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We study optimization problems involving eigenvalues of symmetric matrices. We present a nonsmooth optimization technique
for a class of nonsmooth functions which are semi-infinite maxima of eigenvalue functions. Our strategy uses generalized gradients
and UV space decomposition techniques suited for the norm and other nonsmooth performance criteria. For the class of max-
functions, which possesses the so-called primal-dual gradient structure, we compute smooth trajectories along which certain
second-order expansions can be obtained. We also give the first- and second-order derivatives of primal-dual function in the space
of decision variables 𝑅𝑚 under some assumptions.

1. Introduction

𝐻
∞

output feedback control is an important example of a
design problem, where the feedback controller has to respond
favorably to several performance specifications. Typically
in 𝐻
∞

synthesis, the 𝐻
∞

channel is used to enhance the
robustness of the design. Due to its prominence in practice,
𝐻
∞

control has been addressed in various ways over the
years.

In nominal 𝐻
∞

synthesis, feedback controllers are com-
puted via semidefinite programming (SDP) [1] or algebraic
Riccati equations [2]. When structural constraints on the
controller are added, the 𝐻

∞
synthesis problem is no

longer convex. Some of the problems above have even been
recognized as NP-hard or as rationally undecidable. These
mathematical concepts indicate the inherent difficulty of𝐻

∞

synthesis under constraints on the controller. The 𝐻
∞

syn-
thesis problem involves finding an output feedback control
matrix 𝐾 that minimizes the 𝐻

∞
norm of a certain transfer

function, subject to the constraint that 𝐾 is stabilizing. This
is a challenging problem and even finding a stabilizing𝐾 can
be difficult. Indeed, if the entries of 𝐾 are restricted to lie in
prescribed intervals, then finding a stabilizing 𝐾 is an NP-
hard problem [3].

𝐻
∞
feedback controller synthesis was one of the motivat-

ing application for the development of our work.We consider
a linear time invariant dynamical system in the standard LFT
form

[
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𝑧
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𝐷
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𝐷
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]

]

⋅ [

[

𝑥

𝑤

𝑢

]

]

, (1)

where 𝑥 ∈ 𝑅𝑛𝑥 is the state, 𝑦 ∈ 𝑅𝑛𝑦 is the output, 𝑢 ∈ 𝑅𝑛𝑢 is the
command input, and 𝑤 ∈ 𝑅𝑛𝑤 , 𝑧 ∈ 𝑅𝑛𝑧 are the performance
channel. To cancel direct transmission from input 𝑢 to output
𝑦, the assumption 𝐷

22
= 0 is made. This is without loss of

generality (see [4], chapter 17).
Let𝐾 be a static feedback controller; then the closed-loop

state space data and transfer function 𝑇(𝐾, ⋅) read

𝑥̇ = 𝐴 (𝐾) 𝑥 + 𝐵 (𝐾)𝑤,

𝑧 = 𝐶 (𝐾) 𝑥 + 𝐷 (𝐾)𝑤,

𝑇 (𝐾, 𝑗𝑤) = 𝐶 (𝐾) (𝑗𝑤𝐼 − 𝐴 (𝐾))
−1

𝐵 (𝐾) + 𝐷 (𝐾) ,

(2)
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where

𝐴 (𝐾) = 𝐴 + 𝐵
2
𝐾𝐶
2
, 𝐵 (𝐾) = 𝐵

1
+ 𝐵
2
𝐾𝐷
21
,

𝐶 (𝐾) = 𝐶
1
+ 𝐷
12
𝐾𝐶
2
, 𝐷 (𝐾) = 𝐷

11
+ 𝐷
12
𝐾𝐷
21
.

(3)

Dynamic controllers can be addressed in the same way by
prior augmentation of the plant (3) (see, e.g., [5]).

In 𝐻
∞

synthesis, we compute 𝐾 to minimize the 𝐻
∞

norm of the transfer function 𝑇(𝐾, ⋅); that is,

‖𝑇 (𝐾, ⋅)‖
∞
:= sup
𝑤∈[0,∞]

𝜎
1
(𝑇 (𝐾, 𝑗𝑤)) ; (4)

(see, e.g., [4]). The standard approach to 𝐻
∞

synthesis in
the literature uses the Kalman-Yakubovich-Popov Lemma
and leads to a bilinear matrix inequality (BMI) [6]. Here we
use a different and much more direct approach based on
our UV-decomposition method. The advantage of this is
that Lyapunov variables can be avoided, which is beneficial
because they are a source of numerical trouble. Not only does
their number grow quadratically with the system order, but
they may also cause strong disparity between the optimiza-
tion variables. The price to be paid for avoiding them is that
a difficult semi-infinite and nonsmooth program has to be
solved. To synthesize a dynamic controller𝐾 of order 𝑛

𝑘
∈ 𝑁,

𝑛
𝑘
≤ 𝑛
𝑥
, the objective 𝑓 : 𝑅(𝑛𝑘+𝑛𝑢)×(𝑛𝑘+𝑛𝑦) → 𝑅

+ is defined as
follows:

𝑓 (𝐾) := max
𝑤∈[0,∞]

𝜆
1
(𝑇 (𝐾, 𝑗𝑤)

𝐻

𝑇 (𝐾, 𝑗𝑤)) = ‖𝑇 (𝐾, ⋅)‖
2

∞
,

(5)

which is nonsmooth and nonconvex with two sources of
nonsmoothness, the infinitemax-operator and themaximum
eigenvalue function. In addition,𝑍𝐻 stands for the conjugate
transpose of the complex matrix 𝑍.

The application we have in mind is optimizing the 𝐻
∞
-

norm, which is structurally of the form

𝑓 (𝑥) = sup
𝜔∈[0,∞]

𝜆
1
(𝐴 (𝑥, 𝜔)) , (6)

where𝐴 : 𝑅𝑚×[0,∞] → 𝑆
𝑛
is an operator with values in the

space 𝑆
𝑛
of 𝑛 × 𝑛 symmetric or Hermitian matrices, equipped

with the scalar product 𝑋 ∙ 𝑌 = Tr(𝑋𝑌), and 𝜆
1
denotes the

maximum eigenvalue function on 𝑆
𝑛
.

The above problem (5) can be recast as a case of (6). The
program we wish to solve in this paper is

min
𝑥∈𝑅
𝑚

𝑓 (𝑥) , (7)

where the function 𝑓 has the form (6).
𝑓 is nonsmooth with two possible sources of nonsmooth-

ness: (a) the infinite max-operator and (b) the nonsmooth-
ness of 𝜆

1
, which may lead to nonsmoothness of 𝜆

1
(𝐴(𝑥, 𝜔))

for fixed 𝜔.
Optimization of the𝐻

∞
-norm is a prominent application

in feedback synthesis, which has been pioneered by Polak
and coworkers; see, for instance, [7, 8] and the references
given there. Existing methods for the𝐻

∞
synthesis problem

are often based on first reformulating the problem into one
involving linear matrix inequalities (LMIs) and an additional
nonconvex rank constraint or nonconvex equality constraint.
Solving methods for such reformulations of the problem
include those based on linearization method [9], alternating
projections method [10], augmented Lagrangian method
[11], and sequential semidefinite programming method [12].
The 𝐻

∞
synthesis problem can also be reformulated into

a problem involving bilinear matrix inequalities (BMIs).
Dealing with such reformulations of the problem includes
[12, 13] (see also the references therein). A disadvantage of
these approaches is that they require the introduction of
Lyapunov variables. As the number of Lyapunov variables
grows quadratically with the number of state variables,
the total number of variables can be quite large and even
problems of moderate size can lead to numerical difficulties
[14].

In this paper, the 𝐻
∞

synthesis problem is posed as
an unconstrained, nonsmooth, nonconvex minimization
problem and requires special optimization techniques. Our
approach avoids the use of Lyapunov variables; hence,
it is well suited for optimizing our reformulation of the
𝐻
∞

synthesis problem. We develop the local nonsmooth
optimization strategy, a superlinear space decomposition
algorithm, which is suited for optimizing the 𝐻

∞
-norm.

