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This paper presents a new generalized Nicholson’s blowflies system with patch structure and
nonlinear density-dependent mortality terms. Under appropriate conditions, we establish some
criteria to guarantee the exponential extinction of this system. Moreover, we give two examples
and numerical simulations to demonstrate our main results.

1. Introduction

To describe the population of the Australian sheep blowfly and agree well with the
experimental date of Nicholson [1], Gurney et al. [2] proposed the following Nicholson’s
blowflies equation:

N ′(t) = −δN(t) + pN(t − τ)e−aN(t−τ). (1.1)

Here, N(t) is the size of the population at time t, p is the maximum per capita daily egg
production, (1/a) is the size at which the population reproduces at its maximum rate, δ is the
per capita daily adult death rate, and τ is the generation time. There have been a large number
of results on this model and its modifications (see, e.g., [3–8]). Recently, Berezansky et al. [9]
pointed out that a new study indicates that a linear model of density-dependent mortality
will be most accurate for populations at low densities and marine ecologists are currently in
the process of constructing new fishery models with nonlinear density-dependent mortality
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rates. Consequently Berezansky et al. [9] presented the following Nicholson’s blowflies
model with a nonlinear density-dependent mortality term

N ′(t) = −D(N(t)) + PN(t − τ)e−aN(t−τ), (1.2)

where P is a positive constant and functionDmight have one of the following forms:D(N) =
aN/(N + b) or D(N) = a − be−N with positive constants a, b > 0.

Wang [10] studied the existence of positive periodic solutions for the model (1.2)with
D(N) = a − be−N . Hou et al. [11] investigated the permanence and periodic solutions for
the model (1.2) with D(N) = aN/(N + b). Furthermore, Liu and Gong [12] considered the
permanence for a Nicholson-type delay systems with nonlinear density-dependent mortality
terms as follows:

N ′
1(t) = −D11(t,N1(t)) +D12(t,N2(t)) + c1(t)N1(t − τ1(t))e−γ1(t)N1(t−τ1(t))

N ′
2(t) = −D22(t,N2(t)) +D21(t,N1(t)) + c2(t)N2(t − τ2(t))e−γ2(t)N2(t−τ2(t)),

(1.3)

where

Dij(t,N) =
aij(t)N
bij(t) +N

or Dij(t,N) = aij(t) − bij(t)e−N, (1.4)

aij , bij , ci, γi : R → (0,+∞) are all continuous functions bounded above and below by positive
constants, and τj(t) ≥ 0 are bounded continuous functions, ri = supt∈Rτi(t) > 0, and i, j = 1, 2.

On the other hand, since the biological species compete and cooperate with each
other in real world, the growth models given by patch structure systems of delay differential
equation have been provided by several authors to analyze the dynamics of multiple species
(see, e.g., [13–16] and the reference therein). Moreover, the extinction phenomenon often
appears in the biology, economy, and physics field and the main focus of Nicholson’s
blowflies model is on the scalar equation and results on patch structure of this model
are gained rarely [14, 16], so it is worth studying the extinction of Nicholson’s blowflies
system with patch structure and nonlinear density-dependent mortality terms. Motivated
by the above discussion, we shall derive the conditions to guarantee the extinction of
the following Nicholson-type delay system with patch structure and nonlinear density-
dependent mortality terms:

N ′
i(t) = −Dii(t,Ni(t)) +

n∑

j=1,j /= i

Dij

(
t,Nj(t)

)

+
l∑

j=1

cij(t)Ni

(
t − τij(t)

)
e−γij (t)Ni(t−τij (t)),

(1.5)

where

Dij(t,N) =
aij(t)N
bij(t) +N

or Dij(t,N) = aij(t) − bij(t)e−N, (1.6)
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aij , bij , cik, γik : R → (0,+∞) are all continuous functions bounded above and below by posi-
tive constants, and τik(t) ≥ 0 are bounded continuous functions, ri = max1≤j≤l{supt∈Rτij(t)} >
0, and i, j = 1, 2, . . . , n, k = 1, 2, . . . , l. Furthermore, in the case Dij(t,N) = aij(t) − bij(t)e−N ,
to guarantee the meaning of mortality terms we assume that aij(t) > bij(t) for t ∈ R and
i, j = 1, 2, . . . , n. The main purpose of this paper is to establish the conditions ensuring the
exponential extinction of system (1.5).

