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The main purpose of this paper is using the properties of Gauss sums and the estimate for character sums to study a mean
value problem related to the primitive roots mod𝑝 and the different forms of Golomb’s conjectures and propose an interesting
asymptotic formula for it.

1. Introduction

Let 𝑞 > 1 be an integer. For any integer 𝑎with (𝑎, 𝑞) = 1, from
the Euler-Fermat theorem we know that 𝑎𝜙(𝑞) ≡ 1 mod 𝑞,
where 𝜙(𝑞) denotes Euler function. Let 𝑘 be the smallest
positive integer such that 𝑎𝑘 ≡ 1 mod 𝑞. If 𝑘 = 𝜙(𝑞), then
𝑎 is called a primitive root of 𝑞. If 𝑞 has a primitive root,
then each reduced residue system mod 𝑞 can be expressed
as a geometric progression. This gives a powerful tool that
can be used in problems involving reduced residue systems.
Unfortunately, not all moduli have primitive roots. In fact
primitive roots exist only for the following moduli:

𝑞 = 1, 2, 4, 𝑝
𝛼
, 2𝑝
𝛼
, (1)

where 𝑝 is an odd prime and 𝛼 ≥ 1.
Many researchers focused on the properties of primitive

roots and some related problems and have obtained many
interesting results; see [1–7]. For example,Moreno and Sotero
[4] proved that Golomb’s conjecture is true for all 𝑞 < 2

60.
That is, there exist two primitive elements 𝛼 and 𝛽 in finite
fields F𝑞 such that 𝛼 + 𝛽 = 1, if 𝑞 < 2

60. Cohen and Mullen
[2] established a generalization of Golomb’s conjecture by
proving the existence of 𝑞0 > 0 such that, whenever 𝑞 > 𝑞0,

there exist primitive 𝛼, 𝛽 ∈ F𝑞 with 𝛾𝛼 + 𝛿𝛽 = 𝜀, where
𝛾, 𝛿, and 𝜀 are arbitrary nonzero members of F𝑞. What is
more, they also gave an asymptotic formula for the number
of solutions. But we think the error term is too big and can be
improved. In order to verify our viewpoint, we take the mean
value properties of the error term into account. By using the
properties of Gauss sums and the estimate for character sums,
we obtained a stronger asymptotic formula.

Let 𝑝 > 3 be an odd prime number. For any integer 𝑐with
(𝑐, 𝑝) = 1, let𝑁(𝑐, 𝑝) denote the number of all solutions of the
congruence equation 𝑥 − 𝑦 ≡ 𝑐mod𝑝, where 𝑥 and 𝑦 are the
primitive roots mod𝑝. We define 𝐸(𝑐, 𝑝) = 0, if 𝑐 ≡ 0 mod𝑝,
and

𝐸 (𝑐, 𝑝) = 𝑁 (𝑐, 𝑝) −
(𝑝 − 2) ⋅ 𝜙

2
(𝑝 − 1)

(𝑝 − 1)
2

, if (𝑐, 𝑝) = 1.

(2)

In this paper, we give an interesting asymptotic formula
for the mean value of 𝐸(𝑐, 𝑝). This problem is interesting,
because it cannot only reveal the profound properties of
Golomb’s conjecture and provide the distribution law of the
error term 𝐸(𝑐, 𝑝), but it is also a generalization of the related
contents.
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Theorem 1. Let 𝑝 > 3 be a prime. Then for any three integers
𝑎, 𝑏, and 𝑐 with (𝑎𝑏𝑐, 𝑝) = (𝑎

2
− 4𝑏, 𝑝) = 1, one has the

asymptotic formula

𝑝−1

∑

𝑥=0

𝑝−1

∑

𝑦=0

𝐸 (𝑥
2
+ 𝑎𝑥𝑦 + 𝑏𝑦

2
+ 𝑐, 𝑝)

= −𝑝 ⋅ 𝜙 (𝑝 − 1) + 𝜙
2
(𝑝 − 1)

+ 𝜃 ⋅
𝑝
3/2
⋅ 𝜙
2
(𝑝 − 1)

(𝑝 − 1)
2

⋅ 4
𝜔(𝑝−1)

,

(3)

where 𝜙(𝑛) is Euler function, |𝜃| ≤ 1, and 𝜔(𝑛) denotes the
number of all distinct prime divisors of 𝑛.

