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The output tracking problem for a class of uncertain strict-feedback nonlinear systems with unknown Duhem hysteresis input
is investigated. In order to handle the undesirable effects caused by unknown hysteresis, the properties in respect to Duhem
model are used to decompose it as a nonlinear smooth term and a nonlinear bounded “disturbance-like” term, which makes it
possible to deal with the unknown hysteresis without constructing inverse in the controller design. By combining robust control
and dynamic surface control technique, an adaptive controller is proposed in this paper to avoid “the explosion complexity” in
the standard backstepping design procedure. The negative effects caused by the unknown hysteresis can be mitigated effectively,
and the semiglobal uniform ultimate boundedness of all the signals in the closed-loop system is obtained. The effectiveness of the
proposed scheme is validated through a simulation example.

1. Introduction

With the development of smart materials, some smart mate-
rials-based actuators, such as piezoceramic actuators [1],
magnetostrictive actuators, and shape memory alloys, are
becoming increasingly important in the application areas of
aerospace, manufacturing, defense, and civil infrastructure
systems [2–5], because of their excellent performance, for
example, high precision, fast response, and flexible actuating
ability [6–8]. However, a class of nonsmooth nonlinearities,
hystereses, with multibranching and nondifferential proper-
ties, widely occur in these smart materials-based actuators.
When the system is preceded by these actuators, the existence
of the hysteresis behaviour in these actuators will degrade
the system performance, causing undesirable inaccuracy.The
hysteresis nonlinearities are the nature properties of these
smart materials, which cannot be cancelled by the improve-
ment of the smart materials. Therefore, how to mitigate
the negative effects caused by the hysteresis nonlinearities
from control view becomes one important research topic in
this area. Due to the nonsmooth nature of hysteresis, most

common control approaches developed for nonlinear systems
may not be applicable to hysteretic systems directly, which
attracted significant attention in the modeling of hysteresis
nonlinearities and the hysteretic systems controller design.

For the modeling method of the hysteresis, it can be
roughly classified as differential equation-based hysteresis
models, such as Backlash-like model [9], Bouc-Wen model
[10, 11], and Duhem model [10, 12], and operator-based
hysteresis models, such as Preisach model, Krasnosel’skii-
Pokrovskii model, and Prandtl-Ishlinskii model [13–15].
As a differential-equation based hysteresis model, Duhem
model can represent numerous hysteresis shapes including
saturation and asymmetric properties by choosing different
shape functions. However, the output analytical expression of
Duhem model is difficult to obtain directly since the output
depends on the solution of the differential equation, which
may cause a new difficulty for the controller design.

So far, the control design work for the systems in presence
of hysteresis nonlinearities has also been paid more atten-
tion [16–19]. Generally, two control approaches are used to
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mitigate the negative effects of hysteresis in the literature.
The common one is to construct a hysteresis inverse model
to cancel the adverse effects of hysteresis completely or
approximately, such as [20, 21]. The main advantage of this
inverse control approach is to compensate the effects of
hysteresis nonlinearities directly. However, the construction
of the inverse hysteresis will increase the complexity of
the control systems and may limit the application in the
industrial systems. Also, the compensation error depends on
the hysteresis modeling parameters; therefore, it is difficult
to get the analytical expression of the compensation error.
Alternatively, anothermethod is to fuse the hysteresis models
with control methods without constructing the hysteresis
inverse [9, 22–24], which can be applied in the real-time
systems conveniently. For this control structure without
inverse, the key point is to explore the characteristics of the
hysteresis model and then investigate the suitable control
methods to mitigate the effects caused by hysteresis.

