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We will give the growth properties of harmonic functions of order greater than one in a half space, which generalize the result
obtained by B. Levin in a half plane.

1. Introduction and Main Theorem

LetR andR
+
be the sets of all real numbers and of all positive

real numbers, respectively. Let R𝑛 (𝑛 ≥ 3) denote the 𝑛-
dimensional Euclidean space with points 𝑥 = (𝑥, 𝑥

𝑛
), where

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
) ∈ R𝑛−1 and 𝑥

𝑛
∈ R. The boundary

and closure of an open set𝐷 of R𝑛 are denoted by 𝜕𝐷 and𝐷,
respectively. The upper half space is the set 𝐻 = {(𝑥


, 𝑥
𝑛
) ∈

R𝑛 : 𝑥
𝑛
> 0}, whose boundary is 𝜕𝐻.

For a set 𝐸, 𝐸 ⊂ R
+
∪ {0}, we denote {𝑥 ∈ 𝐻 : |𝑥| ∈ 𝐸}

and {𝑥 ∈ 𝜕𝐻 : |𝑥| ∈ 𝐸} by 𝐻𝐸 and 𝜕𝐻𝐸, respectively. We
identify R𝑛 with R𝑛−1 × R and R𝑛−1 with R𝑛−1 × {0}, writing
typical points 𝑥, 𝑦 ∈ R𝑛 as 𝑥 = (𝑥, 𝑥

𝑛
), 𝑦 = (𝑦, 𝑦

𝑛
), where

𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛−1
) ∈ R𝑛−1, and putting

𝑥 ⋅ 𝑦 =

𝑛

∑
𝑗=1

𝑥
𝑗
𝑦
𝑗
= 𝑥


⋅ 𝑦


+ 𝑥
𝑛
𝑦
𝑛
,

|𝑥| = √𝑥 ⋅ 𝑥,

𝑥

= √𝑥 ⋅ 𝑥,


𝑥

= |𝑥| cos 𝜃, 𝑥

𝑛
= |𝑥| sin 𝜃 (0 < 𝜃 ≤

𝜋

2
) .

(1)

Let 𝐵
𝑟
denote the open ball with center at the origin and

radius 𝑟 (> 0) in R𝑛. We use the standard notations 𝑢+ =

max(𝑢, 0) and 𝑢− = −min(𝑢, 0). In the sense of Lebesgue
measure 𝑑𝑦



= 𝑑𝑦
1
⋅ ⋅ ⋅ 𝑑𝑦
𝑛−1

and 𝑑𝑦 = 𝑑𝑦


𝑑𝑦
𝑛
. Let 𝜎 denote

(𝑛−1)-dimensional surface area measure and let 𝜕/𝜕𝑛 denote
differentiation along the inward normal into𝐻.

The estimate we deal with has a long history which can be
traced back to Levin’s estimate of harmonic functions from
below (see, e.g., [1, page 209]).

TheoremA. Let𝐴
1
be a constant and let, 𝑢(𝑧) be harmonic in

the upper half space C
+
and continuous on 𝜕C

+
. Suppose that

𝑢 (𝑧) ≤ 𝐴
1
𝑅
𝜌

, 𝑧 ∈ C
+
, 𝑅 = |𝑧| > 1, 𝜌 > 1,

|𝑢 (𝑧)| ≤ 𝐴
1
, |𝑧| ≤ 1, Im𝑧 ≥ 0.

(2)

Then

𝑢 ( Re 𝑖𝜑) ≥ −𝐴
2
𝐴
1
(1 + 𝑅

𝜌

) sin−1𝜑, Re 𝑖𝜑 ∈ C
+
, (3)

where 𝐴
2
is a constant independent of 𝐴

1
, 𝑅, 𝜑, and the

function 𝑢(𝑧).

Further versions and refinements of Theorem 1 may be
found in [2, Chapter 1], [3, 4] and in the paper of Krasichkov-
Ternovskǐı [5].

In this paper, we will consider functions 𝑢(𝑥) harmonic
in 𝐻 and continuous on 𝐻. In what follows we shall denote
by𝑀 various values which do not depend on𝐾, 𝑅 (= |𝑥|), 𝜃,
and the function 𝑢(𝑥).