For convenience, we introduce some notations. Throughout this paper, given a
bounded continuous function g defined on R, let g+ and g− be defined as

g− = inf
t∈R

g(t), g+ = sup
t∈R

g(t). (1.7)

Let Rn(Rn
+) be the set of all (nonnegative) real vectors, we will use x = (x1, . . . , xn)

T ∈
Rn to denote a column vector, in which the symbol (T ) denotes the transpose of a vector.
We let |x| denote the absolute-value vector given by |x| = (|x1|, . . . , |xn|)T and define ||x|| =
max1≤i≤n|xi|. Denote C =

∏n
i=1C([−ri, 0], R) and C+ =

∏n
i=1C([−ri, 0], R+) as Banach

spaces equipped with the supremum norm defined by ||ϕ|| = sup−ri≤t≤0max1≤i≤n|ϕi(t)| for all
ϕ(t) = (ϕ1(t), . . . , ϕn(t))

T ∈ C (or ∈ C+). If xi(t) is defined on [t0 − ri, ν) with t0, ν ∈ R and
i = 1, . . . , n, then we define xt ∈ C as xt = (x1

t , . . . x
n
t )

T where xi
t(θ) = xi(t+θ) for all θ ∈ [−ri, 0]

and i = 1, . . . , n.
The initial conditions associated with system (1.5) are of the form:

Nt0 = ϕ, ϕ =
(
ϕ1, . . . , ϕn

)T ∈ C+, ϕi(0) > 0, i = 1, . . . , n. (1.8)

We writeNt(t0, ϕ)(N(t; t0, ϕ)) for a solution of the initial value problem (1.5) and (1.8). Also,
let [t0, η(ϕ)) be the maximal right-interval of existence of Nt(t0, ϕ).

Definition 1.1. The system (1.5)with initial conditions (1.8) is said to be exponentially extinct,
if there are positive constants M and κ such that |Ni(t; t0, ϕ)| ≤ Me−κ(t−t0), i = 1, 2 . . . , n.
Denote it as Ni(t; t0, ϕ) = O(e−κ(t−t0)), i = 1, 2, . . . , n.

The remaining part of this paper is organized as follows. In Sections 2 and 3, we shall
derive some sufficient conditions for checking the extinction of system (1.5). In Section 4, we
shall give two examples and numerical simulations to illustrate our results obtained in the
previous sections.

2. Extinction of Nicholson’s Blowflies System with
Dij(t,N) = aij(t)N/(bij(t) +N)(i, j = 1, 2, . . . , n)

Theorem 2.1. Suppose that there exists positive constant K1 such that

a−
ii

b+ii +K1
>

n∑

j=1,j /= i

a+
ij

b−ij
+

l∑

j=1

c+ij

γ−ij eK1
, i = 1, 2, . . . , n. (2.1)

Let

E1 =
{
ϕ | ϕ ∈ C+, ϕ(0) > 0, 0 ≤ ϕi(t) < K1, ∀t ∈ [−ri, 0], i = 1, 2, . . . , n

}
. (2.2)
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Moreover, assume N(t; t0, ϕ) is the solution of (1.5) with ϕ ∈ E1 and Dij(t,N) = (aij(t)N/(bij(t) +
N)) (i, j = 1, 2, . . . ,n). Then,

0 ≤ Ni

(
t; t0, ϕ

)
< K1, ∀t ∈ [

t0, η
(
ϕ
))
, i = 1, 2, . . . , n,

η
(
ϕ
)
= +∞.

(2.3)

Proof. Set N(t) = N(t; t0, ϕ) for all t ∈ [t0, η(ϕ)). In view of ϕ ∈ C+, using Theorem 5.2.1
in [17, p. 81], we have Nt(t0, ϕ) ∈ C+ for all t ∈ [t0, η(ϕ)). Assume, by way of contradiction,
that (2.3) does not hold. Then, there exist t1 ∈ [t0, η(ϕ)) and i ∈ {1, 2, . . . , n} such that

Ni(t1) = K1, 0 ≤ Nj(t) < K1 ∀t ∈ [
t0 − rj , t1

)
, j = 1, 2, . . . , n. (2.4)

Calculating the derivative of Ni(t), together with (2.1) and the fact that supu≥0ue
−u = 1/e

and a(t)N/(b(t) +N) ≤ a(t)N/b(t) for all t ∈ R,N ≥ 0, (1.5) and (2.4) imply that

0 ≤ N ′
i(t1)

