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This paper studies the finite-time stability of neutral fractional time-delay systems. With the generalized Gronwall inequality,
sufficient conditions of the finite-time stability are obtained for the particular class of neutral fractional time-delay systems.

1. Introduction

In this paper, we consider a neutral fractional time-delay
system:
𝑐

D
𝛼

𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏) + 𝐶
𝑐

D
𝛼

𝑥 (𝑡 − 𝜏) ,

𝑡 ∈ [0, 𝑇] ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑐D𝛼 denotes the Caputo fractional derivative of order
0 < 𝛼 ≤ 1, the vector function 𝑥(𝑡) ∈ 𝑅

𝑛, 𝐴, 𝐵, 𝐶
are constant system matrices of appropriate dimensions, the
constant parameter 𝜏 > 0 represents the delay argument, and
𝜑(𝑡) is a given continuously differentiable function on [−𝜏, 0].

The neutral time-delay systems have received increasing
attention (see [1–5]) due to their successful applications in
population ecology, distributed networks containing loss-
less transmission lines, heat exchangers, robots in contact
with rigid environments, partial element equivalent circuit
(PEEC), the control of constrained manipulators with time-
delaymeasurements, the systemswhich need the information
of the past state variables, and so on.

Recently, with the development of theories of fractional
differential equations (see [6–9]), there has been a surge in the
study of neutral fractional time-delay systems (see [10–12]).
In particular, the problem of stability analysis of such systems
has been one of the most interesting topics in control theory

because stability analysis is one of the most important issues
for control systems (see [13–16]). But stability of these systems
proves to be amore complex issue because the systems involve
the derivative of the time-delayed state and the existence of
time-delay is frequently the source of instability although
this problem has been investigated for time-delay systems
over many years. In the previous literatures, many scholars
have utilized the Lyapunov technique, characteristic equation
method, state solution approach, or Gronwall’s approach to
derive sufficient conditions for stability of the systems. In this
paper,motivated by the papers [17, 18], we discuss the stability
of the neutral fractional system with delay via generalized
Gronwall’s approach.

The organization of this paper is as follows. In Section 2,
we summarize some notations and give preliminary results
which will be used in this paper. In Section 3, we present our
main results.

2. Preliminaries and Lemmas

Let us start with some definitions and lemmas which are used
throughout this paper.

Definition 1 (see [7]). Euler’s gamma function is defined as

Γ (𝑧) = ∫

∞

0

𝑒
−𝑡

𝑡
𝑧−1

𝑑𝑡, 𝑧 ∈ C, (2)

where C denotes the complex plane.
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Remark 2 (see [7]). (i) Γ(𝑧 + 1) = 𝑧Γ(𝑧), 𝑧 ∈ C; and for 𝑛 ∈

Z+, Γ(𝑛 + 1) = 𝑛(𝑛 − 1)! = 𝑛!;
(ii) Γ(𝑧)Γ(𝑧 + (1/2)) = √𝜋2

1−2𝑧

Γ(2𝑧), 2𝑧 ̸= 0, −1, −2, . . .;
(ii) Γ(𝑛 + (1/2)) = √𝜋Γ(2𝑛 + 1)/2

2𝑛

Γ(𝑛 + 1) = √𝜋(2𝑛)!/

2
2𝑛

𝑛!.

Definition 3 (see [7]). The fractional integral of order 𝛼 with
the lower limit zero for any function 𝑓(𝑡) ∈ 𝐶([0, +∞), 𝑅),
𝑡 ≥ 0, is defined as

𝐼
𝛼

𝑓 (𝑡) = lim
ℎ→0

𝑛ℎ=𝑡

ℎ
𝛼

𝑛

∑

𝑟=0

[

𝛼

𝑟
]𝑓 (𝑡 − 𝑟ℎ)

=

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝜃)
𝛼−1

𝑓 (𝜃) 𝑑𝜃, 𝛼 > 0,

(3)

where [ 𝛼
𝑟
] = 𝛼(𝛼 + 1) ⋅ ⋅ ⋅ (𝛼 + 𝑟 − 1)/𝑟!, and Γ(⋅) is the gamma

function.