We prove in this note analogous estimates for 𝑢(𝑥) in𝐻.
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Theorem 1. Suppose that

𝑢 (𝑥) ≤ 𝐾𝑅
𝜌(𝑅)

, 𝑥 ∈ 𝐻, 𝑅 = |𝑥| > 1, 𝜌 (𝑅) > 1, (4)

𝑢 (𝑥) ≥ −𝐾, |𝑥| ≤ 1, 𝑥
𝑛
≥ 0. (5)

Then

𝑢 (𝑥) ≥ −𝑀𝐾(1 + 𝜌 (𝑅) 𝑅
𝜌(𝑅)

) sin1−𝑛𝜃, (6)

where 𝑥 ∈ 𝐻 and 𝜌(𝑅) is nondecreasing on [1, +∞).

Remark 2. If 𝑛 = 2 and 𝜌(𝑅) ≡ 𝜌, Theorem 1 is just the result
of Theorem A.

Theorem 3. If (4) and (5) hold, then

𝑢 (𝑥) ≥ −𝑀𝐾(1 + 𝜌(
𝑁 + 1

𝑁
𝑅)𝑅
𝜌(((𝑁+1)/𝑁)𝑅)

) sin1−𝑛𝜃,
(7)

where 𝑥 ∈ 𝐻,𝑁 (≥ 1) is a sufficiently large number, and 𝜌(𝑅)

is defined in Theorem 1.

2. Main Lemmas

Carleman’s formula [6] connects the modulus and the zeros
of a function analytic in C

+
(see, e.g., [7, page 224]). Nevan-

linna’s formula (see [1, page 193]) refers to a harmonic func-
tion in a half disk. Ren obtained a generalized Nevanlinna-
type formula in a half space and Poisson integral forumla
for half balls, resepctively, which play important roles in our
discussions.

Lemma 4 (see [8]). If 𝑅 > 1, then one has

∫
{𝑥∈𝐻:|𝑥|=𝑅}

𝑢 (𝑥)
𝑛𝑥
𝑛

𝑅𝑛+1
𝑑𝜎 (𝑥)

+ ∫
𝜕𝐻(1,𝑅)

𝑢 (𝑥


)(
1

𝑥


𝑛
−

1

𝑅𝑛
)𝑑𝑥


= 𝑐
1
+

𝑐
2

𝑅𝑛
,

(8)

where

𝑐
1
= ∫
{𝑥∈𝐻:|𝑥|=1}

((𝑛 − 1) 𝑥
𝑛
𝑢 (𝑥) + 𝑥

𝑛

𝜕𝑢 (𝑥)

𝜕𝑛
) 𝑑𝜎 (𝑥) ,

𝑐
2
= ∫
{𝑥∈𝐻:|𝑥|=1}

(𝑥
𝑛
𝑢 (𝑥) − 𝑥

𝑛

𝜕𝑢 (𝑥)

𝜕𝑛
) 𝑑𝜎 (𝑥) .

(9)

Lemma 5 (see [8]). Let 𝑅 > 1 and let 𝑢(𝑥) be a function in
𝐵+
𝑅
= 𝐵
𝑅
∩ 𝐻 and continuous in 𝐵

+

𝑅
. Then

𝑢 (𝑥) = ∫
{𝑦∈𝐻:|𝑦|=𝑅}

𝑅2 − |𝑥|
2

𝜔
𝑛
𝑅

× (
1

𝑦 − 𝑥

𝑛
−

1
𝑦 − 𝑥∗


𝑛
)𝑢 (𝑦) 𝑑𝜎 (𝑦)

+
2𝑥
𝑛

𝜔
𝑛

∫
𝜕𝐻[0,𝑅)

(
1

𝑦
 − 𝑥


𝑛

−
𝑅𝑛

|𝑥|
𝑛

1
𝑦
 − 𝑥


𝑛
)

× 𝑢 (𝑦


) 𝑑𝑦


,

(10)

where 𝑥 ∈ 𝐵
+

𝑅
, 𝑥 = 𝑅2𝑥/|𝑥|

2, 𝑥∗ = (𝑥, −𝑥
𝑛
), and 𝜔

𝑛
=

𝜋𝑛/2 /Γ(1 + (𝑛/2)) is the volume of the unit 𝑛-ball in R𝑛.

