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The classical Darcy law is generalized by regarding the water flow as a function of a noninteger order derivative of the piezometric
head. This generalized law and the law of conservation of mass are then used to derive a new equation for groundwater flow.
Two methods including Frobenius and Adomian decomposition method are used to obtain an asymptotic analytical solution to
the generalized groundwater flow equation. The solution obtained via Frobenius method is valid in the vicinity of the borehole.
This solution is in perfect agreement with the data observed from the pumping test performed by the institute for groundwater
study on one of their boreholes settled on the test site of the University of the Free State. The test consisted of the pumping of the
borehole at the constant discharge rate Q and monitoring the piezometric head for 350 minutes. Numerical solutions obtained
via Adomian method are compared with the Barker generalized radial flow model for which a fractal dimension for the flow is

assumed. Proposition for uncertainties in groundwater studies was given.

1. Introduction

The real problem encounter in groundwater studies up to now
is the real shape of the geological formation in which water
flows in the aquifer under investigation. However, there are
many fractured rock aquifers where the flow of groundwater
does not fit conventional geometries [1], for example, in South
Africa, the Karoo aquifers, characterized by the presence of
a very few bedding parallel fractures that serve as the main
conduits of water in the aquifers [2]. With a challenge to fit
the solution of the groundwater flow equation with experi-
mental data from field observation in particular, the observed
drawdown see [3], for all time yields a fit that undervalues
the observed drawdown at early times and overvalues it at
later times. The variation of observations from theoretically
predictable values is usually an indication of uncertainties in
the predictable. To investigate the first possibility Botha et
al. [2] developed a three-dimensional model for the Karoo
aquifer on the campus of the University of the Free State.

This model is based on the conventional, saturated ground-
water flow equation for density-independent flow:

So (x:£)0,® (x,1) = V- [K(x,1) VO (x,8)] + f (x,8), (1)

where S, is the specific storativity, K the hydraulic conductiv-
ity tensor of the aquifer, ®(x, t) the piezometric head, f(x,t)
the strength of any sources or sinks, with x and ¢ the usual
spatial and time coordinates; V the gradient operator, and 0,
the time derivative.

This model showed that the dominant flow field in these
aquifers is vertical and linear and not horizontal and radial
as commonly assumed. However, more recent investigations
[3] suggest that the flow is also influenced by the geometry
of the bedding parallel fractures, a feature that (1) cannot
account for. It is therefore possible that the equation may not
be applicable to flow in these fractured aquifers.

In an attempt to circumvent this problem, Barker [4]
introduced a model in which the geometry of the aquifer
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is regarded as a fractal. Although this model has been applied
with reasonable success in the analysis of hydraulic tests from
boreholes in Karoo aquifers, it introduces parameters for
which no sound definition exists in the case of noninteger
flow dimensions.

As a review of the derivation of (1) will show, [5] Darcy
law

q(x.t) = -KVO (x,t) )

is used as a keystone in the derivation of (1). This law,
proposed by Darcy early in the 19th century, is relying
on experimental results obtained from the flow of water
through a one-dimensional sand column, the geometry of
which differs completely from that of a fracture [6]. There is
therefore a possibility that the Darcy law may not be valid
for flow in fractured rock formations but is only a very
crude idealization of the reality [6]. Nevertheless, the relative
success achieved by Botha et al. [2], to describe many of
the properties of Karoo aquifers, suggests also that the basic
principle underlying this law may be correct: the observed
drawdown is to be related to either a variation in the hydraulic
conductivity of the aquifer or a change in the piezometric
head. Any new form of the law should therefore be reduced
to the classical form under the more common conditions.
Because K is essentially determined by the permeability of
the rocks, and not the flow pattern, the gradient term in (2) is
the most likely cause for the deviation between the observed
and theoretical drawdown observed in the Karoo formations
[6]. In the same direction, Cloot and Botha introduced the
concept of non-integer fractional derivative to investigate a
radially symmetric form of (1), by replacing the classical first
order derivative of the piezometric head by a complementary
fractional derivative [6]. However the generalized model
for groundwater flow equation was solved numerically. In
this work, more general form of groundwater flow equation
will be introduced; the Frobenius and Adomian decompo-
sition will be used to give an asymptotic solution of the
generalized model for groundwater flow equation. Because
the concepts of fractional (or non-integer) order derivatives
and complementary fractional order derivatives may not
be widely known, both concepts are first briefly discussed
below.

