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This paper considers a stochastic nonlinear thermoelastic system coupled sine-Gordon equation driven by jump noise. We first
prove the existence and uniqueness of strong probabilistic solution of an initial-boundary value problem with homogeneous
Dirichlet boundary conditions. Then we give an asymptotic behavior of the solution.

1. Introduction

In this paper, we consider the following stochastic nonlinear
thermoelastic coupled sine-Gordon system driven by Lévy
noise:

du, — (i + iy, + Bsinu + ay0) dt
= J o, (tLu(t),z) 7 (dz,dt),
z

do - (0., — ayu, + g (,0)) dt = J o, (,0(t),2) 7 (dz,dt),
zZ

u(x,t)=0, 60(xt)=0, x=0, x=L, t=0,

u(x,0) =u,(x), u, (x,0) = uy (x),

0(x,0)=0,(x), x¢€][0,L],

@

where u, = 0u/ot, #j; (i = 1,2) are the Lévy processes defined
on a complete probability space (Q, #, P) (see Section 2 for
the precise definition) [1-4], gand 0; (i = 1, 2) are given real-
valued random functions that will be defined in later.
Recently, the study of high-temperature apparatus or heat
resistant structures is becoming important and it is necessary
to analyze not only the deterministic thermal stress but also
the stochastic thermal stress. In high-temperature apparatus,

it is very difficult to predict accurately the thermal environ-
ment and mechanical load on its components. Furthermore,
many indeterminate factors must be considered, for example,
the random high-cycle vibrations of the temperature of the
upper core in fast breeder reactors and fluctuations in the
heat transfer coeflicients around the stationary blades of
gas turbines. Therefore, the stochastic case of temperature
and thermal stress is indispensable in considering these
indeterminate factors of the thermal environment (see [5]).

All the time, a description of wave propagation phe-
nomena in random media is usually based on the study
of stochastically perturbed wave equations (see [6, 7]). In
fact, lots of wave phenomena are temperature dependent or
heat generating; then the wave equations are coupled with
a stochastic heat equation. Caraballo et al. [8] studied the
existence of invariant manifolds for coupled parabolic and
hyperbolic stochastic partial differential equations. Bates et al.
[9] proved the existence of random attractors for stochastic
reaction-diffusion equations on unbounded domains, and
Wang and Tang [10, 11] described the properties of the
random attractors.

Meanwhile the sine-Gordon equation is an important
model in physics; Fan [12] considered the random attractor
for the stochastic sine-Gordon equation. What are the other
properties of stochastic sine-Gordon equation? As we know,
Coayla-Teran [13] and Liu et al. [3] studied the mild solution
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of stochastic fractional partial differential equation with frac-
tional and jump noises and considered the strong probability
solution driven by white or Lévy noise for the stochastic
nonlinear nonlocal parabolic equation and 2D stochastic N-
S equation. In deterministic coupled case, the well-posedness
of the solution for the nonlinear thermoelastic coupled sine-
Gordon system has been studied by many authors, and the
global attractor was treated in [14]. Moreover, the more
general thermoelastic system coupled model was considered.
Gao and Muiioz Rivera [15] and Rivera [16] studied the well-
posedness and energy decay rates. In deterministic case, non-
linear thermoelastic system coupled sine-Gordon equation is
very weak coupling thermoelastic system; the more general
model was investigated by Gao [17]; he considered the global
attractor for the semilinear thermoelastic problem.

However, as far as we know, no one refers to the strong
solution for stochastic nonlinear thermoelastic coupled sine-
Gordon system by jump noise.

This paper is organized as follows. In the next section,
we recall some fundamental results related to the solution of
the stochastic equation and Lévy noise. In Section 3, we use
the Galerkin method to prove the existence and uniqueness
of solution to the problem (1). In Section 4, we give an
asymptotic behavior of the solution of the problem (1).

In this paper, C is a constant from line to line.

2. Preliminaries

In this section, we recall some fundamental results related to
some basic function spaces and the property of Lévy process;
for more information, one can see [1, 2, 9, 12]. Let A =
~0,,» with the domain D(A) = H?(0,L) N H,(0,L), and
L%(0, L), HS (0, L) are separable Hilbert spaces with the norm
|- Il and || - |I,, respectively; from Poincaré’s inequality, ||V - ||
is equivalent to | - ||;. Next, we recall some basic concepts
related to Lévy process. The readers are referred to [1] for
more details.

Let (Z, Z) be a measurable space, and let v be a o-finite
positive measure on it. If X is a topological space, then by
AB(X) we will denote the Borel o-field on X, and A is a
Lebesgue measure on (R, B(R)). Suppose that (2, #, F, P) is
a filtered probability space, where F = (&), is a filtration
andz; : QxB(R*)xZ — N isatime homogeneous Poisson
random measure with the intensity measure v defined over
the filtered probability space (Q), &%, F, P).