Synthesizing the hysteresis modeling methods and con-
trol approaches, the output tracking problem for a class of
uncertain nonlinear systems in strict-feedback form with
unknown Duhem hysteresis is discussed. For the Duhem
model, one adaptive robust controller for a class of nonlinear
systems was discussed in [25]. Still following the line, the
robust adaptive control method for a class of uncertain
nonlinear systems in strict-feedback form is investigated in
this paper. In order to mitigate the design difficulty caused by
the smooth function term in the uncertain nonlinear systems,
themean value theorem and aNussbaum function lemma are
used.The proposed dynamic surface control (DSC) approach
[26] without hysteresis inverse avoids “the explosion com-
plexity” in the standard backstepping design, mitigates the
negative effects arising from the unknown hysteresis, and
ensures the semiglobal uniform ultimate boundedness of all
the signals in the closed-loop system.

The rest of this paper is organized as follows. In Section 2,
the control problem is formulated. Duhem hysteresis model
is introduced in Section 3. In Section 4, an adaptive dynamic
surface controller is developed for a class of nonlinear systems
in strict-feedback formwith unknownDuhemhysteresis, and
the stability analysis is given as well. Computer simulations
are shown to verify the effectiveness of the proposed scheme
in Section 5. Section 6 concludes the paper.

2. Problem Statement

Consider the following class of uncertain nonlinear systems
in strict-feedback form with unknown hysteresis input:
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The control objective is to design a control law 𝑢 in (1),
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while all the signals of closed-loop system are uniformly
bounded.

The following assumptions of the system (1) are made.
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are unknown nonnegative constants.

Remark 4. It should be mentioned that the knowledge of 𝑔
𝑖0

and 𝑔
𝑖1
is not required to be known, which is only used in the

analysis of the latter stability proof.

3. Hysteresis Model

In this paper, the Duhem model is used to describe the
hysteresis nonlinearity, which is defined by [14]
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𝜓 (𝑢) , (3)

where 𝑢 and 𝑤 are the hysteresis input and output, respec-
tively; 𝛼 is a constant; and 𝜆(𝑢) and 𝜓(𝑢) are shape functions
of 𝑢.

In order to get the analytic expression of the hysteresis
output 𝑤, the following three conditions [10, 27, 28] are used
for Duhem model.

Condition 1. 𝜆(𝑢) is a piecewise smooth, monotone increas-
ing, odd function of 𝑢, with a derivative ̇
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Remark 5. By selecting suitable shape functions, Duhem
model can describe the different characteristics of the hys-
teresis nonlinearities. For example, choose 𝛼 = 5 and 𝜓(𝑢) =
̇

𝜆(𝑢)(1 − 0.85𝑒

(−0.1|𝑢|)
) with different shape function 𝜆(𝑢)
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Figure 1: Hysteresis curves described by 𝜆(𝑢) = 10 tanh 5𝑢 + 8𝑢.
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Figure 2: Hysteresis curves described by 𝜆(𝑢) = 10 tanh 5𝑢.

satisfying three properties; the described hysteresis curves are
shown in Figures 1 and 2.

Under the previous three conditions, the Duhem model
(3) can be solved explicitly for 𝑢 piecewise monotone as [14]

𝑤 = 𝜆 (𝑢) + 𝜂 (𝑢) , (5)
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Figure 3: Hysteresis curves described by Backlash-like model.

then it can be deduced that 𝜂(𝑢) is bounded [14] easily. For
simplicity, let 𝐷 denote the bound of 𝜂(𝑢), where 𝐷 is a
positive constant.

Remark 6. When 𝑓(V) = 𝑐𝑢 and 𝑔(𝑢) is a constant 𝐵, the
Duhem model can be expressed as
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When 𝑐 > 𝐵, the Duhem model becomes the Backlash-
like model defined in [9]. According to the above analysis,
it is obvious that the Backlash-like model is a special case of
the Duhem model. However, it should be noted that when
𝑓(𝑢) = 𝑐𝑢 and 𝑔(𝑢) = 𝐵, Conditions 1 and 2 are not satisfied
necessarily for the Duhemmodel. Similarly, (8) can be solved
explicitly for the Backlash-like model:
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(11)

so the disturbance term 𝜑(V) is still bounded.
According to the previous proof, 𝐷 still can be used to

denote the bound of 𝜂(𝑢) defined for Backlash-like model. As
a comparison, when 𝜆(𝑢) = 𝑐𝑢 = 3.1635𝑢, 𝜂(𝑢) = 𝐵 = 0.345,
and the input 𝑢(𝑡) = 2.5 sin(2.3𝑡), the Duhem model can be
reexpressed as the Backlash-like model; then the curve of the
Backlash-like model is shown in Figure 3.
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4. Adaptive DSC Design and Stability Analysis