2. Fractional Order Derivatives

On one hand, the concept of fractional calculus is popularly
believed to have stemmed from a question raised in the
year 1695 by Marquis de L Hospital (1661-1704) to Gottfried
Wilhelm Leibniz (1646-1716), which sought the meaning of
Leibniz’s currently popular notation d"y/dx" for derivative
of order n € Ny := {0,1,2,...} when n = 1/2 (what if
n = 1/2). In his reply, dated September 30, 1695, Leibniz
wrote to LHospital as follows: “This is an apparent paradox
from which, one day, useful consequences will drawn...” On
the other hand, the concept of fractional order derivatives for
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a function, say f(x), is based on a generalization of the Abel
integral [7]:

D F (%) = m F(x)dx, = ﬁ Lx (k-0 f ()t
(3)

where 7 is a nonzero positive integer [8-12] and I'(n) the
Gamma function [13]. This represents an integral of order
n for the continuous function f(x), whenever f and all its
derivatives vanish at the origin, x = 0. This result can be
extended to the concept of an integral of arbitrary order c,
defined as:

X
D@ =D W= [ c-oTf@dn @
I'(c) Jo
where c is a positive real number and j an integer such that
0<s<L
Let p now be the least positive integer larger than « such
that @ = m — p; 0 < p < 1. Equation (4) can then be used to
define the derivative of (positive) fractional order, say «, of a
function f(x) as

- 1 (" L dPf (1)
Df (x) =D =—J -ty dt. (5
F@ =D f @)= pos | -0 9
Note that these results, like Abel’s integral, are only valid
subject to the condition that f ®x) | x =0 = 0 for
k=0,1,2,...,p [8-11].

2.1. Properties. Properties of the operator can be found in [14,
15], we mention only the following: for f € C,, 4 > -1, , f >
Oandy > -1:

DD Pf(x) =D Ff(x),

D*DPf(x)=D*D"f (x), ©)
D% = Mx“ﬂ’.
F(a+y+1)

3. A Generalized Mathematical Groundwater
Flow Model

For the sake of clarity the generalization of the classical model
for groundwater flow in the case of density-independent flow
in the uniform homogeneous aquifer is considered in this
paper [4]. Consider the following groundwater flow equation

S99 (0) = 250, [ 1,0 (1), ?)

where both the specific storability, S;, and hydraulic conduc-
tivity, K, are scalar and constant quantities and n = 1,2 or 3
is the radial dimension. To be complete, the following set of
initial and boundary conditions is added:

@ (r,0) = ar, rlLrIgOQ (r,t) = ar,
8)
27_[71/2 o 5 (
= T KdT"0,D (1, t)
Q T (71/2) 4 T (rb )
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Here ®(r,0) = ar means that before a pumping test begins
the level of water or the initial hydraulic head in the aquifer is
linear function of space with a positive gradient a to be found,
lim, ,  ®(r,t) = ar means that during the pumping test the
level of water is not affected for a very long distance from the
borehole, and Q = (271”/2/1"(71/2))1';‘71Kd37"ar®(rb, t) means
that the rate of pumping is proportional to the hydraulic
conductivity.

Hence Q is the discharge rate of the borehole, with radius
1, and d the thickness of the aquifer from which the borehole
taps. In order to include explicitly the possible effect of the
geometry into mathematical model the radial component of
the gradient of the piezometric head, 0,®(r,t) is replaced
by the Weyl-fractional derivatives of order « = m — p; the
fractional derivative in this paper is Caputo derivative and is
defined as follows:

D (r,t) = (s—r)'"D (s,t)ds.  (9)

_ymtl oo
(Fl()P) J

r

This provides a generalized form of the classical equation
governing the flow equation (1):

S0 () = 3! [ (). (10)
r

The integrodifferential equation does contain the additional
parameter « = m—p,0 < p < 1, which can be viewed as a new
physical parameter that characterizes the flow through the
geological formations [6]. The same transformation generates
also a more general form for the boundary condition at the
borehole [6]:

272

n—1 3—-n+oa
TG K re ).

