
Research Article
Adjacent-Compensation Consensus Algorithm in
Asynchronously Coupled Form for Second-Order Multiagent
Network under Communication Delay

Cheng-Lin Liu and Fei Liu

Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University,
Wuxi 214122, China

Correspondence should be addressed to Cheng-Lin Liu; liucl@jiangnan.edu.cn

Received 28 October 2013; Revised 15 January 2014; Accepted 15 January 2014; Published 20 February 2014

Academic Editor: Douglas Anderson

Copyright © 2014 C.-L. Liu and F. Liu.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

General asynchronously coupled consensus algorithm associated with adjacent compensations, is proposed to solve the dynamical
consensus problem of second-order multiagent network with communication delay under leader-following coordination control
framework. Based on frequency-domain analysis, firstly, delay-independent consensus convergence is proved for the second-order
multiagent systemswith a spanning tree topology that has the leader root and then delay-dependent consensus condition is obtained
for the multiagent systems with communication delay under a general leader-following interconnection topology. Simulation
illustrates the correctness of the results.

1. Introduction

Coordination control of multiple autonomous dynamic
agents has attracted much attention in recent years for its
broad application in automated highway systems, air traffic
control, congestion control in the Internet, and so on. Con-
sensus problem, which requires the agents’ outputs to reach
a common value without central or global communication, is
one of the most important and fundamental collective types
of behavior in distributed coordination control of multiagent
systems and has been extensively studied in many research
societies in recent years, such as biology, robotics, and sensor
networks.

In the past decade, consensus problem has been thor-
oughly studied for the multiagent systems with diverse
agent’s dynamics, such as single integrator, double integrator,
and high-order integrators. Different consensus algorithms
have been designed [1–6], and many conditions have been
obtained for the agents converging to the consensus asymp-
totically.

Due to the information exchange between neighbor-
ing agents, communication delay should be investigated in
multiagent network. Subjected to communication delays,
consensus algorithms are usually divided into synchronously

coupled and asynchronously coupled forms. In synchro-
nously coupled consensus algorithm, self-delays introduced
for each agent in the coordination part are equal to the
corresponding communication delays. Besides, each agent
uses its delayed state with the delay value different from the
corresponding communication delay or uses its current state
to compare it with its delayed neighboring agents’ states in the
asynchronously coupled consensus algorithm.

Up to now, synchronously coupled consensus algorithm
has been extensively studied for multiagent systems, and
delay-dependent consensus conditions have been obtained
for the system under fixed or switched interconnection
topologies based on frequency-domain analysis [2, 7, 8] and
Lyapunov function methods [9–15].

Moreover, asynchronously coupled consensus algorithm
has been analyzed thoroughly for the first-order and second-
order multiagent systems with stationary consensus algo-
rithm by using many different analysis methods including
frequency-domain analysis [16, 17], Lyapunov functions [18–
20], and the concept of delayed and hierarchical graphs [21–
24]. It has been proved that the agents with the stationary
consensus algorithms could achieve an asymptotic consensus
with arbitrary communication delay by choosing proper
control parameters. However, for second-order multiagent
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systems with the dynamical consensus algorithm composed
of the position and the velocity consensus coordination
control parts, Yang et al. [25] obtained sufficient consensus
conditions for the second-order dynamic agents with time-
varying communication delays based on small-𝜇 stability
theorem, and C.-L. Liu and F. Liu [26] got sufficient and
necessary consensus condition for two coupled second-order
dynamic agents with identical time-invariant communica-
tion delay by using frequency-domain analysis. In addition,
Münz et al. [27] investigated the multiagent systems with
agents’ dynamics described by strictly stable linear systems
under diverse communication delays. By analyzing the con-
vex sets of the frequency-domain feedbackmatrix, set-valued
consensus conditions have been obtained for the system
under synchronously coupled and asynchronously coupled
consensus algorithms, respectively [27].

In this paper, a new asynchronously coupled consensus
algorithm associated with adjacent compensations is pro-
posed for the second-order multiagent systems with com-
munication delay to track a dynamic leader. The consensus
algorithm is composed of the position and the velocity
consensus coordination control parts, and the compensa-
tions are composed of each agent’s neighboring agents’
delayed state compensation in the normal asynchronously
coupled consensus algorithm. To prove the effectiveness of
the proposed algorithm, we firstly investigate the second-
order multiagent systems with a spanning tree topology that
has the leader as a root, and it is proved that the agents
can achieve a dynamical consensus without any relationship
to the communication delay. Under the general connected
topology that is composed of the agents and the leader,
delay-dependent sufficient condition is also obtained for the
multiagent systems with communication delay.

