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This paper addresses a new approach for modeling of versatile controllers in industrial automation and process control systems
such as pneumatic controllers. Some fractional order dynamical models are developed for pressure and pneumatic systems with
bellows-nozzle-flapper configuration. In the light of fractional calculus, a fractional order derivative-derivative (FrDD) controller
and integral-derivative (FrID) are remodeled. Numerical simulations illustrate the application of the obtained theoretical results in
simple examples.

1. Introduction

Fractional calculus is a powerful mathematical tool with a
long history, but its application to engineering and modeling
of physical systems has attracted much attention only in
recent years [1]. This theory generalizes the classical differ-
entiation and integration into noninteger order ones. It has
been found that in interdisciplinary fields, many systems
can be described more accurately and more conveniently
by fractional differential equations (FDEs). For instance,
fractional derivatives have been widely used in the mathe-
matical modeling of viscoelastic materials [2]. The anoma-
lous diffusion phenomena in nonhomogeneous media can
be explained by noninteger derivative-based equations of
diffusion [3]. Another example for an element with fractional
order model is fractance, which is an electrical circuit with
noninteger order impedance and has a property that lies
between resistance and capacitance [4].Moreover, it has been
shown that the dynamical process of heat conduction can be
modeled more adequately via fractional order calculus [5]. In
biology, the membranes of the biological cells are proven to
have fractional order electrical conductance and are classified
among noninteger order systems [6, 7]. In economics, it is

known that some finance systems can display fractional order
dynamics [8]. For more examples of fractional order models
see, for example, [9, 10] and the references therein. As an
important industrial controller, fractional order versions of
PID controllers have been considered in the literature [11].
More theoretical problems and recent applications can be
found in [12].

Pneumatic controllers are essential parts of the indus-
trial automation systems containing several diaphragms and
bellows [13]. There have been a great development in low-
pressure pneumatic controllers for industrial control systems
in the past decades, and today they are used extensively
in industrial processes. The advantages include safety and
explosion-proof characteristic, simplicity, low cost, high
compliance, and ease of maintenance [2]. For instance,
recently, pneumatic servo systems have been applied in
several systems, such as industrial robots, rehabilitation tools,
and medical and caregiver robots, aspherical glass molding
machines, and precise positioning [14, 15].

Recently in [16] a model of a pneumatic vibration isola-
tion system (PVIS) has been presented. However, a thorough
study on the modeling of the pneumatic elements via frac-
tional order differential equations has not been considered

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 871614, 9 pages
http://dx.doi.org/10.1155/2014/871614

http://dx.doi.org/10.1155/2014/871614


2 Abstract and Applied Analysis

yet. Because of compressibility of the air, the control action in
practical actuating valvesmay not be positive; that is, an error
may exist in the valve-stem position. To overcome this imper-
fection, a more accurate model of pneumatic controllers is
needed. Using fractional order dynamics for diaphragms,
bellows, and other devices that may have sprig-property
yields amore accuratemodel for such industrial systems than
the classical integer order models. In particular, relaxation
processes deviating from the classical exponential behavior
are often encountered in the dynamics of complex materials.
In many cases experimentally observed relaxation func-
tions exhibit a stretched exponential decay [17, 18]. Such
behavior may be seen in the stress relaxation of viscoelastic
materials, such as polymers or critical gels, in the change
carrier transport in amorphous semiconductors and in the
attenuation of seismic waves [19]. By this new approach, the
available hysteresis in the diaphragms,which has been usually
disregarded for simplicity in conventional approaches, can
be easily modeled in the new approach. Fractional calculus
allows for a rigorous and reliable modeling for such systems.

In this paper, in order to consider some real and nonideal
features of a pneumatic structure, using a four-parameter
fractional derivative Zener model for viscoelastic materials
[20–22], we present a fractional order model for a nozzle-
flapper-relay configuration. Then, under some simplified
conditions, we provide a multiorder fractional derivative and
integral controller, which considers thememory of the system
in a compact form. The numerical simulations support the
obtained results.

This paper is organized as follows. Section 2 provides
the preliminary background from fractional calculus. In
Section 3, the pneumatic and pressure systems are presented.
Some illustrative examples are provided in Section 4. Finally,
the conclusion remarks are given in Section 5.

