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2 Departamento de Matemática, Universidade Federal de Goiás, Campus Catalão, 75704-020 Catalão, GO, Brazil

Correspondence should be addressed to Marcos Rabelo; rabelo@dmat.ufpe.br

Received 27 August 2013; Accepted 3 December 2013; Published 23 January 2014

Academic Editor: Geraldo Botelho
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In this work we establish some existence results for abstract second order Cauchy problems modeled by a retarded differential
inclusion involving nonlocal and impulsive conditions. Our results are obtained by using fixed point theory for the measure of
noncompactness.

1. Introduction

In this paper we are interested in studying the existence
of solutions to evolution systems that can be described by
equations that suffer abrupt changes in their trajectories and
simultaneously depend on nonlocal initial conditions. More
specifically, the aim of this paper is to establish existence
results for abstract second order evolution problems with
delay whose equations can be written as differential inclu-
sions with nonlocal initial conditions and subjected to
impulses.

To describe the problem, throughout this work we denote
by 𝑋 a Banach space provided with a norm ‖ ⋅ ‖. We assume
that 𝐴 : 𝐷(𝐴) ⊆ 𝑋 → 𝑋 is the infinitesimal generator of a
cosine functions of operators 𝐶(𝑡) on𝑋. We study the system
on an interval 𝐽 = [0, 𝑇], for some 𝑇 > 0, and we assume that
the impulses occur at fixed moments 0 < 𝑡

1
< 𝑡

2
, . . . , 𝑡

𝑚
< 𝑇.

Moreover, ℎ > 0 denotes the system delay. Specifically, wewill
consider abstract second order systems

𝑥
󸀠󸀠
(𝑡) − 𝐴𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥

󸀠
(𝑡) , 𝑥

𝑡
) ,

𝑡 ∈ 𝐽 = [0, 𝑇] , 𝑡 ̸= 𝑡
𝑘
, 𝑘 = 1, . . . , 𝑚,

(1)

Δ𝑥 (𝑡
𝑘
) = 𝐼

1

𝑘
(𝑥 (𝑡

𝑘
) , 𝑥

󸀠
(𝑡

𝑘
) , 𝑥

𝑡𝑘
) , 𝑘 = 1, . . . , 𝑚, (2)

Δ𝑥
󸀠
(𝑡

𝑘
) = 𝐼

2

𝑘
(𝑥 (𝑡

𝑘
) , 𝑥

󸀠
(𝑡

𝑘
) , 𝑥

𝑡𝑘
) , 𝑘 = 1, . . . , 𝑚, (3)

𝑥 (𝜃) + 𝑔 (𝑥) (𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−ℎ, 0] ,

𝑥
󸀠
(0) = 𝑧 ∈ 𝑋,

(4)

where 𝑥(𝑡) ∈ 𝑋, 𝑥
𝑡
, 𝑡 ≥ 0 denotes the function defined by

𝑥
𝑡
(𝜃) = 𝑥(𝑡+𝜃) for 𝜃 ∈ [−ℎ, 0],Δ𝑦(𝑡) = 𝑦(𝑡

+
)−𝑦(𝑡

−
) indicates

the gap of a piecewise continuous function 𝑦(⋅) at 𝑡, 𝜑 :

[−ℎ, 0] → 𝑋 is an appropriate function, and 𝐹, 𝐼1
𝑘
, 𝐼2

𝑘
, and 𝑔

are maps that will be specified later.
As a model, we consider a general wave equation

described by a second order differential inclusion with
impulses and nonlocal initial conditions

𝜕
2
𝑢 (𝑡, 𝜉)

𝜕𝑡2
−
𝜕
2
𝑢 (𝑡, 𝜉)

𝜕𝜉2

∈ ∫

𝜉

0

𝑓
0
(𝑡, 𝜂, 𝑢 (𝑡, 𝜂)

𝜕𝑢 (𝑡, 𝜂)

𝜕𝑡
∫

0

−ℎ

𝑢 (𝑡 + 𝜃, 𝜂) 𝑑𝜃)𝑑𝜂,

𝑡 ̸= 𝑡
𝑘
,

(5)

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 ∈ [0, 𝑇] , (6)

𝑢 (𝑡
+

𝑘
, 𝜉) = 𝑢 (𝑡

𝑘
, 𝜉) + 𝑎

1

𝑘
(𝜉) ∫

𝜋

0

𝑞
1

𝑘
(𝜂) 𝑢 (𝑡

𝑘
, 𝜂) 𝑑𝜂 + 𝑏

1

𝑘
(𝜉) ,

(7)
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𝜕

𝜕𝑡
𝑢 (𝑡

+

𝑘
, 𝜉)

=
𝜕

𝜕𝑡
𝑢 (𝑡

𝑘
, 𝜉) + 𝑎

2

𝑘
(𝜉) ∫

𝜋

0

𝑞
2

𝑘
(𝜂)

𝜕

𝜕𝑡
𝑢 (𝑡

𝑘
, 𝜂) 𝑑𝜂 + 𝑏

2

𝑘
(𝜉) ,

(8)

𝑢 (𝜃, 𝜉) + 𝜎 (𝜉) ∫

𝑇

0

∫

𝜉

0

𝑢 (𝑡 + 𝜃, 𝜂) 𝑑𝜂 𝑑𝑡

= 𝜑 (𝜃, 𝜉) , 𝜃 ∈ [−ℎ, 0] ,
𝜕

𝜕𝑡
𝑢 (0, 𝜉) = 𝑧 (𝜉) ,

(9)

for 𝑡 ∈ 𝐽 = [0, 𝑇], 𝜉 ∈ (0, 𝜋), and 𝑘 = 1, . . . , 𝑚. In this system
we assume that 𝑓

0
is a multivalued map, and the inclusion

indicated in (5) will be explained in Section 4. Moreover, 𝑎𝑖

𝑘
,

𝑏
𝑖

𝑘
, 𝑞𝑖

𝑘
, 𝑖 = 1, 2, 𝜑 and 𝑧 are appropriate functions.

Here we briefly discuss the context in which our work
is inserted. We do not intend to make an exhaustive list of
references but just mention those most recent and directly
related to the topic of this paper. Differential inclusions and
impulsive differential inclusions are used to describe many
phenomena arising fromdifferent fields as physics, chemistry,
population dynamics, and so forth. For this reason, last years
several researchers have studied various aspects of the theory.
Wemention here to [1–6] and references in these texts for the
motivations of the theory.

In particular, there are phenomena in nature that experi-
ment abrupt changes at fixed moments of time. Such kind of
systems are well described by impulsive systems. In the study
of ordinary and partial differential equations with impulsive
action, interesting questions appear such as local and global
existence, stability, controllability, and so forth. For this rea-
son this topic has attracted the attention of many authors in
the last time. We only mention here the papers [7–17] which
are directly related with the objective of this paper.

The concept of nonlocal initial condition was introduced
by Byszewski and Lakshmikantham to extend the classical
theory of initial value problems ([18–22]). This notion is
more appropriate than the classical theory to describe natural
phenomena because it allows us to consider additional
information. Thenceforth, the study of differential equations
with nonlocal initial conditions has been an active topic of
research. The interested reader can consult [23–26] and the
references therein for recent developments on issues similar
to those addressed in this paper.

On the other hand, it is well known that retarded func-
tional differential equations are used to model important
concrete phenomena. For general aspects of the theory of
partial differential equations with delay we refer to [27], and
for functional differential inclusions we refer to [7, 9, 12–
14, 28]. In similar way, there exists an extensive literature con-
cerning abstract second order problems. In the autonomous
case, the existence of solutions to the second order abstract
Cauchy problem is strongly related with the concept of cosine
functions.

In this paper, we combine the theory of cosine functions
with the properties of the measure of noncompactness and
some properties of function spaces introduced in [9] to
establish the existence of solutions to the problems (1)–(4).

This paper has four sections. In Section 2 we develop
someproperties about the abstract Cauchy problemof second
order, the measure of noncompactness, and multivalued
analysis which are needed to establish our results. In Section 3
we discuss the existence of mild solutions to problems (1)–
(4). Finally, in Section 4 we apply our results to establish the
existence of solutions to problems (5)–(9).

The terminology and notations are those generally used
in functional analysis. In particular, if (𝑌, ‖ ⋅ ‖

𝑌
) and (𝑍, ‖ ⋅ ‖

𝑍
)

are Banach spaces, we denote byL(𝑌, 𝑍) the Banach space of
the bounded linear operators from𝑌 into𝑍 andwe abbreviate
this notation toL(𝑌) whenever 𝑍 = 𝑌.

2. Preliminaries

2.1. The Second Order Abstract Cauchy Problem. In this sec-
tion we collect the main facts concerning the existence of
solutions for second order abstract differential equations. For
the theory of cosine functions of operators we refer to [29–
34]. We next only mention a few concepts and properties rel-
ative to the second order abstract Cauchy problem.Through-
out this paper, 𝐴 is the infinitesimal generator of a strongly
continuous cosine function of bounded linear operators 𝐶(𝑡)
on the Banach space 𝑋. We denote by 𝑆(𝑡) the sine function
associated with 𝐶(𝑡) which is defined by

𝑆 (𝑡) 𝑥 = ∫

𝑡

0

𝐶 (𝑠) 𝑥 𝑑𝑠, 𝑥 ∈ 𝑋, 𝑡 ∈ R. (10)

We denote by 𝑀, 𝑀
1
some positive constants such that

‖𝐶(𝑡)‖ ≤ 𝑀 and ‖𝑆(𝑡)‖ ≤ 𝑀
1
for 𝑡 ∈ 𝐽. The function 𝑆 : R →

L(𝑋) is continuous for the norm of operators and ‖𝑆(𝑡)‖ ≤

𝑀𝑡 for every 𝑡 ∈ 𝐽.Thenotation𝐸 stands for the space formed
by the vectors 𝑥 ∈ 𝑋 for which 𝐶(⋅)𝑥 is a function of class
𝐶

1 on R. We know from Kisyński [35] that 𝐸 endowed with
the norm

‖𝑥‖𝐸 = ‖𝑥‖ + sup
0≤𝑡≤1

‖𝐴𝑆 (𝑡) 𝑥‖ , 𝑥 ∈ 𝐸, (11)

is a Banach space.
The operator valued function 𝐺(𝑡) = [

𝐶(𝑡) 𝑆(𝑡)

𝐴𝑆(𝑡) 𝐶(𝑡)
] is a

strongly continuous group of bounded linear operators on the
space 𝐸×𝑋, generated by the operatorA = [

0 𝐼

𝐴 0
] defined on

𝐷(𝐴) × 𝐸. It follows from this property that 𝐴𝑆(𝑡) : 𝐸 → 𝑋

is a bounded linear operator and that 𝐴𝑆(⋅) : R → L(𝐸;𝑋)

is a strongly continuous operator valued map. We denote by
𝑀

2
a positive constant such that ‖𝐴𝑆(𝑡)‖L(𝐸;𝑋)

≤ 𝑀
2
for all

𝑡 ∈ 𝐽. In addition ([34])
𝑆 (𝑡 + 𝑠) = 𝐶 (𝑡) 𝑆 (𝑠) + 𝐶 (𝑠) 𝑆 (𝑡) , 𝑠, 𝑡 ∈ R, (12)

which implies that
𝐴𝑆 (𝑡 + 𝑠) 𝑥 = 𝐶 (𝑡) 𝐴𝑆 (𝑠) 𝑥 + 𝐶 (𝑠) 𝐴𝑆 (𝑡) 𝑥,

𝑥 ∈ 𝐸, 𝑠, 𝑡 ∈ R.

(13)

Furthermore, if 𝑥 : [0,∞) → 𝑋 is a locally integrable
function, then

𝑦 (𝑡) = ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠 (14)

defines an 𝐸-valued continuous function.
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The existence of solutions of the second order abstract
Cauchy problem

𝑥
󸀠󸀠
(𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ 𝐽,

𝑥 (0) = 𝑧
1
, 𝑥

󸀠
(0) = 𝑧

2
,

(15)

where 𝑓 : [0, 𝑇] → 𝑋 is an integrable function has been dis-
cussed in [30, 32–34, 36]. Similarly, the existence of solutions
for the semilinear second order abstract Cauchy problem has
been treated in [37]. We only mention here that the function
𝑥(⋅) given by

𝑥 (𝑡) = 𝐶 (𝑡) 𝑧
1
+ 𝑆 (𝑡) 𝑧

2
+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐽,

(16)

is called mild solution of (15), and that when 𝑧1
∈ 𝐸 the func-

tion 𝑥(⋅) is continuously differentiable and

𝑥
󸀠
(𝑡) = 𝐴𝑆 (𝑡) 𝑧

1
+ 𝐶 (𝑡) 𝑧

2
+ ∫

𝑡

0

𝐶 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠. (17)

2.2. Measure of Noncompactness and Multivalued Maps. In
this subsection we recall some facts concerning multivalued
analysis, which will be used later. Let Ω be a metric space.
Throughout this paper P(Ω) denotes the collection of all
nonempty subsets of Ω and P

𝑏
(Ω) denotes the collection of

all bounded nonempty subsets ofΩ.
Someof our results are based on the concept ofmeasure of

noncompactness. For this reason, we next recall a few proper-
ties of this concept. For general information the reader can see
[5, 9, 38, 39]. In this paper, we use the notion of Hausdorff
measure of noncompactness.

Definition 1. Let 𝐵 be a bounded subset of a metric space Ω.
TheHausdorffmeasure of noncompactness of 𝐵 is defined by

𝜂 (𝐵) = inf {𝜀 > 0 : 𝐵 has a finite cover

by closed balls of radius < 𝜀} .

(18)

Remark 2. Let 𝐵
1
, 𝐵

2
⊆ Ω be bounded sets. The Hausdorff

measure of noncompactness has the following properties.

(a) If 𝐵
1
⊆ 𝐵

2
, then 𝜂(𝐵

1
) ⩽ 𝜂(𝐵

2
).

(b) 𝜂(𝐵) = 𝜂(𝐵).
(c) 𝜂(𝐵) = 0 if and only if 𝐵 is totally bounded.
(d) 𝜂(𝐵

1
∪ 𝐵

2
) = max{𝜂(𝐵

1
), 𝜂(𝐵

2
)}.

In what follows, we assume that 𝑌 is a normed space. For
a bounded set 𝐵 ⊆ 𝑌, we denote by co(𝐵) the closed convex
hull of the set 𝐵.

Remark 3. Let 𝐵
1
, 𝐵

2
⊆ 𝑌 be bounded sets. The following

properties hold.