In this section, the procedure for the design of adaptive
dynamic surface controller and system stability will be given.
Considering the characteristics of the hysteresis nonlinear-
ities existing in the actual controlled plant, the following
assumption is made for the hysteresis model (3).

Assumption 7. The function 𝜆(𝑢) of Duhem hysteresis (3) is a
smooth and strictly increasing function.

According to Condition 1 of Duhem model, 𝜆(0) = 0.
Combining the derivative form of mean value theorem and
Assumption 7, there exists 𝜗 ∈ (min(0, 𝑢),max(0, 𝑢)) such
that
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useful lemma is given as follows.
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̃

𝑔

𝑔1

≤ 𝑧

1
(𝜃

𝑔1
𝑓

1
(𝑥

1
) + 𝛼

1

+ 𝑏

𝑔1
𝜌

1
(𝑥

1
) tanh(

𝑧

1
𝜌

1
(𝑥

1
)

𝜔

) − 𝑔

𝑔1
̇𝑦

𝑑
)

+ 𝑧

1
𝑧

2
+ 𝑧

1
𝑒

1
+ 0.2785𝜔𝑏

𝑔1
+

1

𝛾

𝜃1

̃

𝜃

𝑔1

̇

̃

𝜃

𝑔1

+

1

𝛾

𝑏1

̃

𝑏

𝑔1

̇

̃

𝑏

𝑔1
+

1

𝛾

𝑔
1

̃

𝑔

𝑔1

̇

̃

𝑔

𝑔1

≤ 𝑧

1
(

̂

𝜃

𝑔1
𝑓

1
(𝑥

1
) + 𝛼

1
+

̂

𝑏

𝑔1
𝜌

1
(𝑥

1
) tanh(

𝑧

1
𝜌

1
(𝑥

1
)

𝜔

)

−

̂

𝑔

𝑔1
̇𝑦

𝑑
)

+ 𝑧

1
𝑧

2
+ 𝑧

1
𝑒

1
+ 0.2785𝜔𝑏

𝑔1

+

̃

𝜃

𝑔1
(𝑧

1
𝑓

1
(𝑥

1
) −

1

𝛾

𝜃1

̇

̂

𝜃

𝑔1
)

+

̃

𝑏

𝑔1
(𝑧

1
𝜌

1
(𝑥

1
) tanh(

𝑧

1
𝜌

1
(𝑥

1
)

𝜔

) −

1

𝛾

𝑏1

̇

̂

𝑏

𝑔1
)

+

̃

𝑔

𝑔1
(−𝑧

1
̇𝑦

𝑑
−

1

𝛾

𝑔
1

̇

̂

𝑔

𝑔1
) .

(22)
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The virtual control law 𝛼

1
and the adaptive laws ̂𝜃

𝑔1
, ̂𝑏
𝑔1
,

and ̂𝑔
𝑔1
are designed as

𝛼

1
= − 𝑘

1
𝑧

1
−

̂

𝜃

𝑔1
𝑓

1
(𝑥

1
) −

̂

𝑏

𝑔1
𝜌

1
(𝑥

1
) tanh(

𝑧

1
𝜌

1
(𝑥

1
)

𝜔

)

