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The main goal of this paper is the investigation of the general solution and the generalized
Hyers-Ulam stability theorem of the following Euler-Lagrange type quadratic functional equation
f(ax + by) + af(x − by) = (a + 1)b2f(y) + a(a + 1)f(x), in (β, p)-Banach space, where a, b are fixed
rational numbers such that a/= − 1, 0 and b /= 0.

1. Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in
which he discussed a number of unsolved problems. Among these was the following ques-
tion concerning the stability of homomorphisms.

Let G be a group and let G′ be a metric group with metric ρ(·, ·). Given ε > 0, does
there exist a δ > 0 such that if f : G → G′ satisfies ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G,
then a homomorphism h : G → G′ exists with ρ(f(x), h(x)) < ε for all x ∈ G?

In 1941, the first result concerning the stability of functional equations was presented
by Hyers [2]. He has answered the question of Ulam for the case whereG1 andG2 are Banach
spaces.

Let E1 and E2 be real vector spaces. A function f : E1 → E2 is called a quadratic func-
tion if and only if f is a solution function of the quadratic functional equation

f
(
x + y

)
+ f
(
x − y

)
= 2f(x) + 2f

(
y
)
. (1.1)

It is well known that a function f between real vector spaces is quadratic if and only if
there exists a unique symmetric biadditive function B such that f(x) = B(x, x) for all x, where
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the mapping B is given by B(x, y) = (1/4)(f(x + y) − f(x − y)). See [3, 4] for the details. The
Hyers-Ulam stability of the quadratic functional equation (1.1) was first proved by Skof [5]
for functions f : E1 → E2, where E1 is a normed space and E2 is a Banach space. Cholewa
[6] demonstrated that Skof’s theorem is also valid if E1 is replaced by an Abelian group G.
Assume that a function f : G → E satisfies the inequality

∥
∥f
(
x + y

)
+ f
(
x − y

) − 2f(x) − 2f
(
y
)∥∥ ≤ δ, (1.2)

for some δ ≥ 0 and for all x, y ∈ G. Then there exists a unique quadratic function Q : G → E
such that

∥
∥f(x) −Q(x)

∥
∥ ≤ δ

2
, (1.3)

for all x ∈ G. Czerwik [7] proved the Hyers-Ulam-Rassias stability of quadratic functional
equation (1.1). Let E1 and E2 be a real normed space and a real Banach space, respectively, and
let p /= 2 be a positive constant. If a function f : E1 → E2 satisfies the inequality

∥∥f
(
x + y

)
+ f
(
x − y

) − 2f(x) − 2f
(
y
)∥∥ ≤ ε

(‖x‖p + ∥∥y∥∥p), (1.4)

for some ε > 0 and for all x, y ∈ E1, then there exists a unique quadratic function q : E1 → E2

such that

∥∥f(x) − q(x)
∥∥ ≤ 2ε

|4 − 2p| ‖x‖
p, (1.5)

for all x ∈ E1. Furthermore, according to the theorem of Borelli and Forti [8], we know the
following generalization of stability theorem for quadratic functional equation. Let G be an
Abelian group and E a Banach space, and let f : G → E be amappingwith f(0) = 0 satisfying
the inequality

∥∥f
(
x + y

)
+ f
(
x − y

) − 2f(x) − 2f
(
y
)∥∥ ≤ ϕ

(
x, y
)
, (1.6)

for all x, y ∈ G. Assume that one of the series

Φ
(
x, y
)
:=

⎧
⎪⎪⎨

⎪⎪⎩

∞∑

k=0

1
22(k+1)

ϕ
(
2kx, 2ky

)
< ∞,

∞∑

k=0
22kϕ

(
x

2(k+1)
,

y

2(k+1)

)
< ∞,

(1.7)

then there exists a unique quadratic function Q : G → E such that

∥∥f(x) −Q(x)
∥∥ ≤ Φ(x, x), (1.8)
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for all x ∈ G. During the last three decades, a number of papers and research monographs
have been published on various generalizations and applications of the generalized Hyers-
Ulam stability of several functional equations, and there are many interesting results
concerning this problem [9–13].