2. Backgrounds

In this section, a brief background of fractional calculus
is presented. The definition of the fractional integral is the
extension of Cauchy formula for evaluating the integration.
The 𝑞th order fractional integral of function 𝑥(𝑡)with respect
to 𝑡 is defined by

𝐽
𝑞
𝑥 (𝑡) =

1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑥 (𝑠) 𝑑𝑠, (1)

in which Γ(𝑞) = ∫
∞

0
𝑒
−𝑧
𝑧
𝑞−1

𝑑𝑧, 𝑞 > 0 is the Euler gamma
function. In addition, there are some definitions for fractional
derivatives such as Riemann-Liouville, Grunwald-Letnikov,
and Caputo definitions [23]. For example, the Riemann-
Liouville (RL) fractional derivative of order 𝑞 for function
𝑥(𝑡) is defined by

RL
0 𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐷

𝑚
𝐽
(𝑚−𝑞)

𝑥 (𝑡) , (2)

where𝑚 − 1 < 𝑞 < 𝑚,𝑚 ∈ Z+.

The Laplace transformof RL fractional derivative of order
𝑞 of function 𝑥(𝑡) is

𝐿 {
RL
0 𝐷
𝑞

𝑡
𝑥 (𝑡)} = 𝑠

𝑞
𝑋 (𝑠) −
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𝑘=0

𝑠
𝑘
⋅
RL
0 𝐷
𝑞−𝑘−1

𝑡
𝑥 (0) , (3)

where 𝑚 − 1 < 𝑞 < 𝑚 ∈ Z+. As can be seen from (3) for
evaluating the Laplace transform of RL fractional derivative
operator, the fractional order derivative of the function 𝑥(𝑡)

is needed as initial conditions.This is somewhat meaningless
from the physical viewpoint. Therefore, the RL operator is
useless in modeling of the physical systems.

Another definition for fractional derivative has been
introduced by Caputo:

𝐶

0𝐷
𝑞

𝑡
𝑥 (𝑡) :=

RL
0 𝐷
−(𝑚−𝑞)

𝑡
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(𝑠) 𝑑𝑠,

(4)

where𝑚 − 1 < 𝑞 < 𝑚 ∈ Z+.
In contrast to RL operator, the Laplace transform of the

Caputo operator needs the integer order derivative of the
function as the initial conditions, as shown by the following
relation:

𝐿 {
𝐶

0𝐷
𝑞

𝑡
𝑥 (𝑡)} = 𝑠

𝑞
𝑋(𝑠) −

𝑚−1

∑

𝑘=0

𝑠
𝑞−𝑘−1

𝑥
(𝑘)

(0) , (5)

where𝑚 − 1 < 𝑞 < 𝑚 ∈ Z+.
For more information about fractional calculus see, for

example, [24, 25].

3. Fractional Order Model of Pneumatic and
Pressure Systems

Many industrial processes and pneumatic controllers involve
the flow of a gas or air through connected pipelines and
pressure vessels. Thus, it is logical to introduce a parameter
for characterizing their specifications. Some quantities in
pipelines and pressure vessels can be viewed as resistance (𝑅)
and capacitance (𝐶) used in electrical circuits. Traditional
definitions for these characteristics are as follows [2]:

𝑅 =
𝑑 (Δ𝑃)

𝑑𝑞
, (6)

where 𝑑(Δ𝑃) is a small change in the gas pressure difference
between input and vessel gas and 𝑑𝑞 is a small change in the
gas flow rate. Traditionally, the capacitance of the pressure
vessel may be defined by

𝐶 =
𝑑𝑚

𝑑𝑝
, (7)

where 𝑚 and 𝑝 are mass of gas stored in the vessel and gas
pressure, respectively.
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Figure 1: Schematic diagram of a force-distance type of pneumatic proportional controller.

It can be shown that during the change of state of a pol-
ytropic process, from isothermal to adiabatic state, the capac-
itance is constant and can be obtained as [2]

𝐶 =
𝑉

𝑛𝑅gas𝑇
, (8)

where 𝑛 is the polytropic exponent, 𝑉, 𝑅gas, and 𝑇 are the
volume of vessel, gas constant, and absolute temperature,
respectively. It is worth noting that in some practical cases,
the polytropic exponent 𝑛 is approximately 1.0–1.2 for gases
in uninsulated metal vessels.