Problem (7) implies the smoothness information; we can
adopt variable space decomposition form. Meanwhile, since
the problem (7) has the special structure called primal-dual
gradient structure (PDG), which has been introduced in [15],
it is possible to identify smooth tracks. So we can design a
method which has fast convergent rate. The approach which
is taken to solve this problem is based on using the recently
developed local optimization algorithm presented in [15, 16].
In light of the UV-space decomposition, this method is
introduced in [15] (see also [17, 18]). Moreover, it is applied
to many applications such as nonlinear programming and
second-order cone programming (see [19–22]). The idea is
to decompose 𝑅𝑛 into two orthogonal subspaces V and U
at a point 𝑥 that the nonsmoothness of 𝑓 is concentrated
essentially on V, and the smoothness of 𝑓 appears on U-
subspace. More precisely, for a given 𝑔 ∈ 𝜕𝑓(𝑥), where 𝜕𝑓(𝑥)
denotes the Clarke subdifferential of 𝑓 at 𝑥. Then 𝑅𝑛 can
be decomposed as direct sum of two orthogonal subspaces,
that is, 𝑅𝑛 = U ⊕ V, where V = lin(𝜕𝑓(𝑥) − 𝑔), and
U = V⊥. Then we define the primal-dual Lagrangian,
an approximation of the original function, and show along
certain manifolds it can be used to create as second-order
expansion for a nondifferentiable function. As a result, we
can design an algorithm frame that makes a step in the V-
space, followed by aU-Newton step in order to obtain super-
linear convergence, and show that it improves the situation
considerably.

The rest of the paper is organized as follows. In Section 2,
we recall some basic concepts about UV decomposition
theory. In Section 3, we reformulate these problems as uncon-
strained max-finite function optimization problems under
the hypothesis of the multiplicity one of the largest eigen-
value. We also mention some of the issues involved in trying
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to solve such problems. Using primal-dual gradient structure
(PDG), we give an important conclusion about second-
order expansion of the function. Likewise, Section 4 outlines
the optimization approach as in Section 3 and presents a
different way to deal with the supposition of multiplying
largest eigenvalues. The paper ends with some concluding
remarks.

2. Preparation and Preliminary Results

We recall theUV-theory developed in [15]. Let 𝑓 : 𝑅𝑚 → 𝑅
be a finite-valued convex function. For a given 𝑥 ∈ 𝑅𝑚, we
start by defining a decomposition of the space 𝑅𝑚 = U(𝑥) ⊕

V(𝑥).The subspacesU(𝑥) andV(𝑥) are equivalently defined
as follows:

U (𝑥) := {𝑑 ∈ 𝑅
𝑚

: 𝑓
󸀠

(𝑥; 𝑑) = −𝑓
󸀠

(𝑥; −𝑑)} ,

V (𝑥) := U(𝑥)
⊥

.

(8)

In other words, U is the subspace where 𝑓(𝑥 + ⋅) appears to
be differentiable at 0. Likewise, we can obtain the following
result, which is stated in [15].

Proposition 1. Let 𝑓 : 𝑅𝑚 → 𝑅 be a proper convex function
for a given point 𝑥; one has the following.

(1) V(𝑥) is the subspace parallel to aff 𝜕𝑓(𝑥) and U(𝑥) =

V(𝑥)
⊥.

(2) For any 𝑔 ∈ ri 𝜕𝑓(𝑥), U(𝑥) andV(𝑥) are, respectively,
the normal and tangent cones to 𝜕𝑓(𝑥) at 𝑔, where ri 𝐶
stands for the relative interior respect to a given set 𝐶.

We give the Clarke generalized gradient for local Lips-
chitz function.

Definition 2 (see [23, 24]). Let 𝑓 be local Lipschitz on 𝑅𝑛; the
generalized gradient of𝑓 at 𝑥, denoted by 𝜕𝑓(𝑥), is defined by

𝜕𝑓 (𝑥) := {𝜉 ∈ 𝑅
𝑛

: 𝑓
∘

(𝑥; 𝑑) ≥ ⟨𝜉, 𝑑⟩ , ∀𝑑 ∈ 𝑅
𝑛

} , (9)

where 𝑓∘(𝑥; 𝑑) = lim sup
𝑦→𝑥,𝑡→0

+(𝑓(𝑦 + 𝑡𝑑) − 𝑓(𝑦))/𝑡 is the
generalized directional derivative of 𝑓 at 𝑥 in the directive 𝑑.

The following results come from [23]; we will use these
properties in later sections; as for their proofs, we will omit
them.

Proposition 3. Suppose {𝑓
𝑖
} is a finite collection of functions

(𝑖 = 1, . . . , 𝑛), each of which is Lipschitz near 𝑥. The function 𝑓
is defined by

𝑓 (𝑥) = max
𝑖=1,...,𝑛

𝑓
𝑖
(𝑥) . (10)

Then one has

𝜕𝑓 (𝑥) ⊂ conv {𝜕fi (x) : i ∈ I (x)} , (11)

where 𝐼(𝑥) := {𝑖 : 𝑓
𝑖
(𝑥) = 𝑓(𝑥)}, and if 𝑓

𝑖
is regular at 𝑥 for

each 𝑖 ∈ 𝐼(𝑥), then equality holds and 𝑓 is regular at 𝑥.

Notation. We introduce the basic notation in the remainder
parts. 𝑆

𝑛
is the space of 𝑛×𝑛 symmetricmatrices and 𝑆+

𝑛
stands

for the cone of 𝑛×𝑛 positive semidefinite symmetricmatrices.
𝐴 ⋅ 𝐵 := tr𝐴𝐵 denotes Fröbenius scalar product of 𝐴, 𝐵 ∈ 𝑆

𝑛
.

Let 𝑝 ≥ 1 be the multiplicity of the largest eigenvalue 𝜆
1
(𝐴)

of 𝐴; that is, 𝐴 lies on the submanifold M
𝑝
:= {𝐴 ∈ 𝑆

𝑛
:

𝜆
1
(𝐴) = ⋅ ⋅ ⋅ = 𝜆

𝑝
(𝐴) > 𝜆

𝑝+1
(𝐴)}, where M

𝑝
is a 𝐶∞-

submanifold of 𝑆
𝑛
. Let 𝐸

1
(𝐴) be the eigenspace associated

with 𝜆
1
, let𝑄

1
(𝐴) be an orthonormal basis of𝐸

1
(𝐴), let𝑃

1
(𝐴)

be an orthonormal basis associated with 𝜆
1
, . . . , 𝜆

𝑝
, 𝑇M(𝐴),

and let𝑁M(𝐴) be, respectively, the tangent andnormal spaces
to the submanifold M at 𝐴 ∈ M. A∗ : 𝑆

𝑛
→ 𝑅

𝑚 is the
adjoint operator of the linear operatorA : 𝑅𝑚 → 𝑆

𝑛
. Much

of the additional notation comes from [25, 26].

3. UV-Space Decomposition for
Single Eigenvalue

3.1. UV-Theory of the Single Eigenvalue Function. In this
section we will analyse the case where the multiplicity of
𝜆
1
(𝐴(𝑥, 𝜔)) is one at all active frequencies𝜔.This ismotivated

by practical considerations because nonsmoothness (b) never
occurred in our tests. The necessary changes required for the
general case will be discussed in next section.

Lemma 4. For a closed-loop stabilizing controller 𝑥, the set of
active frequencies Ω(𝑥) := {𝜔 ∈ [0,∞] : 𝑓(𝑥) = 𝜆

1
(𝐴(𝑥, 𝜔))}

is either finite or Ω(𝑥) = [0,∞]; that is, 𝑓(𝑥) = 𝜆
1
(𝐴(𝑥, 𝜔))

for all 𝜔.

A system where Ω(𝑥) = [0,∞] is called all-pass. This
is rarely encountered in practice. For the technical formulas
we will concentrate on those 𝑥’s, where the set of active
frequencies or peaks Ω(𝑥) = {𝜔 ∈ [0,∞] : 𝑓(𝑥) =

𝜆
1
(𝐴(𝑥, 𝜔))} is finite.
From what follows we will analyse the case where the

multiplicity of 𝑓(𝑥, 𝜔) := 𝜆
1
(𝐴(𝑥, 𝜔)) is one at all active

frequencies 𝜔. This is motivated by practical considerations
because nonsmoothness about 𝜆

1
never happened in our

tests.The necessary changes required for the general case will
be discussed in Section 4.

In [27], three approaches to semi-infinite programming
are discussed: exchange of constraints, discretization, and
local reduction. We will use a local reduction method here.
The main ideas are recalled below.

Let 𝑥 be a local solution of (7). Indexing the active
frequencies Ω(𝑥) := {𝜔

1
, . . . , 𝜔

𝑝
} at 𝑥, we suppose that the

following conditions are satisfied.

