
Research Article
Exploring the Best Classification from
Average Feature Combination

Jian Hou,1 Wei-Xue Liu,1 and Hamid Reza Karimi2

1 School of Information Science and Technology, Bohai University, Jinzhou 121013, China
2Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Correspondence should be addressed to Jian Hou; dr.houjian@gmail.com

Received 22 December 2013; Revised 13 January 2014; Accepted 13 January 2014; Published 19 February 2014

Academic Editor: Shen Yin

Copyright © 2014 Jian Hou et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Feature combination is a powerful approach to improve object classification performance. While various combination algorithms
have been proposed, average combination is almost always selected as the baseline algorithm to be compared with. In previous
work we have found that it is better to use only a sample of the most powerful features in average combination than using all.
In this paper, we continue this work and further show that the behaviors of features in average combination can be integrated
into the k-Nearest-Neighbor (kNN) framework. Based on the kNN framework, we then propose to use a selection based average
combination algorithm to obtain the best classification performance from average combination. Our experiments on four diverse
datasets indicate that this selection based average combination performs evidently better than the ordinary average combination,
and thus serves as a better baseline. Comparing with this new and better baseline makes the claimed superiority of newly
proposed combination algorithms more convincing. Furthermore, the kNN framework is helpful in understanding the underlying
mechanism of feature combination and motivating novel feature combination algorithms.

1. Introduction

Object classification is a difficult task as there usually exists
large intraclass diversity and interclass correlation, even
within a small image dataset. The existing single features,
for example, SIFT [1], SURF [2], and HOG [3], while being
powerful with some classes, seem not enough to deal with all
classes alone. In this case, feature combination is proposed
to combine the strengths of multiple complementary features
and produce better performance than any single one. While
classifier fusion [4] can also be used to improve classification
performance, in this paper we focus on the combination at
the feature level. More specifically, we use SVM classifier in
classification and the feature combination is translated into
kernel combination [5].

Multiple kernel learning (MKL) is one popular approach
to accomplish kernel combination. MKL seeks to obtain
the best combination performance by jointly optimizing the
weights𝑤

𝑖
on individual kernels in 𝑘∗(𝑥, 𝑦) = ∑𝑛

𝑖=1
𝑤
𝑖
𝑘
𝑖
(𝑥, 𝑦)

together with the SVM parameters 𝛼 and 𝑏 [6–10]. Unlike
this canonical MKL adopting a uniform weighting scheme

over the whole input space, [11] presented a sample-specific
MKL algorithm where kernel weights are determined based
on both kernel functions and the samples. This algorithm
produces some performance improvement at the cost of a
large computation load and the risk of over-fitting. Between
these two extremes, [10] proposed to use a group-sensitive
MKL to make a trade-off between canonical and sample-
specific MKL. Different from MKL algorithms optimiz-
ing weights and SVM parameters jointly, [12] presented a
LPBoost algorithm where the weights and SVM parameters
are trained separately in two steps.

While various MKL-like kernel combination algorithms
have been published, the controversy surrounding these
optimization based approaches has also become evident. On
one hand, the optimization based algorithms are usually
computationally expensive, and the optimization process
consumes huge memory space. On the other hand, the real
effectiveness of these algorithms in improving performance
has been called in question. In [12] it is noticed that when
all participated features are carefully designed to be power-
ful, the sophisticated optimization algorithms, for example,
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MKL, do not show evident advantage over the baseline aver-
age combination. Only when both strong and weak features
are combined, the optimization based approaches suppress
the effect of weak features and perform better than average
combination. In the supplement to [12] the authors further
claim that the MKL-like combination algorithms seem to be
overestimated in the literature, due to missing comparison
with the simple yet powerful average combination.Moreover,
the supplement states that there seems to be an agreement on
the fact that MKL almost never improves performance.