3.1. A Fractional Order Model for the Nozzle-Flapper-Relay
Controller. A conventional apparatus in the industrial pneu-
matic control systems is the nozzle-flapper configuration.The
nozzle-flapper amplifier converts displacement into a pres-
sure signal. Since typical industrial process control systems
require large output power to operate large pneumatic actu-
ating valves, the power amplification of the nozzle-flapper
amplifier is usually insufficient. To overcome this problem,
a pneumatic relay can be connected to the nozzle-flapper.
Therefore, a complete pneumatic amplifier is composed of
two stages: nozzle-flapper as the first and pneumatic relay as
the second amplifier stages. A schematic diagram of such a
configuration is depicted in Figure 1.

Assuming that the relationship between the variation in
the nozzle back pressure 𝑝𝑏 and the variation in the nozzle-
flapper distance 𝑥 is linear, one can write

𝑝𝑏 = 𝑘1𝑥, (9)

where 𝑘1 is a positive constant. We now develop a new
fractional order model for the pneumatic relay containing a
diaphragmasmentioned in Section 1which considers heredi-
tary property of the configuration.The elasticity and damping
properties of the diaphragm cannot be measured directly
because the shape of the diaphragm in the deflated condition
is quite different from that in the inflated condition, and the

Nozzle back pressure

To 

Air supply

To pneumatic 
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valve

Figure 2: A simple model of bleed-type relay.

deflated diaphragm is very difficult to handle due to its flex-
ibility. Therefore, the stiffness of the diaphragm is obtained
usually from the experimental data. A simple bleed type
of pneumatic relay is depicted in Figure 2.

Following [26], a typical form of the four-parameter
fractional derivative Zener model for viscoelastic materials
can be written as

𝜎 (𝑡) + 𝜏
𝛽 𝑑
𝛽

𝑑𝑡𝛽
𝜎 (𝑡) = −𝐸min𝜀 (𝑡) − 𝐸max𝜏

𝛽 𝑑
𝛽

𝑑𝑡𝛽
𝜀 (𝑡) , (10)

where 𝜎(𝑡) is the stress, 𝜀(𝑡) is the strain, 𝐸max and 𝐸min are
the maximum andminimum of elastic modulus, 𝜏 is the time
constant, and 𝛽 is the exponent of the fractional derivative.
Based on the fact that for the pneumatic relay, the back
pressure on the diaphragm is proportional to the stress and
the displacement is proportional to the strain, (10) reduces to

𝑝𝑏 (𝑡) + 𝜏
𝛽

new
𝑑
𝛽

𝑑𝑡𝛽
𝑝𝑏 (𝑡) = Ψmin𝑧 (𝑡) + Ψmax𝜏

𝛽

new
𝑑
𝛽

𝑑𝑡𝛽
𝑧 (𝑡) , (11)

where 𝑝𝑏(𝑡) is the back pressure acting on the top diaphragm
of the pneumatic relay, 𝑧 is the resulting displacement of
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Figure 3: Block diagram for the fractional order nozzle-flapper-relay.

the diaphragm from the equilibrium, Ψmax and Ψmin are
proportional to the maximum and minimum stiffness of the
diaphragm, respectively, and 𝜏new is the new time constant
which is a characteristic of the structure. Applying the Laplace
transform on (11) yields

𝑃𝑏 (𝑠)

𝑍 (𝑠)
=
Ψmin + Ψmax𝜏

𝛽

new𝑠
𝛽

1 + 𝜏
𝛽

new𝑠
𝛽

, (12)

where 𝑃𝑏(𝑠) and 𝑍(𝑠) are the Laplace transform of the back
pressure signal 𝑝𝑏(𝑡) and the diaphragm displacement 𝑧(𝑡),
respectively. The structure of the diaphragm is such that the
relation between control pressure 𝑝𝑐(𝑡) and 𝑧(𝑡) is linear; that
is,

𝑃𝑐 (𝑠) = 𝑘2𝑍 (𝑠) , (13)

where 𝑘2 is a positive constant and 𝑃𝑐(𝑠) is the Laplace
transform of 𝑝𝑐(𝑡). Using (9), (12), and (13) one can conclude
that