We may immediately deduce the following corollary from
this theorem.

Corollary 2. Let 𝑝 > 3 be a prime number. Then for any three
integers 𝑎, 𝑏, and 𝑐 with (𝑎𝑏𝑐, 𝑝) = (𝑎2 − 4𝑏, 𝑝) = 1, one has

𝑝−1

∑

𝑥=0

𝑝−1

∑

𝑦=0

𝐸 (𝑥
2
+ 𝑎𝑥𝑦 + 𝑏𝑦

2
+ 𝑐, 𝑝)

∼ 𝜙
2
(𝑝 − 1) − 𝑝 ⋅ 𝜙 (𝑝 − 1) , as 𝑝 → ∞.

(4)

2. Several Lemmas

In this section, we provide several lemmas that will be
necessary for the proof of our theorem. Throughout this
paper, we used many properties of Dirichlet characters and
Gauss sums, which can be found in [8]. Firstly, we have the
following lemma.

Lemma 3. Let 𝑝 be an odd prime. Then for any integer 𝑐 with
(𝑐, 𝑝) = 1, one has the identity

𝜙 (𝑝 − 1)

𝑝 − 1
∑

ℎ|𝑝−1

𝜇 (ℎ)

𝜙 (ℎ)

ℎ

∑

𝑘=1
(ℎ,𝑘)=1

𝑒 (
𝑘 ind 𝑐
ℎ

)

= {
1, if 𝑐 is a primitive root of 𝑝,
0, otherwise,

(5)

where ind 𝑐 denotes the index of 𝑐 relative to some fixed
primitive root of 𝑝; 𝜇(𝑛) is the M ̈𝑜bius function.

Proof. See Proposition 2.2 of [9].

Lemma 4. Let 𝑝 be an odd prime; 𝑎, 𝑏, and 𝑐 are three integers
with (𝑎𝑏𝑐, 𝑝) = (𝑎

2
− 4𝑏, 𝑝) = 1. Then for any nonprincipal

character 𝜒 mod𝑝, one has the identity

𝑝−1

∑

𝑟=0

𝑝−1

∑

𝑠=0

𝜒 (𝑟
2
+ 𝑎𝑟𝑠 + 𝑏𝑠

2
+ 𝑐)

= 𝜒 (𝑐) ⋅ (
𝑎
2
− 4𝑏

𝑝
) ⋅ 𝑝,

(6)

where (∗/𝑝) denotes the Legendre symbol.

Proof. Since any nonprincipal character 𝜒 mod𝑝 is a primi-
tive character mod𝑝, so from the properties of Gauss sums
we conclude that

𝑝−1

∑

𝑟=0

𝑝−1

∑

𝑠=0

𝜒 (𝑟
2
+ 𝑎𝑟𝑠 + 𝑏𝑠

2
+ 𝑐)

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑟=0

𝑝−1

∑

𝑠=0

𝑝−1

∑

𝑡=1

𝜒 (𝑡) 𝑒(
𝑡 (𝑟
2
+ 𝑎𝑟𝑠 + 𝑏𝑠

2
+ 𝑐)

𝑝
)

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑡=1

𝜒 (𝑡) 𝑒 (
𝑐𝑡

𝑝
)

𝑝−1

∑

𝑟=0

𝑝−1

∑

𝑠=0

𝑒 (
𝑡𝑟
2
+ 𝑡𝑎𝑟𝑠 + 𝑡𝑏𝑠

2

𝑝
)

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑡=1

𝜒 (𝑡) 𝑒 (
𝑐𝑡

𝑝
)

× (

𝑝−1

∑

𝑟=0

𝑒 (
𝑡𝑟
2

𝑝
) +

𝑝−1

∑

𝑟=0

𝑝−1

∑

𝑠=1

𝑒(
𝑡 (𝑟
2
+ 𝑎𝑟𝑠 + 𝑏𝑠

2
)

𝑝
))

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑡=1

𝜒 (𝑡) 𝑒 (
𝑐𝑡

𝑝
)

× (

𝑝−1

∑

𝑟=0

𝑒 (
𝑡𝑟
2

𝑝
) +

𝑝−1

∑

𝑟=0

𝑝−1

∑

𝑠=1

𝑒(
𝑡𝑠
2
(𝑟
2
+ 𝑎𝑟 + 𝑏)

𝑝
))