The tiny, if any, performance improvement from MKL-
like algorithms together with the huge computation and
memory space consumption seems to indicate that the
existing optimization based combination approaches are
approaching a bottleneck, and a new framework is needed
to generate further evident performance improvement. This
observation motivated us to investigate the behaviors of
features in average combination, in an endeavor to find out
the underlying mechanism of feature combination. In fact,
our work is consistent with the shift of research focus from
heuristic combination algorithms to theoretical explanation
of the combinationmechanism [13, 14]. In [15] we have found
that if we add features into average combination one by one
in descending order according to their discriminative power,
the classification performance of combination firstly rises,
then peaks, and finally drops. In other words, average com-
bination with a sample of most powerful features produces
better classification results than with all features, and the
performance gain of using a most powerful sample can be
quite large in some cases. This means that it may not be
convincing to claim the superiority of a new combination
algorithm by comparing with the ordinary average combina-
tion. This observation further renders it necessary to explore
the potential of average combination and present a better
baseline combination algorithm.

While the experiments in [15] show that it is possible
to improve the classification performance of average com-
bination, some problems are left unsolved. Firstly, in [15]
we tested the feature combination performance by adding
features into combination in descending order, ascending
order, and mixed order and found that the best classification
results are obtained with a sample of most powerful features
in the descending order. However, it is not clear if some
other orders, for example, random ordering, can be used to
produce better results than descending order. Secondly, in
descending order the best sample size needs to be determined
in order to obtain the best classification performance.Thirdly,
we are interested to find out how the features used in
combination influence the final classification results. In order
to solve these problems, in this paper we firstly compare the
random order with the best performing descending order. As
a result, we find that the behaviors of feature combination can
be elegantly integrated into the k-Nearest-Neighbor (kNN)
framework. Based on this framework, we then present a
selection based average combination (SBAC) algorithm to
obtain the best classification results from average combina-
tion. This SBAC algorithm is simple yet powerful and can
serve as a better baseline algorithm in feature combination.
Furthermore, the kNN framework provides a reasonable
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Figure 1: Illustration of recognition rate curves in descending,
ascending, and mixed orders, as observed in [15].

explanation for the observations as to the relation between
features combined and resulted performance gain. All these
results enable us to conclude that the kNN framework sheds
some light on understanding the mechanism underlying
feature combination and is therefore helpful in motivating
novel feature combination algorithms. Although in this paper
we focus on image classification, we would like to highlight
that the idea of combining features to improve classification
performance is also applicable to other domains [16–18].

The remainder of this paper is organized as follows. In
Section 2 we compare the descending order with random
order and then present the kNN framework to explain
the behaviors of features in average combination. Section 3
details the SBAC algorithm and experimental results. In
Section 4 we conclude the paper.

2. kNN Framework

In this section we investigate the influence of the ordering
of features being added into average combination on clas-
sification performance. To begin with, we review the three
orders tested in [15]. The discriminative power of a feature is
evaluated by 10-fold cross-validation with its corresponding
kernel matrix. In descending order, the features are sorted
in descending order according to their discriminative power
and added into combination one by one. In ascending order,
we operate similarly in ascending order. In mixed order, the
features are still sorted in descending order.Whereas in com-
bination, we take features from the top and the bottom of the
list alternatively and add them into combination one by one.

Based on the experiments in [15], the behaviors of features
in the three orders can be illustrated in Figure 1. In descend-
ing order, the curve of recognition rates shows a “rise-peak-
drop” shape with the addition of features into combination.
In ascending order, the participation of new (and thus more
discriminative) features in combination always improves the
classification until all features produce the best results in this
order. In mixed order, the strong and weak features push
up and drag down the recognition rates alternatively. In all
cases the ascending and mixed orders have no chance to
outperform the descending order.
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From our description and Figure 1 we see that in the
three orders, the best classification results come from the
descending order, when a sample of most discriminative
features is combined. Therefore we select the descending
order as the best performing one out of the three orders.

Besides the three orders tested above, there is another
possible ordering method, that is, random sampling. In this
order we randomly sample a number of features from all
and use them in average combination. Although we have no
theoretical or intuitive ground to support random sampling
as a better order than the descending one, we cannot trivially
discard this order without extensive experiments. Therefore
we compare the random sampling with descending order as
follows. With each number 𝑁 of features in combination,
that is, from 2 to the number of all features, we randomly
sample𝑁 features anduse them in combination.Note that the
sampled𝑁 features must not be exactly the same as the ones
used in descendingmode.We repeat the random sampling 50
times and use the best result to represent this order.