𝑃𝑐 (𝑠) = 𝑘1𝑘2

1 + (𝜏new𝑠)
𝛽

Ψmin + Ψmax(𝜏new𝑠)
𝛽
𝑋 (𝑠) . (14)

For the flapper, since there are two small movements
(𝑒 and 𝑦) in opposite directions, one may add up the
results of two movements into one displacement 𝑥. It can be
easily shown that for the flapper movement the following
relationship is held:

𝑥 (𝑡) =
𝑏

𝑎 + 𝑏
𝑒 (𝑡) −

𝑎

𝑎 + 𝑏
𝑦 (𝑡) , (15)

where 𝑦 is the displacement of the end of the flapper due to
the bellows expansion or contraction. A usual approach is to
consider the bellows action as a linear spring. However, as
was developed for the diaphragm, for every practical bellows
a simple fractional order model can be considered as follows
which we call it a pseudo-spring:

𝐴𝑝𝑐 (𝑡) = 𝑘𝑠
𝐶

0𝐷
𝑞

𝑡
𝑦 (𝑡) , (16)

in which 𝐴 is the effective area of the bellows and 𝑘𝑠 is the
equivalent pseudo-spring constant, that is, the stiffness due
to the action of the corrugated side of the bellows. Using (9),
(14), (15), and (16), one can develop a block diagram for the
nozzle-flapper-relay, as shown in Figure 3.

The transfer function between the control pressure 𝑃𝑐(𝑠)
and the error signal 𝐸(𝑠) can be obtained using Mason’s
formula as follows:

𝑃𝑐 (𝑠)

𝐸 (𝑠)
= (𝑏𝑘𝑠𝑘1𝑘2𝑠

𝑞
(1 + (𝜏new𝑠)

𝛽
))

× ((𝑎 + 𝑏) 𝑘𝑠𝑠
𝑞
(Ψmin + Ψmax(𝜏new𝑠)

𝛽
)

+𝑎𝐴𝑘1𝑘2 (1 + (𝜏new𝑠)
𝛽
) )
−1

.

(17)

As can be seen, this controller configuration yields a
fractional order proper transfer function. In the following
sections, by inserting a restrictor in the feedback path, a
fractional order derivative and integral performance are
achieved.

Remark 1. It should be emphasized that in using transfer
function (by the definition) all initial conditions must be
set to zero. Since we have utilized the Caputo’s fractional
derivative, all initial conditions are those which have been
considered in the integer order cases. In other words, from
(5), in computing the Laplace transform of the Caputo’s
derivative, we need integer order derivatives of the signal;
that is, 𝐿{ 𝐶

0𝐷
𝑞

𝑡
𝑥(𝑡)} = 𝑠

𝑞
𝑋(𝑠) − ∑

𝑚−1

𝑘=0
𝑠
𝑞−𝑘−1

𝑥
(𝑘)
(0) in which

necessity of 𝑥
(𝑘)
(0) is apparent. So, setting these initial

conditions to zero in the development of transfer functions is
näıve. Indeed, if the Riemann-Liouville derivative had been
used, setting the initial conditions to zero does not have any
meaning. Moreover, as there is not any superfluous element
in all proposed pneumatic structures, one can conclude that
the system is completely characterized by its transfer function
which implies that the contributions of the consistent initial
conditions can be seen in the response given by the transfer
function. Any initial conditions can be regarded in the
simulation by setting the desired values in the integrator parts
which is an option in Simulink package.

3.2. Pneumatic Controller with Fractional Order Derivative
Performance. Consider the pneumatic controller configura-
tion shown in Figure 4, in which a restriction in the negative
feedback path modifies the previous controller introduced in
(17).