The notion of quasi-β-normed space was introduced by Rassias and Kim in [14]. This
notion is a generalization of that of quasi-normed space. We consider some basic concepts
concerning quasi-β-normed space. We fix a real number β with 0 < β ≤ 1 and let K denote
either R or C. Let X be a linear space over K. A quasi-β-norm ‖ · ‖ is a real-valued function on
X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0,

(2) ‖λx‖ = |λ|β‖x‖ for all λ ∈ K and all x ∈ X,

(3) there is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-β-normed space if ‖ · ‖ is a quasi-β-norm on X. The
smallest possible K is called the modulus of concavity of ‖ · ‖. A quasi-β-Banach space is a
complete quasi-β-normed space. A quasi-β-norm ‖ · ‖ is called a (β, p)-norm (0 < p ≤ 1) if

∥∥x + y
∥∥p ≤ ‖x‖p + ∥∥y∥∥p, (1.9)

for all x, y ∈ X. In this case, the quasi-β-Banach space is called a (β, p)-Banach space. We
observe that if x1, x2, . . . , xn are nonnegative real numbers, then

(
n∑

i=1

xi

)p

≤
n∑

i=1

x
p

i , (1.10)

where 0 < p ≤ 1 [15].
J. M. Rassias investigated the stability of Ulam for the Euler-Lagrange functional equa-

tion

f
(
ax + by

)
+ f
(
bx − ay

)
=
(
a2 + b2

)[
f(x) + f

(
y
)]

(1.11)

in the paper of [16]. Gordji and Khodaei investigated the generalized Hyers-Ulam stability
of other Euler-Lagrange quadratic functional equations [17]. Jun et al. [18] introduced a new
quadratic Euler-Lagrange functional equation

f
(
ax + y

)
+ af

(
x − y

)
= (a + 1)f

(
y
)
+ a(a + 1)f(x), (1.12)

for any fixed a ∈ Z with a/= 0,−1, which was a modified and instrumental equation for [19],
and solved the generalized stability of (1.12). Now, we improve the functional equation (1.12)
to the following functional equations:

f
(
ax + by

)
+ af

(
x − by

)
= (a + 1)f

(
by
)
+ a(a + 1)f(x), (1.13)

f
(
ax + by

)
+ af

(
x − by

)
= (a + 1)b2f

(
y
)
+ a(a + 1)f(x), (1.14)
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for any fixed rational numbers a, b ∈ Qwith a/= 0,−1 and b /= 0, which are generalized versions
of (1.12). In this paper, we establish the general solution of (1.13) and (1.14) and then prove
the generalized Hyers-Ulam stability of (1.13) and (1.14). We remark that there are some
interesting papers concerning the stability of functional equations in quasi-Banach spaces
[15, 20–23] and quasi-β-normed spaces [14, 24, 25].

2. General Solution of (1.13) and (1.14)

First, we present the general solution of (1.14) in the class of all functions between vector
spaces.

Lemma 2.1. Let X and Y be vector spaces over K. Then a mapping f : X → Y is a solution of the
functional equation (1.12) for any fixed rational number a ∈ Q with a/= 0,−1 if and only if f is quad-
ratic.

Proof. See the same proof in [18].

Lemma 2.2. Let X and Y be vector spaces over K. Then a mapping f : X → Y is a solution of the
functional equation (1.13) if and only if f is quadratic.

Proof. We assume that a mapping f : X → Y satisfies the functional equation (1.13). Letting
by = u in (1.13), then (1.13) is equivalent to (1.12). Then by Lemma 2.1, f is quadratic. Con-
versely, if f is quadratic, then it is obvious that f satisfies (1.13).

Theorem 2.3. Let X and Y be vector spaces over K. Then a mapping f : X → Y with f(0) = 0
satisfies the functional equation (1.14) if and only if f is quadratic. In this case, f(ax) = a2f(x) and
f(bx) = b2f(x) hold for all x ∈ X.