2. Problem Formulation

2.1. Agent’s Dynamics and Interconnection Topology. Second-
order agent’s dynamic is given by

�̇�
𝑖 (𝑡) = V

𝑖 (𝑡) ,

V̇
𝑖 (𝑡) = 𝑢

𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑥
𝑖
∈ 𝑅, V

𝑖
∈ 𝑅, and 𝑢

𝑖
∈ 𝑅 are the position, velo-

city, and acceleration, respectively, of the agent 𝑖. As we all
know, the interconnection topology of multiagent systems (1)
is usually described as a digraph. Agents can be considered
as the nodes of the digraph, while the information flow
between neighboring agents can be regarded as a directed
edge between the neighboring nodes in the digraph.

A weighted digraph 𝐺 = (𝑉, 𝐸, 𝐴) of order 𝑛 consists of a
set of vertices 𝑉 = {1, . . . , 𝑛}, a set of edges 𝐸 ⊆ 𝑉 × 𝑉, and
a weighted adjacency matrix 𝐴 = [𝑎

𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 with 𝑎
𝑖𝑗

≥ 0.
The node indexes belong to a finite index setI = {1, . . . , 𝑛}.
A directed edge from 𝑖 to 𝑗 in 𝐺 is denoted by 𝑒

𝑖𝑗
= (𝑖, 𝑗) ∈ 𝐸,

which means that the node 𝑗 can obtain information from
the node 𝑖. Assume that 𝑎

𝑗𝑖
> 0 ⇔ 𝑒

𝑖𝑗
∈ 𝐸 and 𝑎

𝑖𝑖
= 0 for

all 𝑖 ∈ {1, . . . , 𝑛}. The set of neighbors of node 𝑖 is denoted
by 𝑁
𝑖
= {𝑗 ∈ 𝑉 : (𝑗, 𝑖) ∈ 𝐸}. The Laplacian matrix of the

digraph 𝐺 is defined as 𝐿 = 𝐷 − 𝐴 = [𝑙
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛, where

𝐷 = diag{∑𝑛
𝑗=1

𝑎
𝑖𝑗
, 𝑖 = 1, . . . , 𝑛} is the degree matrix. In

the digraph 𝐺, a directed path from node 𝑖
1
to node 𝑖

𝑠
is a

sequence of ordered edges of the form (𝑖
1
, 𝑖
2
), . . . , (𝑖

𝑠−1
, 𝑖
𝑠
),

where 𝑖
𝑗
∈ 𝑉. A digraph is said to have a spanning tree, if

there exists a node such that there is a directed path from this
node to every other node.

2.2. Adjacent-Compensation Consensus Algorithm. In this
paper, we consider the dynamical consensus problem of
the second-order agents (1). Without loss of generality, we
analyze the second-order agents (1) following a dynamic
leader, and the leader’s dynamic is determined by

�̇�
0
= V
0
, (2)

where 𝑥
0
∈ 𝑅 is the position and V

0
∈ 𝑅 is a constant denoting

the desired velocity for all agents (1). Under the leader-
following coordination control framework, the agents’ states
are required to converge to the leader’s states asymptotically;
that is,

lim
𝑡→∞

𝑥
𝑖 (𝑡) = 𝑥

0 (𝑡) , lim
𝑡→∞

V
𝑖 (𝑡) = V

0
, ∀𝑖 ∈ I. (3)

We adopt the following consensus algorithm, which
consists of the position and the velocity coordination control
parts [4]:

𝑢
𝑖
=

𝜅

𝑑
𝑖
+ 𝑏
𝑖

(∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
((𝑥
𝑗 (𝑡) − 𝑥

𝑖 (𝑡)) + 𝛾 (V
𝑗 (𝑡) − V

𝑖 (𝑡)))

+ 𝑏
𝑖
((𝑥
0 (𝑡) − 𝑥

𝑖 (𝑡)) + 𝛾 (V
0 (𝑡) − V

𝑖 (𝑡)))) ,

𝑖 ∈ I,

(4)

where 𝜅 > 0, 𝛾 > 0, 𝑁
𝑖
denotes the neighbors of the agent

𝑖, 𝑎
𝑖𝑗

> 0 is the adjacency element of 𝐴 in the digraph 𝐺 =

(𝑉, 𝐸, 𝐴), 𝑑
𝑖
= ∑
𝑗∈𝑁𝑖

𝑎
𝑖𝑗
, and 𝑏

𝑖
is defined as

𝑏
𝑖
> 0, if agent 𝑖 is connected to the leader,

𝑏
𝑖
= 0, otherwise.