Assumption 5. Consider
(i) 𝑓󸀠
𝜔
(𝑥, 𝜔
𝑖
) = 0, 𝑖 = 1, . . . , 𝑝,

(ii) 𝑓󸀠󸀠
𝜔𝜔
(𝑥, 𝜔
𝑖
) < 0, 𝑖 = 1, . . . , 𝑝,

(iii) 𝑓(𝑥, 𝜔) < 𝑓(𝑥), for every 𝜔 ∉ Ω(𝑥) = {𝜔
1
, . . . , 𝜔

𝑝
}.
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These assumptions define the setting denoted as the
standard case in semi-infinite programming [27]. The three
conditions express the fact that the frequencies 𝜔

𝑖
∈ Ω(𝑥) are

the strict global maximizers of 𝑓(𝑥, ⋅). Notice that condition
(iii) is the finiteness hypothesis already mentioned, justified
by Lemma 4.

Lemma 6. Under conditions (i)–(iii), the neighborhood 𝑈
of 𝑥 may be chosen such that max

𝜔∈[0,∞]
𝑓(𝑥, 𝜔) =

max
𝑖=1,...,𝑝

𝑓(𝑥, 𝜔
𝑖
(𝑥)) for every 𝑥 ∈ 𝑈. In particular, Ω(𝑥) ⊂

{𝜔
1
(𝑥), . . . , 𝜔

𝑝
(𝑥)} for every 𝑥 ∈ 𝑈.

So we have that program (6) is locally equivalent to the
standard following nonlinear program:

min
𝑥∈𝑅
𝑛

sup
𝑖=1,...,𝑝

𝑓 (𝑥, 𝜔
𝑖
(𝑥)) , (12)

where 𝑓(𝑥, 𝜔
𝑖
(𝑥)) = 𝜆

1
(𝐴(𝑥, 𝜔

𝑖
(𝑥))); then we may solve (12)

via the so-calledUV-decomposition method.

Assumption 7. 𝑓󸀠
𝑥
(𝑥, 𝜔
1
), . . . , 𝑓

󸀠

𝑥
(𝑥, 𝜔
𝑝
) are linearly indepen-

dent.

Under the hypothesis of Assumption 7, local convergence
of this approach will be assured because this guarantees that
(12) satisfies the linear independence constraint qualification
hypothesis.

We denote 𝐹(𝑥) := sup
𝑖=1,...,𝑝

𝜆
1
(𝐴(𝑥, 𝜔

𝑖
(𝑥))), and 𝑞𝑖

1
(𝑥),

𝑖 = 1, . . . , 𝑝, stands for the eigenvector associated with the
largest eigenvalue of 𝐴(𝑥, 𝜔

𝑖
(𝑥)).

Next a special kind of structure of 𝐹(𝑥), called primal-
dual structure (PDG), will be seen.

Proposition 8. There exists a ball about 𝑥, denoted by 𝐵(𝑥), 𝑝
functions

𝑓
𝑖
(𝑥) := 𝑓 (𝑥, 𝜔

𝑖
(𝑥)) = 𝜆

1
(𝐴 (𝑥, 𝜔

𝑖
(𝑥))) , 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑝;

(13)

themultiplicity of 𝜆
1
(𝐴(𝑥, 𝜔

𝑖
(𝑥))) is single, so𝑓

𝑖
(𝑥) are𝐶∞ on

𝐵(𝑥); in addition,

(1) 𝑥 ∈ 𝐵(𝑥) and 𝑓
𝑖
(𝑥) = 𝐹(𝑥) for 𝑖 = 1, . . . , 𝑝;

(2) for each 𝑥 ∈ 𝐵(𝑥), 𝐹(𝑥) = max
𝑖=1,...,𝑝

𝑓
𝑖
(𝑥);

(3) △
1
is the unit simplex in 𝑅𝑝 given by

△
1
:= {(𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑝
) :

𝑝

∑

𝑖=1

𝛼
𝑖
= 1, 𝛼

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑝} ;

(14)

(4) on the basis of the property about the subdifferential of
the maximum functions, for each 𝑥 ∈ 𝐵(𝑥), 𝑔 ∈ 𝜕𝐹(𝑥)
if and only if

𝑔 =

𝑝

∑

𝑖=1

𝛼
𝑖
∇𝑓
𝑖
(𝑥) , (15)

where 𝛼
𝑖
= 0 if 𝑓

𝑖
(𝑥) < 𝐹(𝑥) and 𝛼 := (𝛼

1
, . . . , 𝛼

𝑝
) ∈ △

1
.

We have the following result.

Theorem 9. Suppose the set Ω(𝑥) is finite. Then the Clarke
subdifferential of 𝐹 at 𝑥 is the set as follows:

𝜕𝐹 (𝑥)

= {𝐺 | 𝐺

= ∑
𝑖∈𝐼(𝑥)

𝛼
𝑖
∇𝑓 (𝑥, 𝜔

𝑖
(𝑥))

= ∑
𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝐴
󸀠

𝑥
(𝑥, 𝜔
𝑖
(𝑥))

+𝐴
󸀠

𝜔
(𝑥, 𝜔
𝑖
(𝑥)) 𝜔

󸀠

𝑖
(𝑥))
∗

(𝑞
𝑖

1
(𝑥) (𝑞

𝑖

1
(𝑥))
𝑇

) , 𝛼 ∈ Δ
|𝐼(𝑥)|
} ,

(16)

where

𝐼 (𝑥) = {𝑖 ∈ {1, . . . , 𝑝} | 𝐹 (𝑥) = 𝑓 (𝑥, 𝜔
𝑖
(𝑥))} (17)

is the set of active indices at 𝑥 and

Δ
𝑠
= {𝛼 ∈ 𝑅

𝑠

| 𝛼
𝑖
≥ 0,

𝑠

∑

𝑖=1

𝛼
𝑖
= 1} . (18)

Proof. Because 𝐹(𝑥) is the finite maximum functions, we
can directly make use of the Clarke subdifferential of it and
derivative of the eigenvalue function with multiplicity one to
get

𝜕𝐹 (𝑥)

= ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
∇
𝑥
(𝜆
1
(𝐴 (𝑥, 𝜔

𝑖
(𝑥))))

= ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝐴
󸀠

)
∗

(𝑞
𝑖

1
(𝑥) (𝑞

𝑖

1
(𝑥))
𝑇

)

= ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝐴
󸀠

𝑥
(𝑥, 𝜔
𝑖
(𝑥))

+𝐴
󸀠

𝜔
(𝑥, 𝜔
𝑖
(𝑥)) 𝜔

󸀠

𝑖
(𝑥))
∗

(𝑞
𝑖

1
(𝑥) (𝑞

𝑖

1
(𝑥))
𝑇

) ,

(19)

and the proof is done.

Theorem 10. Suppose Assumptions 5 and 7 hold.Then one has
the following results at 𝑥.

(1) The Clarke subdifferential of 𝐹(𝑥) has the following
expression:

𝜕𝐹 (𝑥)

= {𝑔 | 𝑔 =

𝑝

∑

𝑖=1

𝛼
𝑖
(𝐴
󸀠

𝑥
(𝑥, 𝜔
𝑖
))
∗

(𝑞
𝑖

1
(𝑥) (𝑞

𝑖

1
(𝑥))
𝑇

) , 𝛼 ∈ Δ
1
} .

(20)
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(2) Let V denote the subspace generated by the subdiffer-
ential 𝜕𝐹(𝑥). Then

V = lin {∇𝑓
𝑖
(𝑥) − ∇𝑓

1
(𝑥)} , 𝑖 = 2, . . . , 𝑝,

U = {𝑑 ∈ 𝑅
𝑛

| ⟨𝑑, ∇𝑓
𝑖
(𝑥) − ∇𝑓

1
(𝑥)⟩ = 0, 𝑖 = 2, . . . , 𝑝} ,

(21)

where lin𝐶 stands for linear hull of a set 𝐶.

Proof. With Theorem 9 and Assumption 5, we can get the
conclusion (1).

Let 𝛼
1
= 1, 𝛼

𝑖
= 0, 𝑖 ̸= 1, and we have ∇𝑓

1
(𝑥) ∈ 𝜕𝐹(𝑥).

Then it follows from the definition of spaceV that

V = lin (𝜕𝐹 (𝑥) − ∇𝑓
1
(𝑥))

= lin {∇𝑓
𝑖
(𝑥) − ∇𝑓

1
(𝑥)} ,

(22)

andU =V⊥means that the second formula holds.The proof
is completed.

Remark 11. (i) Since the subspaces U and V generate the
whole space 𝑅𝑚, every vector can be decomposed along its
VU-components at 𝑥. In particular, any 𝑥 ∈ 𝑅𝑚 can be
expressed as follows:

𝑅
𝑛

∋ 𝑥 = 𝑥 + 𝑢 ⊕ V = 𝑥 + 𝑈𝑢 + 𝑉V, (23)

where 𝑉 = [∇𝑓
𝑖
(𝑥) − ∇𝑓

1
(𝑥), 𝑖 = 2, . . . , 𝑝] and 𝑈 = 𝑉⊥.