Proof. We assume that a mapping f : X → Y with f(0) = 0 satisfies the functional equation
(1.14). Then replacing y in (1.14) by 0, we also get the equality f(ax) = a2f(x) for all x ∈ X.
Now, we decompose f into the even part and the odd part by setting

fe(x) =
1
2
(
f(x) + f(−x)), fo(x) =

1
2
(
f(x) − f(−x)), (2.1)

for all x ∈ X. Then fe and fo satisfy the functional equation (1.14). Therefore, we may assume
without loss of generality that f is even and satisfies (1.14) for all x, y ∈ X. If we replace x in
(1.14) by 0, then we get

f
(
by
)
+ af

(−by) = (a + 1)b2f
(
y
)
, (2.2)

for all y ∈ X. From this equality, we have f(by) = b2f(y) for all y ∈ X. Therefore, (1.14)
implies (1.13) for all x, y ∈ X. By Lemma 2.2, f is quadratic.

Now, we assume that f is odd and satisfies (1.14) for all x, y ∈ X. For the case a = 1,
we have

f
(
x + by

)
+ f
(
x − by

)
= 2b2f

(
y
)
+ 2f(x), (2.3)



Abstract and Applied Analysis 5

for all x, y ∈ X. Setting x by 0 in (2.3), one obtains f ≡ 0. Let a/= 1. Replacing x by 0 in (1.14),
we have

(1 − a)f
(
by
)
= (a + 1)b2f

(
y
)
, (2.4)

for all y ∈ X. From (1.14) and (2.4), we get

f
(
ax + by

)
+ af

(
x − by

)
= (1 − a)f

(
by
)
+ a(a + 1)f(x), (2.5)

for all x, y ∈ X. Putting by = u in (2.5), then we obtain

f(ax + u) + af(x − u) = (1 − a)f(u) + a(a + 1)f(x), (2.6)

for all x, u ∈ X. Replacing u by au in (2.6), we get

f(ax + au) + af(x − au) = (1 − a)f(au) + a(a + 1)f(x), (2.7)

for all x, u ∈ X. Since f(ax) = a2f(x), (2.7) yields

af(x + u) + f(x − au) = (1 − a)af(u) + (a + 1)f(x), (2.8)

for all x, u ∈ X. Interchanging x and u in (2.8), we have by oddness of f

−f(ax − u) + af(x + u) = (1 − a)af(x) + (a + 1)f(u), (2.9)

for all x, u ∈ X. Replacing u by −u in (2.6), we get

f(ax − u) + af(x + u) = −(1 − a)f(u) + a(a + 1)f(x), (2.10)

for all x, u ∈ X. Adding (2.9) and (2.10) side by side, this leads to

f(x + u) = f(x) + f(u), (2.11)

for all x, u ∈ X. Therefore, f is additive and so f(ax) = af(x) for all x ∈ X and for any
odd function satisfying (1.14). Using the equality f(ax) = a2f(x), we obtain f(x) = 0 for all
x ∈ X. Therefore, f(x) = fe(x) + fo(x) is a quadratic mapping, as desired.

Conversely, if f is quadratic, then it is obvious that f satisfies (1.14).

We note that f(0) = 0 if a + b2 /= 1 and f satisfies (1.14).
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3. Generalized Stability of (1.14) for a/= 1

For convenience, we use the following abbreviation: for any fixed rational numbers a and b
with a/= − 1, 0, 1 and b /= 0,

Df

(
x, y
)
:= f
(
ax + by

)
+ af

(
x − by

) − (a + 1)b2f
(
y
) − a(a + 1)f(x), (3.1)

for all x, y ∈ X, which is called the approximate remainder of the functional equation (1.14)
and acts as a perturbation of the equation.

From now on, let X be a vector space, and let Y be a (β, p)-Banach space unless we
give any specific reference. We will investigate the generalized Hyers-Ulam stability problem
for the functional equation (1.14). Thus, we find some conditions such that there exists a true
quadratic function near an approximate solution of (1.14).

Theorem 3.1. Let ϕ : X ×X → [0,∞) be a function such that

Φ(x) :=
∞∑

n=0

1

|a|2βnp
(
ϕ(anx, 0)

)p
< ∞, (3.2)

lim
n→∞

1

|a|2βn
ϕ
(
anx, any

)
= 0, (3.3)

for all x, y ∈ X. Suppose that a function f : X → Y with f(0) = 0 satisfies

∥∥Df

(
x, y
)∥∥

Y
≤ ϕ
(
x, y
)
, (3.4)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥
Y ≤ 1

|a|2β
[Φ(x)]1/p, (3.5)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

1
a2k

f
(
akx
)
, (3.6)

for all x ∈ X.