= −Dii(t1,Ni(t1)) +
n∑

j=1,j /= i

Dij

(
t1,Nj(t1)

)

+
l∑

j=1

cij(t1)Ni

(
t1 − τij(t1)

)
e−γij (t1)Ni(t1−τij (t1))

≤ − aii(t1)Ni(t1)
bii(t1) +Ni(t1)

+
n∑

j=1,j /= i

aij(t1)Nj(t1)
bij(t1)

+
l∑

j=1

cij(t1)
γij(t1)

1
e

≤
⎛

⎝− a−
ii

b+ii +K1
+

n∑

j=1,j /= i

a+
ij

b−ij
+

l∑

j=1

c+ij

γ−ij eK1

⎞

⎠K1

< 0,

(2.5)

which is a contradiction and implies that (2.3) holds. From Theorem 2.3.1 in [18], we easily
obtain η(ϕ) = +∞. This ends the proof of Theorem 2.1.

Theorem 2.2. Suppose that there exists positive constant K1 satisfying (2.1) and

a−
ii

b+ii +K1
>

n∑

j=1,j /= i

a+
ij

b−ij
+

l∑

j=1

c+ij , i = 1, 2, . . . , n. (2.6)

Then the solution N(t; t0, ϕ) of (1.5) with ϕ ∈ E1 and Dij(t,N) = (aij(t)N/(bij(t) + N)) (i, j =
1, 2, . . . , n) is exponentially extinct as t → +∞.
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Proof. Define continuous functions Γi(ω) by setting

Γi(ω) = ω − a−
ii

b+ii +K1
+

n∑

j=1,j /= i

a+
ij

b−ij
+

l∑

j=1

c+ije
ωri , i = 1, 2, . . . , n. (2.7)

Then, from (2.6), we obtain

Γi(0) = − a−
ii

b+ii +K1
+

n∑

j=1,j /= i

a+
ij

b−ij
+

l∑

j=1

c+ij < 0, i = 1, 2, . . . , n. (2.8)

The continuity of Γi(ω) implies that there exists λ > 0 such that

Γi(λ) = λ − a−
ii

b+ii +K1
+

n∑

j=1,j /= i

a+
ij

b−ij
+

l∑

j=1

c+ije
λri < 0, i = 1, 2, . . . , n. (2.9)

Let

yi(t) = Ni(t)eλ(t−t0), i = 1, 2, . . . , n. (2.10)

Calculating the derivative of y(t) along the solution N(t) of system (1.5) with ϕ ∈ E1, we
have

y′
i(t) = λyi(t) + eλ(t−t0)N ′

i(t)

= λyi(t) −
aii(t)yi(t)

bii(t) +Ni(t)
+

n∑

j=1,j /= i

aij(t)yj(t)
bij(t) +Nj(t)

+
l∑

j=1

cij(t)eλτij (t)yi

(
t − τij(t)

)
e−γij (t)Ni(t−τij (t)), i = 1, 2, . . . , n.

(2.11)

Let M1 denote an arbitrary positive number and set

M1 > yi(t), ∀t ∈ [t0 − ri, t0], i = 1, 2, . . . , n. (2.12)

We claim that

yi(t) < M1, ∀t ∈ [t0,+∞), i = 1, 2, . . . , n. (2.13)

If this is not valid, there must exist t2 ∈ (t0,+∞) and i ∈ {1, 2, . . . , n} such that

yi(t2) = M1, yj(t) < M1, ∀t < t2, j = 1, 2, . . . , n. (2.14)
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Then, from (2.3) and (2.11), we have

0 ≤ y′
i(t2)

= λyi(t2) −
aii(t2)yi(t2)

bii(t2) +Ni(t2)
+

n∑

j=1,j /= i

aij(t2)yj(t2)
bij(t2) +Nj(t2)

+
l∑

j=1

cij(t2)eλτij (t2)yi

(
t2 − τij(t2)

)
e−γij (t2)Ni(t2−τij (t2))

≤ λM1 − aii(t2)M1

bii(t2) +K1
+

n∑

j=1,j /= i

aij(t2)M1

bij(t2)
+

l∑

j=1

cij(t2)eλriM1

≤
⎛

⎝λ − a−
ii

b+ii +K1
+

n∑

j=1,j /= i

a+
ij

b−ij
+

l∑

j=1

c+ije
λri

⎞

⎠M1

< 0.