We will denote by 77; = #; — y; the compensated Poisson
random measure associated with #;, where the compensator
y; is given by

BRNXZ >3 (A —y,(AD)=v(A)AI)eR". (2)

We assume that (H, |- |y) is a Hilbert space. It is then
known (see, for example, [1, 2]) that there exists a unique
continuous linear operator .# which associates with each
progressively measurable process & : R, x Zx Q — H
satisfying

T , ,
EL J.Z|€(r,z)|Hv(dz)dr<oo, T > 0. (3)
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Moreover, .#(§) is an H-valued adapted and cadlag pro-
cess such that for any random step process &(r, z) satisfying
the condition (3) with a representation

E(na) =Yl . (NE (), 120, (4)
j=1

where {0 = ¢, < t; <--- < t, < 0o} is a partition of [0, c0),
and for all j, §; being an # - measurable random variable,
one has

n

7©0=Y [ §@a(dn(tanneat). 20
=1
©

In general case we write

t
J J E(r,2)7j(dz,dr) =7 (§)(t), t=0.  (6)
0Jz
The continuity (more precisely, isometry in Hilbert
spaces) of the operator .# mentioned above means that

E Jt JZ E(r,2)7(dz, dr) ; =E -Lt JZ € (r, z)|?{v (dz)dr,

0

t>0.
7)

The class of all progressively measurable processes & : R, x
Z x Q) — H satistying the condition (3) will be denoted by
ﬂZ(R+, L*(Z,v,H)). If T > 0, the class of all progressively
measurable processes & : [0,T] x Z x Q — H satisfies the
condition (3) just for this one T, which will be denoted by
M0, T, L*(Z,v, H)).

The main technical tool in our paper is the It6 formula.
Let us consider the Hilbert spaces V ¢ H = H' ¢ V' and a
V'-valued cadlag process of the form

t t
X(t)= Xy + L Y(s)ds+J0 JZG(s,z)ﬁ(dz,ds),

tel0,T],

where Y is a V'-valued process and G is an H-valued process;
we have the following.

Theorem 1 (see [1, 2]). Suppose that X, € L*(Q, F; V') and
G € L*(Q x [0,T]; L*(Z,v; H)) are progressively measurable
processes. Suppose that X is a V'-valued process given by (8)
and there exists a V-valued process X € L2(Qx[0,T); V) such

that X = X,dP ® dt in V. Then X is an H-valued cadlag F -
adapted process (up to distinguishable) and

IXOI = X +2 L (X, (9)) ds

+2J J (X (s-),G(s,2))7j(dz,ds)  (9)
Z

0

+ Lt L IG (s, 2)|°7 (dz, ds) .
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3. Existence and Uniqueness of Solution

In this section, we use the Galerkin method to prove the local
existence and uniqueness of solution; then making use of
a priori estimates, we prove that there exists a convergence
subsequence such that the solution is global.

As is well known, system (1) is equivalent to the following
Ito system:

du = vdt,
dv = (aVyy + Uy, + Bsinu + a,0) dt
+J o, (tu(t),z)7 (dz,dt),
z

do = (0, —a,v+g(t,0))dt

+J 0, (1,0(t),2)7; (dz,db), (10)
Z
u(x,t) =0, 0 (x,t) =0,

x=0, x=L, t>0,

u(x,0) = u, (x),

0 (x,0) = 0, (x),

v(x,0) =u; (x),

x€[0,L].

For simplicity, denote that g(0) := g(t,0), o;(u) :=
o,(t,u,z) (i = 1,2),and L*(0,L) = L?, H*(0,L) = H, k €
N*. To obtain the existence of solution to (10), we suppose
that the functions

0; : [0,00) x L*(0,1) — L*(Z,% L* (0, 1)),
(1)
g:10,00) x L* (0,L) — L* (0, L)

satisfy the following conditions:

Cr o izon <kl 9@ < KyllulP,

C2 : ”Gl (u) - Gi (V)”iz(z,‘l/;Lz(O,L)) < kz"]/l — V"Z,

lgw) = gw)|* < K llu— v,
(12)

where k;, K; > 0, i = 1,2and u,v € L*(0, L).