(a) For 𝜆 ∈ R, 𝜂(𝜆𝐵) = |𝜆|𝜂(𝐵).
(b) 𝜂(𝐵

1
+ 𝐵

2
) ⩽ 𝜂(𝐵

1
) + 𝜂(𝐵

2
), where 𝐵

1
+ 𝐵

2
= {𝑏

1
+ 𝑏

2
:

𝑏
1
∈ 𝐵

1
, 𝑏

2
∈ 𝐵

2
}.

(c) 𝜂(𝐵) = 𝜂(co(𝐵)).

Henceforth we use the notations 𝜐(𝑌) and K𝜐(𝑌) to
denote the following sets:

(s1) 𝜐(𝑌) = {𝐷 ∈ P(𝑌) : 𝐷 is convex},
(s2) K𝜐(𝑌) = {𝐷 ∈ 𝜐(𝑌) : 𝐷 is compact}.

We refer the reader to the already mentioned references
to abstract concepts of measure of noncompactness and for
many examples of measure of noncompactness.

Definition 4. Let Ω be metric space. We said that a multival-
ued mapF : Ω → P(𝑌) is said to be

(i) upper semicontinuous (u.s.c. for short) if F−1
(𝑉) =

{𝑤 ∈ Ω : F(𝑤) ⊆ 𝑉} is an open subset of Ω for all
open set 𝑉 ⊆ 𝑌;

(ii) closed if its graph𝐺F = {(𝑤, 𝑦); 𝑦 ∈ F(𝑤)} is a closed
subset ofΩ × 𝑌;

(iii) compact if its rangeF(Ω) is relatively compact in 𝑌;
(iv) quasicompact if F(𝐾) is relatively compact in 𝑌 for

any compact subset 𝐾 ⊂ Ω.

Definition 5. A multivalued map F : Ω → P(𝑌) is said
to be a condensing map with respect to 𝜂 (abbreviated, 𝜂-
condensing) if for every bounded set 𝐷 ⊂ Ω, 𝜂(𝐷) > 0,
𝜂(F(𝐷)) < 𝜂(𝐷).

The next result is essential for the development of the rest
of our work. We point out that if F : Ω → 𝐾𝜐(𝑌) is u.s.c.,
then F is closed. This allows us to establish the following
version of the fixed point theorem [5, Corollary 3.3.1].

Theorem 6. Let𝑀 be a convex closed subset of 𝑌, and letF :

𝑀 → 𝐾𝜐(𝑀) be a u.s.c. 𝛽-condensingmultivaluedmap.Then
𝐹𝑖𝑥(F) = {𝑦 ∈ 𝐹(𝑦)} is a nonempty compact set.

2.3. Function Spaces. Let 𝐼 be any of the intervals [0, 𝑇] or
[−ℎ, 𝑇]. The space PC(𝐼; 𝑋) is formed by all piecewise con-
tinuous functions 𝑥 : 𝐼 → 𝑋 satisfying the following con-
ditions:

(c1) the function 𝑥(⋅) is continuous on 𝐼 \ {𝑡
1
, . . . , 𝑡

𝑚
}, and

(c2) there exist lim
𝑡→ 𝑡
+

𝑗

𝑥(𝑡) and lim
𝑡→ 𝑡
−

𝑗

and 𝑥(𝑡
𝑗
) =

lim
𝑡→ 𝑡
−

𝑗

𝑥(𝑡) for all 1 ≤ 𝑗 ≤ 𝑚.

We consider PC(𝐼; 𝑋) endowedwith the norm of the uniform
convergence

‖𝑥‖PC = sup
𝑡∈𝐼

‖𝑥 (𝑡)‖ . (19)

It is well known that PC(𝐼; 𝑋) is a Banach space. Furthermore,
let Π

𝑗
: PC(𝐼; 𝑋) → 𝐶([𝑡

𝑗
, 𝑡

𝑗+1
]; 𝑋), −1 ≤ 𝑗 ≤ 𝑚, be the map

defined by

Π
𝑗
(𝑥) (𝑡) = {

𝑥 (𝑡) if 𝑡 ∈ (𝑡
𝑗
, 𝑡

𝑗+1
] ,

𝑥 (𝑡
+

𝑗
) if 𝑡 = 𝑡

𝑗
,

(20)

where we set 𝑡
−1

= −ℎ, 𝑡
0
= 0, and 𝑡

𝑚+1
= 𝑇. For each 𝑗 ∈

{0, . . . , 𝑚} and𝐷 ⊆ PC([−ℎ, 𝑇]; 𝑋), we denote by𝐷
𝑗
the range

of𝐷 under the operator Π
𝑗
; that is,𝐷

𝑗
= Π

𝑗
(𝐷).
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We define the subspace PC1
([−ℎ, 𝑇]; 𝑋) of PC([−ℎ, 𝑇]; 𝑋)

consisting of all functions which are continuously differen-
tiable at [0, 𝑇] \ {𝑡

1
, . . . , 𝑡

𝑚
} and there exist 𝑥󸀠

(𝑡
+

𝑘
) and 𝑥

󸀠
(𝑡

−

𝑘
)

for all 1 ≤ 𝑘 ≤ 𝑚. It is straightforward to show that the space
PC1

([−ℎ, 𝑇]; 𝑋) endowed with the norm

‖𝑥‖PC1 = ‖𝑥‖PC + sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑥

󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩 (21)

is a Banach space.
From now on we denote by 𝐶𝑝

ℎ
, 1 ≤ 𝑝 < ∞, the space of

piecewise continuous functions V : [−ℎ, 0] → 𝑋 endowed
with the norm

‖V‖
𝐶
𝑝

ℎ

=
1

ℎ1/𝑝
(∫

0

−ℎ

‖V(𝜃)‖𝑝𝑑𝜃)
1/𝑝

. (22)

In what follows we denote by 𝜒 the Hausdorff measure
of noncompactness in 𝑋 and by 𝛽 the Hausdorff measure
of noncompactness in a space of continuous (or piecewise
continuous) functions with values in𝑋. We next collect some
properties of measure 𝛽 which are needed to establish our
results.

Lemma 7. Let 𝐺 : [0, 𝑇] → L(𝑋) be a strongly continuous
operator valued map. Let 𝐷 ⊂ 𝑋 be a bounded set. Then
𝛽({𝐺(⋅)𝑥 : 𝑥 ∈ 𝐷}) ≤ sup

0≤𝑡≤𝑇
‖𝐺(𝑡)‖𝜒(𝐷).

Lemma 8. Let 𝐷 ⊂ 𝑃𝐶([−ℎ, 𝑇]; 𝑋) be a bounded set. Then
𝛽(𝐷) = max

𝑘=−1,...,𝑚
𝛽(𝐷

𝑘
).

Lemma 9 (see [39]). Let𝑊 ⊆ 𝐶(𝐽;𝑋) be a bounded set. Then
𝜒(𝑊(𝑡)) ⩽ 𝛽(𝑊) for all 𝑡 ∈ 𝐽. Furthermore, if 𝑊 is equicon-
tinuous on 𝐽, then 𝜒(𝑊(𝑡)) is continuous on 𝐽, and

𝛽 (𝑊) = sup {𝜒 (𝑊 (𝑡)) : 𝑡 ∈ 𝐽} . (23)

Lemma 10. Let 𝐷 ⊆ 𝐶(𝐽; 𝑋) be a bounded set. Then there
exists a countable set𝐷

0
⊆ 𝐷 such that 𝛽(𝐷

0
) = 𝛽(𝐷).

A set 𝑊 ⊆ 𝐿
1
(𝐽; 𝑋) is said to be uniformly integrable if

there exists a positive function 𝜇 ∈ 𝐿
1
(𝐽) such that ‖𝑤(𝑡)‖ ≤

𝜇(𝑡) a.e. for 𝑡 ∈ 𝐽 and all 𝑤 ∈ 𝑊.

Lemma 11. Let 𝐺 : [0, 𝑇] → L(𝑋) be a strongly continuous
operator valued map and Λ : 𝐿

1
([0, 𝑇]; 𝑋) → 𝐶([0, 𝑇]; 𝑋) be

the map defined by

Λ (𝑢) (𝑡) = ∫

𝑡

0

𝐺 (𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠. (24)

Let𝑊 ⊂ 𝐿
1
([0, 𝑇]; 𝑋). Assume that there is a compact set𝐾 ⊂

𝑋 and a positive function 𝑞 ∈ 𝐿
1
([0, 𝑇]) such that 𝑊(𝑡) ⊆ 𝐾

for all 𝑡 ∈ [0, 𝑇] and 𝜒(𝑊(𝑡)) ≤ 𝑞(𝑡). Then

𝛽 (Λ (𝑊)) ≤ 2 sup
0≤𝑡≤𝑇

‖𝐺 (𝑡)‖ ∫

𝑇

0

𝑞 (𝑡) 𝑑𝑡. (25)

Proof. It is clear that 𝑊 is uniformly integrable. Applying
Lemma 10 and [5, Theorem 4.2.2], we can affirm that

𝜒 (Λ (𝑊) (𝑡)) ≤ 2 sup
0≤𝑡≤𝑇

‖𝐺 (𝑡)‖ ∫

𝑡

0

𝑞 (𝑠) 𝑑𝑠. (26)

Since the set Λ(𝑊) is equicontinuous, using Lemma 11, we
obtain the assertion.

We also need to consider the product space PC([−ℎ, 𝑇];
𝑋) × PC([0, 𝑇]; 𝑋) provided with the norm

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨(𝑥, 𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨 = max {‖𝑥‖PC([−ℎ,𝑇];𝑋)
,
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩PC([0,𝑇];𝑋)
} . (27)

The following property is immediate.

Lemma 12. Let 𝑊 ⊂ 𝑃𝐶([−ℎ, 𝑇]; 𝑋) × 𝑃𝐶([0, 𝑇]; 𝑋) be a
bounded set.

(a) Assume that 𝑊 = 𝑊
1
× 𝑊

2
, where 𝑊

1
⊂ 𝑃𝐶([−ℎ, 𝑇];

𝑋) and 𝑊
2
⊂ 𝑃𝐶([0, 𝑇]; 𝑋) are bounded sets. Then

𝛽(𝑊) = max{𝛽(𝑊
1
), 𝛽(𝑊

2
)}.

(b) Let

𝑊
1
= {𝑥 ∈ 𝑃𝐶 ([−ℎ, 𝑇] ; 𝑋) : (𝑥, 𝑦) ∈ 𝑊,

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 ∈ 𝑃𝐶 ([0, 𝑇] ; 𝑋)} ,

𝑊
2
= {𝑦 ∈ 𝑃𝐶 ([0, 𝑇] ; 𝑋) : (𝑥, 𝑦) ∈ 𝑊,

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝑃𝐶 ([−ℎ, 𝑇] ; 𝑋)} .

(28)

Thenmax{𝛽(𝑊
1
), 𝛽(𝑊

2
)} ≤ 𝛽(𝑊).

3. Existence Results

In this section we establish some results of existence of
mild solutions of problems (1)–(4). Initially we will establish
the general framework of conditions under which we will
study this problem. Throughout this section, 𝜒 denotes the
Hausdorff measure of noncompactness in𝑋. We assume that
𝜑 ∈ 𝐶([−ℎ, 0]; 𝑋). Moreover, in what follows we assume that
𝐹 is a multivalued map from 𝐽 ×𝑋×𝑋×𝐶

𝑝

ℎ
intoK𝜐(𝑋) that

satisfies the following properties.

(F1) The function 𝐹(⋅, 𝑦
1
, 𝑦

2
, 𝜓) : [0, 𝑇] → K𝜐(𝑋)

admits a strongly measurable selection for each 𝑦
𝑖
∈

𝑋, 𝑖 = 1, 2, and 𝜓 ∈ 𝐶
𝑝

ℎ
.

(F2) For each 𝑡 ∈ [0, 𝑇], the function 𝐹(𝑡, ⋅, ⋅, ⋅) : 𝑋 × 𝑋 ×

𝐶
𝑝

ℎ
→ K𝜐(𝑋) is u.s.c.

(F3) For each 𝑟 > 0, there is a function 𝜇
𝑟
∈ 𝐿

1
([0, 𝑇]) such

that
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑡, 𝑦

1
, 𝑦

2
, 𝜓)

󵄩󵄩󵄩󵄩󵄩
:= sup {‖V‖ : V ∈ 𝐹 (𝑡, 𝑦

1
, 𝑦

2
, 𝜓)} ≤ 𝜇

𝑟
(𝑡) ,

a.e. 𝑡 ∈ [0, 𝑇] ,

(29)

for all 𝑦𝑖
∈ 𝑋, 𝑖 = 1, 2, and 𝜓 ∈ 𝐶

𝑝

ℎ
such that

󵄩󵄩󵄩󵄩󵄩
𝑦

1󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑦

2󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐶
𝑝

ℎ

≤ 𝑟. (30)
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(F4) There exists a positive integrable function 𝑘(⋅) on
[0, 𝑇] such that

𝜒 (𝐹 (𝑡, Ω
1
, Ω

2
, 𝑄)) ≤ 𝑘 (𝑡) (𝜒 (Ω

1
) + 𝜒 (Ω

2
))

+ sup
𝜃∈[−ℎ,0]

𝜒 (𝑄 (𝜃)) , a.e. 𝑡 ∈ [0, 𝑇] ,

(31)

for all bounded setsΩ
𝑖
⊆ 𝑋, 𝑖 = 1, 2, and𝑄 ⊆ 𝐶

𝑝

ℎ
such

that sup
𝜃∈[−ℎ,0]

{‖ 𝜓(𝜃) ‖: 𝜓 ∈ 𝑄} < ∞.

Remark 13. Let 𝑥(⋅) ∈ PC([−ℎ, 𝑇]; 𝑋) and 𝑦(⋅) ∈ PC([0,
𝑇]; 𝑋). Then the function [0, 𝑇] → 𝐶

𝑝

ℎ
, 𝑡 󳨃→ 𝑥

𝑡
, is contin-

uous. Hence, the function [0, 𝑇] → 𝑋 × 𝑋 × 𝐶
𝑝

ℎ
, 𝑡 󳨃→ (𝑥(𝑡),

𝑦(𝑡), 𝑥
𝑡
), is strongly measurable. Combining this assertion

with conditions (F1) and (F2) and applying [5, Theorem
1.3.5] we infer that the function [0, 𝑇] → K𝜐(𝑋), 𝑡 󳨃→

𝐹(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑥
𝑡
) admits a Bochner integrable selection. As

a consequence, the set

S
𝐹,𝑥,𝑦

= {𝑓 ∈ 𝐿
1
(𝐽; 𝑋) : 𝑓 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑥

𝑡
) , 𝑡 ∈ 𝐽} ̸= 0,

(32)

and S
𝐹,𝑥,𝑦

is convex.

Next we introduce the conditions on the function 𝑔. We
assume that𝑔 is amap fromPC([−ℎ, 𝑇]; 𝑋) into𝐶([−ℎ, 0]; 𝑋)

such that the values 𝑔(𝑥)(0) ∈ 𝐸 for all 𝑥(⋅) ∈ PC([−ℎ, 𝑇]; 𝑋)

and that the following conditions are fulfilled.