(ii) For any 𝑠 ∈ 𝜕𝐹(𝑥), we have

𝑠 = 𝑠U ⊕ 𝑠V = 𝑈
𝑇

𝑠 + 𝑉
𝑇

𝑠. (24)

From the above Theorem 10, the U-component of a subgra-
dient 𝑠 ∈ 𝜕𝐹(𝑥) is the same as that of any other subgradient
at 𝑥; that is, 𝑠U = 𝑈

𝑇

𝑠.

3.2. Smooth Trajectory and Second-Order Properties. Given
that 𝑔 = 𝑔U ⊕ 𝑔V ∈ 𝜕𝐹(𝑥), the Lagrangian-like function of 𝐹
can be formulated in

𝐿 (𝑢; 𝑔V) = inf
V∈V
{𝐹 (𝑥 + 𝑢 ⊕ V) − ⟨𝑔V, V⟩V} . (25)

Theorem 12. Suppose Assumption 7 holds. Then, for all 𝑢
small enough, there exists the following.

(i) The solution of the nonlinear system with variables
(𝑢, V) ∈ U ×V

𝑓
𝑖
(𝑥 + 𝑢 ⊕ V) − 𝑓

1
(𝑥 + 𝑢 ⊕ V) = 0, 1 ̸= 𝑖, (26)

is unique and V = V(𝑢), where V(𝑢) : U → V is a 𝐶2
function.

(ii) For the 𝐶2 solution function V(𝑢) in (i) one has

𝐽V (𝑢) = −(𝑉(𝑢)𝑇𝑉)
−1

𝑉(𝑢)
𝑇

𝑈, (27)

where 𝑉(𝑢) = [{∇𝑓
𝑖
(X(𝑢)) − ∇𝑓

1
(X(𝑢))}, 1 ̸= 𝑖].

The trajectory X(𝑢) = 𝑥 + 𝑢 ⊕ V(𝑢) is 𝐶2 and

𝐽X (𝑢) = 𝑈 + 𝑉𝐽V (𝑢) . (28)

In particular, X(0) = 𝑥, 𝐽V(0) = 0, and 𝐽X(0) = 𝑈.
(iii) 𝐹(X(𝑢)) = 𝑓

𝑖
(X(𝑢)) = 𝑓(X(𝑢), 𝜔

𝑖
(X(𝑢))), 𝜔

𝑖
∈

Ω(𝑥).

Proof. (i) Differentiating the left hand side of (26) with
respect to V gives

[∇𝑓
𝑖
(𝑥 + 𝑢 ⊕ V) − ∇𝑓

1
(𝑥 + 𝑢 ⊕ V)]𝑇𝑉, 1 ̸= 𝑖 ∈ {2, . . . , 𝑝} .

(29)

This Jacobian at (𝑢, V) = (0, 0) is 𝑉𝑇𝑉, which is nonsingular
because ofAssumption 7.There is also a Jacobianwith respect
to 𝑢, so by the implicit function theorem, there is a 𝐶1
function V(𝑢) defined on a neighborhood of 𝑢 = 0 such that
V(0) = 0.

(ii) From (i), we have that V(𝑢) is 𝐶1. Thus, the Jacobian
𝐽V(𝑢) and 𝐽X(𝑢) exist and are continuous. Differentiating the
system 𝑓

𝑖
(X(𝑢)) − 𝑓

1
(X(𝑢)) with respect to 𝑢, we obtain that

[∇𝑓
𝑖
(X (𝑢)) − ∇𝑓

1
(X (𝑢))]

𝑇

𝐽X (𝑢) = 0,

𝜔
𝑖
(X (𝑢)) ∈ Ω (𝑥) ,

(30)

or, in matrix form, 𝑉(𝑢)𝐽X(𝑢) = 0. Using the expression
𝐽X(𝑢) = 𝑈 + 𝑉𝐽V(𝑢), we have that

𝑉(𝑢)
𝑇

(𝑈 + 𝑉𝐽V (𝑢)) = 0. (31)

By virtue of the continuity of 𝑉(𝑢), 𝑉(𝑢)𝑇𝑉 is nonsingular.
Hence,

𝐽V (𝑢) = −(𝑉(𝑢)𝑇𝑉)
−1

𝑉(𝑢)
𝑇

𝑈. (32)

Furthermore, 𝑉(𝑢) is 𝐶1 because 𝑓
𝑖
(𝑥), 𝑖 ∈ {1, . . . , 𝑝}, is

𝐶
2; then 𝐽V(𝑢) is 𝐶1. Thus, X(𝑢) and V(𝑢) are 𝐶2. From the

definition of theUV spaces, we haveV ⊥ U. Hence,𝑉𝑇𝑈 =
0. So 𝐽V(0) = 0 and 𝐽X(0) = 𝑈.

(iii) The conclusion can be directly obtained in terms of
(i) and the definition ofX(𝑢).

So far we have developed a primal track X(𝑢). Now
we take our attention to an associated dual object, which is
also a smooth function of 𝑢 ∈ U; we study a multiplier
vector function 𝛼(𝑢), which depends on structure function
gradients,X(𝑢), and an arbitrary subgradient at 𝑥.

Lemma 13. Given that 𝑔 ∈ 𝜕𝐹(𝑥), the systemwith {𝛼
𝑖
(𝑢)}, 𝑖 ∈

{1, . . . , 𝑝},

𝑉
𝑇

[

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(X (𝑢)) − 𝑔] = 0,

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) = 1,

(33)
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has a unique solution 𝛼 = 𝛼(𝑢), which is given by

{𝛼
𝑖
(𝑢)}
𝑖 ̸= 1
= (𝑉
𝑇

𝑉 (𝑢))

−1

𝑉 (𝑔 − ∇𝑓
1
(X (𝑢))) ,

𝛼
1
(𝑢) = 1 − ∑

𝑖 ̸= 1

𝛼
𝑖
(𝑢) ,

(34)

in particular, for all 𝑖 ∈ {1, . . . , 𝑝}, 𝛼
𝑖
(0) = 𝛼

𝑖
.

Theorem 14. Given that 𝑔 ∈ 𝜕𝐹(𝑥), at the trajectory X(𝑢) =
𝑥 + 𝑈𝑢 + 𝑉V(𝑢), one has

𝐿 (𝑢; 𝑔V) = 𝑓𝑖 (X (𝑢)) − ⟨𝑔V, V (𝑢)⟩V, 𝑖 ∈ {1, . . . , 𝑝} .

(35)

Proof. According to the definition of 𝐿 in (25) and the item
(iii) fromTheorem 12, we get

𝐿 (𝑢; 𝑔V) = 𝐹 (X (𝑢)) − ⟨𝑔V, V (𝑢)⟩V

= 𝑓
𝑖
(X (𝑢)) − ⟨𝑔V, V (𝑢)⟩V.

(36)

Theorem 15. Given that 𝑔 ∈ 𝜕𝐹(𝑥) and supposing
Assumption 7 holds; then for 𝑢 small enough, the following
assertions are true.

(i) 𝐿 is a𝐶2 function of 𝑢 and satisfies the Lagrangian-like
result 𝐿(𝑢; 0) = 𝑓

𝑖
(X(𝑢)), for 𝑖 = 1, . . . , 𝑝.

(ii) The gradient of 𝐿 is given by ∇𝐿(𝑢; 𝑔V) =

𝑈
𝑇

(∑
𝑝

𝑖=1
𝛼
𝑖
(𝑢)∇𝑓
𝑖
(X(𝑢))), and, in particular, when

𝑢 = 0, one has

∇𝐿 (0; 𝑔V) = 𝑈
𝑇

(

𝑝

∑

𝑖=1

𝛼
𝑖
∇𝑓
𝑖
(𝑥)) = 𝑈

𝑇

𝑔. (37)

(iii) The Hessian of 𝐿 is given by

∇
2

𝐿 (𝑢; 𝑔V) = 𝐽(X (𝑢))
𝑇

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) ∇
2

𝑓
𝑖
((X (𝑢))) 𝐽 (X (𝑢)) .

(38)

In particular, when 𝑢 = 0, one has

∇
2

𝐿 (0; 𝑔V) = 𝑈
𝑇

𝑝

∑

𝑖=1

𝛼
𝑖
∇
2

𝑓
𝑖
(𝑥)𝑈. (39)

Proof. (i) This conclusion follows from 𝐶2 of 𝑓
𝑖
.