Assuming a small positive step change in the error signal
𝑒, the control pressure 𝑝𝑐 changes almost instantaneously.
The restriction 𝑅momentarily prevents the feedback bellows
from sensing the pressure change 𝑝𝑐. Thus, the feedback
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Figure 4: Pneumatic controller with a restriction in the feedback
path.

bellows does not respond momentarily, and the pneumatic
actuating valve feels the full effect of the flapper movement.
As the time goes on, the feedback bellows expands. The
expansion of the bellows critically depends on the type of
the material used in the construction of the bellows. The
usual materials used in the practical bellows are not purely
spring and exhibit something between elastic and semiplastic
behavior. The differential equation that could describe this
behavior under pressure changes is very complicated. Using
a fractional order operator to describe such a pseudo-spring
bock is logical, because the order of the operator gives
an additional freedom to match the behavior. As can be
observed in a practical implementation, the signal 𝑝𝑐 decays
in time [27], and thus, the controller is of the derivative
type or more accurately a proportional plus fractional order
derivative. Indeed similar to the methodology discussed in
Section 3.1, one can consider a fractional order model for this
capacitance-resistance connection as 1/(𝑅𝐶𝑠V + 1).

Thus, a simplified block diagram for the controller which
is called fractional order derivative controller can be devel-
oped as depicted in Figure 5.

The transfer function of the control pressure with respect
to the error signal is

𝑃𝑐 (𝑠)

𝐸 (𝑠)

= (
𝑏

𝑎 + 𝑏
𝑘1𝑘2(

1 + (𝜏new𝑠)
𝛽

Ψmin + Ψmax(𝜏new𝑠)
𝛽
))

× (1 + 𝑘1𝑘2(
1 + (𝜏new𝑠)

𝛽

Ψmin + Ψmax(𝜏new𝑠)
𝛽
)

× (
𝑎

𝑎 + 𝑏
)(

𝐴

𝑘𝑠𝑠
𝑞
)(

1

𝑅𝐶𝑠V + 1
))

−1

= (𝑘1𝑘2𝑏 (𝑘𝑠𝑠
𝑞
) (𝑅𝐶𝑠

V
+ 1) (1 + (𝜏new𝑠)

𝛽
))

× ((Ψmin + Ψmax(𝜏new𝑠)
𝛽
) (𝑎 + 𝑏)

× (𝑘𝑠𝑠
𝑞
) (𝑅𝐶𝑠

V
+ 1) + 𝑘1𝑘2𝑎𝐴 (1 + (𝜏new𝑠)

𝛽
))
−1

= (𝐾 (𝑅𝐶𝜏
𝛽

new𝑠
𝑞+V+𝛽

+ 𝑅𝐶𝑠
𝑞+V

+ 𝑠
𝑞
+ 𝜏
𝛽

new𝑠
𝑞+𝛽

))

× (𝜅 (Ψmax𝑅𝐶𝜏
𝛽

new𝑠
𝑞+V+𝛽

+ Ψmax𝜏
𝛽

new𝑠
𝑞+𝛽

+Ψmin𝑅𝐶𝑠
𝑞+V

+ Ψmin𝑠
𝑞
) + 𝜂 + 𝜂𝜏

𝛽

new𝑠
𝛽
)
−1

(18)

in which 𝐾 = 𝑘1𝑘2𝑘𝑠𝑏, 𝜅 = 𝑘𝑠(𝑎 + 𝑏), and 𝜂 = 𝑘1𝑘2𝑎𝐴.

Remark 2. Note that if |𝑘1𝑘2((1 + (𝜏new𝑠)
𝛽
)/(Ψmin +

Ψmax(𝜏new𝑠)
𝛽
))(𝑎/(𝑎 + 𝑏))(𝐴/𝑘𝑠𝑠

𝑞
)(1/(𝑅𝐶𝑠

V
+ 1))| ≫ 1, then

𝑃𝑐 (𝑠)

𝐸 (𝑠)

≅ (
𝑏

𝑎 + 𝑏
𝑘1𝑘2(

1 + (𝜏new𝑠)
𝛽

Ψmin + Ψmax(𝜏new𝑠)
𝛽
))

× (𝑘1𝑘2(
1 + (𝜏new𝑠)

𝛽

Ψmin + Ψmax(𝜏new𝑠)
𝛽
)

× (
𝑎

𝑎 + 𝑏
)(

𝐴

𝑘𝑠𝑠
𝑞
)(

1

𝑅𝐶𝑠V + 1
))

−1

= 𝑀(𝑅𝐶𝑠
𝑞+V

+ 𝑠
𝑞
) ,

(19)

where𝑀 = 𝑏𝑘𝑠(𝑎𝐴)
−1. It can be easily seen that this transfer

function is a pure fractional order derivative controller with
two tunable orders. For this reason, we call it a fractional
order𝐷 + 𝐷 controller.