+

̂

𝑔

𝑔1
̇𝑦

𝑑
,

̇

̂

𝜃

𝑔1
= 𝛾

𝜃1
(𝑧

1
𝑓

1
(𝑥

1
) − 𝜛

1
̂

𝜃

𝑔1
) ,

̇

̂

𝑏

𝑔1
= 𝛾

𝑏1
(𝑧

1
𝜌

1
(𝑥

1
) tanh(

𝑧

1
𝜌

1
(𝑥

1
)

𝜔

) − 𝜇

1
̂

𝑏

𝑔1
) ,

̇

̂

𝑔

𝑔1
= 𝛾

𝑔
1

(−𝑧

1
̇𝑦

𝑑
− ]
1
̂

𝑔

𝑔1
) ,

(23)

where 𝑘
1
, 𝜛
1
, 𝜇
1
, and ]

1
are positive design parameters.

Substituting (23) into (22), we obtain

̇

𝑉

1
≤ −𝑘

1
𝑧

2

1
+ 𝑧

1
𝑧

2
+ 𝑧

1
𝑒

1
+ 0.2785𝜔𝑏

𝑔1
+ 𝜛

1
̃

𝜃

𝑔1

̂

𝜃

𝑔1

+ 𝜇

1
̃

𝑏

𝑔1

̂

𝑏

𝑔1
+ ]
1
̃

𝑔

𝑔1

̂

𝑔

𝑔1
.

(24)

By using the following inequalities

𝜛

1
̃

𝜃

𝑔1

̂

𝜃

𝑔1
≤

𝜛

1

2

(−

̃

𝜃

2

𝑔1
+ 𝜃

2

𝑔1
) ,

𝜇

1
̃

𝑏

𝑔1

̂

𝑏

𝑔1
≤

𝜇

1

2

(−

̃

𝑏

2

𝑔1
+ 𝑏

2

𝑔1
) ,

]
1
̃

𝑔

𝑔1

̂

𝑔

𝑔1
≤

]
1

2

(−

̃

𝑔

2

𝑔1
+ 𝑔

2

𝑔1
) ,

(25)

we have

̇

𝑉

1
≤ −𝑘

1
𝑧

2

1
−

𝜛

1

2

̃

𝜃

2

𝑔1
−

𝜇

1

2

̃

𝑏

2

𝑔1
−

]
1

2

̃

𝑔

2

𝑔1
+ 𝑧

1
𝑧

2
+ 𝑧

1
𝑒

1

+ 0.2785𝜔𝑏

𝑔1
+

𝜛

1

2

𝜃

2

𝑔1
+

𝜇

1

2

𝑏

2

𝑔1
+

]
1

2

𝑔

2

𝑔1
.

(26)

Step i (2 ≤ 𝑖 ≤ 𝑛 − 1). Considering (17) and (18), and 𝑧
𝑖
=

𝑥

𝑖
− 𝑠

𝑖−1
, it has

𝑠

𝑖
= 𝑒

𝑖
+ 𝛼

𝑖
, ̇𝑠

𝑖
= −

𝑒

𝑖

𝜏

𝑖

, 𝑖 = 1, . . . , 𝑛 − 1, (27)

�̇�

𝑖
= 𝜃

𝑖
𝑓

𝑖
(𝑥

𝑖
) + 𝑔

𝑖
𝑥

𝑖+1
+ 𝑑

𝑖 (
𝑥, 𝑡) +

𝑒

𝑖−1

𝜏

𝑖−1

= 𝜃

𝑖
𝑓

𝑖
(𝑥

𝑖
) + 𝑔

𝑖
[𝑧

𝑖+1
+ 𝛼

𝑖
+ 𝑒

𝑖
] + 𝑑

𝑖 (
𝑥, 𝑡) +

𝑒

𝑖−1

𝜏

𝑖−1

.