Definition 2. An % ,-adapted stochastic process {(u(t), v(t),
0(t))};so is said to be a strong probabilistic solution of
stochastic nonlinear thermoelastic coupled system driven by
Lévy noise (10) if it satisfies the following:

(1) (), v(t),0(t)) € L*(Q;C([0, T); H' x L? x L?)) a.s.
forany T > 0;
(2) the identities

t

(40, 92) = (0,01) + | (+(9),1) s,

0

3
(v®),9,) = (v 9,)
+ Jt (0‘1Vxx +u,, + Bsinu+ a,0, <p2) ds
0
+ JO JZ (01 (s,u(s),2) aq)z) m (dz,ds),
0),95) = (65 95) + L (0rx — v + g (0),95)ds
[ ] ©600.2.0)% @z,
(13)

hold P-a.s. for all (¢, ¢,, ;) € L* x Hy x H,.
We now give our main result.

Theorem 3. Assume that (u,,v,,0,) € H' x L* x L* is F,-
adapted. The conditions C, and C, are satisfied. 1j; = n;—y; (i =
1,2) are the compensated Poisson random measure associated
with nj;, where the compensator y; is defined in Section 2. Then
for any T > 0 the stochastic nonlinear thermoelastic coupled
system driven by Lévy noise (10) has a unique solution

w(®),v(t),0() € L (C([0,T); H' x L x L*))  (14)
such that
Esup (lu@IF+IvOI* +100I°) <C. (15)

0<t<T

where C is a positive constant.

Proof. Existence. We use the Galerkin approximation and
some useful a priori estimates to prove the existence of
solution. Set

(0 =D ads V()= Db
i=1 i=1
(16)
6, (1) = Zci¢i’
i=1

where {¢,}7°] is the set of eigenfunctions of —0,., with domain
H*(0,L) n Hy(0,L)); it is an orthogonal set of H = L* and
orthonormal one in H), a; = (u,¢,), by = (v,¢;), and ¢; =
(0,¢;). Denote by P, : H — H, the orthogonal projector,

where H,, =Span{¢,,...,¢,}.
Hence, we can rewrite (10) as

du, = v,dt,
Av, = (0 Vyy + Upyy + PP, sinu, + a,0,) dt
+ J P,o, (u,) 7 (dz,dt),
z

den = (enxx -V, t png (en)) dt

+ J P,o,(0,)7; (dz,dt),
z



u,(x,t)=0, 0,(x,t)=0, x=0, x=L, t>0,
1, (,0) = g, (x),

7, (6,0) = 11, (%) = vy, (%),

6, (x,0) = 6y, (x),

x €[0,L],
17)
where, for each 11 € N*, (tg,,, Vo> Opn) — (thg V> 0) in H' x
L’ x L%
Applying It formula to the process ||v, (t)|*, we obtain

t
O = Tl + |, [, IPonca P (a9

t

+2 J J (v, (s=),P,0; (u,)) 77, (dz, ds)
0Jz
t

+2 J (Vo 0 Vyye + Uy + PP, sinu, + a,0,) ds
0

= [voull + lutonll; = leta I

t
~20, | [ 0lFds

t
+2 J (v, BP, sinu, + a,0,) ds
0
t
+2 J J (v, (s=), P, (u,)) 77, (dz, ds)
0Jz

t
+ L JZ IP.o1 )| 1, (dz, ds) .
(18)
Denote that

E(t) := J-o IZ (u, (s-), P,0, (u,)) 7 (dz, ds) . 19)

Since {u,(t)};cor) is an adapted and cadlag process, the
process E(t) is a martingale. Applying the Burkholder-Davis-
Gundy inequality, condition C,, Hoélder’s inequality, and
Young’s inequality, we get

Esup J .[z (v, (r-), P,o, (u,)) 775 (dz, dr)

0<s<t JO

t B 1/2
< 3EH J v, 5Oy ()] v(dz)ds]
0Jz

" (20)

1/2 ¢
By 3[ Esup|y, (5)||2] [klj s, (s)||2ds]
0<s<t 0

1 t
< ZE sup ||vn(s)||2 + 9k, E J ||un(s)||2ds.
0<s<t 0
Taking into account that the process

t *—*J J 1Py ()| 1y (dz, ds) (1)
0Jz
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has only positive jumps, we obtain

Eswp [ [ 1Byl (dzdn)

O<s<t
< EJ j oy ()P (dz) dis (22)
0JZ
t 2
< k,E L 4, ()| ds.