(g1) The function 𝑔 is continuous and takes bounded
sets in PC([−ℎ, 𝑇]; 𝑋) into bounded subsets of
𝐶([−ℎ, 0]; 𝑋). Moreover, the map 𝑔(⋅)(0) : PC([−ℎ,
𝑇]; 𝑋) → 𝐸 is continuous and takes bounded sets in
PC([−ℎ, 𝑇]; 𝑋) into bounded subsets of 𝐸.

(g2) There is a continuous function ℓ : [−ℎ, 0] → [0,∞)

and a constant ℓ
1
≥ 0 such that

𝜒 (𝑔 (𝑊) (𝜃)) ≤ ℓ (𝜃) sup
𝑡∈[−ℎ,𝑇]

𝜒 (𝑊 (𝑡)) , 𝜃 ∈ [−ℎ, 0] ,

𝜒
𝐸
(𝑔 (𝑊) (0)) ≤ ℓ

1
sup

𝑡∈[−ℎ,𝑇]

𝜒 (𝑊 (𝑡)) ,

(33)

for all bounded set𝑊 ⊂ PC([−ℎ, 𝑇], 𝑋).

(g3) For each bounded set 𝑊 ⊂ PC([−ℎ, 𝑇]; 𝑋) the set
𝑔(𝑊) is equicontinuous.

Next we establish the conditions on maps 𝐼𝑖
𝑘
, 𝑖 = 1, 2, 𝑘 =

1, . . . , 𝑚.
We assume that 𝐼1

𝑘
: 𝑋 × 𝑋 × 𝐶

𝑝

ℎ
→ 𝐸 and 𝐼

2

𝑘
: 𝑋 × 𝑋 ×

𝐶
𝑝

ℎ
→ 𝑋 satisfy the following conditions.

(I1) Themaps 𝐼𝑖
𝑘
, 𝑖 = 1, 2, 𝑘 = 1, . . . , 𝑚 are continuous and

takes bounded sets into bounded sets.

(I2) There are positive constants 𝑑𝑖,𝑗

𝑘
, 𝑖 = 1, 2, 𝑗 = 0, 1, 2,

𝑘 = 1, . . . , 𝑚, such that

𝜒
𝐸
(𝐼

1

𝑘
(𝐷

0
× 𝐷

1
×𝑊))

≤ 𝑑
1,0

𝑘
𝜒 (𝐷

0
) + 𝑑

1,1

𝑘
𝜒 (𝐷

1
) + 𝑑

1,2

𝑘
sup

−ℎ≤𝜃≤0

𝜒 (𝑊 (𝜃)) ,

𝜒 (𝐼
2

𝑘
(𝐷

0
× 𝐷

1
×𝑊))

≤ 𝑑
2,0

𝑘
𝜒 (𝐷

0
) + 𝑑

2,1

𝑘
𝜒 (𝐷

1
) + 𝑑

2,2

𝑘
sup

−ℎ≤𝜃≤0

𝜒 (𝑊 (𝜃)) ,

(34)

for all bounded subsets𝐷
0
, 𝐷

1
of𝑋, and𝑊 ⊆ 𝐶

𝑝

ℎ
such

that sup
𝜃∈[−ℎ,0]

{‖𝜓(𝜃)‖ : 𝜓 ∈ 𝑊} < ∞.

Remark 14. Let 𝑊 ⊂ PC([−ℎ, 𝑇]; 𝑋) be a bounded set. Then
for all 𝑡 ∈ [0, 𝑇], 𝑊

𝑡
= {𝑤

𝑡
: 𝑤 ∈ 𝑊} is a bounded subset of

𝐶
𝑝

ℎ
and sup

−ℎ≤𝜃≤0
𝜒(𝑊

𝑡
(𝜃)) ≤ 𝛽(𝑊) for all 0 ≤ 𝑡 ≤ 𝑇.

Motivated by expressions (16) and (17) (see also [12]), we
introduce the following concept of mild solution to problems
(1)–(4).

Definition 15. A function 𝑥(⋅) ∈ PC1
([−ℎ, 𝑇]; 𝑋) is said to be

a mild solution of (1)–(4) if conditions (2)–(4) are satisfied,
and the integral equation

𝑥 (𝑡) = 𝐶 (𝑡) (𝜑 (0) − 𝑔 (𝑥) (0)) + 𝑆 (𝑡) 𝑧

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠

+ ∑

𝑡𝑘<𝑡

𝐶 (𝑡 − 𝑡
𝑘
) 𝐼

1

𝑘
(𝑥 (𝑡

𝑘
) , 𝑥

󸀠
(𝑡

𝑘
) , 𝑥 (𝑡

𝑘
))

+ ∑

𝑡𝑘<𝑡

𝑆 (𝑡 − 𝑡
𝑘
) 𝐼

2

𝑘
(𝑥 (𝑡

𝑘
) , 𝑥

󸀠
(𝑡

𝑘
) , 𝑥 (𝑡

𝑘
)) ,

(35)

is verified for 𝑓 ∈ S
𝐹,𝑥,𝑥
󸀠 and all 𝑡 ∈ [0, 𝑇].

To establish our results, we need to study two integral
operators defined on the set S

𝐹,𝑥,𝑦
for functions 𝑥 ∈

PC([−ℎ, 𝑇]; 𝑋) and 𝑦 ∈ PC([0, 𝑇]; 𝑋). Initially we mention
some properties ofS

𝐹,𝑥,𝑦
. A first result establishes thatS

𝐹,𝑥,𝑦

is closed. Specifically we have the following property ([5,
Lemma 5.1.1]).

Lemma 16. Let {𝑥
𝑛
}
∞

𝑛=1
⊂ 𝑃𝐶([−ℎ, 𝑇]; 𝑋) and {𝑦

𝑛
}
∞

𝑛=1
⊂

𝑃𝐶([0, 𝑇]; 𝑋) be sequences that converge to 𝑥
0

∈ 𝑃𝐶([−ℎ,

𝑇]; 𝑋) and 𝑦
0

∈ 𝑃𝐶([0, 𝑇]; 𝑋), respectively. Suppose that
{𝑓

𝑛
}
∞

𝑛=1
⊂ 𝐿

1
([0, 𝑇]; 𝑋), 𝑓

𝑛
∈ S

𝐹,𝑥𝑛,𝑦𝑛
, is a sequence that con-

verges weakly to 𝑓
0
∈ 𝐿

1
([0, 𝑇]; 𝑋). Then 𝑓

0
∈ S

𝐹,𝑥0 ,𝑦0
.

On the other hand, since the values of 𝐹 are convex
compact sets, and, as already mentioned, the graph of 𝐹 is
closed, we can assert that for functions 𝑥(⋅) ∈ PC([−ℎ, 𝑇]; 𝑋)

and 𝑦(⋅) ∈ PC([0, 𝑇]; 𝑋), the set ∪
0≤𝑡≤𝑡

𝐹(𝑡, 𝑥(𝑡), 𝑦(𝑡), 𝑥
𝑡
) is

compact in 𝑋. In addition, as a consequence of (F3), the set
S

𝐹,𝑥,𝑦
is uniformly integrable over 𝐽; that is to say, there exists
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a positive function 𝜇
𝑥,𝑦

∈ 𝐿
1
(𝐽) such that ‖𝑓(𝑡)‖ ≤ 𝜇

𝑥,𝑦
(𝑡) a.e.

for 𝑡 ∈ 𝐽 and all 𝑓 ∈ S
𝐹,𝑥,𝑦

.
We introduce now the operators Λ

1
, Λ

2
: 𝐿

1
([0, 𝑇];

𝑋) → 𝐶([0, 𝑇]; 𝑋) given by

Λ
1
𝑓 (𝑡) = ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠,

Λ
2
𝑓 (𝑡) = ∫

𝑡

0

𝐶 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠.

(36)

It is clear that Λ
1
, Λ

2
are bounded linear operators. Using

Λ
1
, Λ

2
we can construct the multivalued maps Λ̃

1
, Λ̃

2
:

PC([−ℎ, 𝑇]; 𝑋) × PC([0, 𝑇]; 𝑋) → 𝜐(𝐶([0, 𝑇]; 𝑋)) given by

Λ̃
1
(𝑥, 𝑦) = Λ

1
(S

𝐹,𝑥,𝑦
) ,

Λ̃
2
(𝑥, 𝑦) = Λ

2
(S

𝐹,𝑥,𝑦
) .

(37)

Since 𝐶(⋅) and 𝑆(⋅) are strongly continuous operator valued
functions, the assertion in [5, Lemma 4.2.1] remains valid for
Λ

1
and Λ

2
. Hence, combining our previous remarks with [5,

Lemma 4.2.1, Corollary 5.1.2] we can establish the following
property.

Lemma 17. Let 𝐹 : [0, 𝑇] ×𝑋×𝑋×𝐶
𝑝

ℎ
→ K𝜐(𝑋) be a mul-

tivalued map satisfying conditions (F1)–(F4). Then Λ̃
1
and Λ̃

2

are u.s.c. maps with convex compact values.

We next define the solution map for problems (1)–(4) as
follows. Assume that 𝜑(0) ∈ 𝐸 and let 𝑥 ∈ PC1

([−ℎ, 𝑇]; 𝑋).
We define Γ(𝑥) to be the set formed by all functions 𝑢 given
by

𝑢 (𝑡) =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝜑 (𝑡) − 𝑔 (𝑥) (𝑡) , 𝑡 ∈[−ℎ, 0] ,

𝐶 (𝑡) (𝜑 (0) − 𝑔 (𝑥) (0)) + 𝑆 (𝑡) 𝑧

+∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠

+∑

𝑡𝑘<𝑡

𝐶 (𝑡 − 𝑡
𝑘
) 𝐼

1

𝑘
(𝑥 (𝑡

𝑘
) , 𝑥

󸀠
(𝑡

𝑘
) , 𝑥

𝑡𝑘
)

+∑

𝑡𝑘<𝑡

𝑆 (𝑡 − 𝑡
𝑘
)𝐼

2

𝑘
(𝑥 (𝑡

𝑘
), 𝑥

󸀠
(𝑡

𝑘
), 𝑥

𝑡𝑘
), 𝑡 ∈[0, 𝑇] ,

(38)

for 𝑓 ∈ S
𝐹,𝑥,𝑥
󸀠 . It follows from our hypotheses that

𝑢 ∈ PC1
([−ℎ, 𝑇]; 𝑋). Hence, Γ : PC1

([−ℎ, 𝑇]; 𝑋) →

P(PC1
([−ℎ, 𝑇]; 𝑋)). Furthermore, it is clear that𝑥(⋅) is amild

solution of problems (1)–(4) if and only if 𝑥(⋅) is a fixed point
of Γ.

We are now in a position to prove the main result of
this section. We introduce the map F : PC([−ℎ, 𝑇]; 𝑋) ×

PC([0, 𝑇]; 𝑋) → P(PC([−ℎ, 𝑇]; 𝑋) × PC([0, 𝑇]; 𝑋)) defined

as follows. For (𝑥, 𝑦) ∈ PC([−ℎ, 𝑇]; 𝑋) × PC([0, 𝑇]; 𝑋),
F(𝑥, 𝑦) is the set consisting of all functions (𝑢, V) given by

𝑢 (𝑡)

=

{{{{{{{{{{

{{{{{{{{{{

{

𝜑 (𝑡) − 𝑔 (𝑥) (𝑡) , 𝑡∈[−ℎ, 0] ,

𝐶 (𝑡) (𝜑 (0)−𝑔 (𝑥) (0))+𝑆 (𝑡) 𝑧+Λ
1
(𝑓) (𝑡)

+∑

𝑡𝑘<𝑡

𝐶 (𝑡−𝑡
𝑘
) 𝐼

1

𝑘
(𝑥 (𝑡

𝑘
) , 𝑦 (𝑡

𝑘
) , 𝑥

𝑡𝑘
)

+∑

𝑡𝑘<𝑡

𝑆 (𝑡−𝑡
𝑘
) 𝐼

2

𝑘
(𝑥 (𝑡

𝑘
) , 𝑦 (𝑡

𝑘
) , 𝑥

𝑡𝑘
) , 𝑡∈[0, 𝑇] ,

(39)

V (𝑡)

=

{{{{{{{

{{{{{{{

{

𝐴𝑆 (𝑡) (𝜑 (0)−𝑔 (𝑥) (0))+𝐶 (𝑡) 𝑧+Λ
2
(𝑓) (𝑡)

+∑

𝑡𝑘<𝑡

𝐴𝑆 (𝑡−𝑡
𝑘
) 𝐼

1

𝑘
(𝑥 (𝑡

𝑘
) , 𝑦 (𝑡

𝑘
) , 𝑥

𝑡𝑘
)

+∑

𝑡𝑘<𝑡

𝐶 (𝑡−𝑡
𝑘
) 𝐼

2

𝑘
(𝑥 (𝑡

𝑘
) , 𝑦 (𝑡

𝑘
) , 𝑥

𝑡𝑘
) , 𝑡∈[0, 𝑇] ,

(40)

for 𝑓 ∈ S
𝐹,𝑥,𝑦

. It follows from (g1) and (I1) that F is well
defined.

We use the following notations:

𝑁
𝑖
=

𝑚

∑

𝑘=1

(𝑑
𝑖,0

𝑘
+ 𝑑

𝑖,2

𝑘
) , 𝑖 = 1, 2,

𝑁
𝑖+2

=

𝑚

∑

𝑘=1

𝑑
𝑖,1

𝑘
, 𝑖 = 1, 2,

𝑁
5
= max{ max

−ℎ≤𝜃≤0

ℓ (𝜃) ,𝑀ℓ (0) + 6𝑀
1
∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡

+ 𝑀(𝑁
1
+ 𝑁

3
) + 𝑀

1
(𝑁

2
+ 𝑁

4
) } ,

𝑁
6
= 𝑀

2
ℓ
1

+ 6𝑀∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡 + 𝑀
2
(𝑁

1
+ 𝑁

3
) + 𝑀(𝑁

2
+ 𝑁

4
) ,

𝑁
7
= max {𝑁

5
, 𝑁

6
} .

(41)

Theorem 18. Assume that𝜑(0) ∈ 𝐸, and conditions (F1)–(F4),
(g1)–(g3) and (I1)-(I2) are fulfilled. If 𝑁

7
< 1, then the map

F : 𝑃𝐶([−ℎ, 𝑇]; 𝑋) × 𝑃𝐶([0, 𝑇]; 𝑋) → 𝐾𝜐(𝑃𝐶([−ℎ, 𝑇]; 𝑋) ×

𝑃𝐶([0, 𝑇]; 𝑋)) is u.s.c. and 𝛽-condensing.