Definition 4 (see [7]). The Riemann-Liouville derivative of
order 𝛼 with the lower limit zero for any function 𝑓(𝑡) ∈

𝐶([0, +∞), 𝑅), 𝑡 ≥ 0, is defined as

𝑙

D
𝛼

𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡
𝑛
∫

𝑡

0

(𝑡 − 𝜃)
𝑛−𝛼−1

𝑓 (𝜃) 𝑑𝜃,

𝑛 − 1 < 𝛼 < 𝑛.

(4)

Definition 5 (see [7]). The Caputo derivative of order 𝛼 for
any function 𝑓(𝑡) ∈ 𝐶

𝑛

([0, +∞), 𝑅), 𝑡 ≥ 0, is defined as

𝑐D𝛼𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

∫

𝑡

0

(𝑡 − 𝜃)
𝑛−𝛼−1

𝑓
(𝑛)

(𝜃) 𝑑𝜃

= 𝐼
𝑛−𝛼

𝑓 (𝑡) , 𝑛 − 1 < 𝛼 < 𝑛.

(5)

Remark 6 (see [7]). (i) If a function 𝑓(𝑡) ∈ 𝐶
𝑛

([0, +∞), 𝑅),
𝑡 ≥ 0, then 𝑐D𝛼𝑓(𝑡) =

𝑙D𝛼𝑓(𝑡) − ∑
𝑛−1

𝑘=0
(𝑓
(𝑘)

(0)/Γ(𝑘 − 𝛼 +

1))𝑡
𝑘−𝛼;
(ii) 𝑐D𝛼𝑓(𝑡) = 0, 𝑓(𝑡) = 𝐶, and 𝐶 is a constant.

Definition 7 (see [9]). The Mittag-Leffler function in two
parameters is defined as

𝐸
𝛼,𝛽

(𝑧) =

∞

∑

𝑘=0

(𝑧)
𝑘

Γ (𝛼𝑘 + 𝛽)

, 𝑧 ∈ C, (6)

where 𝛼 > 0, 𝛽 > 0 and 𝑧 ∈ C.

Remark 8 (see [9]). (i) For 𝛽 = 1, 𝐸
𝛼,1
(𝜆𝑧
𝛼

) = 𝐸
𝛼
(𝜆𝑧
𝛼

) =

∑
∞

𝑘=0
(𝜆
𝑘

(𝑧
𝛼

)
𝑘

/Γ(𝛼𝑘 + 1)), and 𝐸
(1,1)

(𝑧) = 𝑒
𝑧, 𝑧 ∈ C;

(ii) For𝛽 = 1, thematrix extension of the aforementioned
Mittag-Leffler function has the following representation:
𝐸
𝛼
(𝐴𝑡
𝛼

) = ∑
∞

𝑘=0
((𝐴
𝑘

(𝑡
𝛼

)
𝑘

/Γ(𝛼𝑘 + 1)), 𝑧 ∈ C, and
𝑐D𝛼𝐸

𝛼
(𝐴𝑡
𝛼

) = 𝐴𝐸
𝛼
(𝐴𝑡
𝛼

).