(2.15)

This contradiction implies that (2.13) holds. Thus,

Ni(t) = yi(t)e−λ(t−t0) ≤ M1e
−λ(t−t0) ∀t ∈ [t0 − ri,+∞), i = 1, 2, . . . , n. (2.16)

This completes the proof.

3. Extinction of Nicholson’s Blowflies System with
Dij(t,N) = aij(t) − bij(t)e−N(i, j = 1, 2, . . . , n)

Theorem 3.1. Suppose that there exists positive constant K2 such that

a−
ii >

n∑

j=1,j /= i

a+
ij +

⎛

⎝b+ii −
n∑

j=1,j /= i

b−ij

⎞

⎠e−K2 +
l∑

j=1

c+ij

γ−ij e
, i = 1, 2, . . . , n, (3.1)

−aii(t) + bii(t) +
n∑

j=1,j /= i

(
aij(t) − bij(t)

) ≥ 0, i = 1, 2, . . . , n. (3.2)

Let

E2 =
{
ϕ | ϕ ∈ C+, ϕ(0) > 0, 0 ≤ ϕi(t) < K2, ∀t ∈ [−ri, 0], i = 1, 2, . . . , n

}
. (3.3)
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Moreover, assume N(t; t0, ϕ) is the solution of (1.5) with ϕ ∈ E2 and Dij(t,N) = aij(t) − bij(t)
e−N (i, j = 1, 2, . . . , n). Then,

0 ≤ Ni

(
t; t0, ϕ

)
< K2, ∀t ∈ [

t0, η
(
ϕ
))
, i = 1, 2, . . . , n, (3.4)

η
(
ϕ
)
= +∞. (3.5)

Proof. Set N(t) = N(t; t0, ϕ) for all t ∈ [t0, η(ϕ)). Rewrite the system (1.5) as

N ′(t) = f(t,Nt), (3.6)

where f(t, φ) = (f1(t, φ), f2(t, φ), . . . , fn(t, φ))
T and

fi
(
t, φ

)
= − aii(t) + bii(t)e−φi(0) +

n∑

j=1,j /= i

(
aij(t) − bij(t)e−φj (0)

)

+
l∑

j=1

cij(t)φi

(−τij(t)
)
e−γij (t)φi(−τij (t)), i = 1, 2, . . . , n, φ ∈ C.

(3.7)

In view of (3.2), whenever φ ∈ C satisfies φ ≥ 0, φi(0) = 0 for some i and t ∈ R, then

fi
(
t, φ

)
= − aii(t) + bii(t) +

n∑

j=1,j /= i

(
aij(t) − bij(t)e−φj (0)

)

+
l∑

j=1

cij(t)φi

(−τij(t)
)
e−γij (t)φi(−τij (t))

≥ − aii(t) + bii(t) +
n∑

j=1,j /= i

(
aij(t) − bij(t)

)

≥ 0.

(3.8)

Thus, using Theorem 5.2.1 in [17, p. 81], we have Nt(t0, ϕ) ∈ C+ for all t ∈ [t0, η(ϕ)) and
ϕ ∈ E2 ⊂ C+. Assume, by way of contradiction, that (3.4) does not hold. Then, there exist
t3 ∈ [t0, η(ϕ)) and i ∈ {1, 2, . . . , n} such that

Ni(t3) = K2, 0 ≤ Nj(t) < K2 ∀t ∈ [
t0 − rj , t3

)
, j = 1, 2, . . . , n. (3.9)
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Calculating the derivative of Ni(t), together with (3.1) and the fact that supu≥0 ue
−u = 1/e,

(1.5) and (3.9) imply that

0 ≤ N ′
i(t3)

= −Dii(t3,Ni(t3)) +
n∑

j=1,j /= i

Dij

(
t3,Nj(t3)

)
+

l∑

j=1

cij(t3)Ni

(
t3 − τij(t3)

)

× e−γij (t3)Ni(t3−τij (t3))

≤ − aii(t3) + bii(t3)e−K2 +
n∑

j=1,j /= i

(
aij(t3) − bij(t3)e−K2

)
+

l∑

j=1

cij(t3)
γij(t3)

1
e

≤ − a−
ii +

n∑

j=1,j /= i

a+
ij +

⎛

⎝b+ii −
n∑

j=1,j /= i

b−ij

⎞

⎠e−K2 +
l∑

j=1

c+ij

γ−ij e

< 0,

(3.10)

which is a contradiction and implies that (3.4) holds. From Theorem 2.3.1 in [18], we easily
obtain η(ϕ) = +∞. This ends the proof of Theorem 3.1.