Q — (_1)m+1

The relations (10) and (11), together with the initial condition
described in (10), represent a complete set of equations for
which a solution exists. The integro-differential character of
the relations makes the search for analytical solution very
difficult however. Nevertheless, in this paper we make use of
Frobenius and Adomian decomposition methods to give an
asymptotic solution.

4. Solution of the Generalized Flow Equation

4.1. Frobenius Method. In this work to perform the Frobenius
method, we consider the groundwater flow governed by the
following fractional Caputo-Weyl derivation partial differen-
tial of order 2, where « is real number, 0 < « < 1. Also,
we consider the dimension of the flow to be 2. Therefore,
for n = 2 (10) can then be transformed into the following
equation:

D (r,t) + la:‘o (r,t) - S—K‘)atcp (rt)=0. (12)
r

Applying the Laplace operator on both sides of the above
equation, we have the following ordinary differential equa-
tion

1 S S
2D (r,5) + ;a;"cb (r,s) - E‘)sq) (r,t) + EOCD (r,0) =0,
(13)

where s is the variable of Laplace. In this matter we choose
®(r,0) = 0 or we choose a = 0, meaning that the level of
water is the same everywhere in the aquifer if the water is not
taken out from the aquifer. If we let

D (r,s) =¥ (r) (14)
then (13) becomes
XY (r) + 15;"\1' (r) - S0 oy (r) = 0. (15)
r K
We put p(r) = 1/r and q(r) = —(S,/K)s. To meet the

condition under which Frobenius method can be used, we
have to prove that p(r) and q(r) are analytical around r;, that
means we have to prove that p(r) and g(r) can be written
as series. It is very obvious to see that p(r) and g(r) can be
expressed as follows:

pr) =Y p(r=n)"  q@)=Yaq,r-n)" (6
n=0 n=0

We start here with the coeflicients of p(r):
(o)
P =Y pur-n) (17)
n=0

implying that 1 = Y72 p,(r — r;,)"r.

Putting R = r — r, we have that 1 = Y22 p, R™(R + ;)
and equating the coeflicients of same power we obtain the
following set of equations:

Poty =1,
Pijats + Po =0, (18)

p(n+1)1/arb + pn/oc =0.

Therefore, the coeflicients can be given with the general
following recursive formula:

1
-1 k 1/(k+1) f — k_
P (19)
0 otherwise.
And obviously the coefficients g,, are given below as
So
-—s forn=0
=1 K (20)
0 for n > 1.

From the above expression we can see that p(r) and g(r) are
analytical around r;,, which follows from Frobenius method
that the solution of (15) can be in the form

¥ (r) = OZO:‘Pn(r e (21)

n=0



This solution is not convergent for a large r; that is, the
solution will diverge if we observe the drawdown at a position
very far from the borehole from which the water is taken
out. Therefore, we restrict our solution in the vicinity of the
borehole; more precisely we investigate the solution when
|r — r,| < 1. That means we pump water from the borehole
and we observe the drawdown in the vicinity of the borehole.

Thus substituting (21), p(r), and g(r) into (15) and
equating the coeflicients of the same power, we obtain the
following recursive formula for which the coefficients ¥, (1 >
0), coefficients of our series:

(—1)"(=S,8/K)"T () ¥y

¥ ,8) = (22)
ez (729) T[(2n+3)a]
Here we have the following:
S T (no+ ) na-1
Y (r) = Z‘Pn—(r -r,)"
= T (no) (23)

lim 0;Y (r) =T (a + 1) ¥},
ron,

However, making use of the boundary condition in (11), we
have the following:

Y = Q
Yo ™ 27, KSysdl (a + 1)

(24)

Then the general solution of the fractional Caputo-Weyl
derivation of groundwater flow of order 2« in Laplace space
is given below as:

0 (_1)n+1(SOS)H*1Q

D (r,s) =
(r:9) r;)ZﬂrbdK”F(oc+1)

(T _ rb)nocﬂx—l' (25)

To observe the behavior of the solution at the borehole, which
corresponds to r = 1, the series solution is reduced here to
the coefficient with order zero which is obtained when n =
1/a — 1 and it’s given below as

(_1)1/0¢(Sos)1/a—2Q

= . (26)
271, dKY972T (a + 1)

O (r,s)

In the following section the analytical asymptotic solution
obtained in Laplace space via Frobenius method will be
compared with the experimental data.