(28)

Define the Lyapunov function candidate

𝑉

𝑖
= 𝑉

𝑖−1
+

1

2

(

1

𝑔

𝑖

𝑧

2

𝑖
+

1

𝛾

𝜃𝑖

̃

𝜃

2

𝑔𝑖
+

1

𝛾

𝑏𝑖

̃

𝑏

2

𝑔𝑖
+

1

𝛾

𝑔
𝑖

̃

𝑔

2

𝑔𝑖
) , (29)

where ̃𝜃
𝑔𝑖
= 𝜃

𝑔𝑖
−

̂

𝜃

𝑔𝑖
, ̃𝑏
𝑔𝑖
= 𝑏

𝑔𝑖
−

̂

𝑏

𝑔𝑖
, and ̃𝑔

𝑔𝑖
= 𝑔

𝑔𝑖
−

̂

𝑔

𝑔𝑖
with

̂

𝜃

𝑔𝑖
, ̂𝑏
𝑔𝑖
, and ̂𝑔

𝑔𝑖
as the estimates of 𝜃

𝑔𝑖
= 𝜃

𝑖
/𝑔

𝑖
, 𝑏
𝑔𝑖
= 𝑏

𝑖
/𝑔

𝑖
, and

𝑔

𝑔𝑖
= 1/𝑔

𝑖
, respectively. 𝛾

𝜃𝑖
, 𝛾
𝑏𝑖
, and 𝛾

𝑔
𝑖

are positive design
parameters.

Based on (21) and (28), the time derivative of 𝑉
𝑖
is given

by

̇

𝑉

𝑖
=

̇

𝑉

𝑖−1
+

𝑧

𝑖

𝑔

𝑖

(𝜃

𝑖
𝑓

𝑖
(𝑥

𝑖
) + 𝑔

𝑖
[𝑧

𝑖+1
+ 𝛼

𝑖
+ 𝑒

𝑖
]

+ 𝑑

𝑖 (
𝑥, 𝑡) +

𝑒

𝑖−1

𝜏

𝑖−1

)

+

1

𝛾

𝜃𝑖

̃

𝜃

𝑔𝑖

̇

̃

𝜃

𝑔𝑖
+

1

𝛾

𝑏𝑖

̃

𝑏

𝑔𝑖

̇

̃

𝑏

𝑔𝑖
+

1

𝛾

𝑔
𝑖

̃

𝑔

𝑔𝑖

̇

̃

𝑔

𝑔𝑖

≤

̇

𝑉

𝑖−1
+ 𝑧

𝑖
(𝑧

𝑖−1
+ 𝜃

𝑔𝑖
𝑓

𝑖
(𝑥

𝑖
) + 𝛼

𝑖

+ 𝑏

𝑔𝑖
𝜌

𝑖
(𝑥

𝑖
) tanh(

𝑧

𝑖
𝜌

𝑖
(𝑥

𝑖
)

𝜔

) + 𝑔

𝑔𝑖

𝑒

𝑖−1

𝜏

𝑖−1

)

+ 𝑧

𝑖
𝑧

𝑖+1
− 𝑧

𝑖
𝑧

𝑖−1
+ 𝑧

𝑖
𝑒

𝑖
+ 0.2785𝜔𝑏

𝑔𝑖

+

1

𝛾

𝜃𝑖

̃

𝜃

𝑔𝑖

̇

̃

𝜃

𝑔𝑖
+

1

𝛾

𝑏𝑖

̃

𝑏

𝑔𝑖

̇

̃

𝑏

𝑔𝑖
+

1

𝛾

𝑔
𝑖

̃

𝑔

𝑔𝑖

̇

̃

𝑔

𝑔𝑖

≤

̇

𝑉

𝑖−1
+ 𝑧

𝑖
(𝑧

𝑖−1
+

̂

𝜃

𝑔𝑖
𝑓

𝑖
(𝑥

𝑖
) + 𝛼

𝑖

+

̂

𝑏

𝑔𝑖
𝜌

𝑖
(𝑥

𝑖
) tanh(

𝑧

𝑖
𝜌

𝑖
(𝑥

𝑖
)

