝑥

0

1
= −80, 𝑥

0

2
= −50.

(44)

The initial conditions represent two solitons and two
kinks are initially located at 𝑥0

1
= −80 and 𝑥

0

2
= −50, moving

in the same direction with velocities 𝑐
1

= 0.8944 and 𝑐
2

=

0.5774. The usual interaction has taken place and the faster
wave interacted and separated from the slower one and left it
behind; the interaction scenario is given in Figures 7 and 8.
In Table 6, we track the amplitude and the conserved quantity
during the interaction scenario. In Figure 9, we display the
contours of the numerical solution 𝑈

𝑛

𝑚
. Many numerical

tests have been conducted for different amplitudes. We have
noticed that the interaction occurred for 𝐴

𝑖
≤ 1.15, 𝑖 = 1, 2,

which is completely different from the head-on interaction
case, where the solution blew up numerically when 𝐴

𝑖
>

0.3691, 𝑖 = 1, 2. This type of interaction for the GB equation
seems to be reported in the literature for the first time as far as
the authors know. We have noticed that when the two waves
overlap (Figures 7 and 8), the joint amplitude is less than the
sum of individual amplitudes.
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Figure 6: Blowup: numerical solution of𝑊𝑛
𝑚
with 𝐴

1
= 𝐴
2
= 0.4.
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Figure 7: Overtaking soliton interaction: numerical solution of 𝑈𝑛
𝑚

with 𝐴
1
= 0.3, 𝐴

2
= 1.0.

Table 6: Overtaking interaction with 𝐴
1
= 0.3, 𝐴

2
= 0.3.

𝑇 𝐴 V 𝐼

0.0 1.0 0.5774 −7.581908
40.0 0.997507 0.578788 −7.581930
80.0 0.652932 0.751473 −7.581911
120.0 0.997311 0.578901 −7.581908
160.0 0.999744 0.577498 −7.581910
180 0.999982 0.577361 −7.581907

4.4. Birth of Solitons. To study the evolution of arbitrary pulse
[19], we choose the initial conditions

𝑢 (𝑥, 0) = −𝐴sech2 [√𝐴

6
(𝑥 + 𝑥

0
)] ,

𝑤 (𝑥, 0) = 0.

(45)

This test is carried out for values of 𝐴, mainly in the
vicinity of 𝐴 = 1.5, the theoretical value of the amplitude for
𝑐 = 0. We considered two cases 𝐴 = 1.2 and 𝐴 = 1.499999.
In the first case we choose 𝐴 = 1.2; we have noticed that as
time evolves, the initial pulse split into two solitons moving
in the opposite directions with equal amplitudes 𝐴

1
= 𝐴
2
=

0.354663 and velocities 𝑐
1
= −𝑐
2
= 0.873818; see Table 7. In
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=
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2
= 1.0.

Table 7: Birth of solitons with 𝐴 = 1.2, ℎ = 0.1, 𝑘 = 0.01.

𝑇 𝐴 V 𝐼

10 0.367859 0.868770 −5.366562
20 0.360967 0.871410 −5.366563
30 0.357963 0.872558 −5.366565
40 0.356061 0.873284 −5.366560
50 0.354663 0.873818 −5.366560

Figures 10 and 11, we display the splitting scenario and some
dispersive oscillations which occurred after splitting. In the
second case we choose 𝐴 = 1.499999; as time evolves, the
initial pulse is split into two solitons moving in the opposite
direction with amplitudes 𝐴

1
= 𝐴
2
= 0.37500; see Table 8.

Figures 12 and 13 display the splitting scenario; no dispersive
oscillation is observed in this case (linearized scheme failed to
produce the numerical solution in this case).Many numerical
tests have been conducted for different amplitudes; we have
noticed that the numerical solution blew up if 𝐴 > 1.499999.
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Figure 10: Birth of solitons, where 𝐴 = 1.2.
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Figure 11: Birth of solitons, where 𝐴 = 1.2.

Table 8: Birth of solitons with 𝐴 = 1.499999, ℎ = 0.1, 𝑘 = 0.01.

𝑇 𝐴 V 𝐼

20 1.498385 0.032808 −5.999997
40 0.384944 0.862189 −5.999997
60 0.374967 0.866038 −5.999997
80 0.374994 0.866028 −5.999996
100 0.375001 0.866025 −5.999987

5. Concluding Remarks

In this paper, a highly accurate finite difference method
to solve GB equation is proposed. The main idea is to
transform the GB equation into a first order differential
system in time. The method is fourth order in space and
second order in time, and it is unconditionally stable. The
method produced a coupled nonlinear system; Newton’s and
linearization methods are used to solve it. The nonlinear
scheme produced more accurate results than the linearized
scheme. Numerical results for single soliton, head-on, and
overtaking solitons interactions are given; the most interest-
ing phenomena we observed were when two solitons collide;
if both solitons are small enough, they pass through each
other like the other usual solitons do, but when they exceed
some limit, the solution blows up at the collision, even if
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Figure 12: Birth of solitons, where 𝐴 = 1.499999.
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Figure 13: Birth of solitons, where 𝐴 = 1.499999.

both amplitudes are smaller than 3/2 for being stable solitons
[14, 15]. The overtaking solitons interaction is also discussed
as a new numerical test. Elastic interaction occurred for large
amplitudes (𝐴

𝑖
≤ 1.15, 𝑖 = 1, 2), and this is contrary to the

head-on interaction, where blowup is observed for moderate
values of the amplitudes (𝐴

𝑖
> 0.3691, 𝑖 = 1, 2). Birth

of solitons is also observed for initial pulse with amplitude
𝐴 ≤ 1.499999. A blowup was observed when 𝐴 = 1.5 and
this is in full agreement with the existing methods [14, 15].
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