4.2. Numerical Results. In order to examine the validation
of this solution, the above asymptotic solution is compared
with the experimental data from the pumping test performed
by the Institute for Groundwater Studies on one of their
borehole settled on the campus test site of the University
of the Free State. The test consisted of the pumping of the
borehole at the constant discharge rate Q and monitoring
the piezometric head for 350 minutes. The first step in the
section is to discretize the range of Laplace transform since
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the exact Laplace transform cannot be obtained in practice.
This is done as follows:

& (experimental)

tn
= J;) exp (—st) (Dmeasured data (r,t) dt 7

n-1 ti+1
= Z J exp (—st) @ (r,t) dt.
i=0 7t

Fort; < t < t;, we approximate ®(r,t) = (O(r,¢;) +
D(t;,1))/2 where ®O(r,t;) for 0 < i < n; then the results
obtained in the fields and Laplace transform become

& (experimental)

_ ’2 (@ (r,t;) + D (t;41)) (ezp (=st;) — exp (=st;,;)) _
7 (28)

Using this numerical scheme, the physical data was trans-
formed into Laplace space. A comparison between these
values and asymptotic computed data can only be provided
in the in real space not in Laplace space. Since it is not worth
concluding the validity of this solution in Laplace space,
the inverse Laplace transform is applied in (26). To test the
validity of this solution in real space and applying the inverse
Laplace transform on (26), (29) is obtained

(_1)1/a(so)1/oc—2Qt1—1/a

= . (29
271, dKYe 2T (a + 1) T (2 - 1/a)

O (r,t)

The above solution is compared graphically to the experi-
mental data from the pumping test performed by the institute
for groundwater study on one of their borehole settled on the
test site of the University of the Free State. The small difference
observed in the above graph (Figure 1) is due to uncertainties
in measurement and this will be discussed in Section 6 of
this work. The aquifer parameters used in this models are
recorded in Table 1, the observed data from field observation
will be attached to this paper. Although this solution is in
agreement with the experimental data, there will be the need
to investigate the case where the observation can be done for
a long distance. In the next section another approach will
be introduced to solve the space-time-fractional derivative of
groundwater flow equation, and this method is the Adomian
decomposition method.

5. Adomian Decomposition Method

5.1. Example 1. This section is concerned with the ground-
water equation with time- and space-fractional derivatives of
the form

S 9D (1, 1) = N3P (1) + KOO (1, 1),
r (30)

O<a<l<pu<2
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TABLE 1: Aquifer parameters used in the model.

Parameters Values Units
Q 83.10°° (m*s™)
7 0.025 (m)
K 13.107* (ms™!
d 1 (m)
So 13.10™* (m™)
D, 0 (m)
20 = 1.46

Drawdown

0 50 100 150 200 250 300 350
Time

FIGURE 1: Comparison of experimental data from real world obser-
vation with solution of fractional groundwater flow equation.

Subject to the initial and boundary conditions described in
(8), the level of water is assumed to be the same throughout
the aquifer before the pumping so that the gradient a
described in (8) is zero. Furthermore, it is assumed that a
fractional change in drawdown is constant for t = 0 meaning
0 ®(r,0) = constant.

The method used here is based on applying the operator

jot dt on both sides of (30) to obtain
t 1., K
O (r,t) = O (r,0)+ J (afcb (1) + 20D (r, T)) R i
0 r So
(31)

The Adomian decomposition method [16,17] assumes a series
solution for (31) to be

D (r,t) = ZCDn (r,t), (32)

n=0

where the components @, (r,t) are determined recursively.
Substituting (32) into both sides of (30) gives

Y6, (1)
n=0

=®(r,0)

t o 1o S K
+ Jo (E)f (;Cbn (r, T)) + ;ar (;CDH (r, T))) S—Od‘r.