𝜔

) +

̂

𝑔

𝑔𝑖

𝑒

𝑖−1

𝜏

𝑖−1

)

+ 𝑧

𝑖
𝑧

𝑖+1
− 𝑧

𝑖
𝑧

𝑖−1
+ 𝑧

𝑖
𝑒

𝑖
+ 0.2785𝜔𝑏

𝑔𝑖

+

̃

𝜃

𝑔𝑖
(𝑧

𝑖
𝑓

𝑖
(𝑥

𝑖
) −

1

𝛾

𝜃𝑖

̇

̂

𝜃

𝑔𝑖
)

+

̃

𝑏

𝑔𝑖
(𝑧

𝑖
𝜌

𝑖
(𝑥

𝑖
) tanh(

𝑧

𝑖
𝜌

𝑖
(𝑥

𝑖
)

𝜔

) −

1

𝛾

𝑏𝑖

̇

̂

𝑏

𝑔𝑖
)

+

̃

𝑔

𝑔𝑖
(𝑧

𝑖

𝑒

𝑖−1

𝜏

𝑖−1

−

1

𝛾

𝑔
𝑖

̇

̂

𝑔

𝑔𝑖
) .

(30)

The virtual control law 𝛼

𝑖
and the adaptive update laws

̂

𝜃

𝑔𝑖
, ̂𝑏
𝑔𝑖
, and ̂𝑔

𝑔𝑖
are designed as

𝛼

𝑖
= − 𝑘

𝑖
𝑧

𝑖
− 𝑧

𝑖−1
−

̂

𝜃

𝑔𝑖
𝑓

𝑖
(𝑥

𝑖
) −

̂

𝑏

𝑔𝑖
𝜌

𝑖
(𝑥

𝑖
) tanh(

𝑧

𝑖
𝜌

𝑖
(𝑥

𝑖
)

𝜔

)

−

̂

𝑔

𝑔𝑖

𝑒

𝑖−1

𝜏

𝑖−1

,

(31)

̇

̂

𝜃

𝑔𝑖
= 𝛾

𝜃𝑖
(𝑧

𝑖
𝑓

𝑖
(𝑥

𝑖
) − 𝜛

𝑖
̂

𝜃

𝑔𝑖
) ,

(32)

̇

̂

𝑏

𝑔𝑖
= 𝛾

𝑏𝑖
(𝑧

𝑖
𝜌

𝑖
(𝑥

𝑖
) tanh(

𝑧

𝑖
𝜌

𝑖
(𝑥

𝑖
)

𝜔

) − 𝜇

𝑖
̂

𝑏

𝑔𝑖
) , (33)

̇

̂

𝑔

𝑔𝑖
= 𝛾

𝑔
𝑖

(𝑧

𝑖

𝑒

𝑖−1

𝜏

𝑖−1

− ]
𝑖
̂

𝑔

𝑔𝑖
) , (34)

where 𝑘
𝑖
, 𝜛
𝑖
, 𝜇
𝑖
, and ]

𝑖
are positive design parameters.
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Considering the following inequalities

𝜛

𝑖
̃

𝜃

𝑔𝑖

̂

𝜃

𝑔𝑖
≤

𝜛

𝑖

2

(−

̃

𝜃

2

𝑔𝑖
+ 𝜃

2

𝑔𝑖
) ,

𝜇

𝑖
̃

𝑏

𝑔𝑖

̂

𝑏

𝑔𝑖
≤

𝜇

𝑖

2

(−

̃

𝑏

2

𝑔𝑖
+ 𝑏

2

𝑔𝑖
) ,

]
𝑖
̃

𝑔

𝑔𝑖

̂

𝑔

𝑔𝑖
≤

]
𝑖

2

(−

̃

𝑔

2

𝑔𝑖
+ 𝑔

2

𝑔𝑖
) ,

(35)

we have

̇

𝑉

𝑖
≤ −

𝑖

∑

𝑗=1

𝑘

𝑗
𝑧

2

𝑗
−

𝑖

∑

𝑗=1

(

𝜛

1

2

̃

𝜃

2

𝑔1
+

𝜇

1

2

̃

𝑏

2

𝑔1
+

]
𝑖

2

̃

𝑔

2

𝑔1
)