Proof. It follows from our hypotheses and Lemma 17 that
F is a u.s.c. multivalued map with convex compact val-
ues. It remains to prove that F is 𝛽-condensing. Let
Ω ⊂ PC([−ℎ, 𝑇]; 𝑋) × PC([0, 𝑇]; 𝑋) be a bounded set
such that 𝛽(F(Ω)) ≥ 𝛽(Ω). It follows from Lemma 10
that there exists a sequence (𝑤

𝑛
)
𝑛

in F(Ω) such that
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𝛽(F(Ω)) = 𝛽({𝑤
𝑛
: 𝑛 ∈ N}). We can write 𝑤

𝑛
= (𝑢

𝑛
, V

𝑛
) ∈

F(𝑥
𝑛
, 𝑦

𝑛
) for some (𝑥

𝑛
, 𝑦

𝑛
) ∈ Ω. It follows from Lemma 12

that

𝛽 ({𝑤
𝑛
: 𝑛 ∈ N}) ≤ max {𝛽 ({𝑢

𝑛
: 𝑛 ∈ N}) , 𝛽 ({V

𝑛
: 𝑛 ∈ N})} .

(42)

Here we will estimate separately the values 𝛽({𝑢
𝑛
: 𝑛 ∈ N})

and 𝛽({V
𝑛
: 𝑛 ∈ N}). To estimate 𝛽({𝑢

𝑛
: 𝑛 ∈ N}), using (39),

we can write

𝑢
𝑛
(𝑡)

=

{{{{{{{{

{{{{{{{{

{

𝜑 (𝑡) − 𝑔 (𝑥
𝑛
) (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

𝐶 (𝑡) (𝜑 (0) − 𝑔 (𝑥
𝑛
) (0)) + 𝑆 (𝑡) 𝑧 + Λ

1
(𝑓

𝑛
) (𝑡)

+∑

𝑡𝑘<𝑡

𝐶 (𝑡 − 𝑡
𝑘
) 𝐼

1

𝑘
(𝑥

𝑛
(𝑡

𝑘
) , 𝑦

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
)

+∑

𝑡𝑘<𝑡

𝑆 (𝑡 − 𝑡
𝑘
) 𝐼

2

𝑘
(𝑥

𝑛
(𝑡

𝑘
) , 𝑦

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
) , 𝑡 ∈ [0, 𝑇] ,

(43)

for 𝑓
𝑛
∈ S

𝐹,𝑥𝑛,𝑦𝑛
.

For 𝜃 ∈ [−ℎ, 0], applying (g2), we get

𝜒 ({𝑢
𝑛
(𝜃) : 𝑛 ∈ N}) = 𝜒 ({𝑔 (𝑥

𝑛
) (𝜃) : 𝑛 ∈ N})

≤ ℓ (𝜃) sup
𝑡∈[−ℎ,𝑇]

𝜒 ({𝑥
𝑛
(𝑡) : 𝑛 ∈ N}) .

(44)

Using now condition (g3) and Lemma 9 we infer that

𝛽 ({𝜑 − 𝑔 (𝑥
𝑛
) : 𝑛 ∈ N}) ≤ max

−ℎ≤𝜃≤0

ℓ (𝜃) 𝛽 ({𝑥
𝑛
: 𝑛 ∈ N}) .

(45)

Now we consider functions 𝑢
𝑛
defined on [0, 𝑇]. From (43)

and using Lemma 7, we get

𝛽 ({𝑢
𝑛
(⋅) : 𝑛 ∈ N})

≤ 𝑀𝜒 ({𝑔 (𝑥
𝑛
) (0) : 𝑛 ∈ N}) + 𝛽 ({Λ

1
(𝑓

𝑛
) (⋅) : 𝑛 ∈ N})

+ 𝑀

𝑚

∑

𝑘=1

𝜒 ({𝐼
1

𝑘
(𝑥

𝑛
(𝑡

𝑘
) , 𝑦

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
) : 𝑛 ∈ N})

+𝑀
1

𝑚

∑

𝑘=1

𝜒 ({𝐼
2

𝑘
(𝑥

𝑛
(𝑡

𝑘
) , 𝑦

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
) : 𝑛 ∈ N}) .

(46)

Using now conditions (g2), (I2), and Remark 14, we have

𝜒 ({𝑔 (𝑥
𝑛
) (0) : 𝑛 ∈ N}) ≤ ℓ (0) 𝛽 ({𝑥

𝑛
: 𝑛 ∈ N}) ,

𝜒 ({𝐼
𝑖

𝑘
(𝑥

𝑛
(𝑡

𝑘
) , 𝑦

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
) : 𝑛 ∈ N})

≤ 𝑑
𝑖,0

𝑘
𝜒 ({𝑥

𝑛
(𝑡

𝑘
) : 𝑛 ∈ N}) + 𝑑

𝑖,1

𝑘
𝜒 ({𝑦

𝑛
(𝑡

𝑘
) : 𝑛 ∈ N})

+ 𝑑
𝑖,2

𝑘
𝛽 ({𝑥

𝑛
: 𝑛 ∈ N})

≤ (𝑑
𝑖,0

𝑘
+ 𝑑

𝑖,2

𝑘
) 𝛽 ({𝑥

𝑛
: 𝑛 ∈ N}) + 𝑑

𝑖,1

𝑘
𝛽 ({𝑦

𝑛
: 𝑛 ∈ N}) .

(47)

On the other hand, since 𝑓
𝑛
∈ S

𝐹,𝑥𝑛,𝑦𝑛
, for 𝑡 ∈ [0, 𝑇] we have

that 𝑓
𝑛
(𝑡) ∈ 𝐹(𝑡, 𝑥

𝑛
(𝑡), 𝑦

𝑛
(𝑡), (𝑥

𝑛
)
𝑡
). This implies that {𝑓

𝑛
: 𝑛 ∈

N} is uniformly integrable and, applying condition (F4),

𝜒 ({𝑓
𝑛
(𝑡) : 𝑛 ∈ N})

≤ 𝑘 (𝑡) [𝜒 ({𝑥
𝑛
(𝑡) : 𝑛 ∈ N}) + 𝜒 ({𝑦

𝑛
(𝑡) : 𝑛 ∈ N})

+ sup
−ℎ≤𝜃≤0

𝜒 ({𝑥
𝑛
(𝑡 + 𝜃) : 𝑛 ∈ N})]

≤ 𝑘 (𝑡) [2𝛽 ({𝑥
𝑛
: 𝑛 ∈ N}) + 𝛽 ({𝑦

𝑛
: 𝑛 ∈ N})] .

(48)

Combining this estimate with Lemma 11 we infer that

𝛽 ({Λ
1
(𝑓

𝑛
) (⋅) : 𝑛 ∈ N})

≤ 2𝑀
1
[2𝛽 ({𝑥

𝑛
: 𝑛 ∈ N}) + 𝛽 ({𝑦

𝑛
: 𝑛 ∈ N})] ∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡.

(49)

Substituting in (46), we obtain

𝛽 ({𝑢
𝑛
(⋅) : 𝑛 ∈ N})

≤ 𝑀ℓ (0) 𝛽 ({𝑥
𝑛
: 𝑛 ∈ N})

+ 2𝑀
1
[2𝛽 ({𝑥

𝑛
: 𝑛 ∈ N})

+ 𝛽 ({𝑦
𝑛
: 𝑛 ∈ N})] ∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡

+ 𝑀

𝑚

∑

𝑘=1

[(𝑑
1,0

𝑘
+ 𝑑

1,2

𝑘
) 𝛽 ({𝑥

𝑛
: 𝑛 ∈ N})

+ 𝑑
1,1

𝑘
𝛽 ({𝑦

𝑛
: 𝑛 ∈ N})]

+ 𝑀
1

𝑚

∑

𝑘=1

[(𝑑
2,0

𝑘
+ 𝑑

2,2

𝑘
) 𝛽 ({𝑥

𝑛
: 𝑛 ∈ N})

+ 𝑑
2,1

𝑘
𝛽 ({𝑦

𝑛
: 𝑛 ∈ N})]

≤ [𝑀ℓ (0) + 4𝑀
1
∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡 + 𝑀𝑁
1
+𝑀

1
𝑁

2
]

× 𝛽 ({𝑥
𝑛
: 𝑛 ∈ N})

+ [2𝑀
1
∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡 + 𝑀𝑁
3
+𝑀

1
𝑁

4
]

× 𝛽 ({𝑦
𝑛
: 𝑛 ∈ N})

≤ [𝑀ℓ (0) + 6𝑀
1
∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡 + 𝑀(𝑁
1
+ 𝑁

3
)

+ 𝑀
1
(𝑁

2
+ 𝑁

4
) ] 𝛽 ({(𝑥

𝑛
, 𝑦

𝑛
) : 𝑛 ∈ N}) .

(50)
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Combining with (45), and using Lemma 12, it yields

𝛽 ({𝑢
𝑛
(⋅) : 𝑛 ∈ N})

≤ max{ max
−ℎ≤𝜃≤0

ℓ (𝜃) 𝛽 ({𝑥
𝑛
: 𝑛 ∈ N}) ,

[𝑀ℓ (0) + 6𝑀
1
∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡 + 𝑀(𝑁
1
+ 𝑁

3
)

+ 𝑀
1
(𝑁

2
+ 𝑁

4
)] 𝛽 ({(𝑥

𝑛
, 𝑦

𝑛
) : 𝑛 ∈ N}) }

≤ 𝑁
5
𝛽 ({(𝑥

𝑛
, 𝑦

𝑛
) : 𝑛 ∈ N}) .

(51)

We next estimate 𝛽({V
𝑛
: 𝑛 ∈ N}). Using (40) we can write

V
𝑛
(𝑡)

=

{{{{{{{

{{{{{{{

{

𝐴𝑆 (𝑡) (𝜑 (0) − 𝑔 (𝑥
𝑛
) (0)) + 𝐶 (𝑡) 𝑧 + Λ

2
(𝑓

𝑛
) (𝑡)

+∑

𝑡𝑘<𝑡

𝐴𝑆 (𝑡 − 𝑡
𝑘
) 𝐼

1

𝑘
(𝑥

𝑛
(𝑡

𝑘
) , 𝑦

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
)

+∑

𝑡𝑘<𝑡

𝐶 (𝑡 − 𝑡
𝑘
) 𝐼

2

𝑘
(𝑥

𝑛
(𝑡

𝑘
) , 𝑦

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
), 𝑡[0, 𝑇] ,

(52)

for 𝑓
𝑛
∈ S

𝐹,𝑥𝑛,𝑦𝑛
.

From (52) and using Lemma 7, we get

𝛽 ({V
𝑛
(⋅) : 𝑛 ∈ N})

≤ 𝑀
2
𝜒

𝐸
({𝑔 (𝑥

𝑛
) (0) : 𝑛 ∈ N}) + 𝛽 ({Λ

2
(𝑓

𝑛
) (⋅) : 𝑛 ∈ N})

+ 𝑀
2

𝑚

∑

𝑘=1

𝜒
𝐸
({𝐼

1

𝑘
(𝑥

𝑛
(𝑡

𝑘
) , 𝑦

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
) : 𝑛 ∈ N})

+𝑀

𝑚

∑

𝑘=1

𝜒 ({𝐼
2

𝑘
(𝑥

𝑛
(𝑡

𝑘
) , 𝑦

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
) : 𝑛 ∈ N}) .

(53)

Using again conditions (g2) and (I2), Lemma 12, and also our
previous estimates, we obtain

𝛽 ({V
𝑛
(⋅) : 𝑛 ∈ N})

≤ 𝑀
2
ℓ
1
𝛽 ({𝑥

𝑛
: 𝑛 ∈ N})

+ 2𝑀 [2𝛽 ({𝑥
𝑛
: 𝑛 ∈ N}) + 𝛽 ({𝑦

𝑛
: 𝑛 ∈ N})]

× ∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡 + 𝑀
2

𝑚

∑

𝑘=1

[(𝑑
1,0

𝑘
+ 𝑑

1,2

𝑘
) 𝛽 ({𝑥

𝑛
: 𝑛 ∈ N})

+ 𝑑
1,1

𝑘
𝛽 ({𝑦

𝑛
: 𝑛 ∈ N})]

+ 𝑀

𝑚

∑

𝑘=1

[(𝑑
2,0

𝑘
+ 𝑑

2,2

𝑘
) 𝛽 ({𝑥

𝑛
: 𝑛 ∈ N})

+ 𝑑
2,1

𝑘
𝛽 ({𝑦

𝑛
: 𝑛 ∈ N})]

≤ [𝑀
2
ℓ
1
+ 4𝑀∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡 + 𝑀
2
𝑁

1
+𝑀𝑁

2
]

× 𝛽 ({𝑥
𝑛
: 𝑛 ∈ N})

+ [2𝑀∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡 + 𝑀
2
𝑁

3
+𝑀𝑁

4
] 𝛽 ({𝑦

𝑛
: 𝑛 ∈ N})

≤ 𝑁
6
𝛽 ({(𝑥

𝑛
, 𝑦

𝑛
) : 𝑛 ∈ N}) .

(54)

Finally, collecting these estimates, we get

𝛽 ({(𝑥
𝑛
, 𝑦

𝑛
) : 𝑛 ∈ N})

≤ 𝛽 (Ω) ≤ 𝛽 ({𝑤
𝑛
: 𝑛 ∈ N})

≤ max {𝛽 ({𝑢
𝑛
: 𝑛 ∈ N}) , 𝛽 ({V

𝑛
: 𝑛 ∈ N})}

≤ 𝑁
7
𝛽 ({(𝑥

𝑛
, 𝑦

𝑛
) : 𝑛 ∈ N}) .

(55)

This implies that 𝛽(Ω) = 𝛽({(𝑥
𝑛
, 𝑦

𝑛
) : 𝑛 ∈ N}) = 0, which in

turn implies thatF is a 𝛽-condensing map.

Corollary 19. Under the hypotheses ofTheorem 18, there exists
a mild solution of problems (1)–(4).

Proof. It follows from Theorem 18 and Theorem 6 that there
is a fixed point (𝑥, 𝑦) of F. It is follows from (17), (39), and
(40) that 𝑥(⋅) ∈ PC1

([−ℎ, 𝑇]; 𝑋) and that 𝑥(⋅) is a fixed point
of Γ.

The sine functions 𝑆(𝑡) involved in concrete problems are
frequently compact. This allows us to reduce the conditions
to obtain the existence of mild solutions to problems (1)–(4).
To establish this result some previous properties about sine
operators are needed.

Lemma 20. Assume that 𝑆(𝑡) is a compact operator for all 𝑡 ∈
R. If 𝐷 ⊂ 𝑋 is a bounded set, then the set {𝑆(⋅)𝑥 : 𝑥 ∈ 𝐷} is
relatively compact in 𝐶([0, 𝑇]; 𝑋).