In the experiments we use the same four datasets as in [15]
and the experimental setups are briefly listed as follows:

Event-8 [19]: randomly selected 70 images as training
and 60 images as testing per class.
Scene-15 [20]: randomly selected 100 images as train-
ing and all the others as testing per class.
Oxford Flower-17 [21]: randomly selected 20 images
as training and 20 images as testing per class.
Caltech-101 [22]: randomly selected 30 images as
training and 15 images as testing per class.

The features adopted in our experiments include 500-bin
Gabor filters, Bag-of-SIFT descriptors in gray, HSV and CIE-
Lab space, 20-bin oriented and 40-bin unoriented PHOG
[23], and 64-bin gray value histogram. In building Bag-of-
SIFT descriptors, SIFT descriptors [1] are extracted on regular
grids with spacing of 10 pixels and with patches of radii 𝑟 =
4, 8, 12, 16 to allow for scalability and then quantized into a
500-bin vocabulary. Altogether we used 7 types of features for
Caltech-101, Event-8, and Flower-17 and 5 types for Scene-15
(only containing gray images). For each feature, we build the
descriptors in spatial pyramid from level 0 to level 2. In total,
we have 21 descriptors for the three color datasets and 15 for
Scene-15.

For each descriptor, the kernel matrix is built with each
entry in the form of 𝑘(𝑥, 𝑦) = exp(−𝑑−1

0
𝑑(𝑥, 𝑦)), where 𝑑

is the pairwise 𝜒2 distances and 𝑑
0
is the mean of pairwise

distances.We adopt𝜒2 distance to build kernels as it performs
the best among several other commonly used kernels [15, 24].
In all our experiments the multiclass SVM is trained in a
one-versus-all manner and the regulation parameter 𝐶 is
fixed to be 1000. The performance measure is reported as
the mean recognition rate per class. For each dataset, we test
with 10 different training-testing splits and report the mean
of classification results in Figure 2.

Although randomly sampling 50 times is not a exhaustive
search, we can see in Figure 2 that random sampling is barely
able to outperform descending mode. At the same time, we

note that there do exist some cases where the best of random
order performs a little better than descending order. This
observation can be attributed to the ordering criterion, that is,
cross-validation accuracy. Since cross-validation accuracy is
only an approximate estimation of the discriminative power,
but not a precise measure, the top 𝑁 features in descending
order may not be exactly the𝑁most discriminative features.
In this case, it is likely that a random sample captures the 𝑁
most discriminative features accidentally, while descending
mode does not. This also explains why the recognition rate
curves of descending order do not follow the “rise-peak-
drop” shape strictly. Since in the random order we only
report the best results, this observation does not influence
our conclusion that the descending order performs the best in
the four orders. To our best knowledge, we have listed all the
possible orderings in average combination and we conclude
that descending order performs the best and can be used
to produce better performance than the ordinary average
combination.

When we look at the recognition rate curves of the four
orders in Figures 1 and 2, we find that the behavior of
features in average combination can be elegantly explained in
the framework of k-Nearest-Neighbor (kNN) classification.
Regarding the most discriminative features as the closest
training examples and the least discriminative features as the
furthest ones, we readily understandwhy the recognition rate
curves of the three orders are of the shapes illustrated in
Figure 1 and why the descending order is able to produce
better results than the ordinary average combination. Fur-
thermore, we arrive at some interesting conclusions from this
kNN framework. In the case that the discriminative powers
of individual features vary widely, the weak features added
later shall drag down the performance curves significantly
and make the average combination with all features much
inferior to the one with only a sample of most discriminative
features. This is where the optimization based algorithms
show their advantage over ordinary average combination by
suppressing the effect of weak features. On the other hand,
if all features are of similar discriminative power, the recog-
nition rate curves shall only be dragged down marginally as
all training examples are of similar distance. Therefore the
average combination with all features performs similar to the
one with a sample of most discriminative features.This leaves
little space for optimization based algorithms to improve
and explains why, with a set of carefully designed features,
the optimization based combination algorithms perform no
better than the baseline average combination, as observed in
[12].We shall see, in Section 3, that experiments validate these
two arguments.