From the Holder inequality, we have

< Jt [va(o|ds +Ct.  (23)
0

t
J (v,» BP,sinu,,) ds
0

Putting (20)-(23) into (18), for t € [0, T], we have
2 1 2
Esup (Jull + Sl
0<s<t

t
< o+ vl =204 | s
t t (24)
+ ZEJ ||vn||2ds + 19k, E J ||un(s)||2ds
0 0
t
+20,E J (v,,0,)ds + Ct.
0

Similarly, using the It6 formula to the process [|0,,(t) 1%, we
obtain

t
16,1 = 8o +2 jo (O O — 27, + Pog (6,)) s
' 2
+ L L 12,026, 1, (dz, ds)

t
+2] | (0,62, (6,(9) 7 (dz.d).
0Jz 25)

Due to the Burkholder-Davis-Gundy inequality, condition
C,, the Holder inequality, and the Young inequality,

Esup J JZ 6, (r-),P,0,(6,)) 1, (dz,dr)

0<s<t JO

t
< JEswp 0,0 + 9 E [ [0, ds,
4 o<s<t 0

s t
Esup J L 1P,0,(0,) 4, (dzr dr) < klEJ 16,(9)|ds,

0<s<t JO 0

t t
2| ©.Pg@)ds< (14K | Joas
° 0 (26)
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Hence, we get

1
EESllp ||6n(t)"2 < "60n"2 + (1 + Kl) E
0<s<t

t t
X J 16, °ds - 20, E J (v,,0,)ds
0 0

t 27)
- ZEJ 16,[?ds + 19K, E
0
! 2
x j 16,(5)[[ds + C.
0
For every t € [0,T], (24) and (27) imply that
2 1 2 1 2
Esup (o + 5l + 516,17
! 2 ! 2
v 20,8 [ vlids+ 26 | Jo,Jds
0 0 (28)

< [utonll; + [onl” + 160"

t
8 [ (Bl + Il + 16,1 s+

where 8 = max{4,2(1 + K, + 19k,)}.
Then the Gronwall lemma implies that

Bsup (Ju, O + I, OF + 16, 0F) s Cr. o)

Substituting (29) into (28), we get

e[ (Il +looF)dssce 6o

To complete the proof of the existence of solution we need
to pass the limits in the Galerkin approximation. Owing to
(29) and (30), there exists a subsequence of {(u,, v,,0,)}, not
relabeled, such that

u, — @ in L* (@;C([0,t];H' (0,1))),
v, = ¥ in L*(Q;C([0,#];L* (0,1)))
NL*(Qx[0,t];H' (0,1)), (31)
0, — 0 in L* (% C([0,4];L* (0,1)))
NL*(Qx[0,6];H' (0,1)).

From the conditions in g, 0; (i = 1,2), and (29)-(30), V¢t €
[0, T], we have

t
EJ |, sin(w,)|*ds < oo,
0

t
EI IP,g(s.6,)| ds < oo,
0

5
! 2
EJ J |P,0y ()P (dz) ds
0lJz
! 2
< klEJ [4,,(9)["ds < o0,
0
t 2
EJ J 1P,0,(6,)|» (dz) ds
0Jz
! 2
< klEJ 16,,(s)][*ds < co.
0
(32)
Hence, there exist the functions
g e l?(Qx[0,];L°(0,1)),
(33)

of e P (Qx[0,t];L*(Z,»L*(0,1)), (i=1,2)
such that
P,sin (u,) — f* in L*(Qx [0,];L* (0, 1)),
P,g(~6,) = g* in L*(Qx[0,¢];L*(0,1)),
P,oy (nu,) = o) in L* (Qx [0,¢]; L* (Z,% L* (0,1))),

P,o, (+6,) — oy in L* (Qx [0,t];L% (Z,% L% (0,1))).
(34)

Combining (31) and (34) and letting n — oo in (17), since
the linear map

fe |

0

L f(s,2)7; (dz,ds) (35)

is continuous from L?(Q; L*(Z, »; L*(0, L))) to L*(Q; L*(0, L))
(in fact an isometry), it is continuous with respect to the weak
topologies. Therefore, in view of the weak convergence, we
have

@®), o) = (4o 1) + L (V(s), ) ds,
(a(t)KPz) = (Vo»ﬁoz)

+ Jt (Ve + iy + Bf " + 010, 9, ) ds
0

[ [ @icaemazd. e
0Jz

(é(t)"Ps) = (60’9"3)
foa *

+ L (Gxx —a,V+g ,<p3)ds

+ Jo JZ (05 (s,2), 93) 75 (dz, ds),

for almost everywhere (w,t) € Q x [0,T] and (¢;, 9,,¢3) €
L* x Hy x H,.