Proof. Letting y by 0 in (3.4), we get

∥∥∥f(ax) − a2f(x)
∥∥∥
Y
≤ ϕ(x, 0), (3.7)

for all x ∈ X. Multiplying both sides by 1/|a|2β in (3.7), we have

∥∥∥∥
1
a2

f(ax) − f(x)
∥∥∥∥
Y

≤ 1

|a|2β
ϕ(x, 0), (3.8)
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for all x ∈ X. Replacing x by anx and multiplying both sides by 1/|a|2nβ in (3.8), we have
∥
∥
∥
∥

1
a2(n+1)

f
(
an+1x

)
− 1
a2n

f(anx)
∥
∥
∥
∥
Y

≤ 1

|a|2β(n+1)
ϕ(anx, 0), (3.9)

for all x ∈ X. Next we show that the sequence {(1/a2n)f(anx)} is a Cauchy sequence. For any
m,n ∈ N, m > n ≥ 0, and x ∈ X, it follows from (3.9) that

∥
∥
∥
∥

1
a2(m+1)

f
(
am+1x

)
− 1
a2n

f(anx)
∥
∥
∥
∥

p

Y

=

∥
∥∥
∥
∥

m∑

i=n

1
a2(i+1)

f
(
ai+1x

)
− 1
a2i

f
(
aix
)
∥
∥∥
∥
∥

p

Y

≤
m∑

i=n

∥
∥
∥
∥

1
a2(i+1)

f
(
ai+1x

)
− 1
a2i

f
(
aix
)∥∥
∥
∥

p

Y

≤
m∑

i=n

1

|a|2βp(i+1)
(
ϕ
(
aix, 0

))p

=
1

|a|2βp
m∑

i=n

1

|a|2βpi
(
ϕ
(
aix, 0

))p
,

(3.10)

for all x ∈ X. It follows from (3.2) and (3.10) that the sequence {(1/a2n)f(anx)} is a Cauchy
sequence in Y for all x ∈ X. Since Y is a (β, p)-Banach space, the sequence {(1/a2n)f(anx)}
converges for all x ∈ X. Therefore, we can define a mapping Q : X → Y by

Q(x) = lim
n→∞

1
a2n

f(anx), (3.11)

for all x ∈ X. Taking m → ∞ and n = 0 in (3.10), we have

∥∥Q(x) − f(x)
∥∥p
Y ≤ 1

|a|2βp
∞∑

i=0

1

|a|2βpi
(
ϕ
(
aix, 0

))p
=

1

|a|2βp
Φ(x), (3.12)

for all x ∈ X. Therefore,

∥∥Q(x) − f(x)
∥∥
Y ≤ 1

|a|2β
[Φ(x)]1/p, (3.13)

for all x ∈ X, that is, the mapping Q satisfies (3.5). It follows from (3.3) and (3.4) that

∥∥DQ

(
x, y
)∥∥

Y = lim
n→∞

∥∥∥∥
1
a2n

Df

(
anx, any

)
∥∥∥∥
Y

= lim
n→∞

1

|a|2βn
∥∥Df

(
anx, any

)∥∥
Y

≤ lim
n→∞

1

|a|2βn
ϕ
(
anx, any

)
= 0,

(3.14)

for all x, y ∈ X. Therefore, Q satisfies (1.14), and so the function Q is quadratic.
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To prove the uniqueness of the quadratic function Q, let us assume that there exists a
quadratic function Q′ : X → Y satisfying the inequality (3.5). Then we have

∥
∥Q(x) −Q′(x)

∥
∥p
Y =
∥
∥
∥
∥

1
a2n

Q(anx) − 1
a2n

Q′(anx)
∥
∥
∥
∥

p

Y

=
1

a2nβp

∥
∥Q(anx) −Q′(anx)

∥
∥p
Y

≤ 1
a2nβp

(∥
∥Q(anx) − f(anx)

∥
∥p
Y +
∥
∥Q′(anx) − f(anx)

∥
∥p
Y

)

≤ 1

|a|2nβp
2

|a|2βp
Φ(anx)

=
2

|a|2βp(n+1)
∞∑

i=0

1

|a|2βpi
(
ϕ
(
ai+nx, 0

))p

=
2

|a|2βp
∞∑

i=n

1

|a|2βpi
(
ϕ
(
aix, 0

))p
,

(3.15)

for all x ∈ X and n ∈ N. Therefore, letting n → ∞, one has Q(x) − Q′(x) = 0 for all x ∈ X,
completing the proof of uniqueness.