+ 𝑧

𝑖
𝑧

𝑖+1
+

𝑖

∑

𝑗=1

(𝑧

𝑗
𝑒

𝑗
+ 0.2785𝜔𝑏

𝑔𝑗
+

𝜛

𝑗

2

𝜃

2

𝑔𝑗

+

𝜇

𝑖

2

𝑏

2

𝑔𝑗
+

]
𝑖

2

𝑔

2

𝑔𝑗
) .

(36)

Step n. The actual control law 𝑢 will be designed in this step.
Considering 𝑧

𝑛
= 𝑥

𝑛
− 𝑠

𝑛−1
and ̇𝑠

𝑛−1
= −𝑒

𝑛−1
/𝜏

𝑛−1
, the time

derivative of 𝑧
𝑛
is given by

�̇�

𝑛
= 𝜃

𝑛
𝑓

𝑛 (
𝑥) + 𝑔𝑛

[

̇

𝜆 (𝜗) 𝑢 + 𝜂 (𝑢)] + 𝑑𝑛 (
𝑥, 𝑡) +

𝑒

𝑛−1

𝜏

𝑛−1

.

(37)

Define the Lyapunov function candidate

𝑉

𝑛
= 𝑉

𝑛−1
+

1

2

(𝑧

2

𝑛
+

1

𝛾

𝜃𝑛

̃

𝜃

2

𝑔𝑛
+

1

𝛾

𝑏𝑛

̃

𝑏

2

𝑔𝑛
+

1

𝛾

𝑔
𝑛

̃

𝑔

2

𝑔𝑛
) , (38)

where ̃𝜃
𝑔𝑛
= 𝜃

𝑔𝑛
−

̂

𝜃

𝑔𝑛
, ̃𝑏
𝑔𝑛
= 𝑏

𝑔𝑛
−

̂

𝑏

𝑔𝑛
, and ̃𝑔

𝑔𝑛
= 𝑔

𝑔𝑛
−

̂

𝑔

𝑔𝑛
with

̂

𝜃

𝑔𝑛
, ̂𝑏
𝑔𝑛
, and ̂

𝑔

𝑔𝑛
as the estimates of 𝜃

𝑔𝑛
= 𝜃

𝑛
, 𝑏
𝑔𝑛

= 𝑏

𝑛
, and

𝑔

𝑔𝑛
= 𝑔

𝑛
𝐷, respectively. 𝛾

𝜃𝑛
, 𝛾
𝑏𝑛
, and 𝛾

𝑔
𝑛

are positive design
parameters.

Based on (37), we have

̇

𝑉

𝑛
=

̇

𝑉

𝑛−1
+ 𝑧

𝑛
(𝜃

𝑛
𝑓

𝑛 (
𝑥) + 𝑔𝑛

[

̇

𝜆 (𝜗) 𝑢 + 𝜂 (𝑢)]

+ 𝑑

𝑛 (
𝑥, 𝑡) +

𝑒

𝑛−1

𝜏

𝑛−1

)

+

1

𝛾

𝜃𝑖

̃

𝜃

𝑔𝑛

̇

̃

𝜃

𝑔𝑛
+

1

𝛾

𝑏𝑛

̃

𝑏

𝑔𝑛

̇

̃

𝑏

𝑔𝑛
+

1

𝛾

𝑔
𝑛

̃

𝑔

𝑔𝑛

̇

̃

𝑔

𝑔𝑛

=

̇

𝑉

𝑛−1
+ 𝑧

𝑛
𝜃

𝑛
𝑓

𝑛 (
𝑥) + 𝑧𝑛

𝑔

𝑛
̇

𝜆 (𝜗) 𝑢

+ 𝑧

𝑛
𝑔

𝑛
𝜂 (𝑢) + 𝑧𝑛

𝑑

𝑛 (
𝑥, 𝑡)