(5)

With communication delay, the asynchronously coupled
form of the algorithm (4) is given by

𝑢
𝑖
=

𝜅

𝑑
𝑖
+ 𝑏
𝑖

× (∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
((𝑥
𝑗 (𝑡 − 𝜏) − 𝑥

𝑖 (𝑡)) + 𝛾 (V
𝑗 (𝑡 − 𝜏) − V

𝑖 (𝑡)))

+ 𝑏
𝑖
((𝑥
0 (𝑡 − 𝜏) − 𝑥

𝑖 (𝑡)) + 𝛾 (V
0
− V
𝑖 (𝑡)))) ,

𝑖 ∈ I,

(6)
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where 𝜏 > 0 is the communication delay, while the
synchronously coupled form is given by

𝑢
𝑖
=

𝜅

𝑑
𝑖
+ 𝑏
𝑖

× (∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
((𝑥
𝑗 (𝑡 − 𝜏) − 𝑥

𝑖 (𝑡 − 𝜏))

+𝛾 (V
𝑗 (𝑡 − 𝜏) − V

𝑖 (𝑡 − 𝜏)))

+ 𝑏
𝑖
((𝑥
0 (𝑡 − 𝜏) − 𝑥

𝑖 (𝑡 − 𝜏))

+𝛾 (V
0
− V
𝑖 (𝑡 − 𝜏)))) , 𝑖 ∈ I.

(7)

Remark 1. The second-order agents (1) under synchronously
coupled consensus algorithm (7) also achieve a dynami-
cal consensus if the communication delay and the con-
trol parameters satisfy some certain conditions [8]. With
asynchronously coupled consensus algorithm (6), the agents
may not converge to an asymptotic consensus or the final
consensus state of the dynamic agents (1) is stationary, and
consensus conditions depend on the communication delay
[25, 26].

So far, consensus algorithms with compensations related
to delayed states of neighboring agents, desired target, and
dynamical leader have been added to consensus algorithm
(6) in order to remain the original control objective. Similar
to the compensation-based consensus algorithms in [28], we
modify the asynchronously coupled consensus algorithm (6)
by introducing the delayed state compensations as follows:

𝑢
𝑖
=

𝜅

∑
𝑗∈𝑁𝑖

𝑎
𝑖𝑗
+ 𝑏
𝑖

× (∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
((𝑥
𝑗 (𝑡 − 𝜏) − 𝑥

𝑖 (𝑡)

− (𝑥
𝑗 (𝑡 − 2𝜏 − 𝜁) − 𝑥

𝑗 (𝑡 − 𝜏 − 𝜁)))

+ 𝛾 (V
𝑗 (𝑡 − 𝜏) − V

𝑖 (𝑡)

− (V
𝑗 (𝑡 − 2𝜏 − 𝜁) − V

𝑗 (𝑡 − 𝜏 − 𝜁))))

+ 𝑏
𝑖
((𝑥
0 (𝑡 − 𝜏) − 𝑥

𝑖 (𝑡)

− (𝑥
0 (𝑡 − 2𝜏 − 𝜁) − 𝑥

0 (𝑡 − 𝜏 − 𝜁)))

+𝛾 (V
0
− V
𝑖 (𝑡)))) , 𝑖 ∈ I,

(8)

where 𝜁 > 0 and the compensations−(𝑥
𝑗
(𝑡−2𝜏−𝜁)−𝑥

𝑗
(𝑡−𝜏−

𝜁)) and −(V
𝑗
(𝑡 − 2𝜏 − 𝜁) − V

𝑗
(𝑡 − 𝜏 − 𝜁)) are added to improve

the system’s performance. Compared with the algorithm in
[28], the algorithm (8) in this paper is more general with an
adjustable value 𝜁.

Remark 2. Obviously, the adjustable delay value 𝜁 in algo-
rithm (8) can present different communication-delay robust-
ness, and the best value 𝜁 can be obtained based on numerical
simulations.