Proof. The set 𝑆(𝑡)(𝐷) is relatively compact in 𝑋 for all 𝑡 ∈

[0, 𝑇]. Moreover, for fixed 𝑡 ∈ [0, 𝑇] and 𝑠 ∈ R such that
𝑡 + 𝑠 ∈ [0, 𝑇] we can decompose

𝑆 (𝑡 + 𝑠) 𝑥 − 𝑆 (𝑡) 𝑥

= 𝑆 (𝑡) 𝐶 (𝑠) 𝑥 + 𝑆 (𝑠) 𝐶 (𝑡) 𝑥 − 𝑆 (𝑡) 𝑥

= (𝐶 (𝑠) − 𝐼) 𝑆 (𝑡) 𝑥 + 𝑆 (𝑠) 𝐶 (𝑡) 𝑥.

(56)

If we restrict us to consider 𝑥 ∈ 𝐷, using that 𝑆(𝑡)(𝐷) is
relatively compact, 𝐶(𝑡)(𝐷) is bounded, and ‖𝑆(𝑠)‖ ≤ 𝑀𝑠, we
obtain that (𝐶(𝑠) − 𝐼)𝑆(𝑡)𝑥 → 0 and 𝑆(𝑠)𝐶(𝑡)𝑥 → 0 when
𝑠 → 0 uniformly for 𝑥 ∈ 𝐷. Consequently, the set {𝑆(⋅)𝑥 :

𝑥 ∈ 𝐷} is equicontinuous, and the Ascoli-Arzelá theorem
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implies that {𝑆(⋅)𝑥 : 𝑥 ∈ 𝐷} is relatively compact in 𝐶([0, 𝑇];

𝑋).

Lemma 21. Assume that 𝑆(𝑡) is a compact operator for all 𝑡 ∈
R. Then the map Λ

1
is compact.

Proof. Let𝑊 ⊂ 𝐿
1
([0, 𝑇]; 𝑋) be a bounded set. It follows from

[40, Theorem 5] that the set {Λ
1
(𝑢)(𝑡) : 𝑢 ∈ 𝑊} is relatively

compact in 𝑋 for every 𝑡 ∈ [0, 𝑇]. On the other hand, using
again (56) we can write
󵄩󵄩󵄩󵄩Λ 1

(𝑢) (𝑡 + 𝑠) − Λ
1
(𝑢) (𝑡)

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡+𝑠

0

𝑆 (𝑡 + 𝑠 − 𝜉) 𝑢 (𝜉) 𝑑𝜉 − ∫

𝑡

0

𝑆 (𝑡 − 𝜉) 𝑢 (𝜉) 𝑑𝜉

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐶 (𝑠) − 𝐼) ∫

𝑡

0

𝑆 (𝑡 − 𝜉) 𝑢 (𝜉) 𝑑𝜉

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑆 (𝑠) ∫

𝑡

0

𝐶 (𝑡 − 𝜉) 𝑢 (𝜉) 𝑑𝜉

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡+𝑠

𝑡

𝑆 (𝑡 + 𝑠 − 𝜉) 𝑢 (𝜉) 𝑑𝜉

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐶 (𝑠) − 𝐼) ∫

𝑡

0

𝑆 (𝑡 − 𝜉) 𝑢 (𝜉) 𝑑𝜉

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝑀
2
|𝑠| ∫

𝑇

0

󵄩󵄩󵄩󵄩𝑢 (𝜉)
󵄩󵄩󵄩󵄩 𝑑𝜉 ‖+𝑀 |𝑠|‖ ∫

𝑇

0

󵄩󵄩󵄩󵄩𝑢 (𝜉)
󵄩󵄩󵄩󵄩 𝑑𝜉.

(57)

Since {Λ
1
(𝑢)(𝑡) : 𝑢 ∈ 𝑊} is relatively compact in𝑋, ‖(𝐶(𝑠) −

𝐼) ∫
𝑡

0
𝑆(𝑡 − 𝜉)𝑢(𝜉)𝑑𝜉‖ → 0 as 𝑠 → 0 uniformly for 𝑢 ∈ 𝑊.

Combining with the above estimate, it follows that Λ
1
(𝑢)(𝑡 +

𝑠)−Λ
1
(𝑢)(𝑡) → 0 as 𝑠 → 0 uniformly for 𝑢 ∈ 𝑊.Therefore,

the set Λ
1
(𝑊) is equicontinuous. The Ascoli-Arzelá theorem

shows that Λ
1
is a compact operator.

We define the constants

𝑁
󸀠

5
= max{ max

−ℎ≤𝜃≤0

ℓ (𝜃) ,𝑀 (ℓ (0) + 𝑁
1
+ 𝑁

3
)} ,

𝑁
󸀠

7
= max {𝑁󸀠

5
, 𝑁

6
} .

(58)

Corollary 22. Assume that the operator 𝑆(𝑡) is compact for all
𝑡 ∈ R. Assume further that 𝜑(0) ∈ 𝐸 and that conditions (F1)–
(F4), (g1)–(g3), and (I1)-(I2) hold. If 𝑁󸀠

7
< 1, then there exists

a mild solution of problems (1)–(4).

Proof. We repeat the construction carried out in the proof
of Theorem 18. The only modification is related with the
estimate of 𝛽({𝑢

𝑛
(⋅) : 𝑛 ∈ N}) for 𝑢

𝑛
defined on [0, 𝑇]. Using

Lemmas 20 and 21 we can see that

𝛽 ({𝑢
𝑛
(⋅) : 𝑛 ∈ N})

≤ 𝑀ℓ (0) 𝛽 ({𝑥
𝑛
: 𝑛 ∈ N})

+ 𝑀

𝑚

∑

𝑘=1

[(𝑑
1,0

𝑘
+ 𝑑

1,2

𝑘
) 𝛽 ({𝑥

𝑛
: 𝑛 ∈ N})

+ 𝑑
1,1

𝑘
𝛽 ({𝑦

𝑛
: 𝑛 ∈ N})]

≤ 𝑀 [ℓ (0) + 𝑁
1
] 𝛽 ({𝑥

𝑛
: 𝑛 ∈ N})

+ 𝑀𝑁
3
𝛽 ({𝑦

𝑛
: 𝑛 ∈ N})

≤ 𝑀 [ℓ (0) + 𝑁
1
+ 𝑁

3
] 𝛽 ({(𝑥

𝑛
, 𝑦

𝑛
) : 𝑛 ∈ N}) .

(59)

Combining with (45), for 𝑢
𝑛
defined on [−ℎ, 𝑇], we obtain

𝛽 ({𝑢
𝑛
(⋅) : 𝑛 ∈ N}) ≤ 𝑁

󸀠

5
𝛽 ({(𝑥

𝑛
, 𝑦

𝑛
) : 𝑛 ∈ N}) . (60)

Proceeding as in the proof of Theorem 18 and Corollary 19,
we get that Γ has a fixed point 𝑥, which is a mild solution of
problems (1)–(4).

We now are concerned with the following particular case
of problems (1)–(4):

𝑥
󸀠󸀠
(𝑡) − 𝐴𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥

𝑡
) ,

𝑡 ∈ 𝐽 = [0, 𝑇] , 𝑡 ̸= 𝑡
𝑘
, 𝑘 = 1, . . . , 𝑚,

(61)

Δ𝑥 (𝑡
𝑘
) = 𝐼

𝑘
(𝑥 (𝑡

𝑘
) , 𝑥

𝑡𝑘
) , 𝑘 = 1, . . . , 𝑛, (62)

𝑥 (𝜃) + 𝑔 (𝑥) (𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−ℎ, 0] , 𝑥
󸀠
(0) = 𝑧.

(63)

From an intuitive viewpoint this model corresponds to an
incomplete second order equation in which the impulses on
the path do not lead to changes in the velocity.

We can reduce this problem to a particular case of
problems (1)–(4) taking 𝐼

𝑘
as 𝐼1

𝑘
with 𝐼

2

𝑘
= 0 and modifying

slightly the conditions about 𝐹, 𝐼
𝑘
, and 𝑔. We assume that

𝐹 is a multivalued map from 𝐽 × 𝑋 × 𝐶
𝑝

ℎ
into K𝜐(𝑋)

that satisfies conditions (F1)–(F4) (now we omit the variable
𝑦 in these conditions). Proceeding as in Remark 13, for
𝑥(⋅) ∈ PC([−ℎ, 𝑇]; 𝑋) the function [0, 𝑇] → K𝜐(𝑋), 𝑡 󳨃→

𝐹(𝑡, 𝑥(𝑡), 𝑥
𝑡
) admits a Bochner integrable selection. As a

consequence, the set

S
𝐹,𝑥

= {𝑓 ∈ 𝐿
1
(𝐽; 𝑋) : 𝑓 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡) , 𝑥

𝑡
) , 𝑡 ∈ 𝐽} ̸= 0,

(64)

and S
𝐹,𝑥

is convex.
Next we describe the conditions on the function 𝑔. We

assume that𝑔 is amap fromPC([−ℎ, 𝑇]; 𝑋) into𝐶([−ℎ, 0]; 𝑋)

that satisfies the following.

(g1) The function 𝑔 is continuous and takes bounded
sets in PC([−ℎ, 𝑇]; 𝑋) into bounded subsets of
𝐶([−ℎ, 0]; 𝑋).

(g2) There is a continuous function ℓ : [−ℎ, 0] → [0,∞)

such that

𝜒 (𝑔 (𝑊) (𝜃)) ≤ ℓ (𝜃) sup
𝑡∈[−ℎ,𝑇]

𝜒 (𝑊 (𝑡)) , 𝜃 ∈ [−ℎ, 0] ,

(65)

for all bounded sets𝑊 ⊂ PC([−ℎ, 𝑇], 𝑋).
(g3) For each bounded set 𝑊 ⊂ PC([−ℎ, 𝑇]; 𝑋) the set

𝑔(𝑊) is equicontinuous.
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Next we establish the conditions onmaps 𝐼
𝑘
, 𝑘 = 1, . . . , 𝑚.

We assume that 𝐼
𝑘

: 𝑋 × 𝐶
𝑝

ℎ
→ 𝑋 satisfy the following

conditions.

(I1) The maps 𝐼
𝑘
, 𝑘 = 1, . . . , 𝑚 are continuous and takes

bounded sets into bounded sets.
(I2) There are positive constants 𝑑𝑗

𝑘
, 𝑗 = 1, 2, 𝑘 = 1, . . . , 𝑚,

such that

𝜒 (𝐼
𝑘
(𝐷

1
×𝑊)) ≤ 𝑑

1

𝑘
𝜒 (𝐷

1
) + 𝑑

2

𝑘
sup

−ℎ≤𝜃≤0

𝜒 (𝑊 (𝜃)) , (66)

for all bounded sets 𝐷
1
⊂ 𝑋 and 𝑊 ⊂ 𝐶

𝑝

ℎ
such that

sup
−ℎ≤𝜃≤0

{‖ 𝜓(𝜃) ‖: 𝜓 ∈ 𝑊} < ∞.

We now establish our concept of mild solution.

Definition 23. A function 𝑥(⋅) ∈ PC([−ℎ, 𝑇]; 𝑋) is said to be a
mild solution of (61)–(63) if conditions (62)-(63) are satisfied,
and the integral equation

𝑥 (𝑡) = 𝐶 (𝑡) (𝜑 (0) − 𝑔 (𝑥) (0)) + 𝑆 (𝑡) 𝑧

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠

+ ∑

𝑡𝑘<𝑡

𝐶 (𝑡 − 𝑡
𝑘
) 𝐼

𝑘
(𝑥 (𝑡

𝑘
) , 𝑥 (𝑡

𝑘
))

(67)

is verified for 𝑓 ∈ S
𝐹,𝑥

and all 𝑡 ∈ [0, 𝑇].

We next define the solution map associated with our
concept of mild solution for problems (61)–(63) as follows.
Let 𝑥 ∈ PC([−ℎ, 𝑇]; 𝑋). We define Γ(𝑥) to be the set formed
by all functions 𝑢 given by

𝑢 (𝑡)

=

{{{{{

{{{{{

{

𝜑(𝑡) − 𝑔 (𝑥) (𝑡) , 𝑡 ∈ [−ℎ, 0] ,

𝐶 (𝑡) (𝜑 (0)−𝑔 (𝑥) (0))+𝑆 (𝑡) 𝑧+∫

𝑡

0

𝑆 (𝑡−𝑠) 𝑓 (𝑠) 𝑑𝑠

+∑

𝑡𝑘<𝑡

𝐶 (𝑡−𝑡𝑘) 𝐼
1

𝑘
(𝑥 (𝑡𝑘) , 𝑥

󸀠
(𝑡𝑘) , 𝑥𝑡𝑘

) , 𝑡∈[0, 𝑇] ,

(68)

for 𝑓 ∈ S
𝐹,𝑥

. It follows from our hypotheses that
𝑢 ∈ PC([−ℎ, 𝑇]; 𝑋). Hence, Γ : PC([−ℎ, 𝑇]; 𝑋) →

P(PC([−ℎ, 𝑇]; 𝑋)). Furthermore, it is clear that 𝑥(⋅) is a mild
solution of problems (61)–(63) if and only if 𝑥(⋅) is a fixed
point of Γ.

We define

𝑁
󸀠󸀠

7
= max{ max

−ℎ≤𝜃≤0

ℓ (𝜃) ,

(𝑀[ℓ (0) +

𝑚

∑

𝑘=1

(𝑑
1

𝑘
+ 𝑑

2

𝑘
)]

+ 4𝑀
1
∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡)} .

(69)

We are now in a position to prove the following result.

Theorem 24. Assume that conditions (F1)–(F4), (g1)–(g3),
and (I1)-(I2) hold. If 𝑁󸀠󸀠

7
< 1, then the map Γ : 𝑃𝐶([−ℎ,

𝑇]; 𝑋) → 𝐾𝜐(𝑃𝐶([−ℎ, 𝑇]; 𝑋)) is u.s.c. and 𝛽-condensing.

Proof. We proceed as in the proof of Theorem 18. We only
include here a sketch of the proof. To prove that Γ is 𝛽-
condensing. Let Ω ⊂ PC([−ℎ, 𝑇]; 𝑋) be a bounded set such
that 𝛽(Γ(Ω)) ≥ 𝛽(Ω). It follows from Lemma 10 that there
exists a sequence (𝑢

𝑛
)
𝑛
in Γ(Ω) such that 𝛽(Γ(Ω)) = 𝛽({𝑢

𝑛
:

𝑛 ∈ N}). We can write 𝑢
𝑛
∈ Γ(𝑥

𝑛
) for some 𝑥

𝑛
∈ Ω.