Lemma 9 (see [19] generalized Gronwall’s inequality). Sup-
pose 𝑥(𝑡), 𝑎(𝑡) are nonnegative and local integrable on 0 ≤ 𝑡 <

𝑇, some 𝑇 ≤ ∞, and 𝑔(𝑡) is a nonnegative, nondecreasing

continuous function defined on 0 ≤ 𝑡 < 𝑇; 𝑔(𝑡) ≤ 𝑀 =

constant 𝛼 > 0 with

𝑥 (𝑡) ≤ 𝑎 (𝑡) + 𝑔 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑥 (𝑠) 𝑑𝑠 (7)

on this interval. Then

𝑥 (𝑡) ≤ 𝑎 (𝑡) + 𝑔 (𝑡) ∫

𝑡

0

[

∞

∑

𝑛=1

(𝑔 (𝑡) Γ (𝛼))
𝑛

Γ (𝑛𝛼)

(𝑡 − 𝑠)
𝑛𝛼−1

𝑎 (𝑠)] 𝑑𝑠,

0 ≤ 𝑡 < 𝑇.

(8)

Lemma 10 (see [19]). Under the hypothesis of Theorem 13, let
𝑎(𝑡) be a nondecreasing function on [0, 𝑇). Then

𝑥 (𝑡) ≤ 𝑎 (𝑡) 𝐸
𝛼
(𝑔 (𝑡) Γ (𝛼) 𝑡

𝛼

) , (9)

where 𝐸
𝛼
is the Mittag-Leffler function.

3. Main Results

In this section, we discuss some problems of the neutral
fractional time-delay system (1).

Let us denote by 𝐶([𝑎, 𝑏]) the space of all continuous real
functions defined on [𝑎, 𝑏] and by 𝐶([𝑎, 𝑏], 𝑅

𝑛

) the Banach
space of continuous functions mapping the interval [𝑎, 𝑏]
into 𝑅

𝑛 with the topology of uniform convergence. Let 𝐶 =

𝐶([−𝜏, 0], 𝑅
𝑛

), [𝑎, 𝑏] = [−𝜏, 0], and designate the norm of an
element 𝜑 in 𝐶 by

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
= sup
−𝜏≤𝑡≤0

󵄩
󵄩
󵄩
󵄩
𝜑 (𝑡)

󵄩
󵄩
󵄩
󵄩
. (10)

Let 𝑋 = 𝐶([−𝜏, 𝑇], 𝑅
𝑛

) and 𝑥(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−𝜏, 0] be
equipped with the norm

‖𝑥 (𝑡)‖ := sup
0≤𝑡≤𝑇

𝑥 (𝑡) ,

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
:= ‖𝑥 (𝑡 + 𝜃)‖ := sup

−𝜏≤𝜃≤0

‖𝑥 (𝑡 + 𝜃)‖ ,

∀𝑥 ∈ 𝑋,

(11)

where obviously ‖𝑥(𝑡)‖ ≤ ‖𝑥
𝑡
‖.

Let ]max(⋅) be the largest singular value of matrix (⋅),
namely,

]𝐴𝐵max = ]max (𝐴) + ]max (𝐵) . (12)

For convenience, we denote ]max(𝐴) by ]
0
, ]max(𝐵) by ]

1
,

]max(𝐶) by ]
2
, ]max(𝐷) by ]

3
, and ]max(𝐴𝐵) by ]

01
, respec-

tively.

Definition 11 (see [18]). The system given by (1) and satisfying
initial condition 𝑥(𝑡) = 𝜑(𝑡), for 𝑡 ∈ [−𝜏, 0], is finite stable
with respect to {𝑡

0
, 𝛿, 𝜖, 𝐽}, 𝛿 < 𝜖, 𝐽 = [𝑡

0
, 𝑡
0
+ 𝑇] if and only if

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
< 𝛿 (13)

implies

‖𝑥 (𝑡)‖ < 𝜖, ∀𝑡 ∈ 𝐽. (14)
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Theorem 12. If 𝑥(𝑡) = 𝑥(𝑡, 𝜑) is a solution of the systems (1),
then there exists a positive constant ] such that

‖𝑥 (𝑡)‖ ≤ (1 + 2]
2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(]𝑡𝛼) ∀𝑡 ∈ 𝐽 = [0, 𝑇] .