3.3. Pneumatic Controller with Fractional Order Integral Per-
formance. Similar to the previous discussions in Section 3.2,
we can develop a pneumatic controller with fractional order
integral performance. Consider the controller configuration
in Figure 6.

The bellows denoted by I is connected to the control
pressure source without any restriction, though a restriction
can be implemented for it. The bellows denoted by II is
connected to the control pressure source through a restriction
denoted by 𝑅. A small positive step change in the actuating
error, 𝑒, will cause the back pressure in the nozzle to change
instantaneously, and thus a change in the control pressure,
𝑝𝑐, also occurs instantaneously. Due to the restriction of the
valve in the path to bellows II, there will be a pressure drop
across the valve. As the time goes, the air flows across the
valve in such a way that the pressure change in bellows II
reaches𝑝𝑐.Thus, bellows IIwill expandor contract as the time
elapses causing to move the flapper an additional amount in
the direction of the original displacement 𝑒. This will cause
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Figure 5: A simplified block diagram for fractional order PD controller.
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Figure 6: Pneumatic controller with a restriction in the feedback
path which depicts an integral performance.

the back pressure,𝑝𝑏, in the nozzle to change continuously. In
other words in addition to the direct action of the bellows I, a
positive feedback effect emerges as the time goes on. Using
the methodology employed in the previous section, it can
be deduced that the obtained performance is inherently an
integral action. However, because of the resulted fractional
order behavior of the bellows and the diaphragm of the
pneumatic relay, one can draw a block diagram as shown
in Figure 7. The effect of positive feedback can be observed
easily from the figure.

In this block diagram we denote the fractional order
model for the restrictor-bellows II with orders 𝑤. Note that
the fractional order integral control action in the controller
takes the form of slowly canceling the feedback that the
proportional control originally provided.

Using Mason’s formula, one can develop the transfer
function for the block diagram sketched in Figure 7:

𝑃𝑐 (𝑠)

𝐸 (𝑠)

= (
𝑏

𝑎 + 𝑏
𝑘1𝑘2(

1 + (𝜏new𝑠)
𝛽

Ψmin + Ψmax(𝜏new𝑠)
𝛽
))

× (1 + 𝑘1𝑘2(
1 + (𝜏new𝑠)

𝛽

Ψmin + Ψmax(𝜏new𝑠)
𝛽
)

× (
𝑎

𝑎 + 𝑏
)(

𝐴

𝑘𝑠𝑠
𝑞
)(1 −

1

𝑅𝐶𝑠𝑤 + 1
))

−1

= (𝑏𝑘1𝑘2𝑘𝑠𝑠
𝑞
(𝑅𝐶𝑠
𝑤
+ 1) (1 + (𝜏new𝑠)

𝛽
))

× ((𝑎 + 𝑏) 𝑘𝑠𝑠
𝑞
(𝑅𝐶𝑠
𝑤
+ 1) (Ψmin + Ψmax(𝜏new𝑠)

𝛽
)

+ 𝑎𝐴𝑘1𝑘2𝑅𝐶𝑠
𝑤
(1 + (𝜏new𝑠)

𝛽
))
−1

.

(20)

Notice that if |𝑘1𝑘2((1 + (𝜏new𝑠)
𝛽
)/(Ψmin +

Ψmax(𝜏new𝑠)
𝛽
))(𝑎/(𝑎 + 𝑏))(𝐴/𝑘𝑠𝑠

𝑞
)(𝑅𝐶𝑠

𝑤
/(𝑅𝐶𝑠

𝑤
+ 1))| ≫ 1,

(20) can be simplified as follows:

𝑃𝑐 (𝑠)

𝐸 (𝑠)

≅ (
𝑏

𝑎 + 𝑏
𝑘1𝑘2(

1 + (𝜏new𝑠)
𝛽

Ψmin + Ψmax(𝜏new𝑠)
𝛽
))

× (𝑘1𝑘2(
1 + (𝜏new𝑠)

𝛽

Ψmin + Ψmax(𝜏new𝑠)
𝛽
)