To estimate 𝛽({𝑢
𝑛
: 𝑛 ∈ N}), using (68) we can write

𝑢
𝑛
(𝑡)

=

{{{{

{{{{

{

𝜑 (𝑡)−𝑔 (𝑥
𝑛
) (𝑡) , 𝑡∈[−ℎ, 0] ,

𝐶 (𝑡) (𝜑 (0)−𝑔 (𝑥
𝑛
) (0))+𝑆 (𝑡) 𝑧+Λ

1
(𝑓

𝑛
) (𝑡)

+∑

𝑡𝑘<𝑡

𝐶 (𝑡−𝑡
𝑘
) 𝐼

𝑘
(𝑥

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
) , 𝑡∈[0, 𝑇] ,

(70)

for 𝑓
𝑛
∈ S

𝐹,𝑥𝑛
.

From (45), we have

𝛽 ({𝜑 − 𝑔 (𝑥
𝑛
) : 𝑛 ∈ N}) ≤ max

−ℎ≤𝜃≤0

ℓ (𝜃) 𝛽 ({𝑥
𝑛
: 𝑛 ∈ N}) .

(71)

Now we consider functions 𝑢
𝑛
defined on [0, 𝑇]. From

(70) and using Lemma 7, we get

𝛽 ({𝑢
𝑛
(⋅) : 𝑛 ∈ N})

≤ 𝑀𝜒 ({𝑔 (𝑥
𝑛
) (0) : 𝑛 ∈ N}) + 𝛽 ({Λ

1
(𝑓

𝑛
) (⋅) : 𝑛 ∈ N})

+ 𝑀

𝑚

∑

𝑘=1

𝜒 ({𝐼
𝑘
(𝑥

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
) : 𝑛 ∈ N}) .

(72)

Using now conditions (g2), (I2), and Remark 14, we have

𝜒 ({𝑔 (𝑥
𝑛
) (0) : 𝑛 ∈ N})

≤ ℓ (0) 𝛽 ({𝑥
𝑛
: 𝑛 ∈ N}) ,

𝜒 ({𝐼
𝑘
(𝑥

𝑛
(𝑡

𝑘
) , (𝑥

𝑛
)
𝑡𝑘
) : 𝑛 ∈ N})

≤ 𝑑
1

𝑘
𝜒 ({𝑥

𝑛
(𝑡

𝑘
) : 𝑛 ∈ N}) + 𝑑

2

𝑘
𝛽 ({𝑥

𝑛
: 𝑛 ∈ N})

≤ (𝑑
1

𝑘
+ 𝑑

2

𝑘
) 𝛽 ({𝑥

𝑛
: 𝑛 ∈ N}) .

(73)

On the other hand, since𝑓
𝑛
∈ S

𝐹,𝑥𝑛
, for 𝑡 ∈ [0, 𝑇], we have

that 𝑓
𝑛
(𝑡) ∈ 𝐹(𝑡, 𝑥

𝑛
(𝑡), (𝑥

𝑛
)
𝑡
). This implies that {𝑓

𝑛
: 𝑛 ∈ N} is

uniformly integrable and, applying condition (F4),

𝜒 ({𝑓
𝑛
(𝑡) : 𝑛 ∈ N})

≤ 𝑘 (𝑡) [𝜒 ({𝑥
𝑛
(𝑡) : 𝑛 ∈ N})

+ sup
−ℎ≤𝜃≤0

𝜒 ({𝑥
𝑛
(𝑡 + 𝜃) : 𝑛 ∈ N})]

≤ 2𝑘 (𝑡) 𝛽 ({𝑥
𝑛
: 𝑛 ∈ N}) .

(74)
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Combining this estimate with Lemma 11 we infer that

𝛽 ({Λ
1
(𝑓

𝑛
) (⋅) : 𝑛 ∈ N}) ≤ 4𝑀

1
𝛽 ({𝑥

𝑛
: 𝑛 ∈ N}) ∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡.

(75)

Substituting this estimate in (72), we obtain

𝛽 ({𝑢
𝑛
(⋅) : 𝑛 ∈ N})

≤ (𝑀[ℓ (0) +

𝑚

∑

𝑘=1

(𝑑
1

𝑘
+ 𝑑

2

𝑘
)] + 4𝑀

1
∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡)

× 𝛽 ({𝑥
𝑛
: 𝑛 ∈ N})

= 𝑁
󸀠󸀠

7
𝛽 ({𝑥

𝑛
: 𝑛 ∈ N}) .

(76)

Collecting these assertions, we get

𝛽 ({𝑥
𝑛
: 𝑛 ∈ N}) ≤ 𝛽 (Γ (Ω)) ≤ 𝑁

󸀠󸀠

7
𝛽 ({𝑥

𝑛
: 𝑛 ∈ N}) , (77)

which implies that 𝛽(Γ(Ω)) = 0, which in turn shows that Γ
is 𝛽-condensing and completes the proof.

The following assertions are immediate consequences of
Theorem 24.

Corollary 25. Under the hypotheses of Theorem 24, there
exists a mild solution of problems (61)–(63).

Corollary 26. Assume that the operator 𝑆(𝑡) is compact for all
𝑡 ∈ R. Assume further that conditions (F1)–(F4), (g1)–(g3), and
(I1)-(I2) hold. If

max{ max
−ℎ≤𝜃≤0

ℓ (𝜃) ,𝑀[ℓ (0) +

𝑚

∑

𝑘=1

(𝑑
1

𝑘
+ 𝑑

2

𝑘
)]} < 1, (78)

then there exists a mild solution of problems (61)–(63).

4. Applications

In this section we apply our abstract results to study the
existence of solutions to the impulsive retardedwave equation
described by (5)–(9). Tomodel this problem in abstract form,
in what follows we consider the space 𝑋 = 𝐿

2
([0, 𝜋]) and 𝐴 :

𝐷(𝐴) ⊆ 𝑋 → 𝑋 is the map defined by 𝐴𝑥 = (𝑑
2
/𝑑𝜉

2
)𝑥(𝜉)

with domain𝐷(𝐴) = {𝑥 ∈ 𝑋 : 𝑥
󸀠󸀠
∈ 𝑋, 𝑥(0) = 𝑥(𝜋) = 0}. It is

well known that 𝐴 is the infinitesimal generator of a strongly
continuous cosine function (𝐶(𝑡))

𝑡∈R on 𝑋. Furthermore, 𝐴
has a discrete spectrum and the eigenvalues are −𝑛2, 𝑛 ∈ N,
with corresponding eigenvectors 𝑧

𝑛
(𝜉) = (2/𝜋)

1/2 sin(𝑛𝜉).
Furthermore, the set {𝑧

𝑛
: 𝑛 ∈ N} is an orthonormal basis

of𝑋 and the following properties hold.

(a) For 𝑥 ∈ 𝐷(𝐴), 𝐴𝑥 = −∑
∞

𝑛=1
𝑛
2
⟨𝑥, 𝑧

𝑛
⟩𝑧

𝑛
.

(b) For 𝑥 ∈ 𝑋,

𝐶 (𝑡) 𝑥 =

∞

∑

𝑛=1

cos (𝑛𝑡) ⟨𝑥, 𝑧
𝑛
⟩𝑧

𝑛
,

𝑆 (𝑡) 𝑥 =

∞

∑

𝑛=1

sin (𝑛𝑡)
𝑛

⟨𝑥, 𝑧
𝑛
⟩𝑧

𝑛
.

(79)

Consequently, ‖𝐶(𝑡)‖ = ‖𝑆(𝑡)‖ ≤ 1 for all 𝑡 ∈ R and
𝑆(𝑡) is a compact operator for every 𝑡 ∈ R.

(c) The space 𝐸 = {𝑥 ∈ 𝐻
1
(0, 𝜋) : 𝑥(0) = 𝑥(𝜋) = 0} (see

[30] for details) and ‖𝑥‖
𝐸
≤ ‖𝑥‖ + ‖𝑥

󸀠
‖. In particular,

we observe that the inclusion 𝜄 : 𝐸 → 𝑋 is compact.
Moreover, the function 𝑆(⋅) is 2𝜋-periodic. Using this
property and (13) we can show that

‖𝐴𝑆(𝑡)‖L(𝐸;𝑋)
≤ 2, ∀𝑡 ∈ R. (80)

In fact, using the periodicity of 𝑆(⋅) is sufficient to establish
the property for 𝑡 ∈ [−𝜋, 𝜋]. It is an immediate consequence
of the definition of the norm in 𝐸 that ‖𝐴𝑆(𝑡)‖L(𝐸;𝑋)

≤ 1, for
𝑡 ∈ [0, 1]. For 𝑡 ∈ [1, 𝜋/2], we canwrite 𝑡 = 1+𝑠with 𝑠 ∈ [0, 1],
and using (13) we have

𝐴𝑆 (𝑡) = 𝐴𝑆 (1 + 𝑠) = 𝐶 (1) 𝐴𝑆 (𝑠) + 𝐶 (𝑠) 𝐴𝑆 (1) . (81)

Since ‖𝐶(𝜏)‖ ≤ 1 for all 𝜏 ∈ R, we obtain

‖𝐴𝑆 (𝑡)‖L(𝐸;𝑋)

≤ ‖𝐶 (1)‖ ‖𝐴𝑆 (𝑠)‖L(𝐸;𝑋)

+ ‖𝐶 (𝑠)‖ ‖𝐴𝑆(1)‖L(𝐸;𝑋)
≤ 2.

(82)

Similarly, for 𝑡 ∈ [𝜋/2, 𝜋], we can write 𝑡 = 𝜋 − 𝑠 with 𝑠 ∈

[0, 𝜋/2], and using again (13), we can write

𝐴𝑆 (𝑡) = 𝐴𝑆 (𝜋 − 𝑠)

= 𝐶 (𝑠) 𝐴𝑆 (𝜋) − 𝐶 (𝜋)𝐴𝑆 (𝑠) = −𝐶 (𝜋)𝐴𝑆 (𝑠) ,

(83)

which implies

‖𝐴𝑆(𝑡)‖L(𝐸;𝑋)
≤ ‖𝐶 (𝜋)‖ ‖𝐴𝑆(𝑠)‖L(𝐸;𝑋)

≤ 2. (84)

In view of that 𝐴𝑆(−𝑡) = −𝐴𝑆(𝑡), this completes the proof of
the assertion.

In what follows we assume that 𝑧 ∈ 𝑋 and that 𝜑 ∈

𝐶([−ℎ, 0]; 𝑋), where we have identified 𝜑(𝜃)(𝜉) = 𝜑(𝜃, 𝜉) for
𝜃 ∈ [−ℎ, 0] and 𝜉 ∈ [0, 𝜋].

Initially we construct the multivalued function 𝐹. We
assume that 𝑓

0
: 𝐽 × [0, 𝜋] × R3

→ K𝜐(R) is a bounded
multivalued map that satisfies the following conditions.

(f1) There exist positive constants 𝐿, 𝐿
1
, and 𝐿

2
such that

𝑑
𝐻
(𝑓

0
(𝑡

1
, 𝜉

1
, 𝜙

1
) , 𝑓

0
(𝑡

2
, 𝜉

2
, 𝜙

2
))

2

≤ 𝐿
2󵄨󵄨󵄨󵄨𝑡1 − 𝑡

2

󵄨󵄨󵄨󵄨

2

+ 𝐿
2

1

󵄨󵄨󵄨󵄨𝜉1 − 𝜉
2

󵄨󵄨󵄨󵄨

2

+ 𝐿
2

2

󵄩󵄩󵄩󵄩𝜙1
− 𝜙

2

󵄩󵄩󵄩󵄩

2

,

(85)

for all (𝑡, 𝜉
1
, 𝜙

1
), (𝑡, 𝜉

2
, 𝜙

2
) ∈ 𝐽 × [0, 𝜋] × R3, where

𝑑
𝐻
denotes the Hausdorff metric and ‖ ⋅ ‖ denotes the

Euclidean norm in R3.
(f2) There exists a positive function 𝜇 ∈ 𝐿

1
([0, 𝑇]) such

that |𝑠| ≤ 𝜇(𝑡) for all 𝑠 ∈ 𝑓
0
(𝑡, 0).

In a metric space (Ω, 𝑑), we denote 𝜌(𝑤, 𝐵) = inf{𝑑(𝑤, 𝑏) :

𝑏 ∈ 𝐵}. We will use the following property of the Hausdorff
metric.
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Lemma 27. Let (Ω, 𝑑) be a metric space, and let 𝐵
1
, 𝐵

2
⊆ Ω

be bounded sets. Then, for every 𝑢, V ∈ Ω,

𝜌 (𝜐, 𝐵
2
) ≤ 𝑑 (𝜐, 𝑢) + 𝜌 (𝑢, 𝐵

1
) + 𝑑

𝐻
(𝐵

1
, 𝐵

2
) . (86)

We have the following consequences.

Proposition 28. Under the previous conditions, the following
properties hold.

(i) For each 𝑡 ∈ 𝐽 and 𝜙 ∈ R3, the function 𝑓
0
(𝑡, ⋅, 𝜙) is

measurable.
(ii) For each 𝑡 ∈ 𝐽 and 𝜉 ∈ [0, 𝜋], the function 𝑓

0
(𝑡, 𝜉, ⋅) is

upper semicontinuous.
(iii) For each 𝑡 ∈ 𝐽 and 𝜙 ∈ 𝐿

2
([0, 𝜋];R3

) the set

T
𝑓0,𝜙

(𝑡) = {𝑤 ∈ 𝐿
2
([0, 𝜋]) : 𝑤 (𝜉) ∈ 𝑓

0
(𝑡, 𝜉, 𝜙)} ̸= 0 (87)

is closed convex in 𝐿
2
([0, 𝜋]).

Proof. Consider the following.
(i) It is an immediate consequence of the fact that the

multivalued map 𝑓
0
(𝑡, ⋅, 𝜙) is 𝑑

𝐻
-continuous.

(ii) We know that 𝑓
0
(𝑡, 𝜉,R3

) is bounded and, there-
fore, relatively compact. We will show that the
graph𝑓(𝑡, 𝜉, ⋅) is closed. Assume that 𝜙

𝑛
, 𝜙 ∈ R3 and

𝜙
𝑛
→ 𝜙, 𝑠

𝑛
∈ 𝑓

0
(𝑡, 𝜉, 𝜙

𝑛
), 𝑠

𝑛
→ 𝑠 as 𝑛 → ∞. Using

Lemma 27 we can write
𝜌 (𝑠, 𝑓

0
(𝑡, 𝜉, 𝜙))

≤
󵄨󵄨󵄨󵄨𝑠 − 𝑠

𝑛

󵄨󵄨󵄨󵄨 + 𝑑
𝐻
(𝑓

0
(𝑡, 𝜉, 𝜙

𝑛
) , 𝑓

0
(𝑡, 𝜉, 𝜙)) .