Besides, we take the following assumption to make the
algorithm (8) reasonable.

Assumption 3. Each second-order agent has at least one
neighboring agent.

Then, the closed-loop form of second-order dynamic
agents (1) with (8) is

�̇�
𝑖
= V
𝑖
,

V̇
𝑖
=

𝜅

𝑑
𝑖
+ 𝑏
𝑖

× (∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
((𝑥
𝑗 (𝑡 − 𝜏) − 𝑥

𝑖 (𝑡)

− (𝑥
𝑗 (𝑡 − 2𝜏 − 𝜁) − 𝑥

𝑗 (𝑡 − 𝜏 − 𝜁)))

+ 𝛾 (V
𝑗 (𝑡 − 𝜏) − V

𝑖 (𝑡)

− (V
𝑗 (𝑡 − 2𝜏 − 𝜁) − V

𝑗 (𝑡 − 𝜏 − 𝜁))))

+ 𝑏
𝑖
((𝑥
0 (𝑡 − 𝜏) − 𝑥

𝑖 (𝑡)

− (𝑥
0 (𝑡 − 2𝜏 − 𝜁) − 𝑥

0 (𝑡 − 𝜏 − 𝜁)))

+𝛾 (V
0
− V
𝑖 (𝑡)))) , 𝑖 ∈ I.

(9)

Defining 𝑥
𝑖
= 𝑥
𝑖
− 𝑥
0
, V
𝑖
= V
𝑖
− V
0
, 𝑖 = 1, . . . , 𝑛, we get

�̇�
𝑖
= V
𝑖
,

V̇
𝑖
=

𝜅

𝑑
𝑖
+ 𝑏
𝑖

× (∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
((𝑥
𝑗 (𝑡 − 𝜏) − 𝑥

𝑖 (𝑡)

− (𝑥
𝑗 (𝑡 − 2𝜏 − 𝜁) − 𝑥

𝑗 (𝑡 − 𝜏 − 𝜁)))

+ 𝛾 (V
𝑗 (𝑡 − 𝜏) − V

𝑖 (𝑡)

− (V
𝑗 (𝑡 − 2𝜏 − 𝜁) − V

𝑗 (𝑡 − 𝜏 − 𝜁))))

− 𝑏
𝑖
(𝑥
𝑖
+ 𝛾V
𝑖
)) , 𝑖 ∈ I.

(10)
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Taking the Laplace transforms of system (10), we get the
characteristic equation about 𝑥(𝑡) = [𝑥

2
, . . . , 𝑥

𝑛
]
𝑇 as follows:

det (𝑠2𝐼 + 𝜅 (1 + 𝛾𝑠) (𝐷 + 𝐵)
−1

× (𝐷 + 𝐵 − 𝐴 (e−𝑠𝜏 + e−𝑠(𝜏+𝜁) − e−𝑠(2𝜏+𝜁)))) = 0.

(11)

3. Main Results

First of all, we present consensus criterion for the multiagent
systems (9) with a spanning tree topology that has the leader
as a root.

Theorem 4. Assume that the interconnection topology com-
posed of the second-order agents (9) and the dynamic leader is a
spanning tree. Then, all the agents in system (9) asymptotically
converge to the leader’s state with arbitrary communication
delay.

Proof. When the interconnection topology of 𝑛 agents and a
leader is a spanning tree, the leader must be the root and we
assume that the direct edge from agent 𝑖 to 𝑗 satisfies 𝑖 < 𝑗.
Hence, the characteristic equation (11) becomes

det (𝑠2𝐼 + 𝜅 (1 + 𝛾𝑠) (𝐷 + 𝐵)
−1

× (𝐷 + 𝐵 − 𝐴 (e−𝑠𝜏 + e−𝑠(𝜏+𝜁) − e−𝑠(2𝜏+𝜁)))) = 0,

(12)

where 𝐷 = diag{𝑑
𝑖
, 𝑖 = 1, . . . , 𝑛}, 𝐵 = diag{𝑏

𝑖
, 𝑖 = 1, . . . , 𝑛},

and

𝐴 =

[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

𝑎
21

0 ⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅

...
𝑎
𝑛1

𝑎
𝑛2

⋅ ⋅ ⋅ 0

]
]
]
]

]

. (13)

Hence, (12) equals
𝑛

∏

𝑖=1

(𝑠
2
+ 𝜅 (1 + 𝛾𝑠)) = 0, 𝑖 = 1, . . . , 𝑛. (14)

The roots of (14) have negative real parts; that is, the roots
of the characteristic equation (12) lie on the open left half
complex plane. Therefore, the agents in system (9) converge
to the leader’s states asymptotically.