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑡=1

𝜒 (𝑡) 𝑒 (
𝑐𝑡

𝑝
)

× (

𝑝−1

∑

𝑟=0

𝑒 (
𝑡𝑟
2

𝑝
) − 𝑝 +

𝑝−1

∑

𝑟=0

𝑝−1

∑

𝑠=0

𝑒(
𝑡𝑠
2
(𝑟
2
+ 𝑎𝑟 + 𝑏)

𝑝
)) ,

(7)

where 𝜏(𝜒) = ∑𝑝−1𝑎=1 𝜒(𝑎)𝑒(𝑎/𝑝) is the classical Gauss sums.
On the other hand, for any integer 𝑡 with (𝑡, 𝑝) = 1, we

have

𝑝−1

∑

𝑟=0

𝑒 (
𝑡𝑟
2

𝑝
) = 1 +

𝑝−1

∑

𝑟=1

(1 + (
𝑟

𝑝
)) 𝑒(

𝑡𝑟

𝑝
)

=

𝑝−1

∑

𝑟=0

𝑒 (
𝑟

𝑝
) +

𝑝−1

∑

𝑟=1

(
𝑟

𝑝
) 𝑒(

𝑡𝑟

𝑝
)

= (
𝑡

𝑝
)

𝑝−1

∑

𝑟=1

(
𝑟

𝑝
) 𝑒(

𝑟

𝑝
)

= (
𝑡

𝑝
)

𝑝−1

∑

𝑟=0

𝑒 (
𝑟
2

𝑝
) ≡ (

𝑡

𝑝
) ⋅ 𝐺 (𝑝) .

(8)

For any integer 𝑛 with (𝑛, 𝑝) = 1, from [10] (Section 7.8,
Theorem 8.2) we also have

𝑝−1

∑

𝑟=0

(
𝑟
2
+ 𝑛

𝑝
) = −1. (9)
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Therefore,

𝑝−1

∑

𝑟=0

𝑝−1

∑

𝑠=0

𝑒(
𝑡𝑠
2
(𝑟
2
+ 𝑎𝑟 + 𝑏)

𝑝
)

=

𝑝−1

∑

𝑟=0

(
𝑡 (𝑟
2
+ 𝑎𝑟 + 𝑏)

𝑝
) ⋅ 𝐺 (𝑝) + 𝑝 ⋅

𝑝−1

∑

𝑟=0

𝑟2+𝑎𝑟+𝑏≡0 mod 𝑝

1

= (
𝑡

𝑝
) ⋅ 𝐺 (𝑝) ⋅

𝑝−1

∑

𝑟=0

(
(2𝑟 + 𝑎)

2
+ 4𝑏 − 𝑎

2

𝑝
)

+ 𝑝 ⋅

𝑝−1

∑

𝑟=0

(2𝑟+𝑎)2+4𝑏−𝑎2≡0 mod 𝑝

1

= −(
𝑡

𝑝
) ⋅ 𝐺 (𝑝) + (1 + (

𝑎
2
− 4𝑏

𝑝
)) ⋅ 𝑝.

(10)

Then from (7), (8), (9), and (10) we deduce the identity

𝑝−1

∑

𝑟=0

𝑝−1

∑

𝑠=0

𝜒 (𝑟
2
+ 𝑎𝑟𝑠 + 𝑏𝑠

2
+ 𝑐)

=
1

𝜏 (𝜒)

𝑝−1

∑

𝑡=1

𝜒 (𝑡) 𝑒 (
𝑐𝑡

𝑝
)((

𝑡

𝑝
) ⋅ 𝐺 (𝑝) − 𝑝 − (

𝑡

𝑝
) ⋅ 𝐺 (𝑝)

+(1 + (
𝑎
2
− 4𝑏

𝑝
)) ⋅ 𝑝)

= (
𝑎
2
− 4𝑏

𝑝
) ⋅ 𝑝 ⋅

1

𝜏 (𝜒)

𝑝−1

∑

𝑡=1

𝜒 (𝑡) 𝑒 (
𝑐𝑡

𝑝
)

= 𝜒 (𝑐) ⋅ (
𝑎
2
− 4𝑏

𝑝
) ⋅ 𝑝.

(11)

This proves Lemma 4.