In the following corollary, we get a stability result of (1.14).

Corollary 3.2. LetX be a quasi-α-normed space for fixed real number αwith 0 < α ≤ 1. Let θ1, θ2, θ3,
α1, α2, γ1, γ2 be positive reals such that either (1) |a| > 1, (α1 +α2)α < 2β, and γiα < 2β or (2) |a| < 1,
(α1+α2)α > 2β, and γiα > 2β, for i = 1, 2. Assume that a function f : X → Y with f(0) = 0 satisfies
the inequality

∥∥Df

(
x, y
)∥∥

Y
≤ θ1‖x‖α1

∥∥y
∥∥α2 + θ2‖x‖γ1 + θ3

∥∥y
∥∥γ2 , (3.16)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y which satisfies the
inequality

∥∥f(x) −Q(x)
∥∥
Y ≤ θ2‖x‖γ1

(
|a|2βp − |a|γ1αp

)1/p , (3.17)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

f
(
akx
)

a2k
, (3.18)

for all x ∈ X.
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Proof. Let ϕ(x, y) = θ1‖x‖α1‖y‖α2 + θ2‖x‖γ1 + θ3‖y‖γ2 . Then

Φ(x) =
∞∑

n=0

1

|a|2βnp
(
ϕ(anx, 0)

)p =
∞∑

n=0

1

|a|2βnp
θ
p

2‖anx‖γ1p

= θ
p

2‖x‖γ1p
∞∑

n=0
|a|(γ1α−2β)np < ∞,

(3.19)

lim
n→∞

1

|a|2βn
ϕ
(
anx, any

)
= lim

n→∞
1

|a|2βn
[
θ1
(‖anx‖α1

∥
∥any

∥
∥α2
)
+ θ2‖anx‖γ1 + θ3

∥
∥any

∥
∥γ2]

= θ1
(‖x‖α1

∥
∥y
∥
∥α2
)
lim
n→∞

|a|((α1+α2)α−2β)n + θ2‖x‖γ1 lim
n→∞

|a|(γ1α−2β)n

+ θ3
∥
∥y
∥
∥γ2 lim

n→∞
|a|(γ2α−2β)n = 0.

(3.20)

By Theorem 3.1, there exists a unique quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥
Y ≤ 1

|a|2β
[Φ(x)]1/p

=
θ2‖x‖γ1
|a|2β

( ∞∑

n=0
|a|(γ1α−2β)np

)1/p

=
θ2‖x‖γ1

(
|a|2βp − |a|γ1αp

)1/p ,

(3.21)

for all x ∈ X.

Theorem 3.3. Let ϕ : X ×X → [0,∞) be a function such that

Ψ(x) :=
∞∑

n=0
|a|2βnp

(
ϕ

(
x

an+1
, 0
))p

< ∞, (3.22)

lim
n→∞

|a|2βnϕ
( x

an
,
y

an

)
= 0, (3.23)

for all x, y ∈ X. Suppose that a function f : X → Y with f(0) = 0 satisfies

∥∥Df

(
x, y
)∥∥

Y
≤ ϕ
(
x, y
)
, (3.24)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥
Y ≤ [Ψ(x)]1/p, (3.25)
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for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

a2kf

(
x

ak

)
, (3.26)

for all x ∈ X.