(ii) Using the chain rule, the differential of the Lagran-
gian-like with respect to 𝑢 can be written as follows:

∇𝐿 (𝑢; 𝑔V) = 𝐽(X (𝑢))
𝑇

∇𝑓
𝑖
(X (𝑢)) − 𝐽V(𝑢)𝑇𝑉

𝑇

𝑔. (40)

Multiplying each equation by the appropriate𝛼
𝑖
(𝑢), summing

the results, and using the fact that ∑
𝑖
𝛼
𝑖
(𝑢) = 1 yield

∇𝐿 (𝑢; 𝑔V) = 𝐽(X (𝑢))
𝑇

∑

𝑖

𝛼
𝑖
(𝑢) (∇𝑓

𝑖
(X (𝑢))) − 𝐽V(𝑢)𝑇𝑉

𝑇

𝑔.

(41)

Using the transpose of the expression of 𝐽(X(𝑢)), we get

∇𝐿 (𝑢; 𝑔V) = 𝑈
𝑇

∑

𝑖

𝛼
𝑖
(𝑢) (∇𝑓

𝑖
(X (𝑢)))

+ 𝐽V(𝑢)𝑇𝑉
𝑇

(∑

𝑖

𝛼
𝑖
(𝑢) (∇𝑓

𝑖
(X (𝑢))) − 𝑔) ,

(42)

which together with (6.11) in [28] yields the desired result.
If 𝑢 = 0, then V(0) = 0, and X(0) = 𝑥. By Remark 11(ii),

we have

∇𝐿U (0; 𝑔V) = 𝑈
𝑇

𝑝

∑

𝑖=1

𝛼
𝑖
∇𝑓
𝑖
(𝑥) = 𝑈

𝑇

𝑔. (43)

(iii) Differentiating the following equation with respect to
𝑢;

∇𝐿 (𝑢; 𝑔V) = 𝑈
𝑇

(

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(X (𝑢))) , (44)

we obtain

∇
2

𝐿 (𝑢; 𝑔V) = 𝑈
𝑇

𝑀(𝑢) 𝐽 (X (𝑢))

+ 𝑈
𝑇

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(X (𝑢)) 𝐽𝛼

𝑖
(𝑢) ,

(45)

where 𝑀(𝑢) = ∑𝑝
𝑖=1
𝛼
𝑖
(𝑢)∇
2

𝑓
𝑖
(X(𝑢), 𝜔

𝑖
(X(𝑢))). It follows

from the proof of Theorem 6.3 in [28] that

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(X (𝑢)) 𝐽𝛼

𝑖
(𝑢)

= −𝑉 (𝑢) (𝑉𝑉 (𝑢))
−1

𝑉
𝑇

𝑀(𝑢) 𝐽 (X (𝑢)) .

(46)

Then

∇
2

𝐿 (𝑢; 𝑔V) = 𝑈
𝑇

𝑀(𝑢) 𝐽 (X (𝑢))

− 𝑈
𝑇

𝑉 (𝑢) (𝑉𝑉 (𝑢))
−1

𝑉
𝑇

𝑀(𝑢) 𝐽 (X (𝑢))

= 𝑈
𝑇

𝑀(𝑢) 𝐽 (X (𝑢))

+ 𝐽V(𝑢)𝑇𝑉
𝑇

𝑀(𝑢) 𝐽 (X (𝑢))

= [𝑈
𝑇

+ 𝐽V(𝑢)𝑇𝑉
𝑇

]𝑀 (𝑢) 𝐽 (X (𝑢))

= 𝐽X(𝑢)
𝑇

𝑀(𝑢) 𝐽 (X (𝑢)) ,

(47)

when 𝑢 = 0,

∇
2

𝐿 (0; 𝑔V) = 𝑈
𝑇

𝑀(0)𝑈 = 𝑈
𝑇

𝑝

∑

𝑖=1

𝛼
𝑖
(∇
2

𝑓
𝑖
(𝑥))𝑈. (48)

We finish the proof.
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Theorem 16. Suppose Assumption 7 holds and 𝑔 ∈ 𝜕𝐹(𝑥).
Then for 𝑢 small enough, there holds the second-order expan-
sion of 𝑓 along with the trajectoryX(𝑢) = 𝑥 + 𝑢 ⊕ V(𝑢),

𝐹 (X (𝑢)) = 𝐹 (𝑥) + ⟨𝑔, 𝑢 ⊕ V (𝑢)⟩

+
1

2
𝑢
𝑇

∇𝐿
2

(0; 𝑔V) 𝑢 + 𝑜 (‖𝑢‖
2

U) .

(49)

Proof . From the definition of 𝐿, we have

𝐿 (𝑢; 𝑔V) = 𝐹 (X (𝑢)) − ⟨𝑔V, V (𝑢)⟩V. (50)

Since 𝐿 ∈ 𝐶2, we get

𝐿 (𝑢; 𝑔V) = 𝐿 (0; 𝑔V) + ⟨∇𝐿 (0; 𝑔V) , 𝑢⟩U

+
1

2
𝑢
𝑇

∇
2

𝐿 (0; 𝑔V) 𝑢 + 𝑜 (‖𝑢‖
2

U)

= 𝐹 (𝑥) + ⟨𝑔U, 𝑢⟩U

+
1

2
𝑢
𝑇

∇
2

𝐿 (0; 𝑔V) 𝑢 + 𝑜 (‖𝑢‖
2

U) .

(51)

Therefore,

𝐹 (X (𝑢)) = 𝐹 (𝑥) + ⟨𝑔U, 𝑢⟩U + ⟨𝑔V, V (𝑢)⟩V

+
1

2
𝑢
𝑇

∇
2

𝐿 (0; 𝑔V) 𝑢 + 𝑜 (‖𝑢‖
2

U)

= 𝐹 (𝑥) + ⟨𝑔, 𝑢 ⊕ V (𝑢)⟩

+
1

2
𝑢
𝑇

∇
2

𝐿 (0; 𝑔V) 𝑢 + 𝑜 (‖𝑢‖
2

U) .

(52)

4. UV-Decomposition for
Multiple Eigenvalues

4.1. UV-Theory of the Multiple Eigenvalue Function. The
working hypothesis of the previous section was that lead-
ing eigenvalues 𝜆

1
(𝐴(𝑥, 𝜔

𝑖
(𝑥))) had multiplicity 1 for all

frequencies in the set {𝜔
1
(𝑥), . . . , 𝜔

𝑝
(𝑥)} and for all 𝑥 in

a neighborhood of 𝑥. This hypothesis is motivated by our
numerical experience, where we have never encountered
multiple eigenvalues. This is clearly in contrast with expe-
rience in pure eigenvalue optimization problems. However,
our approach is still functional if the hypothesis of single
eigenvalues at active frequencies is abandoned. Based on the
weaker assumption that the eigenvalue multiplicities 𝑟

𝑖
at the

limit point 𝑥 are known for all active frequencies 𝜔
𝑖
, 𝑖 =

1, . . . , 𝑝, and on the information at the current iterate point,
we have good technique to dependably guess 𝑟

𝑖
.

This situation has been discussed by several authors
(see, e.g., [27, 29–31]). Consider 𝑋 ∈ 𝑆

𝑛
where 𝜆

1
(𝑋) has

multiplicity 𝑟. We replace the maximum eigenvalue function
𝜆
1
by the average of the first 𝑟 eigenvalues

𝜆̂
𝑟
(𝑋) =

1

𝑟

𝑟

∑

𝑗=1

𝜆
𝑗
(𝑋) . (53)

This function is smooth and convex in a neighborhood of the
smooth manifold

M
𝑟
= {𝑋 ∈ 𝑆

𝑛
: 𝜆
1
(𝑋) = ⋅ ⋅ ⋅ = 𝜆

𝑟
(𝑋) > 𝜆

𝑟+1
(𝑋)} (54)

of the matrices 𝑋 ∈ 𝑆
𝑛
with the largest eigenvalue mul-

tiplicity 𝑟, and 𝜆
1
= 𝜆̂
𝑟
on M

𝑟
. Then we may replace

the nonsmooth information contained in 𝜆
1
by the smooth

information contained in the function 𝜆̂
𝑟
by adding the

constraint𝐴(𝑥, 𝜔
𝑖
(𝑥)) ∈M

𝑟
𝑖

. The manifold has codimension
𝑑 := ((𝑟(𝑟 + 1))/2) − 1 in 𝑆

𝑛
and in a neighborhood of 𝑋

may be described by 𝑑 equations ℎ
1
(𝑋) = 0, . . . , ℎ

𝑑
(𝑋) =

0, which has been presented independently in [16, 32]. The
extension to the semi-infinite eigenvalue optimization is clear
under the finiteness assumption (iii). We may then approach
minimization of the 𝐻