(88)

Since 𝑓
0
(𝑡, 𝜉, ⋅) is 𝑑

𝐻
-continuous, it follows that

𝜌(𝑠, 𝑓
0
(𝑡, 𝜉, 𝜙)) = 0. In view of that the set 𝑓

0
(𝑡, 𝜉, 𝜙)

is closed, we conclude that 𝑠 ∈ 𝑓
0
(𝑡, 𝜉, 𝜙). Applying

[3, Proposition 1.2] we obtain that 𝑓
0
(𝑡, 𝜉, ⋅) is upper

semicontinuous.
(iii) For 𝑡 ∈ 𝐽 and 𝜙 ∈ 𝐿

2
([0, 𝜋];R3

) the map 𝑓
0
(𝑡, ⋅, 𝜙) :

[0, 𝜋] → K𝜐(R), 𝜉 󳨃→ 𝑓
0
(𝑡, 𝜉, 𝜙(𝜉)), is measurable

with closed values. It follows from [3, Proposition
3.2] that there exists a measurable selection 𝑤 such
that 𝑤(𝜉) ∈ 𝑓

0
(𝑡, 𝜉, 𝜙(𝜉)). Using that 𝑓 is bounded

it follows that 𝑤 ∈ 𝐿
2
([0, 𝜋]). This shows that

T
𝑓0,𝜙

(𝑡) ̸= 0. Since the values of 𝑓
0
are convex, it

follows thatT
𝑓0,𝜙

(𝑡) is also convex.
To establish that T

𝑓0 ,𝜙
(𝑡) is closed, we consider a

sequence 𝑤
𝑛
, 𝑤 ∈ 𝐿

2
([0, 𝜋]), 𝑤

𝑛
∈ T

𝑓0 ,𝜙
(𝑡) such that 𝑤

𝑛
→

𝑤, 𝑛 → ∞, for the norm in 𝐿
2
([0, 𝜋]). By passing to a subse-

quence if necessary, we can assume that𝑤
𝑛
(𝜉) → 𝑤(𝜉), 𝑛 →

∞, a.e. 𝜉 ∈ [0, 𝜋]. Since 𝑓
0
(𝑡, 𝜉, 𝜙(𝜉)) is closed, it follows

that 𝑤(𝜉) ∈ 𝑓
0
(𝑡, 𝜉, 𝜙(𝜉)), which in turn implies that 𝑤 ∈

T
𝑓0 ,𝜙

(𝑡).

For 𝜙 ∈ 𝐿
2
([0, 𝜋];R3

) we define

T
1

𝑓0,𝜙
(𝑡) = {∫

𝜉

0

𝑤 (𝜂) 𝑑𝜂 : 𝑤 ∈ T
𝑓0,𝜙

(𝑡)} , (89)

and 𝐹
1
(𝜙) : 𝐽 → P(𝑋) is given by 𝐹

1
(𝜙)(𝑡) = T1

𝑓0,𝜙
(𝑡).

Proposition 29. Under the previous conditions, 𝐹
1
is a mea-

surable and upper semicontinuous map with convex compact
values.

Proof. Initially we show that T1

𝑓0,𝜙
(𝑡) is closed. Let 𝜐

𝑛
(𝜉) =

∫
𝜉

0
𝑤

𝑛
(𝜂)𝑑𝜂 be a sequence in T1

𝑓0,𝜙
(𝑡) that converges to 𝜐 as

𝑛 → ∞. SinceT
𝑓0 ,𝜙

(𝑡) is sequentially weakly compact, there
is 𝑤 ∈ 𝐿

2
([0, 𝜋]) and a subsequence 𝑤

𝑛𝑘
such that 𝑤

𝑛𝑘
→ 𝑤

as 𝑘 → ∞ in the weak topology. Since T
𝑓0,𝜙

(𝑡) is a closed
convex set, it follows that 𝑤 ∈ T

𝑓0 ,𝜙
(𝑡). In view of that

∫

𝜉

0

𝑤
𝑛𝑘
(𝜂) 𝑑𝜂 − ∫

𝜉

0

𝑤 (𝜂) 𝑑𝜂

= ∫

𝜋

0

(𝑤
𝑛𝑘
− 𝑤)𝜒

[0,𝜉]
(𝜂) 𝑑𝜂 󳨀→ 0, 𝑘 󳨀→ ∞,

(90)

where 𝜒
[0,𝜉]

denotes the characteristic function of the interval
[0, 𝜉], we obtain that 𝜐(𝜉) = ∫

𝜉

0
𝑤(𝜂)𝑑𝜂 and 𝜐 ∈ T1

𝑓0,𝜙
(𝑡).

Since the functions inT
𝑓0 ,𝜙

(𝑡) are uniformly bounded,

∫

𝜋

0

󵄨󵄨󵄨󵄨V (𝜉 + 𝛿) − V (𝜉)󵄨󵄨󵄨󵄨
2

𝑑𝜉

= ∫

𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜉+𝛿

𝜉

𝑤 (𝜂) 𝑑𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉 ≤ 𝜋 sup
0≤𝜉≤𝜋

󵄨󵄨󵄨󵄨𝑤 (𝜉)
󵄨󵄨󵄨󵄨

2

𝛿
2

(91)

converge to zero as 𝛿 → 0 uniformly for V ∈ T1

𝑓0 ,𝜙
(𝑡). From

[41, Theorem IV.8.20] we conclude that T1

𝑓0,𝜙
(𝑡) is relatively

compact.
On the other hand, proceeding as in the proof of

Proposition 28(ii), we get that𝐹
1
(𝜙) is upper semicontinuous.

Finally, as a consequence of a remark in [5, page 21], we can
affirm that 𝐹

1
(𝜙) is measurable.

The following consequence is essential for our construc-
tion.

Corollary 30. Under the above conditions, there exists a
measurable selection for 𝐹

1
(𝜙).

Proof. It follows from [3, Proposition 3.2].

We now consider the map 𝐹 : 𝐽 ×𝑋×𝑋×𝐶
2

ℎ
→ K𝜐(𝑋)

defined by

𝐹 (𝑡, 𝑥, 𝑦, 𝜓) = T
1

𝑓0,𝜙
(𝑡) , (92)

for 𝜙 = (𝑥, 𝑦, ∫
0

−ℎ
𝜓(𝜃)𝑑𝜃). Since 𝐹(⋅, 𝑥, 𝑦, 𝜓) = 𝐹

1
(𝜙)(⋅), it

follows from our construction that 𝐹 satisfies condition (F1).
Moreover, proceeding as in the proof of Proposition 28(ii) we
conclude that 𝐹 is upper semicontinuous, which shows that 𝐹
satisfies condition (F2). On the other hand, if 𝜐 ∈ 𝐹(𝑡, 𝑥, 𝑦, 𝜓),
then there exists 𝑤 ∈ T

𝑓0,𝜙
(𝑡) such that 𝜐(𝜉) = ∫

𝜉

0
𝑤(𝜂)𝑑𝜂
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with𝑤(𝜉) ∈ 𝑓
0
(𝑡, 𝜉, 𝑥(𝜉), 𝑦(𝜉), ∫

0

−ℎ
𝜓(𝜃, 𝜉)𝑑𝜃).Therefore, there

exists 𝑤1
(𝜉) ∈ 𝑓

0
(𝑡, 0) such that

󵄨󵄨󵄨󵄨𝑤 (𝜉)
󵄨󵄨󵄨󵄨

≤ 𝜇 (𝑡) + 1

+ 𝑑
𝐻
(𝑓

0
(𝑡, 𝜉, 𝑥 (𝜉) , 𝑦 (𝜉) ,

(∫

0

−ℎ

𝜓 (𝜃, 𝜉) 𝑑𝜃)) , 𝑓
0
(𝑡, 0))

≤ 𝜇 (𝑡)+1+(𝐿
2

1
𝜉
2
+𝐿

2

2
(𝑥(𝜉)

2
+𝑦(𝜉)

2

+ (∫

0

−ℎ

𝜓 (𝜃, 𝜉) 𝑑𝜃)

2

))

1/2

.

(93)

Hence

∫

𝜋

0

󵄨󵄨󵄨󵄨V (𝜉)
󵄨󵄨󵄨󵄨

2

𝑑𝜉

≤ 𝜋
2
∫

𝜋

0

󵄨󵄨󵄨󵄨𝑤 (𝜉)
󵄨󵄨󵄨󵄨

2

𝑑𝜉

≤ 2𝜋
2
∫

𝜋

0

[(𝜇 (𝑡) + 1)
2

+ 𝐿
2

1
𝜉
2
+ 𝐿

2

2

× (𝑥(𝜉)
2
+ 𝑦(𝜉)

2
+ (∫

0

−ℎ

𝜓 (𝜃, 𝜉) 𝑑𝜃)

2

)]𝑑𝜉

≤ 2𝜋
2
[𝜋(𝜇 (𝑡) + 1)

2

+ 𝐿
2

1

𝜋
3

3
+ 𝐿

2

2

× (‖𝑥‖
2
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

+ ∫

𝜋

0

(∫

0

−ℎ

𝜓 (𝜃, 𝜉) 𝑑𝜃)

2

)𝑑𝜉]

≤ 2𝜋
2
[𝜋(𝜇 (𝑡) + 1)

2

+ 𝐿
2

1

𝜋
3

3

+ 𝐿
2

2
(‖𝑥‖

2
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

+ ℎ
2󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩

2

𝐶
2

ℎ

)] ,

(94)

which shows that 𝐹 satisfies the condition (F3).

Proposition 31. Let 𝑥, 𝑥1
, 𝑦, 𝑦

1
∈ 𝑋, 𝜓, 𝜓1

∈ 𝐶
2

ℎ
, and V ∈

𝐹(𝑡, 𝑥, 𝑦, 𝜓). Then

𝜌 (𝜐, 𝐹 (𝑡, 𝑥
1
, 𝑦

1
, 𝜓

1
))

≤ 𝜋𝐿
2
(
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥

1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑦

1󵄩󵄩󵄩󵄩󵄩

2

+ ℎ
2󵄩󵄩󵄩󵄩󵄩
𝜓 − 𝜓

1󵄩󵄩󵄩󵄩󵄩

2

𝐶
2

ℎ

)

1/2

.

(95)

Proof. To abbreviate the text we introduce the notations
𝜙(𝜉) = (𝑥(𝜉), 𝑦(𝜉), ∫

0

−ℎ
𝜓(𝜃, 𝜉)𝑑𝜃) and 𝜙

1
(𝜉) = (𝑥

1
(𝜉), 𝑦

1
(𝜉),

∫
0

−ℎ
𝜓

1
(𝜃, 𝜉)𝑑𝜃). Since V ∈ T1

𝑓0,𝜙
(𝑡), there is 𝑤 ∈ T

𝑓0 ,𝜙
(𝑡) such

that V(𝜉) = ∫
𝜉

0
𝑤(𝜂)𝑑𝜂. Moreover, in view of that T1

𝑓0,𝜙
1(𝑡)

is convex compact in 𝐿
2
([0, 𝜋]), there is V

0
∈ T1

𝑓0,𝜙
1(𝑡) the

nearest point of V in T1

𝑓0 ,𝜙
1(𝑡). Consequently, there is 𝑤0

∈

T
𝑓0 ,𝜙
1(𝑡) such that V

0
(𝜉) = ∫

𝜉

0
𝑤

0
(𝜂)𝑑𝜂. Therefore,

𝜌(𝜐, 𝐹 (𝑡, 𝑥
1
, 𝑦

1
, 𝜓

1
))

2

=
󵄩󵄩󵄩󵄩𝜐 − 𝜐

0

󵄩󵄩󵄩󵄩

2

= ∫

𝜋

0

(∫

𝜉

0

(𝑤 (𝜂) − 𝑤
0
(𝜂)) 𝑑𝜂)

2

𝑑𝜉

≤ 𝜋
2
∫

𝜋

0

󵄨󵄨󵄨󵄨𝑤 (𝜂) − 𝑤
0
(𝜂)

󵄨󵄨󵄨󵄨

2

𝑑𝜂

≤ 𝜋
2
𝐿

2

2
∫

𝜋

0

[
󵄨󵄨󵄨󵄨󵄨
𝑥 (𝜂) − 𝑥

1
(𝜂)

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑦 (𝜂) − 𝑦

1
(𝜂)

󵄨󵄨󵄨󵄨󵄨

2

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

0

−ℎ

(𝜓 (𝜃, 𝜉) − 𝜓
1
(𝜃, 𝜉)) 𝑑𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]𝑑𝜂

≤ 𝜋
2
𝐿

2

2
[
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑥

1󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑦

1󵄩󵄩󵄩󵄩󵄩

2

+ ℎ
2󵄩󵄩󵄩󵄩󵄩
𝜓 − 𝜓

1󵄩󵄩󵄩󵄩󵄩

2

𝐶
2

ℎ

] ,

(96)

which completes the proof.

Corollary 32. Under the above conditions, letΩ
𝑖
⊂ 𝐿

2
([0, 𝜋]),

𝑖 = 1, 2, be bounded sets, and let 𝑄 ⊂ 𝐶
2

ℎ
be a set uniformly

bounded. Then

𝜒 (𝐹 (𝑡, Ω
1
, Ω

2
, 𝑄))

≤ 𝜋𝐿
2
(𝜒(Ω

1
)
2

+ 𝜒(Ω
2
)
2

+ ℎ
2
𝛾(𝑄)

2
)
1/2

,

(97)

where 𝛾(𝑄) denotes the Hausdorff measure of noncompactness
for the norm of uniform convergence.

Proof. Let 𝜀 > 0. We abbreviate the notation by writing
𝑠
𝑖
= 𝜒(Ω

𝑖
) and 𝑠 = 𝛾(𝑄). There exist 𝑥1

, . . . , 𝑥
𝑖1 ∈ 𝐿

2
([0, 𝜋]),

𝑦
1
, . . . , 𝑦

𝑗1 ∈ 𝐿
2
([0, 𝜋]), and 𝜓

1
, . . . , 𝜓

𝑘1 ∈ 𝐶
2

ℎ
having the

following property: given 𝑥 ∈ Ω
1
, 𝑦 ∈ Ω

2
, and 𝜓 ∈ 𝑄 there

are 𝑥𝑖, 𝑦𝑗, and 𝜓𝑘 such that ‖𝑥 − 𝑥
𝑖
‖ ≤ 𝑠

1
+ 𝜀, ‖𝑦 −𝑦

𝑗
‖ ≤ 𝑠

2
+ 𝜀

and ‖𝜓 − 𝜓
𝑘
‖
∞

≤ 𝑠 + 𝜀. Hence, if V ∈ 𝐹(𝑡, 𝑥, 𝑦, 𝜓), using
Proposition 31, we obtain that

𝜌 (V, 𝐹 (𝑡, 𝑥
𝑖
, 𝑦

𝑗
, 𝜓

𝑘
))

≤ 𝜋𝐿
2
((𝑠

1
+ 𝜀)

2

+ (𝑠
2
+ 𝜀)

2

+ ℎ
2
(𝑠 + 𝜀)

2
)
1/2

.