Theorem 3.2. Let (3.1) and (3.2) hold. Moreover, suppose that there exist two positive constants λ̃
and M̃ such that

−aii(t) + bii(t) +
n∑

j=1,j /= i

(
aij(t) − bij(t)

) ≤ M̃e−λ̃(t−t0), t ∈ R, i = 1, 2, . . . , n, (3.11)

b−ii > 1 +
K2

2
b+ii +

n∑

j=1,j /= i

b+ij +
l∑

j=1

c+ij , i = 1, 2, . . . , n. (3.12)

Then the solution N(t; t0, ϕ) of (1.5) with ϕ ∈ E2 and Dij(t,N) = aij(t) − bij(t)e−N (i, j =
1, 2, . . . , n), is exponentially extinct as t → +∞.

Proof. Define continuous functions Γi(ω) by setting

Γi(ω) = ω − b−ii + 1 +
K2

2
b+ii +

n∑

j=1,j /= i

b+ij +
l∑

j=1

c+ije
ωri , i = 1, 2, . . . , n. (3.13)

Then, from (3.12), we obtain

Γi(0) = −b−ii + 1 +
K2

2
b+ii +

n∑

j=1,j /= i

b+ij +
l∑

j=1

c+ij < 0, i = 1, 2, . . . , n. (3.14)
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The continuity of Γi(ω) implies that there exists 0 < μ < λ̃ such that

Γi
(
μ
)
= μ − b−ii + 1 +

K2

2
b+ii +

n∑

j=1,j /= i

b+ij +
l∑

j=1

c+ije
μri < 0, i = 1, 2, . . . , n. (3.15)

Let

xi(t) = Ni(t)eμ(t−t0), i = 1, 2, . . . , n. (3.16)

Calculating the derivative of x(t) along the solutionN(t) of system (1.5)with ϕ ∈ E2, in view
of (3.4) and (3.11), we have

x′
i(t) = μxi(t) + eμ(t−t0)N ′

i(t)

= μxi(t) + eμ(t−t0)

⎡

⎣−aii(t) + bii(t)e−Ni(t) +
n∑

j=1,j /= i

(
aij(t) − bij(t)e−Nj (t)

)
⎤

⎦

+
l∑

j=1

cij(t)eμτij (t)xi

(
t − τij(t)

)
e−γij (t)Ni(t−τij (t))

≤ μxi(t) + eμ(t−t0)

⎡

⎣ − aii(t) + bii(t)
(
1 −Ni(t) +

1
2
N2

i (t)
)

+
n∑

j=1,j /= i

(
aij(t) − bij(t)

(
1 −Nj(t)

))
⎤

⎦ +
l∑

j=1

c+ije
μrixi

(
t − τij(t)

)

= μxi(t) + eμ(t−t0)

⎡

⎣−aii(t) + bii(t) +
n∑

j=1,j /= i

(
aij(t) − bij(t)

)
⎤

⎦ − bii(t)xi(t)

+
1
2
bii(t)Ni(t)xi(t) +

n∑

j=1,j /= i

bij(t)xj(t) +
l∑

j=1

c+ije
μrixi

(
t − τij(t)

)

≤ μxi(t) + M̃e(μ−λ̃)(t−t0) − b−iixi(t) +
K2

2
b+iixi(t)

+
n∑

j=1,j /= i

b+ijxj(t) +
l∑

j=1

c+ije
μrixi

(
t − τij(t)

)
.

(3.17)

Let M2 denote an arbitrary positive number and set

M2 > max
{
xi(t), M̃

}
∀t ∈ [t0 − ri, t0], i = 1, 2, . . . , n. (3.18)
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We claim that

xi(t) < M2, ∀t ∈ [t0,+∞), i = 1, 2, . . . , n. (3.19)

If this is not valid, there must exist t4 ∈ (t0,+∞) and i ∈ {1, 2, . . . , n} such that

xi(t4) = M2, xj(t) < M2, ∀t < t4, j = 1, 2, . . . , n. (3.20)

Then, from (3.15) and (3.17), we have

0 ≤ x′
i(t4)

≤ μxi(t4) + M̃e(μ−λ̃)(t4−t0) − b−iixi(t4) +
K2

2
b+iixi(t4)

+
n∑

j=1,j /= i

b+ijxj(t4) +
l∑

j=1

c+ije
μrixi

(
t4 − τij(t4)

)

≤
⎡

⎣μ + 1 − b−ii +
K2

2
b+ii +

n∑

j=1,j /= i

b+ij +
l∑

j=1

c+ije
μri

⎤

⎦M2

< 0.