(15)

Proof. According to the properties of the fractional order 0 <

𝛼 < 1, one can obtain a solution in the form of the equivalent
Volterra integral equation [12]:

𝑥 (𝑡) = 𝑥 (0) + 𝐶 (𝑥 (𝑡 − 𝜏) − 𝑥 (−𝜏))

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(𝐴𝑥 (𝑠) + 𝐵𝑥 (𝑠 − 𝜏)) 𝑑𝑠

= 𝜑 (0) + 𝐶𝜑 (−𝜏) + 𝐶𝑥 (𝑡 − 𝜏)

+

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

(𝐴𝑥 (𝑠) + 𝐵𝑥 (𝑠 − 𝜏)) 𝑑𝑠, 𝑡 ≥ 0.

(16)

Using appropriate property of the norm ‖(⋅)‖ in (16) and
applying (10), it follows that

‖𝑥 (𝑡)‖ ≤
󵄩
󵄩
󵄩
󵄩
𝜑 (0)

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝐶𝜑 (−𝜏)

󵄩
󵄩
󵄩
󵄩
+ ‖𝐶𝑥 (𝑡 − 𝜏)‖

+

1

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1

‖𝐴𝑥 (𝑠) + 𝐵𝑥 (𝑠 − 𝜏)‖ 𝑑𝑠

≤ (1 + ‖𝐶‖)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
+ ‖𝐶𝑥 (𝑡 − 𝜏)‖

+

1

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1

‖𝐴𝑥 (𝑠) + 𝐵𝑥 (𝑠 − 𝜏)‖ 𝑑𝑠

≤ (1 + ‖𝐶‖)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
+ ‖𝐶‖ ‖𝑥 (𝑡 − 𝜏)‖

+

1

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1

‖𝐴‖ ‖𝑥 (𝑠)‖ 𝑑𝑠

+

1

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1

‖𝐵‖ ‖𝑥 (𝑠 − 𝜏)‖ 𝑑𝑠

≤ (1 + ]
2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
+ ]
2
‖𝑥 (𝑡 − 𝜏)‖

+

]
0

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1

‖𝑥 (𝑠)‖ 𝑑𝑠

+

]
1

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1

‖𝑥 (𝑠 − 𝜏)‖ 𝑑𝑠, 𝑡 ≥ 0.

(17)

For 0 ≤ 𝑡 ≤ 𝜏, ‖𝑥(𝑡 − 𝜏)‖ ≤ ‖𝜑‖, (17) can be rewritten as

‖𝑥 (𝑡)‖ ≤ (1 + 2]
2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
+

]
0

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1

‖𝑥 (𝑠)‖ 𝑑𝑠

+

]
1

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1

‖𝑥 (𝑠 − 𝜏)‖ 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝜏.

(18)

From Definition 3, we can see 𝐼
𝛼

𝑓(𝑡) is an increasing
function of 𝑡 if 𝑓(𝑡) > 0. So (]

0
/Γ(𝛼)) ∫

𝑡

0

|𝑡− 𝑠|
𝛼−1

‖𝑥(𝑠)‖𝑑𝑠 and

(]
1
/Γ(𝛼)) ∫

𝑡

0

|𝑡−𝑠|
𝛼−1

‖𝑥(𝑠−𝜏)‖𝑑𝑠 are both increasing functions
with regard to 𝑡. Taking into account (18) and (11), it yields that

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤ (1 + 2]

2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
+

]
0

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1 󵄩

󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
𝑑𝑠

+

]
1

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1 󵄩

󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
𝑑𝑠

≤ (1 + 2]
2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
+

]
01

Γ (𝛼)

∫

𝑡

0

|𝑡 − 𝑠|
𝛼−1 󵄩

󵄩
󵄩
󵄩
𝑥
𝑠

󵄩
󵄩
󵄩
󵄩
𝑑𝑠,

0 ≤ 𝑡 ≤ 𝜏.

