
Research Article
A Remark on the Regularity Criterion for the 3D Boussinesq
Equations Involving the Pressure Gradient

Zujin Zhang

School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China

Correspondence should be addressed to Zujin Zhang; zhangzujin361@163.com

Received 10 November 2013; Accepted 28 December 2013; Published 21 January 2014

Academic Editor: Giovanni P. Galdi

Copyright © 2014 Zujin Zhang.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We consider the three-dimensional Boussinesq equations and obtain a regularity criterion involving the pressure gradient in the
Morrey-Companato space𝑀𝑝,𝑞. This extends and improves the result of Gala (Gala 2013) for the Navier-Stokes equations.

1. Introduction

This paper concerns itself with the following three-dimen-
sional (3D) Boussinesq equations:

u𝑡 + (u ⋅ ∇) u − Δu + ∇𝜋 = 𝜃e3, in R
3
× (0, 𝑇) ,

𝜃𝑡 + (u ⋅ ∇) 𝜃 − Δ𝜃 = 0, in R
3
× (0, 𝑇) ,

∇ ⋅ u = 0, in R
3
× (0, 𝑇) ,

u (0) = u0, 𝜃 (0) = 𝜃0, on R
3
,

(1)

where 𝑇 > 0 is given time, u = (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), 𝑢3(𝑥, 𝑡)) is
the fluid velocity, 𝜋 = 𝜋(𝑥, 𝑡) is a scalar pressure, and 𝜃 =

𝜃(𝑥, 𝑡) is the temperature, while u0 and 𝜃0 are the prescribed
initial velocity field and temperature, respectively.

When 𝜃 = 0, (1) reduces to the incompressible Navier-
Stokes equations. The regularity of its weak solutions and the
existence of global strong solutions are challenging open
problems; see [1–3]. Starting with [4, 5], there have been a
lot of literature devoted to finding sufficient conditions to
ensure the smoothness of the solutions; see [6–15] and the
references cited therein. Since the convective terms are simi-
lar in the Navier-Stokes equations and Boussinesq equations,
the authors also consider the regularity conditions for (1); see
[16–20] and so forth.

In [6], Gala uses intricate decomposition technique to ob-
tain the following regularity criterion for the Navier-Stokes
equations:

∇𝜋 ∈ 𝐿
2/(3−𝑟)

(0, 𝑇; 𝑋̇𝑟) with 0 ≤ 𝑟 ≤ 1. (2)

Here, 𝑋̇𝑟 is the point-wise multiplier space from 𝐻̇
𝑟 to 𝐿2,

which is strictly larger than 𝐿3/𝑟(R3) (see [6, Lemma 1.2]).
In this paper, we will extend and improve the regularity

condition (2) to the Boussineq equations (1).
Before stating the precise result, let us recall the weak for-

mulation of (1).

Definition 1. Let u0 ∈ 𝐿2(R3), 𝜃0 ∈ 𝐿1 ∩ 𝐿∞(R3). A measur-
able pair (u, 𝜃) is said to be a weak solution of (1) in (0, 𝑇),
provided that

(1) (u, 𝜃) ∈ 𝐿∞(0, 𝑇; 𝐿2(R3)) ∩ 𝐿2(0, 𝑇;𝐻1(R3)), 𝜃 ∈ 𝐿∞
(0, 𝑇; 𝐿

1
∩ 𝐿
∞
(R3));

(2) (1)1,2,3 are satisfied in the sense of distributions;

(3) the energy inequality

‖(u, 𝜃)‖2
𝐿2
+ 2∫

𝑡

0

‖∇ (u, 𝜃)‖2𝐿2 d𝑠

≤
󵄩󵄩󵄩󵄩(u0, 𝜃0)

󵄩󵄩󵄩󵄩

2

𝐿2

+ 2∫

𝑡

0

∫
R3
𝜃𝑢3 d𝑥 d𝑠,

(3)

for all 0 ≤ 𝑡 ≤ 𝑇.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 510924, 4 pages
http://dx.doi.org/10.1155/2014/510924

http://dx.doi.org/10.1155/2014/510924


2 Abstract and Applied Analysis

Now, our main result reads the following.