3. Proof of Theorem 1

By applying Lemma 4 to 𝑢(𝑥), we have

∫
{𝑥∈𝐻:|𝑥|=𝑅}

𝑢
+

(𝑥)
𝑛𝑥
𝑛

𝑅𝑛+1
𝑑𝜎 (𝑥)

+ ∫
𝜕𝐻(1,𝑅)

𝑢
+

(𝑥


)(
1

𝑥


𝑛
−

1

𝑅𝑛
)𝑑𝑥


= ∫
{𝑥∈𝐻:|𝑥|=𝑅}

𝑢
−

(𝑥)
𝑛𝑥
𝑛

𝑅𝑛+1
𝑑𝜎 (𝑥)

+ ∫
𝜕𝐻(1,𝑅)

𝑢
−

(𝑥


)(
1

𝑥


𝑛
−

1

𝑅𝑛
)𝑑𝑥


+ 𝑐
1
+

𝑐
2

𝑅𝑛
.

(11)

It immediately follows from (4) that

∫
{𝑥∈𝐻:|𝑥|=𝑅}

𝑢
+

(𝑥)
𝑛𝑥
𝑛

𝑅𝑛+1
𝑑𝜎 (𝑥) ≤ 𝑀𝐾𝑅

𝜌(𝑅)−1

,

∫
𝜕𝐻(1,𝑅)

∫𝑢
+

(𝑥


)(
1

𝑥


𝑛
−

1

𝑅𝑛
)𝑑𝑥


≤ 𝑀𝐾𝑅
𝜌(𝑅)−1

.

(12)

Hence from (11) and (12) we have

∫
{𝑥∈𝐻:|𝑥|=𝑅}

𝑢
−

(𝑥)
𝑛𝑥
𝑛

𝑅𝑛+1
𝑑𝜎 (𝑥) ≤ 𝑀𝐾𝑅

𝜌(𝑅) −1

, (13)

∫
𝜕𝐻(1,𝑅)

𝑢
−

(𝑥


)(
1

𝑥


𝑛
−

1

𝑅𝑛
)𝑑𝑥


≤ 𝑀𝐾𝑅
𝜌(𝑅) −1

. (14)

And (14) gives

∫
𝜕𝐻(1,𝑅)

𝑢− (𝑥)

𝑥


𝑛

𝑑𝑥


≤
2𝑛

2𝑛 − 1
∫
𝜕𝐻(1,𝑅)

𝑢
−

(𝑥


)(
1

𝑥


𝑛
−

1

(2𝑅)
𝑛
)𝑑𝑥


≤ 𝑀𝐾𝜌 (𝑅) (2𝑅)
𝜌(2𝑅)−1

.

(15)

Since −𝑢(𝑥) ≤ 𝑢−(𝑥), by applying Lemma 5 to −𝑢(𝑥), we
have

−𝑢 (𝑥) ≤ 𝐼
1
(𝑥) + 𝐼

2
(𝑥) , (16)
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where

𝐼
1
(𝑥) = ∫

{𝑦∈𝐻: |Y|=𝑅}

𝑅2 − |𝑥|
2

𝜔
𝑛
𝑅

× (
1

𝑦 − 𝑥

𝑛

−
1

𝑦 − 𝑥∗

𝑛
)𝑢
−

(𝑦) 𝑑𝜎 (𝑦) ,

𝐼
2
(𝑥) =

2𝑥
𝑛

𝜔
𝑛

∫
𝜕𝐻[0,𝑅)

(
1

𝑦
 − 𝑥


𝑛

−
𝑅𝑛

|𝑥|
𝑛

1
𝑦
 − 𝑥


𝑛
)

× 𝑢
−

(𝑦


) 𝑑𝑦


.

(17)

We remark that
1

𝑦 − 𝑥

𝑛
−

1
𝑦 − 𝑥∗


𝑛
≤

2𝑛𝑥
𝑛
𝑦
𝑛

𝑦 − 𝑥

𝑛+2

,

𝑦 − 𝑥

𝑛

≥ 𝑥
𝑛

𝑛
= |𝑥|
𝑛sin𝑛𝜃, 𝑥 ∈ 𝐻, 𝑦

𝑛
= 0.