∞
-norm along the same lines and

obtain the finite program

min
𝑥

max
𝑖=1,...,𝑝

𝜆̂
𝑟
𝑖

(𝐴 (𝑥, 𝜔
𝑖
(𝑥)))

s.t. 𝐴 (𝑥, 𝜔
𝑖
(𝑥)) ∈M

𝑟
𝑖

,

(55)

where 𝑟
𝑖
stands for the multiplicity of the largest eigen-

value 𝜆
1
(𝐴(𝑥, 𝜔

𝑖
)); we denote 𝑄

𝑟
𝑖

𝑄
𝑟
𝑖

𝑇 by an orthonor-mal
basis associatedwith the eigenvector of 𝜆

1
(𝐴(𝑥, 𝜔

𝑖
)). Accord-

ing to the foregoing analysis, we can transform the above
constrained optimization problem into the following form:

min
𝑥

max
𝑖=1,...,𝑝

𝜆̂
𝑟
𝑖

(𝐴 (𝑥, 𝜔
𝑖
(𝑥)))

s.t. ℎ
1
(𝐴 (𝑥, 𝜔

1
(𝑥))) = 0

...

ℎ
𝑑
1

(𝐴 (𝑥, 𝜔
1
(𝑥))) = 0

ℎ
𝑑
1
+1
(𝐴 (𝑥, 𝜔

2
(𝑥))) = 0

...

ℎ
𝑑
1
+𝑑
2

(𝐴 (𝑥, 𝜔
2
(𝑥))) = 0

...

ℎ
𝑑
1
+⋅⋅⋅+𝑑

𝑝−1
+1
(𝐴 (𝑥, 𝜔

𝑝
(𝑥))) = 0

...

ℎ
𝑑
1
+⋅⋅⋅+𝑑

𝑝

(𝐴 (𝑥, 𝜔
𝑝
(𝑥))) = 0.

(56)

For convenience, we denote

𝑓
1
(𝑥) = 𝜆̂

𝑟
1

(𝐴 (𝑥, 𝜔
1
(𝑥))) ,

...

𝑓
𝑝
(𝑥) = 𝜆̂

𝑟
𝑝

(𝐴 (𝑥, 𝜔
𝑝
(𝑥))) ,
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𝜙
1
(𝑥) = ℎ

1
(𝐴 (𝑥, 𝜔

1
(𝑥))) ,

...

𝜙
𝑑
1

(𝑥) = ℎ
𝑑
1

(𝐴 (𝑥, 𝜔
1
(𝑥))) ,

...

𝜙
𝑑
1
+⋅⋅⋅+𝑑

𝑝−1
+1
(𝑥) = ℎ

𝑑
1
+⋅⋅⋅+𝑑

𝑝−1
+1
(𝐴 (𝑥, 𝜔

𝑝
(𝑥))) ,

...

𝜙
𝑑
1
+⋅⋅⋅+𝑑

𝑝

(𝑥) = ℎ
𝑑
1
+⋅⋅⋅+𝑑

𝑝

(𝐴 (𝑥, 𝜔
𝑝
(𝑥))) .

(57)

So 𝐹(𝑥) = max
𝑖=1,...,𝑝

𝜆̂
𝑟
𝑖

(𝐴(𝑥, 𝜔
𝑖
(𝑥))) = max

𝑖=1,...,𝑝
𝑓
𝑖
(𝑥)

because 𝜆
1
(𝐴(𝑥, 𝜔

𝑖
(𝑥))) = 𝜆̂

𝑟
𝑖

(𝐴(𝑥, 𝜔
𝑖
(𝑥))); we still label

𝑓(𝑥, 𝜔
𝑖
(𝑥)) as 𝜆̂

𝑟
𝑖

(𝐴(𝑥, 𝜔
𝑖
(𝑥))). In view of the property about

the indicated functions, we can transform (56) into an
unconstrained optimization. Thus, for the problem (56), we
just need to deal with the following form equivalently:

min
𝑥

𝐹 (𝑥) := max
𝑖=1,...,𝑝

𝑓
𝑖
(𝑥) + 𝐼

{0}
(𝜙
1
(𝑥)) + ⋅ ⋅ ⋅ + 𝐼

{0}
(𝜙
𝑁
𝑝

(𝑥)) ,

(58)

where 𝑁
𝑝
:= 𝑑
1
+ ⋅ ⋅ ⋅ + 𝑑

𝑝
, and 𝐼

𝐶
(𝑦) means the indicated

function at 𝑦 for the set 𝐶.
Similarly as in Proposition 8, we can obtain that the

problem (58) possesses PDG.

Proposition 17. 𝐹(𝑥) in (58) is a primal-dual gradient struc-
tured (PDG) function.

Proof. First,𝑓
𝑖
(𝑥) = 𝜆̂

𝑟
𝑖

(𝐴(𝑥, 𝜔
𝑖
(𝑥))) =

(1/𝑟
𝑖
) ∑
𝑟
𝑖

𝑗=1
𝜆
𝑗
(𝐴(𝑥, 𝜔

𝑖
(𝑥))); in [32] Shapiro and Fan had

given the fact that the function ∑𝑟𝑖
𝑗=1
𝜆
𝑗
(𝐴(𝑥, 𝜔

𝑖
(𝑥))),

ℎ
𝑙
(𝐴(𝑥, 𝜔

𝑖
(𝑥))) ∈ 𝐶

∞, for 𝑖 = 1, . . . , 𝑝 and 𝑙 = 1, . . . , 𝑁
𝑝
, so

𝑓
𝑖
(𝑥) ∈ 𝐶

∞ too. In this way, there exists a ball about 𝑥, 𝐵(𝑥)
and a dual multiplier set

(1) 𝑥 ∈ P := {𝑥 ∈ 𝐵(𝑥) : 𝜙
𝑙
(𝑥) = 0 for 𝑙 = 1, . . . , 𝑁

𝑝
}

and 𝑓
𝑖
(𝑥) = 𝐹(𝑥) for 𝑖 = 1, . . . , 𝑝;

(2) for each 𝑥 ∈ P, 𝐹(𝑥) = max
𝑖=1,...,𝑝

𝑓
𝑖
(𝑥);

(3) △ is a closed convex set such that

(a) if 𝛾 := (𝛼
1
, . . . , 𝛼

𝑝
, 𝛽
1
, . . . , 𝛽

𝑁
𝑝

) ∈ △, then
we know that 𝐹(𝑥) = ∑

𝑝

𝑖=1
𝛼
𝑖
𝑓
𝑖
(𝑥); that is,

(𝛼
1
, . . . , 𝛼

𝑝
) ∈ △

1
, which is defined in (14);

(b) for each 𝑖 = 1, . . . , 𝑝, 1
𝑖
∈ △, where 1

𝑗
is the 𝑗th

unit vector in 𝑅𝑝+𝑁𝑝 ;
(c) for each 𝑙 = 1, 2, . . . , 𝑁

𝑝
, there exists 𝛾𝑙 ∈ △ such

that 𝛽𝑙
𝑙
̸= 0 and 𝛽𝑙

𝑖
= 0 for 𝑖 ∈ {1, . . . , 𝑁

𝑝
} \ {𝑙};

(4) for each 𝑥 ∈ 𝐵(𝑥), 𝑔 ∈ 𝜕𝐹(𝑥) if and only if

𝑔 =

𝑝

∑

𝑖=1

𝛼
𝑖
∇𝑓
𝑖
(𝑥) +

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
∇𝜙
𝑗
(𝑥) , (59)

where 𝛼
𝑖
= 0 if 𝑓

𝑖
(𝑥) < 𝐹(𝑥) and 𝛼 :=

(𝛼
1
, . . . , 𝛼

𝑝
) ∈ △

1
. Moreover, 𝛾 satisfies dual feasibil-

ity: 𝛾 = (𝛼
1
, . . . , 𝛼

𝑝
, 𝛽
1
, . . . , 𝛽

𝑁
𝑝

) ∈ △.

Assumption 18. {∇𝑓
𝑖
(𝑥)−∇𝑓

1
(𝑥)}
𝑝

𝑖=2
⋃{∇𝜙

𝑗
(𝑥)}
𝑁
𝑝

𝑗=1
are linearly

independent.

Theorem 19. Suppose Assumption 18 holds. Then one has the
following results at 𝑥.