Denote by {(u(t), v(t), 0(¢))}c(0,r) the process which has
a.s. sample paths being continuous in (H' x L* x L?),

is #,-adapted, and equals to {(ﬁ(t),?(t),é(t))}te[o)ﬂ almost
everywhere (w,t) € Q x [0, T]; then from (34) we obtain

6 9) = () + | (49 1) s

(v(®),92) = (v 92)

t
+ j- (‘xlvxx T Uy ﬁf* + (XZQ’ (PZ) ds
0

[ eisaemand. @)
0JZ

Ot),93) = (65, 93)

t
+ J (exx -Vt g*’(P3)d5
0

+I I (0 (5,2), 93) 7; (dz,ds)
0Jz

Now, we consider the stopping time; for each N € N¥,
] :rﬂheMThwmﬁvmevme>NL
N T, lu@®I} v IVl v 16()I* < N.
(38)
We claim that {(u(t), v(t), 0(t))};c[o,r) holds:
Jim E (@ = u)@olf + = v @)l

+6, - 6.)@I) =0,

™

Jim e [ (6= ) G+ 16 -0) Gl ds=0. )

™
lim E L loy = ooy (”)llfz_z(z,v;Lz)ds =0

n— 00

. ™ * 2
lim E L loy = P2 @)1z (z.0,12)ds = 0.

From (17) and (37), for any (¢;, ¢j, ) € Hé X (H2 n Hé) X

Hy, i, j,k € [1,n], we have
(=) ©.9) = [ (=) ). 9) s
((v=va) (©).9))
[ @l (),
+B(f" = Pysinu,), ¢;)ds
+ Lt (,(0-6,),9,) ds

[ ] (o1 62~ Ron (), 8, ),

0JZz
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((0 - en) (t) ’¢k)
= [[0-0) - v-n)
+(g" - B,a (0,)). ) ds

t[ | @62 P07 @z,
0Jz

(40)
a.s., forallt € [0,T].
For eachn € N*, let
P, (u®) =1, =) (u(t),$) ¢y
i1
P,(v(®) =7,(t) =Y (v(t).4;)$;: (41)

Jj=1

n

P,0®)) =6, =) (0(t),¢)

k=1

Set p(t) = e, where 8 is a positive constant to
be defined later. By applying Itds formula to the
processes  p(t)[[V,(t) - v,®I,  p(®)]i,(t) - u,(®)]}, and

p(t)IIén(t) - 9n(t)||2, respectively, we obtain

p (O [7,(5) = v + p (8) [7(t) = 10,

=4%memw—mMWs

t
+Ly@wmw—%®ﬁﬂ

t
+2f8 Jo p(s)(@,(s)—v,(s),

P,(f" (s) =sinu,(s)))ds
+2a, L p(5) (70 () = v, (5),8, () — 6, () s
+ J p’ (s) ||Vn(s) - vn(s)"zds
0

+2 Jot JZ p(s)(@,(s=) = v, (s-),

Pno-f (S’ Z) _Pnal (un)) ﬁ; (dz> ds)
t
NI EERCOR EION A
0Jz

8,0 -6,0)

p(t)

. Lt p () |8, - 6,65 s

8,(5) - 6,(9)[ ds

foo
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24, L p(5) (7, (5) = v, (5),8, (5) — 0, ()) ds

t
+J J p (5)|P.o3 (5, 2) = P,os(8,) |, (dz, ds)
0Jz

t

+2 JO P(S) (gn (5) - en (S) ’Png* (5) - Png (en))ds

2 [ 0@ -0,

P,o; (s,z) — P,0, (6,) ) (dz,ds).
(42)

Taking the mathematical expectations in (42) yields
E{p® (17, ) = v, O + @, ) - u, O]
o0 -6,0[)}

B[ p© el © - v OF + 8,60, 6] as

=E L P () [, (5) =, O} + 7 (8) = v, )]

+||§n (s)-9, (s)”z] ds

t
0

+ 2BE J p(5) (7, () = v, (), P, (f* (5) = sinu, (5))) ds
+E J J p(8) [P, (5. 2) — Poy )Py (dz, dbs)

0Jz

t 2
+E J J p () [P0 (5,2) - Pooy(8,) 1> (dz, ds)

0Jz

+2E JO p() (8,(5)-0,(5), P,g" (5) - P, (6,)) ds.
(43)

Let us analyze each term of (43). By the conditions C, and C,,
we have

(6, -6, P.g" - P9 (6,))
= (6,-6,P.g" - P.g(8,))
+(8,-6,.P,9(8,)-P,g(6,))
=(0,-6,.P,9(0,)-P.g(6,)
+(6,-0,,P,9" - P,g (9)
+(8,-6,P.g0) -Pg(5,))
<28, -6, + 4k, |6, - o]

+ (5,, -0,,P,g" -P,g (6)) ,

#,(s) = v, (s), P, (f" (s) —sinu, (s)))
_ 1,_ 1,_
< ”Vn - Vn"Z + E"un - un”2 + E”un - ullz
+ (¥, - v, P,f* - P,sinu),
IR0} (5,2) - Poy (w,)]
= |P,oy () - Pooy ()| = |Paot = Py )|
+2(P,0] = P,o, (1),

Pnal (Ll) - Pnal (un)) :
(44)