(33)

Following the decomposition method, the recursive relations
are introduced as

D, (r,t) = D(r,0), (34)

t

(Kaf (@, (r,7)) + ?aﬁ‘ (@, (r, T))) dr.
(35)

So®n+1 (1’, t) = J

0

It is worth noting that if the component ®(r, ) is defined,
then the remaining components # > 1 can be completely
determined such that each term is determined by using the
previous terms, and the series solutions are thus entirely
determined. Finally, the solution ®(r,t) is approximated by
the truncated series

N-1
Dy (r,t) = Y ,(r1), Jim Oy (1) = © (1),
=0 — 00
(36)

However, the inclusion of boundary conditions in fractional
differential equations introduces additional difficulties. The
Adomian decomposition method can handle these difficul-
ties by using the space-fractional operator 0 and the initial
conditions only. The method provides the solution in the
form of a rapidly convergent series that may lead to the exact
solution in the case of integer derivatives (0« = 1,y = 2)
and to an efficient numerical solution with high accuracy for
0 < « < 1. The convergence of the decomposition series has
been investigated in [18, 19].

Following the recursive formula equation (35) and using
the fact that 0 ®(r,0) = constant = g, the equations below
are obtained:

D, (r,t) = Si L (Kaf (D (r, 7)) + gaf‘ (D, (r, T)))d‘[

0

_ Kat
St
K*at’T(1+y) K2afT (1 +«)
®, (1) = 2 T+ 2.2t
285 285
B Klat? [T(1+2u) TQa+1)
(i) = 68(3) rli2u e

(37)

The component ®,(r,t) was also determined and will be
used, but for brevity it is not listed. In this matter five com-
ponents of the decomposition series (30) were obtained for
which @(r, t) was evaluated to have the following expansion:

K?at’T (1 +
q;(r,t):q>o(r,t)+@+u

Sor 283ri
K*at’T (1
a2 2 (2+¢: ‘X) (38)
2855
Kat’ [T(1+24) T QRa+1)
638 rl+2u oot



Applying the boundary condition yields

_ Q
e 2nr,Kd* f (1, t)’ (39)
where
f (rp:t)
_, Kr+e (Kt)’T(1+u+a)
Sor;*"‘ zs(z)r;ﬂxm
(Kt)’T(2+2a) (Kt)® (40)

2857 (1+a) 68

F(1+2u+a)
1+2pu+a
"o

I'(2+3x)
et (a+1) Qe+ 1) |

5.2. Example 2. Consider the groundwater flow equation
with time- and space-fractional derivatives of the form

KoP® (r,1) + Eafcb (r,t) = Sd°® (r,1) =0,  (41)
r

subject to the initial condition described in (11). Furthermore
we suppose that the gradient a = 0, meaning that the water
level is everywhere in the aquifer at 0¥®(r,0) = constant
and the fractional change in drawdown is a constant and
boundary condition:

Q = 27Kd"r, 0" ® (1, 1) . (42)

Following the discussion earlier, we have the below recursive
formula:

D, (r,t) =D(r,0),

- K (43)
So®,,, (r,t) = D;* | KOP D, (r,1) + ~0“D, (r,1)|.
r

It follows from the recursive formula that

aKt*
O, (r,t) = ———,
1 (1) I'(a+1)S,r
K*at® [T(1+p) T(1+p)
® 0= g [ I+ |
ol Qo + 1) rith r
D, (1, 1)
Kat™T (2 +u+p) K’at™T (2B +1)

T ST Ga+1)(1+p) 2 P ST (3a + 1) 267

K3at**T 2u+2)

*K2al (1+ u+ )
+
Ser?#HT Bar+ 1) (1 + )

ST (3o + 1) r2*H+B
(44)
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The component ®,(r,t) was also determined and will be
used, but for brevity it is not listed. In this matter five compo-
nents of the decomposition series (41) were obtained of which
®(r, t) was evaluated to have the following expansion:

O (r,1)
aKt* N K2at**
[(a+1)Syr ST+ 1)

F(1+u) T(1+p)
rl+u r1+B

=0 (r,0)+

K’at™T (2 +u+p) (45)
+
SiT (Bev + 1) (1 + p) r2*uth

K’at™T (2B +1)
ST (Ba + 1) r2PH

K’at™T (2u +2)
Ser2#3T (Ba+ 1) (1 + p)

t3“K3a1"(1 +u+p)
ST (3o + 1) r2*wth

Applying the boundary condition yields
Q

"7 2K f () o)
where
f (1)
KT (1+p)t*
T T (1+a)Sr,™
KX [ul(1+24) Pr(1+p2)
+S§F(2cx+1) r;“" + r;”ﬁ T
(47)

5.3. Example 3. Consider time fractional derivative of the
groundwater flow equation with time-fractional derivatives
of the form

KO'® (r,t) + Earcp (r,£) — Sy ® (r,t) = 0. (48)
r

Subject to the initial and boundary conditions described
in (8) it is assumed that a#0. Following the discussion
presented earlier, we obtained the below recursive formula:
«[K
So®,,, (r,1) = D;* | =03,®, (r,t) + K;®, (r,1) | ,
r

D, (r,t) =D (r,0),

Kat®
O, (r,t) = ;:
TSOF ((X + 1) (49)
K2at™
O, (rt)= ——m—,
2 (1) ST Qa+1)73
9 K3t30t
Dy (1) = ——

rssgl" BGa+1)
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TaBLE 2: Theoretical values.

Parameters Values Units Parameters Values Units
Q 10.8 (m*s™) « 0.005 None
7, 0.15 (m) B 1.05 None
K 0.65 (ms™) U 1.005 None
d 40 (m) A 0.012 None
So 0.75 (m™) o 0.5 None
D, 0 (m) a, 0.005 None

U 0.025 None

The component ®,(r,t) was also determined and will be
used, but for brevity not listed. In this matter five components
of the decomposition series (31) were obtained of which
O(r,t) was evaluated to have the following expansion

o 2 2«
O (r,t) = @ (r,0) + o, Kt
rSl(a+1) ST Qo+ 1)r°
(50)
9aK>t>*
+ PP
PSS (Ba + 1)
Applying the boundary conditions yield to
Q
a=———"——,
2nr, Kdf (1, t) (D
where
Kt* 3Kt
fr,t)=1- +ol (52)

2 ta 4
158l (L+a) ST (1+2a) 7,

The normalized solutions with ®(r,0) of (50), (51) and (52)
are illustrated graphically in Figures 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, and 13 for different values of various parameters;
these solutions are compared to the solution proposed by
Barker [4]. These graphs show the behaviour of the drawdown
during the pumping test, first as a function of space and time
from the borehole to the point of observation, secondly as
function of time for a fixed distance from the borehole, and
finally as a function of space for a fixed time. Based on the
assumption that groundwater in an aquifer flows through an
equipotential surface that are projections of /-dimensional
spheres onto two-dimensional space, Barker [4] obtained the
following analytical solution for an infinite aquifer with a line
source:

O (r,t) =

2(1-1/2) 2
Qr |:)L ﬁ (53)

4 nM2Kd'"A 2 4Kt ]’
where T' is the incomplete gamma function and A the
dimension of the flow which equals the special dimension, n
being an integer, and the other quantities all have the same
meaning as before. Although this model has been applied
with reasonable success in the analysis of hydraulic tests from
boreholes in Karoo aquifers, it introduces parameters for
which no sound definition exists in the case of non-integer
flow dimensions. The main raison of comparison of these
results obtained via the Adomian decomposition methods

FIGURE 2: Solution of (30) (piezometric head).

with those of Barker’s fractal radial flow model is to establish
a possible relationship between the fractional order of the
derivative and the parameter fractal introduced earlier by
Barker.

Table 2 shows the theoretical values of the discharge rate
and aquifer parameters used in the numerical simulations.