Lemma 5. Let 𝑝 be an odd prime and let 𝑐 be an integer with
(𝑐, 𝑝) = 1. Then one has the identity

𝐸 (𝑐, 𝑝) =
𝜙
2
(𝑝 − 1)

𝑝(𝑝 − 1)
2

× ∑

ℎ|𝑝−1

ℎ>1

∑

𝑢|𝑝−1

𝑢>1

𝜇 (ℎ)

𝜙 (ℎ)

𝜇 (𝑢)

𝜙 (𝑢)

×

ℎ

∑

𝑠=1
(ℎ,𝑠)=1

𝑢

∑

V=1
(V,𝑢)=1

𝜒𝑠,ℎ𝜒V,𝑢 (−𝑐) 𝜒V,𝑢 (−1)

× 𝜏 (𝜒𝑠,ℎ𝜒V,𝑢) ⋅ 𝜏 (𝜒𝑠,ℎ) ⋅ 𝜏 (𝜒V,𝑢)

−
2 ⋅ 𝜙
2
(𝑝 − 1)

(𝑝 − 1)
2

∑

ℎ|𝑝−1

ℎ>1

𝜇 (ℎ)

𝜙 (ℎ)

ℎ

∑

𝑠=1
(ℎ,𝑠)=1

𝜒𝑠,ℎ (−𝑐) ,

(12)

where 𝑒((𝑘 ind 𝑦)/ℎ) = 𝜒𝑘,ℎ(𝑦) is the Dirichlet character
mod𝑝.

Proof. From the trigonometric identity, the properties of
classical Gauss sums, and Lemma 3 we have

𝑁(𝑐, 𝑝)

=

𝑝−1

∑

𝑥=1

𝑝−1

∑

𝑦=1

𝜙
2
(𝑝 − 1)

(𝑝 − 1)
2

× ∑

ℎ|𝑝−1

∑

𝑢|𝑝−1

𝜇 (ℎ)

𝜙 (ℎ)

𝜇 (𝑢)

𝜙 (𝑢)

ℎ

∑

𝑠=1
(ℎ,𝑠)=1

𝑢

∑

V=1
(V,𝑢)=1

𝜒𝑠,ℎ (𝑥) 𝜒V,𝑢 (𝑦)

×
1

𝑝

𝑝

∑

𝑟=1

𝑒 (
𝑟 (𝑥 − 𝑦 − 𝑐)

𝑝
)

=
𝜙
2
(𝑝 − 1)

𝑝
+
𝜙
2
(𝑝 − 1)

𝑝(𝑝 − 1)
2

× ∑

ℎ|𝑝−1

∑

𝑢|𝑝−1

𝜇 (ℎ)

𝜙 (ℎ)

𝜇 (𝑢)

𝜙 (𝑢)

ℎ

∑

𝑠=1
(ℎ,𝑠)=1

𝑢

∑

V=1
(V,𝑢)=1

𝑝−1

∑

𝑟=1

𝑒 (
−𝑟𝑐

𝑝
)

× (

𝑝−1

∑

𝑥=1

𝜒𝑠,ℎ (𝑥) 𝑒 (
𝑟𝑥

𝑝
)) ⋅ (

𝑝−1

∑

𝑦=1

𝜒V,𝑢 (𝑦) 𝑒 (
−𝑟𝑦

𝑝
))

=
𝜙
2
(𝑝 − 1)

𝑝
+
𝜙
2
(𝑝 − 1)

𝑝(𝑝 − 1)
2

× ∑

ℎ|𝑝−1

∑

𝑢|𝑝−1

𝜇 (ℎ)

𝜙 (ℎ)

𝜇 (𝑢)

𝜙 (𝑢)

ℎ

∑

𝑠=1
(ℎ,𝑠)=1

𝑢

∑

V=1
(V,𝑢)=1

𝜒𝑠,ℎ𝜒V,𝑢 (−𝑐)

× 𝜒V,𝑢 (−1) 𝜏 (𝜒𝑠,ℎ𝜒V,𝑢) ⋅ 𝜏 (𝜒𝑠,ℎ) ⋅ 𝜏 (𝜒V,𝑢)

=
(𝑝 − 2) ⋅ 𝜙

2
(𝑝 − 1)

(𝑝 − 1)
2

−
2 ⋅ 𝜙
2
(𝑝 − 1)

(𝑝 − 1)
2

× ∑

ℎ|𝑝−1

ℎ>1

𝜇 (ℎ)

𝜙 (ℎ)