Hence, using the conditions C,; and C, again, we get

t
EJ j p(8) [P — Pooy(u) P, (dzrds)
0Jz

EJ p(s) J |20y - Pnal(un)nzv (dz)ds
0 z

_E jo p(s) L (12,0, 0) - Py ()|

~|Pyo; = Poy@)|’] v (d2) ds

+2E L p(s) JZ (P,o; - P,o, (u),P,0, (1) (45)

-P,0, (u,)) v (dz)ds

t
<ok | p(©)Ju-u,|ds
0
t i 5
-E J-O P (s) ||Pn01 - P,0, (u)“LZ(Z,v;LZ)dS

+2E L p(s) JZ (P,o; - P,o, (u),P,0, (1)

-P,0, (u,)) v (dz)ds,
E[ | p@lBa; - Bos@)n, (dzds)
0JZ

t
< k,E I p(s)[6 -6, ds
0
! . 46
-E L p(s)|P.o; - Pn02(6)||iz(z)viz)ds (46)

t
+2E L p(s) JZ (P,o, —P,0,(0),P,0,(0)

-P,0,(0,))v(dz)ds.
Substituting (44)-(46) into (43), we have

E{p ) (17,0 = vu® + |7,(0) = u, 0}

+

6,00~ 6,0[")}




+E Jot p(s) [2061 7, () = v, O[3
+8,9) -6, )] ds
t
0 WACTLXAE RO e
+E J(: P (5) ||Pn0; - Pnaz(u)||iz(Z,V;L2)ds
t ) 5
<E[ PO I8.0 - w6l + 7.6 - o)
0
+8,(9) - 6,69 ] s
v [[ ) [B,6) - 1,6 + 2617, - v,
K|, (5) - 6, (5)] ] ds

t
+EJ p(s) [“ﬁn—uuz +2(, v, P.f" —P,,sinu)]ds
0

+2E | p(s) 45,3, - 0]
+ (5,1 -0,,P,9g" -P,g (0)) ] ds
t
+2E L p(s) JZ (P,o; - P,o, (u),P,0, (1)
~P,o, (u,)) v (dz)ds
t
+2E L p(s) L (P,o, - P,0,(0),P,0, (0)
-P,0,(0,))v(dz)ds

t
+kE [ p) =l +0-6,] s
(47)
where A is the Sobolev embedding constant such that

lu()I* < Mlu()|3. Choosing & = max{2, B\, 4K,}, we get
p'(s) + 8p(s) = 0; hence

E{p ) (I70) = va @I + 1,0~ , 0]

+

6,)-6,0]")}

t _

+E L p(s) [2061”7"(5) =)} + [Buts) - en(s)"ﬂ ds
t . )

+E L p(s) ||Pn01 - P,o, (u)l|L2(Z,v;L2)ds

t
vE j p() |P.0; ~ Paoy()ls ey
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t
< EJ- p(s) [”ﬁn ~ul +2(F, - v, P, f" - P, sinu)] ds
0

1 2E Lt p(s) [4K B, - 6]

+ (én -6,Pg -Pg (6)) ] ds
+2E L p(s) JZ (P,o, = P,o, (), P,0, (1)
-P,o, (u,))v(dz)ds
+2E L p(s) JZ (P,o, — P,0,(0),P,0,(0)
-P,0,(6,))v(dz)ds

ek [ p ) [+ o0, s.
(48)

Replacing t by 7y in (48),

E{p (rx) (16, = vl + @, = ) (@)l
+@, - 6@ )}
+E JTN p(s) [2041"7,1 (s)-v, (s)||f
0

+8, ) - 6, )] ds

+E L p(s) ”Prtaik - P, (u)"iz(Zﬂ;LZ)ds
+E _L p(s) ”PnO; - PnO-Z(u)"iZ(Z,V;LZ)dS
< B[ @ ([ -l 25, - v, Puf” — Bysina)] s
0
(5N —_ 2
+2E L p(s) [4K2 '|9n - 9"
+ (én - en’Png* —-P.g (6)) ] ds

+2E Jo ) p(s) JZ (P,o; - P,o, (u),P,0, (1)
-P,0, (u,)) v(dz)ds

1+ 2F L Cps) JZ (P,0; - P,o, (), P, (6)
-P,0,(0,))v(dz)ds

ekt [ ) [l + 0 -6, ] .
(49)
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Since 1[0,TN]P(5)(01* - 0,(u)) € L*(Z,v;L*) implies that

Lo 1P()(B,0} — Poy(w) € L*(Z,%L?), due to (31) and
Sobolev embedding theorem, we have |u,, — il ;» or — Oas
n — 00; hence