Remark 5. To our delight, the system (9) under a special
topology can tolerate arbitrary communication delay.

In the following, we investigate the consensus problem of
second-order dynamic agents under a general interconnec-
tion topology in the leader-following framework.

Theorem 6. Assume that the agents in system (9) without
communication delay converge to the leader’s states asymptoti-
cally and Assumption 3 holds. Let

𝑚(𝑠) =
𝑔
𝑖 (𝑠)

1 + 𝑔
𝑖 (𝑠)

𝜆
𝑖

1 − 𝜆
𝑖

, (15)

where 𝑔
𝑖
(𝑠) = (𝜅(1+𝛾𝑠)/𝑠

2
)(1−𝜆

𝑖
) and 𝜆

𝑖
, 𝑖 = 1, . . . , 𝑛 are the

eigenvalues of (𝐷 + 𝐵)
−1
𝐴. Then, all the agents in system (9)

converge to the leader’s states asymptotically, if

4


(𝑚 (𝑗𝜔)) sin(

𝜔𝜏

2
) sin(

𝜔 (𝜏 + 𝜁)

2
)


< 1 (16)

holds for 𝜔 ∈ 𝑅.

Proof. Without communication delay, (11) becomes

det (𝑠2𝐼 + 𝜅 (1 + 𝛾𝑠) (𝐷 + 𝐵)
−1

(𝐷 + 𝐵 − 𝐴)) = 0, (17)

and the above equation is equivalent to
𝑛

∏

𝑖=1

((𝑠
2
+ 𝜅 (1 + 𝛾𝑠)) (1 − 𝜆

𝑖
)) = 0. (18)

Under the assumption that the agents without communica-
tion delay converge to a dynamical consensus asymptotically,
the roots of (18) all lie on the open left half complex plane,
and rank(𝐿 + 𝐵) = 𝑛; that is, the interconnection topology of
𝑛 agents and the leader has a spanning tree.

With communication delay, (11) can be rewritten as

det (𝑠2𝐼 + 𝜅 (1 + 𝛾𝑠)

× (𝐼 − (𝐷 + 𝐵)
−1
𝐴(e−𝑠𝜏 + e−𝑠(𝜏+𝜁) − e−𝑠(2𝜏+𝜁)))) = 0,

(19)

which equals
𝑛

∏

𝑖=1

(𝑠
2
+ 𝜅 (1 + 𝛾𝑠) (1 − 𝜆

𝑖
(e−𝑠𝜏 + e−𝑠(𝜏+𝜁) − e−𝑠(2𝜏+𝜁)))) = 0,

𝑖 = 1, . . . , 𝑛.

(20)

Letting 𝑓
𝑖
(𝑠) = 𝑠

2
+𝜅(1+𝛾𝑠)(1−𝜆

𝑖
(e−𝑠𝜏 + e−𝑠(𝜏+𝜁) − e−𝑠(2𝜏+𝜁))),

we get 𝑓(0) = 𝜅(1 − 𝜆
𝑖
) ̸= 0. Thus, (20) can be rewritten as

1 + 𝜅
(1 + 𝛾𝑠)

𝑠2
(1 − 𝜆

𝑖
)

× (1 +
𝜆
𝑖

1 − 𝜆
𝑖

(1 − e−𝑠𝜏) (1 − e−𝑠(𝜏+𝜁))) = 0,

𝑖 = 1, . . . , 𝑛.

(21)

The above equation is equivalent to

1 + 𝑚 (𝑠) (1 − e−𝑠𝜏) (1 − e−𝑠(𝜏+𝜁)) = 0, 𝑖 = 1, . . . , 𝑛, (22)

where 𝑚(𝑠) is defined in (15). Obviously, (1 − e−𝑠𝜏), (1 −

e−𝑠(𝜏+𝜁)), and 𝑚(𝑠) have no poles in the open right half
complex plane.

By computing, we obtain

𝑚 (j𝜔) (1 − e−𝑗𝜔𝜏) (1 − e−𝑗𝜔(𝜏+𝜁))

= 4


𝑚 (𝑗𝜔) sin(

𝜔𝜏

2
) sin(

𝜔 (𝜏 + 𝜁)

2
)


.