ℎ

∑

𝑠=1
(ℎ,𝑠)=1

𝜒𝑠,ℎ (−𝑐)

+
𝜙
2
(𝑝 − 1)

𝑝(𝑝 − 1)
2
∑

ℎ|𝑝−1

ℎ>1

∑

𝑢|𝑝−1

𝑢>1

𝜇 (ℎ)

𝜙 (ℎ)

𝜇 (𝑢)

𝜙 (𝑢)
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×

ℎ

∑

𝑠=1
(ℎ,𝑠)=1

𝑢

∑

V=1
(V,𝑢)=1

𝜒𝑠,ℎ𝜒V,𝑢 (−𝑐)

× 𝜒V,𝑢 (−1) 𝜏 (𝜒𝑠,ℎ𝜒V,𝑢) ⋅ 𝜏 (𝜒𝑠,ℎ) ⋅ 𝜏 (𝜒V,𝑢) ,

(13)

where we used the properties |𝜏(𝜒)| = √𝑝, if 𝜒 is not a
principal character mod𝑝.

From formula (13) and the definition of 𝐸(𝑐, 𝑝) we may
immediately deduce Lemma 5.

3. Proof of Theorem 1

In this section, we shall complete the proof of our theorem.
First from Lemma 5 and the definition of 𝐸(𝑐, 𝑝) we have

𝑝−1

∑

𝑥=0

𝑝−1

∑

𝑦=0

𝐸 (𝑥
2
+ 𝑎𝑥𝑦 + 𝑏𝑦

2
+ 𝑐, 𝑝)

= −
2 ⋅ 𝜙
2
(𝑝 − 1)

(𝑝 − 1)
2

∑

ℎ|𝑝−1

ℎ>1

𝜇 (ℎ)

𝜙 (ℎ)

ℎ

∑

𝑠=1
(ℎ,𝑠)=1

𝜒𝑠,ℎ (−1)

×

𝑝−1

∑

𝑥=0

𝑝−1

∑

𝑦=0

𝜒𝑠,ℎ (𝑥
2
+ 𝑎𝑥𝑦 + 𝑏𝑦

2
+ 𝑐)

+
𝜙
2
(𝑝 − 1)

𝑝(𝑝 − 1)
2
∑

ℎ|𝑝−1

ℎ>1

∑

𝑢|𝑝−1

𝑢>1

𝜇 (ℎ)

𝜙 (ℎ)

𝜇 (𝑢)

𝜙 (𝑢)

×

ℎ

∑

𝑠=1
(ℎ,𝑠)=1

𝑢

∑

V=1
(V,𝑢)=1

𝜒𝑠,ℎ (−1)

×

𝑝−1

∑

𝑥=0

𝑝−1

∑

𝑦=0

𝜒𝑠,ℎ𝜒V,𝑢 (𝑥
2
+ 𝑎𝑥𝑦 + 𝑏𝑦

2
+ 𝑐) 𝜏 (𝜒𝑠,ℎ𝜒V,𝑢)

⋅ 𝜏 (𝜒𝑠,ℎ) ⋅ 𝜏 (𝜒V,𝑢)

≡ 𝐸1 + 𝐸2,

(14)

where 𝐸1 and 𝐸2 denote the corresponding formula, respec-
tively, in the summation.

Now we will estimate 𝐸1 and 𝐸2 in (14), respectively. It
is clear that if ℎ > 1 and (𝑠, ℎ) = 1, then 𝜒𝑠,ℎ must be
a nonprincipal character mod𝑝. So for any integer 𝑐 with
(𝑐, 𝑝) = 1, from Lemma 4 we have the identity

𝑝−1

∑

𝑥=0

𝑝−1

∑

𝑦=0

𝜒𝑠,ℎ (𝑥
2
+ 𝑎𝑥𝑦 + 𝑏𝑦

2
+ 𝑐) = 𝜒𝑠,ℎ (𝑐) ⋅ (

𝑎
2
− 4𝑏

𝑝
) ⋅ 𝑝.

(15)

Therefore, we have

𝐸1
 ≤

2 ⋅ 𝜙
2
(𝑝 − 1)

(𝑝 − 1)
2

∑

ℎ|𝑝−1

ℎ>1

𝜇 (ℎ)
 ⋅ 𝑝

=
2𝑝 ⋅ 𝜙

2
(𝑝 − 1)

(𝑝 − 1)
2

⋅ (2
𝜔(𝑝−1)

− 1) .