™
E L p(s) |0, () - P,o, (un)“iz(z,v;Lz)ds
< EL p(s) ||01(u) o, (u, )”Lz(zu2 ds
N 2
p(s)lu- ”n"Lz(o,L)ds

sszJ
0

™
“kE [ POl lfnds — 0 (1 — o0);

(50)
then we have
lim E J : p(s) J (P,o; - P,o, (u),P,0, (u)
-P,0, (u,))v(dz)ds = 0.
Similarly, we can prove that
Jim EJ p(s)J (P,o, = P,0,(0),P,0,(0)
(52)
-P,0,(6,))v(dz)ds = 0.
Owing to (31)-(34) the sequence P,g" —P,g(0) is bounded

in L*(Qx[0,T]; L%), and by the Sobolev embedding theorem,
Jim EJ p(s)( »P.g" —Png(e))ds

<Clim EJ p(5) |8, - 6, ds
0

:ClimEJ p(s)||P,6 - P8, ds (53)
n—oo 0
SClimEJ p(s))6- 9" ds
n—oo 0
:ClimEJ p(s)"@ 9||ds- .
n—0oo 0

Similarly, we can prove that

Jim EJ p(s)(¥, - v, P,f* —P,sinu)ds

<Clim EJ p(s) |7, - vn"zds =0,
0 (54)
N _ 5
Jim E | 7 p(s)[u P + |5, - ulf + |6, ]
+)6 - 6,]°] ds = o.

Therefore, the limits (51)-(54) imply that (39) holds true.

Next, due to the property of g, we see that, for all ¢ €
LXQx [0,T]; L*(0, 1)),

JmE [ (96,9)- 906y ) ds
<Clim E LT” 16,() - 8@y @|ds=0, (5)

lim E JTN (sinu, (s) — sinu(s),w(s))ds = 0.
0

n— 00

From this, since P,g(0,) — g*, P,sinu, — f*in L*(Q x
[0, T];L*(0, L)), and (39), we have

Lo (8) 07 (5) = 1o, 1 (8) 0y (1 (s))
Lo (8) 05 (8) = Ijg ) (8) 03 (B(5))
I[o,rN] (s) g 6(s),

=Ij, (s) sinu(s),

(56)
I[o,TN] (s) g* (s) =

Tige1 () 7 (9)

for almost everywhere (w, ) € Q x [0, T].
Putting (56) into (37), we get

(46).91) = () + | (1)) s,
(v®),92) = (vo p2)

t
+ J (0 Vyy + Uy + Bsinu + a0, ,) ds
0

¢
" Jo Jz (o) (W), ) 77y (dz, ds),
0t).95) = (65, 95)

t
+ J (O — v+ g (0),9;)ds
0

+ J J (0,(0),95)7, (dz,ds),
0Jz
(57)

a.s., V(@,, 9, 93) € L x Hé X Hé, t € [0,T].
From the property of 7y, we obtain P(X.,{ty = T}) =
1; let

Q= {weﬂ;we [.j fry =T},
o (58)

(u, v, 0) (w, t) satisfies (57)

and P(Q') = 1. For w € Q' there exists N' > 0 such that
7y =T forallN > N'.
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Then, (u(t), v(t), 8(t)) is a solution to (10).

Uniqueness. Set (u,,v,,0,) and (u,, v,,0,) as two solutions of
(10); thus

t
(4, —uy) (1), ) = L (v(s),9,)ds,

(1) O = [ (@100 =) 0= ),,

+f (sinu, — sinu,), ¢,)ds

+ Jt Ba, ((6, - 0,),9,)ds

0

+ J: L (01 (1) — 01 (12), 95) (59)

x 1 (dz,ds),
(6, -0,) ), 95) = L (0, =0~ (v, = 7,)
+9(0,) - 9(6,),9;)ds

t| [ ©0)-00).9)
x 1, (dz,ds),

a.s., V(@ @ 93) € L* x HY x Hy, t € [0, T].

From a similar argument as in the proof of existence, by
the B-D-G inequality, conditions C,, C,, and the Gronwall
lemma, one can easily show that

E(Jluy (1) — w0 + [6:() = 6,0]7) =0 (60)

for t € [0,T]; thus P(u,(t) = u,(t), 0,(t) = 0,(t)) = 1 for all
t €[0,T].
We complete the proof of the theorem. O

4. Asymptotic Behavior

In this section, we briefly discuss the long time behavior of
the strong solutions of the stochastic nonlinear thermoelastic
system coupled sine-Gordon equation driven by jump noise.
Following the idea in [6], we assume that there exists a
constant a > 0 such that
y=max{a+pa+1+K, +k}>0,

(61)

where A is defined in Section 3.