(3.21)

This contradiction implies that (3.19) holds. Thus,

Ni(t) = xi(t)e−μ(t−t0) ≤ M2e
−μ(t−t0) ∀t ∈ [t0 − ri,+∞), i = 1, 2, . . . , n. (3.22)

This completes the proof.

4. Numerical Examples

In this section, we give two examples and numerical simulations to demonstrate the results
obtained in previous sections.
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Example 4.1. Consider the following Nicholson’s blowflies system with patch structure and
nonlinear density-dependent mortality terms:

N ′
1(t) = − (25 + |cos 3 t|)N1(t)

5 + |sin 2t| +N1(t)
+

(1 + |sin 2t|)N2(t)
3 + |cos 3t| +N2(t)

+
(1 + |cos 2t|)N3(t)
3 + |sin 3t| +N3(t)

+
1
4

(
1 + cos2t

)
N1(t − 2|sin t|)e−4N1(t−2| sin t|)

+
1
4

(
1 + sin2t

)
N1(t − 2|cos t|)e−4N1(t−2| cos t|)

N ′
2(t) = − (25 + |sin 3t|)N2(t)

5 + |cos 2t| +N2(t)
+

(1 + |cos 2t|)N1(t)
3 + |sin 3t| +N1(t)

+
(1 + |sin 2t|)N3(t)
3 + |cos 3t| +N3(t)

+
1
4

(
1 + sin2t

)
N2(t − 2|cos t|)e−4N2(t−2| cos t|)

+
1
4

(
1 + cos2t

)
N2(t − 2|sin t|)e−4N2(t−2| sin t|)

N ′
3(t) = − (25 + |sin 5t|)N3(t)

5 + |cos 6t| +N3(t)
+

(1 + |cos 3t|)N1(t)
3 + |sin 2t| +N1(t)

+
(1 + |sin 3t|)N2(t)
3 + |cos 2t| +N2(t)

+
1
4

(
1 + sin22t

)
N3(t − 2|cos 2t|)e−4N3(t−2| cos 2t|)

+
1
4

(
1 + cos22t

)
N3(t − 2|sin 2t|)e−4N3(t−2| sin 2t|).

(4.1)

Obviously, a−
ii = 25, b+ii = 6, (i = 1, 2, 3), a+

ij = 2, b−ij = 3, (i, j = 1, 2, 3, i /= j), c+ij = 1/2, γ−ij =
4, (i = 1, 2, 3, j = 1, 2). Let K1 = e, then we have

25
6 + e

=
a−
ii

b+ii +K1
>

3∑

j=1,j /= i

a+
ij

b−ij
+

2∑

j=1

c+ij

γ−ij eK1
=

4
3
+

1
4e2

,

25
6 + e

=
a−
ii

b+ii +K1
>

3∑

j=1,j /= i

a+
ij

b−ij
+

2∑

j=1

c+ij =
7
3
.

(4.2)

Then (4.2) imply that the system (4.1) satisfies (2.1) and (2.6). Hence, from Theorems 2.1
and 2.2, the solution N(t) of system (4.1) with Dij(t,N) = aij(t)N/(bij(t) + N)(i, j = 1, 2, 3)
and ϕ ∈ E1 = {ϕ | ϕ ∈ C+, ϕ(0) > 0 and 0 ≤ ϕi(t) < e, for all, t ∈ [−2, 0], i = 1, 2, 3} is
exponentially extinct as t → +∞ and N(t) = N(t, 0, ϕ) = O(e−κt), κ ≈ 0.0001. The fact is
verified by the numerical simulation in Figure 1.
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Figure 1: Numerical solution N(t) = (N1(t),N2(t),N3(t))
T of system (4.1) for initial value ϕ(t) ≡

(0.5, 1.7, 2.6)T .