(16)

To estimate 𝐸2 in (14), we write 𝐸2 = 𝐸21 + 𝐸22, where
𝐸21 includes all the characters such that 𝜒𝑠,ℎ𝜒V,𝑢 = 𝜒0, and
𝜒0 is the principal character mod𝑝; 𝐸22 includes all the
characters such that 𝜒𝑠,ℎ𝜒V,𝑢 ̸= 𝜒0. Now note that if 𝜒𝑠,ℎ𝜒V,𝑢 is
the principal character mod𝑝, then ℎ = 𝑢 and 𝜏(𝜒𝑠,ℎ𝜒V,𝑢) =
−1, 𝜒𝑠,ℎ(−1)𝜏(𝜒𝑠,ℎ) ⋅ 𝜏(𝜒V,𝑢) = 𝜏(𝜒𝑠,ℎ) ⋅ 𝜏(𝜒𝑠,ℎ) = 𝑝. This time,
from identity (9) we have

𝑝−1

∑

𝑥=0

𝑝−1

∑

𝑦=0

𝜒𝑠,ℎ𝜒V,𝑢 (𝑥
2
+ 𝑎𝑥𝑦 + 𝑏𝑦

2
+ 𝑐)

= 𝑝
2
−

𝑝−1

∑

𝑥=0

𝑝−1

∑

𝑦=0

𝑥2+𝑎𝑥𝑦+𝑏𝑦2+𝑐≡0 mod 𝑝

1

= 𝑝
2
−

𝑝−1

∑

𝑥=0

𝑝−1

∑

𝑦=0

(2𝑥+𝑎𝑦)
2

≡𝑦2(𝑎2−4𝑏)−4𝑐 mod 𝑝

1

= 𝑝
2
−

𝑝−1

∑

𝑠=0

(1 + (
𝑠
2
(𝑎
2
− 4𝑏) − 4𝑐

𝑝
))

= 𝑝
2
− 𝑝 + (

𝑎
2
− 4𝑏

𝑝
) .

(17)

So from (17) and Lemma 4 we have

𝐸21 = −
𝜙
2
(𝑝 − 1)

𝑝(𝑝 − 1)
2

× ∑

ℎ|𝑝−1

ℎ>1

𝜇 (ℎ)


𝜙 (ℎ)
(𝑝
2
− 𝑝 + (

𝑎
2
− 4𝑏

𝑝
)) ⋅ 𝑝

= −
𝜙
2
(𝑝 − 1)

(𝑝 − 1)
2
(𝑝
2
− 𝑝 + (

𝑎
2
− 4𝑏

𝑝
))

× (
𝑝 − 1

𝜙 (𝑝 − 1)
− 1) .

(18)
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Applying Lemma 4 and the estimate for Gauss sums we also
have the estimate

𝐸22
 =

𝜙
2
(𝑝 − 1)

𝑝(𝑝 − 1)
2

× ∑

ℎ|𝑝−1

ℎ>1

∑

𝑢|𝑝−1

𝑢>1

𝜇 (ℎ)
 ⋅
𝜇 (𝑢)

 ⋅ 𝑝 ⋅ 𝑝
3/2

≤
𝑝
3/2
⋅ 𝜙
2
(𝑝 − 1)

(𝑝 − 1)
2

⋅ (2
𝜔(𝑝−1)

− 1)
2

=
𝑝
3/2
⋅ 𝜙
2
(𝑝 − 1)

(𝑝 − 1)
2

⋅ (4
𝜔(𝑝−1)

− 2 ⋅ 2
𝜔(𝑝−1)

+ 1) .

(19)

Combining (14), (18), and (19) we may immediately deduce
the asymptotic formula

𝑝−1

∑

𝑥=0

𝑝−1

∑

𝑦=0

𝐸 (𝑥
2
+ 𝑎𝑥𝑦 + 𝑏𝑦

2
+ 𝑐, 𝑝)

= −𝑝 ⋅ 𝜙 (𝑝 − 1) + 𝜙
2
(𝑝 − 1)

+ 𝜃 ⋅
𝑝
3/2
⋅ 𝜙
2
(𝑝 − 1)

(𝑝 − 1)
2

⋅ 4
𝜔(𝑝−1)

,

(20)

where |𝜃| ≤ 1. This completes the proof of Theorem 1.
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