Theorem 4. Suppose that the conditions for Theorem 3 hold
true. If§ —y — a < 0, then the solution {(u(t), v(t), 0(t))},c0 1)
of the problem (10) satisfies

E(Ju, )] + 16@)17) < 77 (Cy + Cyt + Ct?), (62)

where C; (i = 0, 1, 2) are the positive constants.

Abstract and Applied Analysis

Proof. Set p(t) = e, using Itd’s formula to the processes
POV, p@®llu@I}, and p@)IO()I*, respectively; we

obtain

p &) [VOI? + p () [u®)]1}
t
= vl + o + L o' (s) Iv(s)|2ds
- 2a J P (s) v (9)llds
0
v [ o © s
0
t
+2p J p(s)(v(s),sinu(s))ds
0
+2a, J p(s) (v (s),0/(s)) ds
0
+2 J J p(s)(v(s—), 0, ()7 (dz, ds)
0Jz
+[ ] p@ ol @z.ds),
0JZ
P16 OIF = 6] -2 L p (5) 16()Ids
v [ o 1e00as
0
-2, J p(s)(v(s),0(s))ds
0
+2 Jo p(s)(0(s),g(6(s)))ds
t
22| [ 90060 0) 7 @zds)

0

! J J p(5) |os O 1, (dz. ds).
- (63)

Taking the mathematical expectations in (63) yields
Ep (t) [IvOI? + lu(®; + 16
‘ 2 ‘ 2

+2a,E L p(s) lv(s)l;ds + 2E Jo p(s) 10(s)ll1ds

2 2 2
= [Ioll” + ol + 0[]

t

+E [ 0O [ + O + 166 ds

t
0

+2BE J. p(s)(v(s),sinu(s))ds
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t

+2E J-O P (s) (9 (s) g C] (S))) ds
HE jo ,[z ps) ”"1(“)"2111 (ds,dz)
e L L p(9) |00 "7, (ds, dz).
(64)

From Holder’s inequality, Young’s inequality, and condi-
tion C,, we have

2BE J: p(s)(v(s),sinu(s))ds

t

sﬁEJ

0

p () I)IPds + BE L p(9) lu(s)|*ds,

t

2B | p(s)(0(5),9(0(5))ds
<E j p(s)16(s)|*ds + K, E J p (s) 16(s)|*ds,
0 0

¢ 2
E[ | p@loieln ds.dz
Z

’ (65)

- EJ J p () oy )| (d2) ds
0Jz
<kE L p (s) lull’ds,
t
EJ j p () |02®| 1, (ds, dz)
0Jz
- EJ j p(5) [0, @) v (dz) ds
0JZz
< kE L p(s) 101,
Therefore, from (64), we get
Ep () [Iv®I? + w15 + 161 ]

‘ 2 ! 2
+20E L p(s) Iv(s)ly + 2E L p (s) 10(s)ll1ds

< (vl + ol + 661°]
t
+aE jo p () [luIIF + &I + 16)I*] ds

t
vE j p &) [BIVS)I + (ky + B) lu()I?

+(1+ K, + k) 105)]*] ds.
(66)

11
Due to the embedding theorem and (61),
Ep (t) [V + ()] + 161
+EE jot p(5) [IMOI + 10)I?] ds
< Bp (t) [Iv®)1> + lu@)l} + 16)11]
2 Lo + 28 [ po 10t

[voll” + oy + 160]°]

+ELp@Mwwh+ﬁMNW®ﬁ%

IA

(67)

+E L p(s) (a+ B) Iv(s)|*ds

VE Lt p(s) (a+ 1+ K, +k)[0(s)|ds

IN

2 2 2
(vl + Ny + 66 ]

+ELp@NWNh+ﬁMNW®ﬁ%

t
98 | p© (WO + 10 ds.
Hence, by Theorem 3, we have
Ep () [IVOI® + 100I°] + (E-y) E
t
<[ P o + 16 ds (68)
2 2 2
< [Ivoll* + lluoll; + 160]°] + C = C, + Cots
Gronwall’s inequality leads to

Ep () [Iv®)]* + 16(t)11°]
(69)
<&Mt (||vo||2 + ||60||2 +Ct + Cztz) )

With the choice of a, &, y, the assumption of Theorem 3
holds true; we obtain that

E[Iv@)I” +1001] < €77 (Cy + Cyt + C,t?). (70)
This completes the proof of the theorem. O

Remark 5. Since u(x, t, w) denotes the displacement at point
(x,t) on an orbit w € (, as., ou/ot = v means the
velocity; the result in the Theorem 4 exhibits that the velocity
is exponentially decay in time ¢ in the sense of mean square;
in the view of physics, one can obtain that the displacement u
will tend to a constant in the large time in the sense of mean
square.
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