×(
𝑎

𝑎 + 𝑏
)(

𝐴

𝑘𝑠𝑠
𝑞
)(1 −

1

𝑅𝐶𝑠𝑤 + 1
))

−1

=
𝑏𝑘𝑠𝑠
𝑞
(𝑅𝐶𝑠
𝑤
+ 1)

𝑎𝐴𝑅𝐶𝑠𝑤
= 𝑀𝑠
𝑞
(1 +

1

𝑅𝐶𝑠𝑤
)

(21)

in which 𝑀 = 𝑏𝑘𝑠(𝑎𝐴)
−1. Note that if 𝑤 > 𝑞, the transfer

function indicates an integral plus derivative action, which
can be called a fractional 𝐼 + 𝐷 controller.

Remark 3. Using a similar method, one can develop a frac-
tional PID controller for a nozzle-flapper-relay configuration.

4. Simulation Results

In this section some simulations are given for the developed
theory in the previous sections.
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Figure 7: A simplified block diagram for fractional order PI controller.
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Figure 8: Step response of the nozzle-amplifier-relay (17) for various betas.

Example 4. Consider the following values for a nozzle-
flapper amplifier discussed in Section 3.1: 𝑏 = 9, 𝑎 = 1,
𝑘1 = 0.1, 𝑘2 = 0.1, 𝐴 = 2, 𝑘𝑠 = 20, 𝜏new = 0.001, Ψmin = 1,
Ψmax = 10, 𝛽 = 0.8, 𝑞 = 0.9, 0.99, 1.

The step responses are depicted in Figure 8. As can be
seen for larger 𝛽’s the settling time will be better.

Remark 5. The values of 𝑘1 and 𝑘2 have been chosen from
the procedure and graphs given in [28].The tuning technique
presented there is a rough approach to us for choosing the
values of the pneumatic structures presented in this paper.We
have used the algorithm and graphs proportionally to other
parameters in the nozzle-flapper presented in our configura-
tions. As the optimality of such values in the integer-order
counterparts is a difficult problem (and in general is an
open problem), its status in the fractional order cases is con-
sequently more difficult and up to now there is no trend in
choosing the parameters optimally.

Example 6. Now consider the nozzle-flapper-relay studied in
Section 3.2.The parameters are similar to those of Example 4,
which additionally V = 0.94 and 𝑅𝐶 = 0.1. Note that because
of inherent hysteresis in the practical diaphragm and bellows,

a delay is observed in the step responses which present amore
accurate response than classical models using linear spring.
Thus, considering fractional order model for the diaphragms
and bellows is justified and is more consistent with practice.

Moreover the step changes in the error signal yield a
differentiation performance for the apparatus designed in
Figure 9.

Example 7. As the final example consider the nozzle-flapper-
relay studied in Section 3.3. The parameters are similar to
those of Example 4, which additionally 𝑤 = 0.94 and 𝑅𝐶 =

0.1 and 𝑘1 = 2, 𝑘2 = 5, and 𝑞 = 0. As can be seen from the
figure if we set 𝑞 = 0, the configuration shown in Figure 6
is a proportional plus fractional integral controller. The step
responses are proposed in Figure 10.

Remark 8. We have employed the Simulink package to
simulate these numerical examples. All standard blocks
have been taken from its library. However, the fractional
order derivative blocks have been generated via Oustaloup
approximation frequency technique which is a routine and
reliable method in simulating the fractional order control
systems [29].
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Figure 9: Step response of the fractional order derivative nozzle-flapper-relay for (20).
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Figure 10: Step response of the fractional order derivative nozzle-flapper-relay for (21).

5. Conclusions

In this paper in the light of fractional calculus, some new
models have been developed for three configurations of
nozzle-flapper-relay amplifier. Indeed using a typical form
of the four-parameter fractional derivative Zener model for
viscoelastic materials, a fractional order model has been pro-
vided for the diaphragm of pneumatic relays and the spring
property of the bellows. After developing block diagrams for
each configuration, a fractional order derivative and integral
controller with two freedoms in orders have been obtained.
The fractional orders that are imposed in the models can be
used as other adjustable parameters of the controllers which
inherently depend upon the material of the bellows and
diaphragms. Some numerical simulations are proposed to
clarify the obtained results.
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