3. Selection Based Average Combination

Now we are able to present the selection based average
combination (SBAC) algorithm as a better baseline algo-
rithm for feature combination. Since in the descending
order the recognition rate curves follow the “rise-peak-drop”
trend, what is left for us to do is to determine where the
peak is reached, that is, the appropriate candidate of k in
kNN. Cross-validation is an effective measure to evaluate
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Figure 2: Comparison of average combination in descending order and in random order.The cross-validation accuracy in descending order
is also illustrated.

the discriminative powers of features and we have used it in
the ordering of features. Here we can also use 10-fold cross-
validation to determine the best sample size in combination.
Specifically, we sort the features in descending order and add
them into combination one by one. When a feature is added
into combination, we use 10-fold cross-validation to assess
and record the discriminative power of the combined kernel
matrix. When the cross-validation accuracy peak is reached,
the peak of the recognition rate curve is also reached. In order
to support this method, we compare the actual recognition
rates and the cross-validation accuracy in Figure 2. Although
the curves of recognition rate and cross-validation accuracy
do not have exactly the same shapes, they do have very similar

trends, and the peaks of cross-validation accuracy curves
indicate the location of recognition rate peak correctly.

It is evident from Figure 2 that SBAC performs better
than the ordinary average combination with all features. In
our experiments, the performance gains are 1.5, 1.1, 5.8, and
5.6 percent for Event-8, Scene-15, Flower-17, and Caltech-101,
respectively. Considering that MKL algorithms, for example,
in [12], usually outperform the ordinary average combina-
tion by only several percent, which are in the same order
of magnitude as our performance gains, we believe these
results highlight the importance of exploring the best results
from average combination and presenting a better baseline
combination algorithm.
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Figure 3: The cross-validation accuracy of individual features used in average combination.

An interesting observation here is that the performance
gains vary from dataset to dataset, that is, quite large with
Flower-17 and Catech-101 and fairly small with Event-8 and
Scene-15. In Section 2 we attribute this observation to the
variance of the discriminative power of individual features. In
order to validate this explanation from the kNN framework,
we list the 10-fold cross-validation accuracy of individual
features in descending order in Figure 3. Comparing Figure 3
to Figure 2, we observe a definite correlation between the
discriminative power variances and the performance gains.
In fact, in our experiments the standard deviation of the
cross-validation accuracy of individual features is 15.49,
14.56, 19.39, and 17.56 for Event-8, Scene-15, Flower-17, and
Caltech-101, respectively. This explains why the performance
gains are large for Flower-17 and Caltech-101 and small for
Event-8 and Scene-15. These observations further confirm
the effectiveness of the kNN framework in explaining the
behaviors of features in average combination.

Although in this paper we focus on image classification,
the idea of combining multiple features and classifiers to
obtain better classification performance is also applicable to

other related domains, for example, document classification,
speech recognition, fault diagnosis, and others [25–27].
Therefore in the next step we plan to continue our work
in two aspects. Firstly, we shall investigate the behaviors of
features in average combination in these domains and check
if the kNN framework is still valid. This investigation shall
deepen our understanding of the feature combination mech-
anism and help motivate novel and more powerful feature
combination algorithms. Secondly, we plan to make an in-
depth study of the existing feature combination algorithms
in these domains to see if it is possible to apply them to
image classification. Altogether, we aim for a more precise
and universal understanding of the feature combination
mechanism and the best classification performance from
average combination.

4. Conclusion

In this paper we investigated the behaviors of features in
average combination through extensive experiments on four
diverse datasets. As a result, we found that the average
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feature combination can be integrated into the k-Nearest-
Neighbor framework where the most discriminative features
are regarded as the closest training examples and the least
discriminative features as the furthest ones. Based on this
framework, we present a selection based average combination
algorithm which performs evidently better than the ordinary
average combination and thus serves as a better baseline
combination algorithm. Since the kNN framework can be
used to explain all the behaviors we observed in average
feature combination, we believe it is helpful in understanding
the feature combination mechanism and motivating novel
feature combination algorithms.
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