Theorem2. Let u0 ∈ 𝐿2(R3)with∇⋅u0 = 0 in the sense of dis-
tributions, 𝜃0 ∈ 𝐿1 ∩ 𝐿∞(R3). Supposing that (u, 𝜃) is a weak
solution of (1) in [0, 𝑇), and the pressure gradient ∇𝜋 satisfies

∇𝜋 ∈ 𝐿
2/(3−𝑟)

(0, 𝑇; 𝑀̇2,3/𝑟) with 0 < 𝑟 ≤ 1, (4)

then the solution (u, 𝜃) ∈ 𝐶∞((0, 𝑇) ×R3).

Here, 𝑀̇𝑝,𝑞 is theMorrey-Campanato space, whichwill be
introduced in Section 2. And Section 3 is devoted to the proof
of Theorem 2.

Remark 3. Noticing that 𝑋̇𝑟 ⊂ 𝑀̇2,3/𝑟 for 0 < 𝑟 < 1 (see (10)),
we indeed improve the result of [6] for the Navier-Stokes
equations.

2. Preliminaries

In this section, we will introduce the definition of Morrey-
Campanato space 𝑀̇𝑝,𝑞 and recall its fundamental properties.
The space plays an important role in studying the regularity
of solutions to partial differential equations (see [21–23], e.g.).

Definition 4. For 1 < 𝑝 ≤ 𝑞 ≤ +∞, the Morrey-Campanato
space 𝑀̇𝑝,𝑞 is defined as

𝑀̇𝑝,𝑞 = {𝑓 ∈ 𝐿
𝑝

loc (R
3
) ;
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀̇
𝑝,𝑞

= sup
𝑥∈R3,𝑅>0

1

𝑅(3/𝑝)−(3/𝑞)
(∫
𝐵(𝑥,𝑅)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

𝑝 d𝑦)
1/𝑝

< +∞} ,

(5)

where 𝐵(𝑥, 𝑅) ⊂ R3 is the ball with center 𝑥 and radius 𝑅.

One sees readily that 𝑀̇𝑝,𝑞 is a Banach space under the
norm ‖ ⋅ ‖𝑀̇

𝑝,𝑞

and contains the classical Lebesgue space as a
subspace:

𝐿
𝑞
= 𝑀̇𝑞,𝑞 ⊂ 𝑀̇𝑝,𝑞. (6)

Moreover, the following scaling property holds:

󵄩󵄩󵄩󵄩𝑓(𝜆⋅)
󵄩󵄩󵄩󵄩𝑀̇
𝑝,𝑞

=
1

𝜆3/𝑞

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀̇
𝑝,𝑞

, for 𝜆 > 0. (7)

Due to the following characterization in [24].

Lemma 5. For 0 ≤ 𝑟 < 3/2, the space 𝑍̇𝑟 is defined as the space
of all functions 𝑓 ∈ 𝐿2loc(R

3
) such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑍̇
𝑟

= sup
‖𝑔‖
𝐵̇
𝑟

2,1

≤1

󵄩󵄩󵄩󵄩𝑓𝑔
󵄩󵄩󵄩󵄩𝐿2

< +∞.
(8)

Then 𝑓 ∈ 𝑀̇2,3/𝑟 if and only if 𝑓 ∈ 𝑍̇𝑟 with equivalent
norm.