(98)

Since 𝐹(𝑡, 𝑥
𝑖
, 𝑦

𝑗
, 𝜓

𝑘
) is a compact set in 𝐿

2
([0, 𝜋]), and 𝜀 >

0 was chosen arbitrarily, this completes the proof of the
assertion.

Corollary 32 shows that 𝐹 satisfies the condition (F4).
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On the other hand, we define 𝑔 : PC([−ℎ, 𝑇]; 𝑋) →

𝐶([−ℎ, 0]; 𝑋) by

𝑔 (𝑥) (𝜃, 𝜉) = 𝜎 (𝜉) ∫

𝑇

0

∫

𝜉

0

𝑥 (𝑡 + 𝜃, 𝜂) 𝑑𝜂 𝑑𝑡,

𝑥 ∈ PC ([−ℎ, 𝑇] ; 𝑋) ,

(99)

for 𝜃 ∈ [−ℎ, 0] and 𝜉 ∈ [0, 𝜋]. We assume that 𝜎(⋅) is a
function of class 𝐶1 such that 𝜎(𝜋) = 0. It is clear that

𝑔 (𝑥) (0, 𝜉) = 𝜎 (𝜉) ∫

𝑇

0

∫

𝜉

0

𝑥 (𝑡, 𝜂) 𝑑𝜂 𝑑𝑡 ∈ 𝐻
1
(0, 𝜋) (100)

and 𝑔(𝑥)(0, 0) = 𝑔(𝑥)(0, 𝜋) = 0.This implies that 𝑔(𝑥)(0) ∈ 𝐸

for all 𝑥 ∈ PC([−ℎ, 𝑇]; 𝑋). Moreover, 𝑔 is a continuous map
that takes bounded sets into bounded sets, and 𝑔(𝑥)(0) :

PC([−ℎ, 𝑇]; 𝑋) → 𝐸 is also continuous and takes bounded
sets into bounded sets in 𝐸. This shows that 𝑔 satisfies
condition (g1).

It is clear that 𝑔(𝑥)(𝜃) is a continuous function from [0, 𝜋]

into R for each 𝑥 ∈ PC([−ℎ, 𝑇], 𝑋). Let𝑊 ⊂ PC([−ℎ, 𝑇], 𝑋)

be a bounded set. It is not difficult to see that the set {𝑔(𝑥)(𝜃) :
𝑥 ∈ 𝑊} is equicontinuous. Moreover,

󵄨󵄨󵄨󵄨𝑔 (𝑥) (𝜃, 𝜉)
󵄨󵄨󵄨󵄨 ≤ ‖𝜎‖∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇

0

∫

𝜉

0

𝑥 (𝑡, 𝜂) 𝑑𝜂 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ‖𝜎‖
∞
∫

𝑇

0

∫

𝜋

0

󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜂)
󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑡

≤ ‖𝜎‖
∞
∫

𝑇

0

𝜋
1/2

(∫

𝜋

0

󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜂)
󵄨󵄨󵄨󵄨

2

𝑑𝜂)

1/2

𝑑𝑡

≤ ‖𝜎‖∞𝜋
1/2

𝑇 sup
−ℎ≤𝑡≤𝑇

‖𝑥 (𝑡)‖ ,

(101)

which shows that {𝑔(𝑥)(𝜃, 𝜉) : 𝑥 ∈ 𝑊} is bounded. The
Ascoli-Arzelá theorem implies that {𝑔(𝑥)(𝜃) : 𝑥 ∈ 𝑊} is
relatively compact in 𝐶([0, 𝜋]). Therefore, {𝑔(𝑥)(𝜃) : 𝑥 ∈ 𝑊}

is also relatively compact in 𝐿
2
([0, 𝜋]). Hence 𝜒(𝑔(𝑊)(𝜃)) =

0, and we can take ℓ(𝜃) = 0. This shows that 𝑔 satisfies the
first part of condition (g2). Furthermore, it follows from (c)
that

𝜒
𝐸
(𝑔 (𝑊) (0))

≤ 𝜒 (𝑔 (𝑊) (0)) + 𝜒(
𝑑

𝑑𝜉
𝑔 (𝑊) (0)) = 𝜒(

𝑑

𝑑𝜉
𝑔 (𝑊) (0)) .

(102)

From the definition of 𝑔 we obtain

𝑑

𝑑𝜉
𝑔 (𝑥) (0, 𝜉)

=
𝑑

𝑑𝜉
𝜎 (𝜉) ∫

𝑇

0

∫

𝜉

0

𝑥 (𝑡, 𝜂) 𝑑𝜂 𝑑𝑡 + 𝜎 (𝜉) ∫

𝑇

0

𝑥 (𝑡, 𝜉) 𝑑𝑡.

(103)

Arguing as above, we can affirm that the first termon the right
hand side of (103) defines a relatively compact set in𝑋. Since

𝜎(𝜉) ∫
𝑇

0
𝑥(𝑡, 𝜉)𝑑𝑡 = 𝜎 ∫

𝑇

0
𝑥(𝑡)𝑑𝑡 in the space 𝐿2

([0, 𝜋]), using
[42, Theorem 3.1], we conclude that

𝜒(
𝑑

𝑑𝜉
𝑔 (𝑊) (0))

≤ ‖𝜎‖∞ ∫

𝑇

0

𝜒 (𝑊 (𝑡)) 𝑑𝑡 ≤ ‖𝜎‖∞𝑇 sup
𝑡∈[−ℎ,𝑇]

𝜒 (𝑊 (𝑡)) ,

(104)

which shows that 𝑔 also satisfies the second part of condition
(g2) with ℓ

1
= ‖𝜎‖

∞
𝑇.

On the other hand,
󵄩󵄩󵄩󵄩𝑔(𝑥)(𝜃 + 𝛿) − 𝑔(𝑥)(𝜃)

󵄩󵄩󵄩󵄩

2

= ∫

𝜋

0

󵄨󵄨󵄨󵄨𝑔 (𝑥) (𝜃 + 𝛿, 𝜉) − 𝑔 (𝑥) (𝜃, 𝜉)
󵄨󵄨󵄨󵄨

2

𝑑𝜉

= ∫

𝜋

0

𝜎(𝜉)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜉

0

∫

𝑇

0

(𝑥 (𝑡 + 𝜃 + 𝛿, 𝜂)

− 𝑥(𝑡 + 𝜃, 𝜂)) 𝑑𝑡 𝑑𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉

≤ ‖𝜎‖
2

∞
∫

𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜉

0

[∫

𝑇+𝜃+𝛿

𝜃+𝛿

𝑥 (𝑠, 𝜂) 𝑑𝑠

− ∫

𝑇+𝜃

𝜃

𝑥(𝑠, 𝜂)𝑑𝑠] 𝑑𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉

= ‖𝜎‖
2

∞
∫

𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜉

0

[∫

𝑇+𝜃+𝛿

𝑇+𝜃

𝑥 (𝑠, 𝜂) 𝑑𝑠

− ∫

𝜃+𝛿

𝜃

𝑥(𝑠, 𝜂)𝑑𝑠] 𝑑𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉

≤ ‖𝜎‖
2

∞
∫

𝜋

0

(∫

𝜉

0

[∫

𝑇+𝜃+𝛿

𝑇+𝜃

󵄨󵄨󵄨󵄨𝑥 (𝑠, 𝜂)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫

𝜃+𝛿

𝜃

󵄨󵄨󵄨󵄨𝑥 (𝑠, 𝜂)
󵄨󵄨󵄨󵄨 𝑑𝑠] 𝑑𝜂)

2

𝑑𝜉

≤ ‖𝜎‖
2

∞
∫

𝜋

0

(∫

𝑇+𝜃+𝛿

𝑇+𝜃

∫

𝜋

0

󵄨󵄨󵄨󵄨𝑥 (𝑠, 𝜂)
󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑠

+ ∫

𝜃+𝛿

𝜃

∫

𝜋

0

󵄨󵄨󵄨󵄨𝑥 (𝑠, 𝜂)
󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑠)

2

𝑑𝜉

≤ 𝜋‖𝜎‖
2

∞
∫

𝜋

0

(∫

𝑇+𝜃+𝛿

𝑇+𝜃

‖𝑥(𝑠)‖ 𝑑𝑠 + ∫

𝜃+𝛿

𝜃

‖𝑥(𝑠)‖ 𝑑𝑠)

2

𝑑𝜉

≤ 4𝜋
2
‖𝜎‖

2

∞
sup

−ℎ≤𝑠≤𝑇

‖𝑥(𝑠)‖
2
𝛿
2

(105)

converges to zero as 𝛿 → 0 uniformly for 𝑥 ∈ 𝑊. This shows
that the set 𝑔(𝑊) is equicontinuous. Consequently, we can
affirm that 𝑔 satisfies condition (g3).
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We define 𝐼1
𝑘
, 𝐼

2

𝑘
: 𝑋 × 𝑋 × 𝐶

2

ℎ
→ 𝑋 by

𝐼
1

𝑘
(𝑥, 𝑦, 𝜓) (𝜉) = 𝑎

1

𝑘
(𝜉) ∫

𝜋

0

𝑞
1

𝑘
(𝜂) 𝑥 (𝜂) 𝑑𝜂 + 𝑏

1

𝑘
(𝜉) ,

𝐼
2

𝑘
(𝑥, 𝑦, 𝜓) (𝜉) = 𝑎

2

𝑘
(𝜉) ∫

𝜋

0

𝑞
2

𝑘
(𝜂) 𝑦 (𝜂) 𝑑𝜂 + 𝑏

2

𝑘
(𝜉) ,

(106)

for 𝑥, 𝑦 ∈ 𝐿
2
([0, 𝜋]), and 𝜉 ∈ [0, 𝜋]. We assume that

𝑞
𝑖

𝑘
(⋅), 𝑎

𝑖

𝑘
(⋅), 𝑏

𝑖

𝑘
(⋅) ∈ 𝐿

2
([0, 𝜋]) for 𝑖 = 1, 2, and that 𝑎1

𝑘
(⋅), 𝑏

1

𝑘
(⋅) ∈

𝐶
1
([0, 𝜋]) are functions such that 𝑎1

𝑘
(0) = 𝑎

1

𝑘
(𝜋) = 𝑏

1

𝑘
(0) =

𝑏
1

𝑘
(𝜋) = 0. Proceeding as above, it is easy to see that 𝐼1

𝑘
:

𝑋 × 𝑋 × 𝐶
2

ℎ
→ 𝐸 and 𝐼

2

𝑘
: 𝑋 × 𝑋 × 𝐶

2

ℎ
→ 𝑋 are continuous

maps that take bounded sets into bounded sets. This shows
that condition (I1) is verified. In addition, using that the map
𝑋 → R,𝑦 󳨃→ ∫

𝜋

0
𝑞
2

𝑘
(𝜂)𝑦(𝜂)𝑑𝜂, is a bounded linear functional

with norm ‖𝑞
2

𝑘
‖, we deduce that

𝜒 (𝐼
2

𝑘
(𝐷

0
× 𝐷

1
×𝑊)) ≤

󵄩󵄩󵄩󵄩󵄩
𝑎
2

𝑘

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑞
2

𝑘

󵄩󵄩󵄩󵄩󵄩
𝜒 (𝐷

1
) . (107)

Using this argument together with condition (c), we get

𝜒 (𝐼
1

𝑘
(𝐷

0
× 𝐷

1
×𝑊)) ≤ (

󵄩󵄩󵄩󵄩󵄩
𝑎
1

𝑘

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑

𝑑𝜉
𝑎
1

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)
󵄩󵄩󵄩󵄩󵄩
𝑞
1

𝑘

󵄩󵄩󵄩󵄩󵄩
𝜒 (𝐷

0
) ,

(108)

which shows that condition (I2) is also verified.
We complete our model by defining 𝑥(𝑡) = 𝑢(𝑡, ⋅). It is not

difficult to see that under the conditions specified previously,
systems (5)–(9) are described by the abstract models (1)–(4).
The constants𝑁

𝑖
introduced in Section 3 are the following:

𝑁
1
=

𝑚

∑

𝑘=1

(𝑑
1,0

𝑘
+ 𝑑

1,2

𝑘
)

=

𝑚

∑

𝑘=1

𝑑
1,0

𝑘
=

𝑚

∑

𝑘=1

(
󵄩󵄩󵄩󵄩󵄩
𝑎
1

𝑘

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑

𝑑𝜉
𝑎
1

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)
󵄩󵄩󵄩󵄩󵄩
𝑞
1

𝑘

󵄩󵄩󵄩󵄩󵄩
,

𝑁
2
=

𝑚

∑

𝑘=1

(𝑑
2,0

𝑘
+ 𝑑

2,2

𝑘
) = 0,

𝑁
3
=

𝑚

∑

𝑘=1

𝑑
1,1

𝑘
= 0,

𝑁
4
=

𝑚

∑

𝑘=1

𝑑
2,1

𝑘
=

𝑚

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝑎
2

𝑘

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑞
2

𝑘

󵄩󵄩󵄩󵄩󵄩
,

𝑁
󸀠

5
= 𝑀(ℓ (0) + 𝑁

1
+ 𝑁

3
) = 𝑁

1
,

𝑁
6
= 𝑀

2
ℓ
1
+ 6𝑀∫

𝑇

0

𝑘 (𝑡) 𝑑𝑡 + 𝑀
2
(𝑁

1
+ 𝑁

3
)

+ 𝑀(𝑁
2
+ 𝑁

4
)

= (2‖𝜎‖∞ + 6𝜋𝐿
2
) 𝑇 + 2𝑁

1
+ 𝑁

4
,

𝑁
󸀠

7
= max {𝑁󸀠

5
, 𝑁

6
} = 𝑁

6
.

(109)

Combining with Corollary 22, we have established the
following result.

Theorem 33. Assume that 𝜑(0, ⋅) ∈ 𝐸, and

(2‖𝜎‖∞ + 6𝜋𝐿
2
) 𝑇

+

𝑚

∑

𝑘=1

[2(
󵄩󵄩󵄩󵄩󵄩
𝑎
1

𝑘

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑

𝑑𝜉
𝑎
1

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)
󵄩󵄩󵄩󵄩󵄩
𝑞
1

𝑘

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑎
2

𝑘

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑞
2

𝑘

󵄩󵄩󵄩󵄩󵄩
] < 1.

(110)

Then there exists a mild solution of systems (5)–(9).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment
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