Proof. Letting y by 0 in (3.24), we get

∥
∥
∥f(ax) − a2f(x)

∥
∥
∥
Y
≤ ϕ(x, 0), (3.27)

for all x ∈ X. Replacing x by x/a in (3.27), we have

∥∥∥f(x) − a2f
(x
a

)∥∥∥
Y
≤ ϕ
(x
a
, 0
)
, (3.28)

for all x ∈ X. Replacing x by x/an and multiplying both sides by |a|2βn in (3.28), we have

∥∥∥∥a
2nf
( x

an

)
− a2(n+1)f

(
x

an+1

)∥∥∥∥
Y

≤ |a|2βnϕ
(

x

an+1
, 0
)
, (3.29)

for all x ∈ X. Next we show that the sequence {a2nf(x/an)} is a Cauchy sequence. For any
m,n ∈ N, m > n ≥ 0, and x ∈ X, it follows from (3.29) that

∥∥∥∥a
2nf
( x

an

)
− a2(m+1)f

(
x

am+1

)∥∥∥∥

p

Y

=

∥∥∥∥∥

m∑

i=n

a2if

(
x

ai

)
− a2(i+1)f

(
x

ai+1

)∥∥∥∥∥

p

Y

≤
m∑

i=n

∥∥∥∥a
2if

(
x

ai

)
− a2(i+1)f

(
x

ai+1

)∥∥∥∥

p

Y

≤
m∑

i=n
|a|2βpi

(
ϕ

(
x

ai+1
, 0
))p

.

(3.30)

It follows from (3.22) and (3.30) that the sequence {a2nf(x/an)} is a Cauchy sequence in Y
for all x ∈ X. Since Y is a (β, p)-Banach space, the sequence {a2nf(x/an)} converges for all
x ∈ X. Therefore, we can define a mapping Q : X → Y by

Q(x) = lim
n→∞

a2nf
( x

an

)
, (3.31)

for all x ∈ X. The rest of the proof is similar to the corresponding proof of Theorem 3.1.

Corollary 3.4. Let X be a quasi-α-normed space for fixed real number α with 0 < α ≤ 1. Let
θ1, θ2, θ3, α1, α2, γ1, γ2 be positive reals such that either (1) |a| > 1, (α1 + α2)α > 2β, and γiα > 2β or
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(2) |a| < 1, (α1 + α2)α < 2β, and γiα < 2β, for i = 1, 2. Assume that a function f : X → Y with
f(0) = 0 satisfies the inequality

∥
∥Df

(
x, y
)∥∥

Y
≤ θ1‖x‖α1

∥
∥y
∥
∥α2 + θ2‖x‖γ1 + θ3

∥
∥y
∥
∥γ2 , (3.32)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y which satisfies the
inequality

∥
∥f(x) −Q(x)

∥
∥
Y ≤ θ2‖x‖γ1

(
|a|γ1αp − |a|2βp

)1/p , (3.33)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

a2kf

(
x

ak

)
, (3.34)

for all x ∈ X.

Proof. Let ϕ(x, y) = θ1‖x‖α1‖y‖α2 +θ2‖x‖γ1 +θ3‖y‖γ2 . Then ϕ satisfies the conditions (3.22) and
(3.23). Applying Theorem 3.3, we obtain the results, as desired.

4. Generalized Stability of (1.13)

For convenience, we use the following abbreviation: for any fixed rational numbers a and b
with a/= − 1, 0 and b /= 0,

Ef

(
x, y
)
:= f
(
ax + by

)
+ af

(
x − by

) − (a + 1)f
(
by
) − a(a + 1)f(x), (4.1)

for all x, y ∈ X, which is called the approximate remainder of the functional equation (1.13)
and acts as a perturbation of the equation.

We will investigate the generalized Hyers-Ulam stability problem for the functional
equation (1.13).

Theorem 4.1. Let ϕ : X ×X → [0,∞) be a function such that

Φ(x) :=
∞∑

n=0

1

|a + 1|2βnp
(
ϕ

(
(a + 1)nx,

(a + 1)nx
b

))p

< ∞, (4.2)

lim
n→∞

1

|a + 1|2βn
ϕ
(
(a + 1)nx, (a + 1)ny

)
= 0, (4.3)

for all x, y ∈ X. Suppose that a function f : X → Y with f(0) = 0 satisfies

∥∥Ef

(
x, y
)∥∥

Y
≤ ϕ
(
x, y
)
, (4.4)
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for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥
Y ≤ 1

|a + 1|2β
[Φ(x)]1/p, (4.5)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

1

(a + 1)2k
f
(
(a + 1)kx

)
, (4.6)

for all x ∈ X.