And with the fact that

𝐿
2
∩ 𝐻̇
𝑟
⊂ 𝐵̇
𝑟

2,1
⊂ 𝐻̇
𝑟 for 0 < 𝑟 < 1, (9)

we have

𝑋̇𝑟 ⊂ 𝑀̇2,3/𝑟. (10)

Here 𝐵̇𝑟
2,1

is the Besov space, which is intermediate be-
tween 𝐿2 and 𝐻̇1 (see [25]):

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇𝑟
2,1

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

1−𝑟

𝐿2
󵄩󵄩󵄩󵄩∇𝑓

󵄩󵄩󵄩󵄩

𝑟

𝐿2
, for 0 < 𝑟 < 1. (11)

3. Proof of Theorem 2

In this section, we will prove Theorem 2.
Due to the Serrin type regularity criterion

u ∈ 𝐿𝑝 (0, 𝑇; 𝐿𝑞 (R3)) with 2

𝑝
+
3

𝑞
= 1, 3 < 𝑞 ≤ +∞

(12)

in [19], we need only to prove

u ∈ 𝐿∞ (0, 𝑇; 𝐿4 (R4)) ⊂ 𝐿8 (0, 𝑇; 𝐿4 (R3)) . (13)

We just do a priori estimates, with the justification be-
ing from passage to limits for the Galerkin approximated
solutions.

Taking the inner product of (1)2 with 2𝜃 in 𝐿2(R3), we
find

𝑑

𝑑𝑡
‖𝜃‖
2

𝐿2
+ 2‖∇𝜃‖

2

𝐿2
= 0. (14)

Thus,

‖𝜃‖𝐿2 ≤
󵄩󵄩󵄩󵄩𝜃0
󵄩󵄩󵄩󵄩𝐿2
. (15)

One can also take the inner product of (1)2 with 𝑝𝜃
𝑝−1

(1 ≤ 𝑝 < ∞) in 𝐿2(R3) to derive the estimate of 𝜃 in 𝐿𝑝-norm
and invoke themaximumprinciple to bound the 𝐿∞-normof
𝜃, as stated in Definition 1.

Taking the divergence of (1)1, we get

−Δ𝜋 =

3

∑

𝑖,𝑗=1

𝜕𝑖𝜕𝑗 (𝑢𝑖𝑢𝑗) − 𝜕3𝜃. (16)

Consequently,

‖∇𝜋‖𝐿2 ≤ 𝐶‖|u| ⋅ |∇u|‖𝐿2 + ‖𝜃‖𝐿2 ≤ 𝐶 (‖|u| ⋅ |∇u|‖𝐿2 + 1) .
(17)

Taking the inner product of (1)1 with 4|u|2u in 𝐿2(R3), we
get

d
d𝑡
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
2

𝐿2
+ 4∫

R3
|u|2|∇u|2d𝑥 + 2∫

R3

󵄨󵄨󵄨󵄨󵄨
∇|u|2󵄨󵄨󵄨󵄨󵄨 d𝑥

≤ 4∫
R3
|∇𝜋| ⋅ |u|3d𝑥 + 4∫

R3
|𝜃| ⋅ |u|3d𝑥

≡ 𝐼1 + 𝐼2.

(18)

For 𝐼1, we estimate as
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𝐼1 = ∫
R3
|∇𝜋|
1/2
⋅ |∇𝜋|
1/2
|u| ⋅ |u|2 d𝑥 ≤ 󵄩󵄩󵄩󵄩󵄩|∇𝜋|

1/2󵄩󵄩󵄩󵄩󵄩𝐿4
⋅
󵄩󵄩󵄩󵄩󵄩
|∇𝜋|
1/2
|u|󵄩󵄩󵄩󵄩󵄩𝐿4 ⋅

󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩𝐿2 (by Hölder inequality)

= ‖∇𝜋‖
1/2

𝐿2
⋅
󵄩󵄩󵄩󵄩󵄩
|∇𝜋| ⋅ |u|2󵄩󵄩󵄩󵄩󵄩

1/2

𝐿2
⋅
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩𝐿2 ≤ ‖∇𝜋‖

1/2

𝐿2
⋅ ‖∇𝜋‖

1/2

𝑀̇
2,3/𝑟

󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
1/2

𝐵̇𝑟
2,1

⋅
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩𝐿2 (by Lemma 5)