6. Discussion and Propositions

Although the analytical solution obtained via Frobenius
method fit the experimental data or have described success-
fully the events taking place in the vicinity of the borehole, on
one hand, and the analytical solutions obtained via Adomian
decomposition method was successfully compared to the
solution proposed by Barker, on the other hand, the problem
of choosing an appropriate geometry for the geological
system in which the flow occurs still remains a challenge in
groundwater studies. We personally believe that we do not
propose solution to a problem because it going to be useful
for the generation in which we are, but we propose solution
because we hope that they will one day be useful for mankind;
therefore the following proposition may not be useful for this
generation because we may not have the adequate technology
to perform the steps involved but it will be in the future.



FIGURE 4: Barker’s solution.

We think that describing the groundwater flow with one
equation for the whole aquifer is unrealistic, because from
one point of the aquifer to another properties including
geology and geometry change, therefore the flow. Assump-
tion such as homogeneity, isotropy, uniform thickness over
the area under investigation and so on render the study of
groundwater uncertain. In order to study the geology or
the geometry of an aquifer, we have to divide the aquifer
in small portions, from north to south and from east to
west. The geology and the geometry of each portion can
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FIGURE 6: Solution of (30) (drawdown).

then be studied. If the results of the study reveal that the
portion under investigation is for instance a hyperboloid,
since there is no exact solution to groundwater flow model by
hyperboloid flow and there are solutions to circular flow, then
a suitable transformation can be done including transfor-
mation of hyperboloid coordinates to Cartesian coordinates,
then to Cartesian coordinates to cylindrical coordinate such
that this new coordinate can now be put in the equation
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FIGURE 8: Solution of (48) (drawdown).

describing groundwater flow, and the solution to the new
equation can then be investigated. Henceforth knowing the
real geology and geometry of this portion, the real paths
flow will be known. Then having a good knowledge of each
small portion including its geometry and geology, the real
geometry and geology of the aquifer can be not exactly but
more accurately known.

For groundwater remediation it will be possible to know
where the maximum, minimum, and average chemical con-
centrations are found in the aquifer. We have no proof for
this but we believe that this proposition will be useful in
reducing uncertainties in groundwater study. It is believed
that the field test gives the characteristic of an aquifer, but
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FIGURE 10: Solution of (30) as function of space (piezometric head).

we believe that the field test gives both uncertainties and
characteristics of the aquifer; therefore quantify uncertainties
in this measurement lead us to the real picture of aquifer
characteristics, henceforth we propose that the studies in
groundwater should focus on both uncertainties and fields
observations, because what is known is bounded by what is
not known; knowing what is not known give a real picture
to what was known, and it follows that the knowledge of
uncertainties in groundwater study will give a clear picture
of what we already know in groundwater.

7. Conclusion

The classical Darcy Law has been generalized using the
concept of complementary fractional order derivatives of
Weyl fractional derivative. This leads to the formulation of
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FIGURE 11: Solution of (41) as function of space (piezometric head).
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FIGURE 12: Barker’s solution.

anew generalized form of the groundwater flow equation [6].
The applications of Adomian decomposition and Frobenius
methods were extended to obtain explicit and numerical
solutions of the space-time fractional groundwater flow.
The two methods were very clearly efficient and powerful
techniques in finding the solutions of the proposed equations.
The solution obtained via Frobenius takes into account the
events taking place in the vicinity of the borehole during
the pumping test whereas the solution obtained via Adomian
decomposition methods takes into account the events that
take place far from the point where water is pumped out,
that is, in the borehole. The solution obtained via Frobenius
method was in perfect agreement with the observed data
obtained from the pumping test performed by the Institute
for Groundwater Studies on one of their borehole settled on
the campus test site of the University of the Free State. The
Adomian decomposition method requires less computational
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FIGURE 13: Solution of (48) as function of space (piezometric head).

work than existing approaches while supplying quantitatively
reliable results. The obtained results demonstrate the reliabil-
ity of the algorithms and their wider applicability to fractional
evolution equations. A comparison of these results obtained
via the Adomian decomposition methods with those of
Barker’s fractal radial flow model suggests that there exists a
relation between the fractional order of the derivative and the
non-integral dimension of the flow.
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