(18)

If we put |𝑥| = 𝑟 > 1/2 and 𝑅 = 2𝑟 in (16), then we finally
have from (13) and (18)

𝐼
1
(𝑥) ≤ ∫

{𝑦∈𝐻:|Y|=𝑅}

𝑅2 − 𝑟2

𝜔
𝑛
𝑅

2𝑛𝑥
𝑛
𝑦
𝑛

𝜔
𝑛

𝑦 − 𝑥

𝑛+2

𝑢
−

(𝑦) 𝑑𝜎 (𝑦)

≤ 𝑀𝐾𝜌 (𝑅) 𝑅
𝜌(𝑅)

,

𝐼
2
(𝑥) ≤ 𝐼

21
(𝑥) + 𝐼

22
(𝑥) ,

(19)

where

𝐼
21

(𝑥) =
2

𝜔
𝑛
𝑥𝑛−1
𝑛

∫
𝜕𝐻(1,𝑅)

𝑢
−

(𝑦


) 𝑑𝑦


,

𝐼
22

(𝑥) =
2

𝜔
𝑛
𝑥𝑛−1
𝑛

∫
𝜕𝐻[0,1]

𝑢
−

(𝑦


) 𝑑𝑦


.

(20)

We obtain that

𝐼
21

(𝑥) ≤
2𝑅
𝑛

𝜔
𝑛
𝑥𝑛−1
𝑛

∫
𝜕𝐻(1,𝑅)

𝑢− (𝑦)

𝑦


𝑛

𝑑𝑦


≤ 𝑀𝐾𝜌 (𝑅) 𝑅
𝜌(𝑅)sin1−𝑛𝜃,

𝐼
22

(𝑥) ≤
2𝐾

𝜔
𝑛
𝑥𝑛−1
𝑛

∫
𝜕𝐻[0,1]

𝑑𝑦


≤ 𝑀𝐾𝜌 (𝑅) sin1−𝑛𝜃,

(21)

from (15) and (5), respectively.
From (16), (19), and (21), we have for |𝑥| > 1/2

−𝑢 (𝑥) ≤ 𝑀𝐾𝜌 (𝑅) (1 + 𝜌 (𝑅) 𝑅
𝜌(𝑅)

) sin1−𝑛𝜃. (22)

For |𝑥| ≤ 1/2, we have from (5)

−𝑢 (𝑥) ≤ 𝐾 ≤ 𝐾(1 + 𝜌 (𝑅) 𝑅
𝜌(𝑅)

) sin1−𝑛𝜃. (23)

Thus the conclusion immediately follows from (22) and
(23).

4. Proof of Theorem 3

By modifying (15), we have

∫
𝜕𝐻(1,𝑅)

𝑢− (𝑥)

𝑥


𝑛

𝑑𝑥


≤
(𝑁 + 1)

𝑛

(𝑁 + 1)
𝑛

− 𝑁𝑛
∫
𝜕𝐻(1,𝑅)

𝑢
−

(𝑥


)

× (
1

𝑥


𝑛
−

1

(((𝑁 + 1)/𝑁)𝑅)
𝑛
)𝑑𝑥


≤ 𝑀𝐾𝜌(
𝑁 + 1

𝑁
𝑅)(

𝑁 + 1

𝑁
𝑅)
𝜌(((𝑁+1)/𝑁)𝑅)−1

.

(24)

Then (21), (22), and (23) are replaced accordingly by the
following estimates:

𝐼
21

(𝑥) ≤ 𝑀𝐾𝜌(
𝑁 + 1

𝑁
𝑅)(

𝑁 + 1

𝑁
𝑅)
𝜌(((𝑁+1)/𝑁)𝑅)−1

sin1−𝑛𝜃,

−𝑢 (𝑥) ≤ 𝑀𝐾(1 + 𝜌(
𝑁 + 1

𝑁
𝑅)𝑅
𝜌(((𝑁+1)/𝑁)𝑅)

) sin1−𝑛𝜃,

−𝑢 (𝑥) ≤ 𝐾 ≤ 𝑀𝐾(1 + 𝜌(
𝑁 + 1

𝑁
𝑅)𝑅
𝜌(((𝑁+1)/𝑁)𝑅)

) sin1−𝑛𝜃.
(25)

All (16), (19), (25), and (21) give

𝑢 (𝑥) ≥ −𝑀𝐾(1 + 𝜌(
𝑁 + 1

𝑁
𝑅)𝑅
𝜌(((𝑁+1)/𝑁)𝑅)

) sin1−𝑛𝜃,
(26)

from which the conclusion immediately follows.
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