≤ 𝐶(‖|u| ⋅ |∇u|‖𝐿2 + 1)
1/2
⋅ ‖∇𝜋‖

1/2

𝑀̇
2,3/𝑟

⋅
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
(1−𝑟)/2

𝐿2

󵄩󵄩󵄩󵄩󵄩
∇|u|2󵄩󵄩󵄩󵄩󵄩

𝑟/2

𝐿2
⋅
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩𝐿2 (by (17) and (11))

≤ 𝐶‖|u| ⋅ |∇u|‖1/2
𝐿2
⋅
󵄩󵄩󵄩󵄩󵄩
∇|u|2󵄩󵄩󵄩󵄩󵄩

𝑟/2

𝐿2
⋅ ‖∇𝜋‖

1/2

𝑀̇
2,3/𝑟

󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
(3−𝑟)/2

𝐿2
+ 𝐶

󵄩󵄩󵄩󵄩󵄩
∇|u|2󵄩󵄩󵄩󵄩󵄩

𝑟/2

𝐿2
⋅ 1 ⋅ ‖∇𝜋‖

1/2

𝑀̇
2,3/𝑟

󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
(3−𝑟)/2

𝐿2

≤ 3‖|u| ⋅ |∇u|‖2𝐿2 +
1

2

󵄩󵄩󵄩󵄩󵄩
∇|u|2󵄩󵄩󵄩󵄩󵄩

2

𝐿2
+ 𝐶 + 𝐶‖∇𝜋‖

2/(3−𝑟)

𝑀̇
2,3/𝑟

󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
2

𝐿2

(

Young inequality 𝑎𝑏𝑐 ≤ 𝜀𝑎𝑝 + 𝛿𝑏𝑞 + 𝐶𝜀𝛿𝑐
𝑟
,
1

𝑝
+
1

𝑞
+
1

𝑟
= 1

with 𝑝 = 4, 𝑞 = 4

𝑟
, 𝑟 =

4

3 − 𝑟

) .

(19)

The term 𝐼2 can be dominated as

𝐼2 ≤ 4‖𝜃‖𝐿2
󵄩󵄩󵄩󵄩󵄩
|u|3󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
3/2

𝐿3
(by (15))

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
3/4

𝐿2

󵄩󵄩󵄩󵄩󵄩
∇|u|2󵄩󵄩󵄩󵄩󵄩

3/4

𝐿2
(by interpolation inequality)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
6/5

𝐿2
+
1

2

󵄩󵄩󵄩󵄩󵄩
∇|u|2󵄩󵄩󵄩󵄩󵄩

2

𝐿2

≤ 𝐶 + 𝐶
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
2

𝐿2
+
1

2

󵄩󵄩󵄩󵄩󵄩
∇|u|2󵄩󵄩󵄩󵄩󵄩

2

𝐿2
.

(20)

Plugging (19) and (20) into (18), we deduce that

d
d𝑡
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
2

𝐿2
+ ∫

R3
|u|2|∇u|2d𝑥 + ∫

R3

󵄨󵄨󵄨󵄨󵄨
∇|u|2󵄨󵄨󵄨󵄨󵄨 d𝑥

≤ 𝐶 + 𝐶(‖∇𝜋‖
2/(3−𝑟)

𝑀̇
2,3/𝑟

+ 1)
󵄩󵄩󵄩󵄩󵄩
|u|2󵄩󵄩󵄩󵄩󵄩
2

𝐿2
.

(21)

Applying Gronwall inequality, we see that

‖u(𝑡)‖4𝐿4 ≤ (
󵄩󵄩󵄩󵄩u0

󵄩󵄩󵄩󵄩

4

𝐿4
+ 𝐶𝑇)

⋅ exp{𝐶∫
𝑇

0

(‖∇𝜋‖
2/(3−𝑟)

𝑀̇
2,3/𝑟

+ 1) d𝑠} ,
(22)

for every 𝑡 ∈ [0, 𝑇]. Recalling (13), we complete the proof of
Theorem 2.
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