(23)
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Figure 1: A spanning tree topology.

From condition (16),

𝑚 (𝑗𝜔) (1 − e−𝑗𝜔𝜏) (1 − e−𝑗𝜔(𝜏+𝜁)) < 1 (24)

holds for all 𝜔 ∈ 𝑅.
Therefore, 1+𝑚(𝑠)(1−e−𝑠𝜏)(1−e−𝑠(𝜏+𝜁)) is nonsingular for

Re(𝑠) ≥ 0; that is, the roots of the characteristic equation (11)
all lie on the open left half complex plane.Hence, the agents in
the system (9) converge to the leader’s states asymptotically.
Theorem 6 is proved.

4. Simulation

Example 7. Consider a multiagent network with five second-
order agents and a leader given by (9), and the interconnec-
tion topology described in Figure 1 is a spanning tree. The
weights of the directed edges are 𝑏

1
= 0.4, 𝑎

21
= 0.1, 𝑎

43
= 0.8,

𝑏
3

= 1.5, and 𝑎
53

= 0.2. Choose the control parameters as
𝜅 = 1.2 and 𝛾 = 0.8. Then, the agents in the system (9) can
reach a dynamical consensus asymptotically under arbitrary
communication delay (see Figure 2).

It should be noted that the dynamical consensus con-
vergence for the agents with synchronously coupled con-
sensus algorithm under the same control parameters and
interconnection topology must depend on communication
delay strictly.

Example 8. Consider a multiagent network with five second-
order agents and a leader given by (9), and the intercon-
nection topology of the agents is described in Figure 3.
Obviously, the topology satisfies Assumption 3. The weights
of the directed edges are 𝑏

1
= 1.7, 𝑎

13
= 0.5, 𝑎

21
= 1.3,

𝑎
34

= 2.1, 𝑎
35

= 1.8, 𝑏
4

= 1.8, 𝑎
41

= 0.7, 𝑎
32

= 1.2, and
𝑎
54

= 1.2. Choose the control parameters as 𝜅 = 1.5, 𝛾 = 0.8,
and 𝜁 = 0.8(s); we obtain 𝜏 < 0.527(s) based on condition
(16); that is, the agents in the system (9) can reach a dynamical
consensus asymptotically if 𝜏 < 0.527(s) (see Figure 4). By
simulation, it is found that the agents’ states oscillate when
𝜏 = 0.6(s) (see Figure 5). Moreover, we found that the largest
communication delay, which the agents with synchronously
coupled algorithm can tolerate, is 𝜏 = 0.345(s).

To illustrate the function of adjustable value 𝜁, we choose
diverse 𝜁 and get an algorithmwith the best delay robustness.
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Figure 2: Delay-independent dynamical consensus under a span-
ning tree.
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Figure 3: Interconnection topology of five agents and one leader.

Figure 6 shows the largest communication delay our pro-
posed algorithm can bear under different 𝜁. When 𝜁 = 3(s),
the largest communication delay the agents in system (9) can
bear is 𝜏max = 1.47(s), which is much larger than that the
synchronously coupled algorithm can achieve.

5. Conclusion

In this paper, we consider the dynamical consensus problem
of the second-order multiagent systems under communica-
tion delay and adopt the leader-following consensus algo-
rithm which is composed of the position and the velocity
consensus coordination control parts. By introducing neigh-
boring agents’ delayed state compensation into the normal
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Figure 4: Delay-dependent dynamical consensus convergence.
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Figure 5: Oscillation of agents’ states.
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Figure 6: Bound of communication delay with different 𝜁.

asynchronously coupled consensus algorithm, the second-
order agents can achieve a dynamical consensus as the syn-
chronously coupled algorithm. Firstly, we consider second-
order dynamic agents under a spanning tree topology that has
the leader as the root and use frequency-domain analysis to
prove the delay-independent consensus convergence. Then,
we investigate the consensus seeking under the general inter-
connection topology in the leader-following coordination

control framework. Delay-dependent consensus condition
is obtained for the second-order agents converging to the
leader’s states asymptotically. It should be noted that choosing
proper adjustable delay introduced in our proposed algo-
rithm can obtain different delay robustness. In a word, our
proposed algorithm can tolerate much higher communica-
tion delay than synchronously coupled consensus algorithm.
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