Proof. Replacing x by by in (4.4), we get

∥∥∥f
(
(a + 1)by

) − (a + 1)2f
(
by
)∥∥∥

Y
≤ ϕ
(
by, y

)
, (4.7)

for all y ∈ X. Letting by be x in (4.7), we have

∥∥∥f((a + 1)x) − (a + 1)2f(x)
∥∥∥
Y
≤ ϕ
(
x,

x

b

)
, (4.8)

for all x ∈ X. Multiplying both sides by 1/|a + 1|2β in (4.8), we have

∥∥∥∥∥
1

(a + 1)2
f((a + 1)x) − f(x)

∥∥∥∥∥
Y

≤ 1

|a + 1|2β
ϕ
(
x,

x

b

)
, (4.9)

for all x ∈ X. Replacing x by (a + 1)ix and multiplying both sides by 1/|a + 1|2iβ in (4.9), we
have

∥∥∥∥∥
1

(a + 1)2(i+1)
f
(
(a + 1)i+1x

)
− 1

(a + 1)2i
f
(
(a + 1)ix

)
∥∥∥∥∥
Y

≤ 1

|a + 1|2β(i+1)
ϕ

(

(a + 1)ix,
(a + 1)ix

b

)

,

(4.10)

for all x ∈ X. Next we show that the sequence {(1/(a + 1)2n)f((a + 1)nx)} is a Cauchy
sequence. For any m,n ∈ N, m > n ≥ 0, and x ∈ X, it follows from (4.10) that

∥∥∥∥∥
1

(a + 1)2(m+1)
f
(
(a + 1)m+1x

)
− 1

(a + 1)2n
f
(
(a + 1)nx

)
∥∥∥∥∥

p

Y

=

∥∥∥∥∥

m∑

i=n

1

(a + 1)2(i+1)
f
(
(a + 1)i+1x

)
− 1

(a + 1)2i
f
(
(a + 1)ix

)
∥∥∥∥∥

p

Y

≤
m∑

i=n

∥∥∥∥∥
1

(a + 1)2(i+1)
f
(
(a + 1)i+1x

)
− 1

(a + 1)2i
f
(
(a + 1)ix

)
∥∥∥∥∥

p

Y
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≤
m∑

i=n

1

|a + 1|2βp(i+1)
(

ϕ

(

(a + 1)ix,
(a + 1)ix

b

))p

=
1

|a + 1|2βp
m∑

i=n

1

|a + 1|2βpi
(

ϕ

(

(a + 1)ix,
(a + 1)ix

b

))p

,

(4.11)

for all x ∈ X. It follows from (4.2) and (4.11) that the sequence {f((a + 1)nx)/(a + 1)2n}
is a Cauchy sequence in Y for all x ∈ X. Since Y is a (β, p)-Banach space, the sequence
{f((a + 1)nx)/(a + 1)2n} converges for all x ∈ X. Therefore, we can define a mapping Q :
X → Y by

Q(x) = lim
n→∞

1

(a + 1)2n
f
(
(a + 1)nx

)
, (4.12)

for all x ∈ X. The rest of the proof is similar to the corresponding proof of Theorem 3.1.

In the following corollary, we get a stability result of (1.13).

Corollary 4.2. LetX be a quasi-α-normed space for fixed real number αwith 0 < α ≤ 1. Let θ1, θ2, θ3,
α1, α2, γ1, γ2 be positive reals such that either (1) |a + 1| > 1, (α1 + α2)α < 2β, and γiα < 2β or
(2) |a + 1| < 1, (α1 + α2)α > 2β, and γiα > 2β, for i = 1, 2. Assume that a function f : X → Y with
f(0) = 0 satisfies the inequality

∥∥Ef

(
x, y
)∥∥

Y
≤ θ1‖x‖α1

∥∥y
∥∥α2 + θ2‖x‖γ1 + θ3

∥∥y
∥∥γ2 , (4.13)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y which satisfies the
inequality

∥∥f(x) −Q(x)
∥∥
Y ≤
⎧
⎨

⎩
θ
p

1‖x‖(α1+α2)p

|b|αα2p
(
|a + 1|2βp − |a + 1|(α1+α2)αp

)

+
θ
p

2‖x‖γ1p

|a + 1|2βp − |a + 1|γ1αp
+

θ
p

3‖x‖γ2p

|b|γ2αp
(
|a + 1|2βp − |a + 1|γ2αp

)