(1) The Clarke subdifferential of 𝐹(𝑥) has the following
expression:

𝜕𝐹 (𝑥) =
{

{

{

𝑔 | 𝑔 =

𝑝

∑

𝑖=1

𝛼
𝑖
∇𝑓
𝑖
(𝑥) +

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
∇𝜙
𝑗
(𝑥) , 𝛼 ∈ Δ

1

}

}

}

,

(60)

where𝑁
𝑝
:= 𝑑
1
+ ⋅ ⋅ ⋅ + 𝑑

𝑝
.

(2) Let V denote the subspace generated by the subdiffer-
ential 𝜕𝐹(𝑥). Then

V = lin ({∇𝑓
𝑖
(𝑥) − ∇𝑓

1
(𝑥)}
𝑝

𝑖=2
⋃{∇𝜙

𝑗
(𝑥)}
𝑁
𝑝

𝑗=1

)

U = {𝑑 ∈ 𝑅
𝑛

| ⟨𝑑, ∇𝑓
𝑖
(𝑥) − ∇𝑓

1
(𝑥)⟩ = 0, 𝑖 = 2, . . . , 𝑝} ,

(61)

where ∇𝑓
𝑖
(𝑥) = (1/𝑟

𝑖
)(𝐴
󸀠

𝑥
(𝑥, 𝜔
𝑖
))
∗

(𝑄
𝑟
𝑖

𝑄
𝑟
𝑖

𝑇

),

∇𝑓
𝑖
(𝑥) ∈ 𝜕𝐹 (𝑥) for 𝑖 = 1, . . . , 𝑝;

∇𝜙
𝑗
(𝑥) ∈V for 𝑗 = 1, . . . , 𝑁

𝑝
.

(62)

4.2. Smooth Trajectory and Second-Order Properties. We give
the smooth trajectory information about the function𝐹(𝑥) in
the following theorem; with respect to its proofs, it is similar
to Theorem 12.

Theorem 20. Suppose Assumption 18 holds. Then for all 𝑢
small enough, there exists the following.

(i) The nonlinear system with variables (𝑢, V) ∈ U ×V

𝑓
𝑖
(𝑥 + 𝑢 ⊕ V) − 𝑓

1
(𝑥 + 𝑢 ⊕ V) = 0, 𝑖 = 2, . . . , 𝑝,

𝜙
𝑗
(𝑥 + 𝑢 ⊕ V) = 0, 𝑗 = 1, . . . , 𝑁

𝑝
,

(63)

has a unique solution V = V(𝑢), where V : U → V is
a 𝐶2-function.

(ii) For 𝐶2 function V(𝑢), one has

𝐽V (𝑢) = −(𝑉(𝑢)𝑇𝑉)
−1

𝑉(𝑢)
𝑇

𝑈, (64)
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where 𝑉(𝑢) = [{∇𝑓
𝑖
(X(𝑢)) − ∇𝑓

1
(X(𝑢))}

𝑝

𝑖=2

⋃{∇𝜙
𝑗
(X(𝑢))}

𝑁
𝑝

𝑗=1
].

The trajectoryX(𝑢) = 𝑥 + 𝑢 ⊕ V(𝑢) is 𝐶2, and

𝐽X (𝑢) = 𝑈 + 𝑉𝐽V (𝑢) . (65)

In particular,X(0) = 𝑥, 𝐽V(0) = 0, and 𝐽X(0) = 𝑈.
(iii) V(𝑢) = 𝑂(‖𝑢‖2), and the smooth trajectory X(𝑢) is

tangent toU atX(0) = 𝑥.
(iv) 𝐹(X(𝑢)) = 𝑓

𝑖
(X(𝑢)), 𝑖 = 1, . . . , 𝑝, and 𝜙

𝑗
(X(𝑢)) =

0, 𝑗 = 1, . . . , 𝑁
𝑝
.

Now we pay our attention to an associated dual object,
that is, also a smooth function of 𝑢 ∈ U.

Theorem 21. We suppose Assumption 18 is holding, with
trajectory X(𝑢) = 𝑥 + 𝑈𝑢 + 𝑉V(𝑢) and to a subgradient
𝑔 ∈ 𝜕𝐹(𝑥) at 𝑥, for all 𝑢 small enough; the linear system with
variables 𝛼

𝑖
, 𝑖 = 1, . . . , 𝑝; 𝛽

𝑗
, 𝑗 = 1, . . . , 𝑁

𝑝
,

𝑉
𝑇

[

[

𝑝

∑

𝑖=1

𝛼
𝑖
∇𝑓
𝑖
(X (𝑢)) +

𝑁
𝑝

∑

𝑗=1

∇𝜙
𝑗
(X (𝑢))]

]

= 𝑉
𝑇

𝑔,

𝑝

∑

𝑖=1

𝛼
𝑖
= 1,

(66)

has a unique solution 𝛾(𝑢) = (𝛼(𝑢), 𝛽(𝑢)), given by

{𝛼
𝑖
(𝑢)}
𝑝

𝑖=2
, {𝛽
𝑗
(𝑢)}
𝑁
𝑝

𝑗=1

= (𝑉
𝑇

𝑉 (𝑢))

−1

𝑉 (𝑔 − ∇𝑓
0
(X (𝑢))) ,

𝛼
1
(𝑢) = 1 −

𝑝

∑

𝑖=2

𝛼
𝑖
(𝑢) ,

(67)

where 𝑉(𝑢) is defined in Theorem 20.

Next we consider the following primal-dual function

L (𝑢; 𝑧) := 𝐹 (X (𝑢)) − 𝑧
𝑇V (𝑢) . (68)

Theorem 22. Given 𝑔 ∈ 𝜕𝐹(𝑥), at the trajectory X(𝑢) = 𝑥 +
𝑈𝑢 + 𝑉V(𝑢), one has

L (𝑢; 𝑔V) = 𝑓𝑖 (X (𝑢)) − ⟨𝑔V, V (𝑢)⟩V, 𝑖 ∈ {1, . . . , 𝑝} .
(69)

Theorem 23. Given 𝑔 ∈ 𝜕𝐹(𝑥) and supposing that
Assumption 18 holds, then for 𝑢 small enough, the following
assertions are true.

(i) L is a 𝐶2 function of 𝑢 and

L (𝑢; 0) = [

[

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) 𝑓
𝑖
(X (𝑢)) +

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
(𝑢) 𝜙
𝑗
(X (𝑢))]

]

.

(70)

(ii) The gradient of L is given by ∇L(𝑢; 𝑔V) =

𝑈
𝑇

𝑔(𝑢; 𝑔V), where

𝑔 (𝑢; 𝑔V) =

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(X (𝑢)) +

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
(𝑢) ∇𝜙

𝑗
(X (𝑢)) ,

(71)

and, in particular, when 𝑢 = 0, one has

∇L (0; 𝑔V) = 𝑈
𝑇

[

[

𝑝

∑

𝑖=1

𝛼
𝑖
∇𝑓
𝑖
(𝑥)

+

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
∇𝜙
𝑗
(𝑥)]

]

= 𝑈
𝑇

𝑔 = 𝑔U.

(72)

(iii) The Hessian ofL is given by

∇
2

L (𝑢; 𝑔V) = 𝐽(X (𝑢))
𝑇

𝑀(𝑢, 𝑔V) 𝐽 (X (𝑢)) , (73)

where𝑀(𝑢, 𝑔V) is the 𝑛×𝑛matrix function defined by

𝑀(𝑢, 𝑔V) :=

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) ∇
2

𝑓
𝑖
(X (𝑢))

+

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
(𝑢) ∇
2

𝜙
𝑗
(X (𝑢)) .

(74)

In particular, when 𝑢 = 0, one has

∇
2

L (0; 𝑔V) = 𝑈
𝑇

𝑀(0; 𝑔V) 𝑈.
(75)

Proof. (i) Because 𝑓
𝑖
(X(𝑢)) is 𝐶2, it follows from 𝐶2 ofL in

the above theorem. At the same time, Assumption 18 holds;
using (68) with 𝑧 = 0 gives

L (𝑢; 0) = 𝑓
𝑖
(X (𝑢)) , 𝑖 = 1, . . . , 𝑝. (76)

In addition,

𝜙
𝑗
(X (𝑢)) = 0, 𝑗 = 1, . . . , 𝑁

𝑝
. (77)

Multiplying 𝛼
𝑖
and 𝛽

𝑗
, respectively, for the above equations

and summing, we get the Lagrangian-like expression in item
(i).