(19)

Let us introduce a function 𝑎(𝑡) such as

𝑎 (𝑡) = (1 + 2]
2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
, (20)

where the function 𝑎(𝑡) is nondecreasing apparently.
Now, with the corollary of the generalized Gronwall

inequality (9), we can obtain
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤ (1 + 2]

2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(]
01
𝑡
𝛼

) , 0 ≤ 𝑡 ≤ 𝜏. (21)

Similarly, the same argument implies the following esti-
mate:

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤ (1 + 2]

2
)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝜏0

󵄩
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(]
01
(𝑡 − 𝜏
0
)
𝛼

) ,

𝜏
0
≤ 𝑡 ≤ 𝜏

0
+ 𝜏, 𝜏

0
≥ 0.

(22)

From Definition 7, we know that the Mittag-Leffler
function 𝐸

𝛼
(𝑡) is an increasing function with regard to 𝑡.

Therefore, there exists ] > ]
01
such that 𝐸

𝛼
(]𝜏𝛼) > 𝐸

𝛼
(]
01
𝜏
𝛼

)

and 𝐸
𝛼
(](𝑡 − 𝜏)

𝛼

)𝐸
𝛼
(]
01
𝜏
𝛼

)/𝐸
𝛼
(]𝑡𝛼) < 1/(1 + 2]

2
).

Relationships (21) and (22) suggest the following general
expression:

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤ (1 + 2]

2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(]𝑡𝛼) , 0 ≤ 𝑡 ≤ 𝑛𝜏 ≤ 𝑇.

(23)

To prove formula (23) by induction we have to show that
it holds for 𝑛 = 1 because of formula (21) and if it holds for 𝑛 =

𝑘, then it holds also for 𝑛 = 𝑘+ 1. Indeed, for 𝑡 ∈ [𝜏, (𝑘 + 1)𝜏],
𝑡 − 𝜏 ∈ [0, 𝑘𝜏]; on the one hand using formula (22),we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤ (1 + 2]

2
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡−𝜏

󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(]
01
𝜏
𝛼

) . (24)

On the other hand, using formula (23) we obtain
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡−𝜏

󵄩
󵄩
󵄩
󵄩
≤ (1 + 2]

2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(](𝑡 − 𝜏)

𝛼

) . (25)

Taking into account (24) and (25) we conclude that
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤ (1 + 2]

2
) [(1 + 2]

2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(](𝑡 − 𝜏)

𝛼

)] 𝐸
𝛼
(]
01
𝜏
𝛼

)

= (1 + 2]
2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(]𝑡𝛼)

×

(1 + 2]
2
) 𝐸
𝛼
(](𝑡 − 𝜏)

𝛼

) 𝐸
𝛼
(]
01
𝜏
𝛼

)

𝐸
𝛼
(]𝑡𝛼)

≤ (1 + 2]
2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(]𝑡𝛼) .

(26)
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That is,

‖𝑥 (𝑡)‖ ≤
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡

󵄩
󵄩
󵄩
󵄩
≤ (1 + 2]

2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(]𝑡𝛼) . (27)

The proof is completed.

Theorem 13. The neutral fractional time-delay systems given
by (1) are finite-time stable with respect to {0, 𝛿, 𝜖, 𝐽}, 𝛿 < 𝜖, if
the following condition is satisfied:

(1 + 2]
2
) 𝐸
𝛼
(]𝑡𝛼) ≤

𝜖

𝛿

, ∀𝑡 ∈ 𝐽 = [0, 𝑇] . (28)

Proof. FromTheorem 12 we obtain

‖𝑥 (𝑡)‖ ≤ (1 + 2]
2
)
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
𝐸
𝛼
(]𝑡𝛼) . (29)

Hence, using Definition 11 and the basic condition of
Theorem 13, it follows that

‖𝑥 (𝑡)‖ < 𝜖, ∀𝑡 ∈ 𝐽 = [0, 𝑇] . (30)

The proof is completed.
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