⎫
⎬

⎭

1/p

,

(4.14)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

1

(a + 1)2k
f
(
(a + 1)kx

)
, (4.15)

for all x ∈ X.
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Proof. Let ϕ(x, y) = θ1‖x‖α1‖y‖α2 + θ2‖x‖γ1 + θ3‖y‖γ2 . Then ϕ satisfies the conditions (4.2) and
(4.3). By Theorem 4.1, there exists a unique quadratic mapping Q : X → Y such that

∥
∥f(x) −Q(x)

∥
∥
Y ≤ 1

|a + 1|2β
[ ∞∑

n=0

1

|a + 1|2βnp
(
ϕ

(
(a + 1)nx,

(a + 1)nx
b

))p
]1/p

≤
⎧
⎨

⎩
θ
p

1‖x‖(α1+α2)p

|b|αα2p
(
|a + 1|2βp − |a + 1|(α1+α2)αp

)

+
θ
p

2‖x‖γ1p

|a + 1|2βp − |a + 1|γ1αp
+

θ
p

3‖x‖γ2p

|b|γ2αp
(
|a + 1|2βp − |a + 1|γ2αp

)

⎫
⎬

⎭

1/p

,

(4.16)

for all x ∈ X.

Theorem 4.3. Let ϕ : X ×X → [0,∞) be a function such that

Ψ(x) :=
∞∑

n=0
|a + 1|2βnp

(

ϕ

(
x

(a + 1)n+1
,

x

(a + 1)n+1b

))p

< ∞,

lim
n→∞

|a + 1|2βnϕ
(

x

(a + 1)n
,

y

(a + 1)n

)
= 0,

(4.17)

for all x, y ∈ X. Suppose that a function f : X → Y with f(0) = 0 satisfies

∥∥Ef(x, y)
∥∥
Y
≤ ϕ
(
x, y
)
, (4.18)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥
Y ≤ [Ψ(x)]1/p, (4.19)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

(a + 1)2kf

(
x

(a + 1)k

)

, (4.20)

for all x ∈ X.

Proof. Replacing x by x/(a + 1) in (4.8), we have

∥∥∥f(x) − (a + 1)2f
( x

a + 1

)∥∥∥
Y
≤ ϕ

(
x

a + 1
,

x

(a + 1)b

)
, (4.21)

for all x ∈ X. The rest of the proof is similar to the corresponding proof of Theorem 3.3.
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Corollary 4.4. LetX be a quasi-α-normed space for fixed real number αwith 0 < α ≤ 1. Let θ1, θ2, θ3,
α1, α2, γ1, γ2 be positive reals such that either (1) |a + 1| > 1 and (α1 + α2)α > 2β, γiα > 2β or (2)
|a + 1| < 1 and (α1 + α2)α < 2β, γiα < 2β, for i = 1, 2. Assume that a function f : X → Y with
f(0) = 0 satisfies the inequality

∥
∥Ef

(
x, y
)∥∥

Y
≤ θ1‖x‖α1

∥
∥y
∥
∥α2 + θ2‖x‖γ1 + θ3

∥
∥y
∥
∥γ2 , (4.22)

for all x, y ∈ X. Then there exists a unique quadratic function Q : X → Y which satisfies the
inequality

∥
∥f(x) −Q(x)

∥
∥
Y ≤
⎧
⎨

⎩
θ
p

1‖x‖(α1+α2)p

|b|αα2p
(
|a + 1|(α1+α2)αp − |a + 1|2βp

)

+
θ
p

2‖x‖γ1p

|a + 1|γ1αp − |a + 1|2βp
+

θ
p

3‖x‖γ2p

|b|αγ2p
(
|a + 1|γ2αp − |a + 1|2βp

)

⎫
⎬

⎭

1/p

,

(4.23)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

(a + 1)2kf

(
x

(a + 1)k

)

, (4.24)

for all x ∈ X.

Proof. Let ϕ(x, y) = θ1‖x‖α1‖y‖α2 + θ2‖x‖γ1 + θ3‖y‖γ2 . Then ϕ satisfies the conditions (4.17).
Applying Theorem 4.3, we obtain the results, as desired.
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