(ii) Using the chain rule, the differential of the Lagran-
gian-like functions (69) and (77) with respect to 𝑢 can be
written as follows:

∇L (𝑢; 𝑔V) = 𝐽(X (𝑢))
𝑇

(∇𝑓
𝑖
(X (𝑢))) − 𝐽V(𝑢)𝑇𝑉

𝑇

𝑔,

𝐽(X (𝑢))
𝑇

(∇𝜙
𝑗
(X (𝑢))) = 0.

(78)



10 Abstract and Applied Analysis

Multiplying each equation by the appropriate𝛼
𝑖
(𝑢) and𝛽

𝑗
(𝑢),

summing the results, and using the fact that∑
𝑖
𝛼
𝑖
(𝑢) = 1 yield

∇L (𝑢; 𝑔V) = 𝐽(X (𝑢))
𝑇[

[

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) (∇𝑓

𝑖
(X (𝑢)))

+

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
(𝑢) (∇𝜙

𝑗
(X (𝑢)))]

]

− 𝐽V(𝑢)𝑇𝑉
𝑇

𝑔

= 𝐽(X (𝑢))
𝑇

𝑔 (𝑢; 𝑔V) − 𝐽V(𝑢)
𝑇

𝑉
𝑇

𝑔.

(79)

Using the transpose of the expression of 𝐽(X(𝑢)), we get

∇L (𝑢; 𝑔V) = 𝑈
𝑇

𝑔 (𝑢; 𝑔V) + 𝐽V(𝑢)
𝑇

𝑉
𝑇

(𝑔 (𝑢; 𝑔V) − 𝑔) ,

(80)

which together with (6.11) in [28] yields the desired result.
If 𝑢 = 0, then V(0) = 0, and X(0) = 𝑥, 𝐽X(0) = 𝑈,

∑
𝑝

𝑖=1
𝛼
𝑖
(0) = 1, and byTheorem 19

either ∇𝑓
𝑖
(𝑥) ∈ 𝜕𝐹 (𝑥) so 𝑈𝑇∇𝑓

𝑖
(𝑥) = 𝑔U,

or ∇𝜙
𝑗
(𝑥) ∈V so 𝑈𝑇∇𝜙

𝑗
(𝑥) = 0;

(81)

so we attain

∇L (0; 𝑔V) = 𝑈
𝑇

[

[

𝑝

∑

𝑖=1

𝛼
𝑖
∇𝑓
𝑖
(𝑥) +

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
∇𝜙
𝑗
(𝑥)]

]

= 𝑈
𝑇

𝑔.

(82)

(iii) Differentiating the following equation with respect to
𝑢,

∇L (𝑢; 𝑔V) = 𝑈
𝑇

(

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(X (𝑢))

+

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
(𝑢) ∇𝜙

𝑗
(X (𝑢))) ,

(83)

we obtain

∇
2

L (𝑢; 𝑔V) = 𝑈
𝑇

𝑀(𝑢) 𝐽 (X (𝑢))

+ 𝑈
𝑇

[

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(X (𝑢)) 𝐽𝛼

𝑖
(𝑢)

+

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
(𝑢) ∇𝜙

𝑗
(X (𝑢)) 𝐽𝛽

𝑗
(𝑢)]

]

,

(84)

where 𝑀(𝑢) = ∑
𝑝

𝑖=1
𝛼
𝑖
(𝑢)∇
2

𝑓
𝑖
(X(𝑢)) +

∑
𝑁
𝑝

𝑗=1
𝛽
𝑗
(𝑢)∇
2

𝜙
𝑗
(X(𝑢)). It follows from the proof of Theorem

6.3 in [28] that

𝑝

∑

𝑖=1

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(X (𝑢)) 𝐽𝛼

𝑖
(𝑢) +

𝑁
𝑝

∑

𝑗=1

𝛽
𝑗
(𝑢) ∇𝜙

𝑗
(X (𝑢)) 𝐽𝛽

𝑗
(𝑢)

= −𝑉 (𝑢) (𝑉𝑉 (𝑢))
−1

𝑉
𝑇

𝑀(𝑢) 𝐽 (X (𝑢)) .

(85)

Then

∇
2

L (𝑢; 𝑔V)

= 𝑈
𝑇

𝑀(𝑢) 𝐽 (X (𝑢))

− 𝑈
𝑇

𝑉 (𝑢) (𝑉𝑉 (𝑢))
−1

𝑉
𝑇

𝑀(𝑢) 𝐽 (X (𝑢))

= 𝑈
𝑇

𝑀(𝑢) 𝐽 (X (𝑢)) + 𝐽V(𝑢)𝑇𝑉
𝑇

𝑀(𝑢) 𝐽 (X (𝑢))

= [𝑈
𝑇

+ 𝐽V(𝑢)𝑇𝑉
𝑇

]𝑀 (𝑢) 𝐽 (X (𝑢))

= 𝐽(X (𝑢))
𝑇

𝑀(𝑢) 𝐽 (X (𝑢)) ,

(86)

when 𝑢 = 0,

∇
2

L (0; 𝑔V) = 𝑈
𝑇

𝑀(0)𝑈, (87)

where𝑀(0; 𝑔V) = ∑
𝑝

𝑖=1
𝛼
𝑖
∇
2

𝑓
𝑖
(𝑥) + ∑

𝑁
𝑝

𝑗=1
𝛽
𝑗
∇
2

𝜙
𝑗
(𝑥).

We call the corresponding Hessian matrix ofL at 𝑢 = 0 a
basicU-Hessian for 𝐹 at 𝑥 and denote it by𝐻 := ∇2L(0; 0).
Using second-order U-derivatives we can specify second-
order expansions for 𝐹 and give related necessary conditions
for optimization problem.

Theorem 24. Suppose Assumption 18 holds and 𝑔 ∈ 𝜕𝐹(𝑥).
Then for 𝑢 small enough, there holds the second-order expan-
sion of 𝑓 along the trajectoryX(𝑢) = 𝑥 + 𝑢 ⊕ V(𝑢),

𝐹 (X (𝑢)) = 𝐹 (𝑥) + ⟨𝑔, 𝑢 ⊕ V (𝑢)⟩

+
1

2
𝑢
𝑇

∇
2

L (0; 𝑔V) 𝑢 + 𝑜 (‖𝑢‖
2

U) .

(88)

Proof. From the definition ofL, we have

L (𝑢; 𝑔V) = 𝐹 (X (𝑢)) − ⟨𝑔V, V (𝑢)⟩V. (89)

SinceL ∈ 𝐶2, we get

L (𝑢; 𝑔V) =L (0; 𝑔V) + ⟨∇L (0; 𝑔V) , 𝑢⟩U

+
1

2
𝑢
𝑇

∇
2

L (0; 𝑔V) 𝑢 + 𝑜 (‖𝑢‖
2

U)

= 𝐹 (𝑥) + ⟨𝑔U, 𝑢⟩U

+
1

2
𝑢
𝑇

∇
2

L (0; 𝑔V) 𝑢 + 𝑜 (‖𝑢‖
2

U) .

(90)
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Therefore,

𝐹 (X (𝑢)) = 𝐹 (𝑥) + ⟨𝑔U, 𝑢⟩U + ⟨𝑔V, V (𝑢)⟩V

+
1

2
𝑢
𝑇

∇
2

L (0; 𝑔V) 𝑢 + 𝑜 (‖𝑢‖
2

U)

= 𝐹 (𝑥) + ⟨𝑔, 𝑢 ⊕ V (𝑢)⟩

+
1

2
𝑢
𝑇

∇
2

L (0; 𝑔V) 𝑢 + 𝑜 (‖𝑢‖
2

U) .

(91)

Corollary 25. Suppose Assumption 18 holds and 𝑥 is a local
minimizer of (56). Then 0 ∈ 𝜕𝐹(𝑥) and the associated basic
U-Hessian𝐻 is positive semidefinite.

5. Conclusions

In this paper, we mainly study the UV-theory to optimize
the 𝐻

∞
-norm or other nonsmooth criteria which are semi-

infinite maxima of maximum eigenvalue functions. We use
a methodology from semi-infinite programming to obtain
a local nonlinear programming model and apply the UV
decomposition method. With the so-called PDG that this
problem possesses, Lagrangian-like theory is applied to the
class of the functions. Under some hypothesis conditions,
we can obtain the first- and second-order derivatives of the
primal-dual Lagrangian function. This method can operate
well in practice.

For further work, the need can be anticipated: in this
paper we only give the theory analysis to solve the special
class of eigenvalue optimization, we will continue to study its
executable algorithm, and we will extend theUV algorithm
of convex eigenvalues to nonconvex cases, where its related
theory will be researched in later papers.
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[15] C. Lemaréchal, F. Oustry, and C. Sagastizábal, “The 𝑈-
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