Example 4.2. Consider the following Nicholson’s blowflies system with patch structure and
nonlinear density-dependent mortality terms:

N ′
1(t) = − (12 + |sin t|) + (11 + |cos t|)e−N1(t) +

(
1 +

1
2
|sin t|

)
−
(
1
2
+
1
2
|cos t|

)
e−N2(t)

+
(
1 +

1
2
|sin t|

)
−
(
1
2
+
1
2
|cos t|

)
e−N3(t) +

1
4

(
1 + cos2t

)
N1(t − 2|sin t|)e−N1(t−2| sin t|)

+
1
4

(
1 + sin2t

)
N1(t − 2|cos t|)e−N1(t−2| cos t|)

N ′
2(t) = − (12 + |cos t|) + (11 + |sin t|)e−N2(t) +

(
1 +

1
2
|cos t|

)
−
(
1
2
+
1
2
|sin t|

)
e−N1(t)

+
(
1 +

1
2
|cos t|

)
−
(
1
2
+
1
2
|sin t|

)
e−N3(t) +

1
4

(
1 + sin2t

)
N2(t − 2|cos t|)e−N2(t−2| cos t|)

+
1
4

(
1 + cos2t

)
N2(t − 2|sin t|)e−N2(t−2| sin t|)

N ′
3(t) = − (12 + |sin 2t|) + (11 + |cos 2t|)e−N3(t) +

(
1 +

1
2
|sin 2t|

)
−
(
1
2
+
1
2
|cos 2t|

)
e−N1(t)

+
(
1 +

1
2
|sin 2t|

)
−
(
1
2
+
1
2
|cos 2t|

)
e−N2(t)

+
1
4

(
1 + cos22t

)
N3(t − 2|sin 2t|)e−N3(t−2| sin 2t|)

+
1
4

(
1 + sin22t

)
N3(t − 2|cos 2t|)e−N3(t−2| cos 2t|). (4.3)
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Figure 2: Numerical solution N(t) = (N1(t),N2(t),N3(t))
T of system (4.3) for initial value ϕ(t) ≡

(0.1, 0.5, 0.9)T .

Obviously, a−
ii = 12, b−ii = 11, b+ii = 12, (i = 1, 2, 3), a+

ij = 3/2, b−ij = 1/2, b+ij = 1, (i, j =
1, 2, 3, i /= j), c+ij = 1/2, γ−ij = 1, (i = 1, 2, 3, j = 1, 2). Let K2 = 1, then we have

12 = a−
ii >

3∑

j=1,j /= i

a+
ij +

⎛

⎝b+ii −
n∑

j=1,j /= i

b−ij

⎞

⎠e−K2 +
2∑

j=1

c+ij

γ−ij e
= 3 +

12
e
, i = 1, 2, 3,

−aii(t) + bii(t) +
3∑

j=1,j /= i

(
aij(t) − bij(t)

)
= 0, i = 1, 2, 3,

11 = b−ii > 1 +
K2

2
b+ii +

3∑

j=1,j /= i

b+ij +
2∑

j=1

c+ij = 10, i = 1, 2, 3.

(4.4)

Then (4.4) imply that the system (4.3) satisfies (3.1), (3.2), (3.11), and (3.12). Hence, from
Theorems 3.1 and 3.2, the solutionN(t) of system (4.1)withDij(t,N) = aij(t)−bij(t)e−N(i, j =
1, 2, 3) and ϕ ∈ E2 = {ϕ | ϕ ∈ C+, ϕ(0) > 0 and 0 ≤ ϕi(t) < 1, for all, t ∈ [−2, 0], i = 1, 2, 3}
is exponentially extinct as t → +∞ and N(t) = N(t, 0, ϕ) = O(e−κt), κ ≈ 0.0001. The fact is
verified by the numerical simulation in Figure 2.

Remark 4.3. To the best of our knowledge, few authors have considered the problems
of the extinction of Nicholson’s blowflies model with patch structure and nonlinear
density-dependent mortality terms. Wang [10] and Hou et al. [11] have researched the
permanence and periodic solution for scalar Nicholson’s blowflies equation with a nonlinear
density-dependent mortality term. Liu and Gong [12] have considered the permanence
for Nicholson-type delay systems with nonlinear density-dependent mortality terms and
Takeuchi et al. [13] have investigated the global stability of population model with patch
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structure. Faria [14], Liu [15], and Berzansky et al. [16] have, respectively, studied the local
and global stability of positive equilibrium for constant coefficients of Nicholson’s blowflies
model with patch structure. It is clear that all the results in [10–16] and the references therein
cannot be applicable to prove the extinction of (4.1) and (4.3). This implies that the results of
this paper are new.
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