+ 𝑧

𝑛

𝑒

𝑛−1

𝜏

𝑛−1

+

1

𝛾

𝜃𝑛

̃

𝜃

𝑔𝑛

̇

̃

𝜃

𝑔𝑛
+

1

𝛾

𝑏𝑛

̃

𝑏

𝑔𝑛

̇

̃

𝑏

𝑔𝑛
+

1

𝛾

𝑔
𝑛

̃

𝑔

𝑔𝑛

̇

̃

𝑔

𝑔𝑛
.

(39)

Similar to (21), the following inequalities are used:

𝑧

𝑛
𝑔

𝑛
≤ 𝑔

𝑔𝑛









𝑧

𝑛









≤ 𝑔

𝑔𝑛
𝑧

𝑛
tanh(

𝑧

𝑛

𝜔

) + 0.2785𝜔𝑔

𝑔𝑛
; (40)

we have
̇

𝑉

𝑛
≤

̇

𝑉

𝑛−1
+ 𝑧

𝑛
𝜃

𝑛
𝑓

𝑛 (
𝑥) + 𝑧𝑛

𝑔

𝑛
̇

𝜆 (𝜗) 𝑢

+ 𝑔

𝑔𝑛
𝑧

𝑛
tanh(

𝑧

𝑛

𝜔

) + 0.2785𝜔𝑔

𝑔𝑛
+ 0.2785𝜔𝑏

𝑛

+ 𝑏

𝑛
𝑧

𝑛
𝜌

𝑛 (
𝑥) tanh(

𝑧

𝑛
𝜌

𝑛 (
𝑥)

𝜔

) + 𝑧

𝑛

𝑒

𝑛−1

𝜏

𝑛−1

+

1

𝛾

𝜃𝑛

̃

𝜃

𝑔𝑛

̇

̃

𝜃

𝑔𝑛
+

1

𝛾

𝑏𝑛

̃

𝑏

𝑔𝑛

̇

̃

𝑏

𝑔𝑛
+

1

𝛾

𝑔
𝑛

̃

𝑔

𝑔𝑛

̇

̃

𝑔

𝑔𝑛

≤

̇

𝑉

𝑛−1
+ 𝑧

𝑛
𝑧

𝑛−1
+ 𝑧

𝑛
̂

𝜃

𝑛
𝑓

𝑛 (
𝑥) + 𝑧𝑛

𝑔

𝑛
̇

𝜆 (𝜗) 𝑢

+

̂

𝑔𝑧

𝑛
tanh(

𝑧

𝑛

𝜔

)

+ 0.2785𝜔𝑔

𝑔𝑛
+ 0.2785𝜔𝑏

𝑛

+

̂

𝑏

𝑛
𝑧

𝑛
𝜌

𝑛 (
𝑥) tanh(

𝑧

𝑛
𝜌

𝑛 (
𝑥)

𝜔

) + 𝑧

𝑛

𝑒

𝑛−1

𝜏

𝑛−1

+

̃

𝜃

𝑔𝑛
(𝑧

𝑛
𝑓

𝑛 (
𝑥) −

1

𝛾

𝜃𝑛

̇

̂

𝜃

𝑔𝑛
)

+

̃

𝑏

𝑔𝑛
(𝑧

𝑛
𝜌

𝑛 (
𝑥) tanh(

𝑧

𝑛
𝜌

𝑛 (
𝑥)

𝜔

) −

1

𝛾

𝑏𝑛

̇

̃

𝑏

𝑔𝑛
)

+

̃

𝑔

𝑔𝑛
(𝑧

𝑛
tanh(

𝑧

𝑛

𝜔

) −

1

𝛾

𝑔
𝑛

̇

̃

𝑔

𝑔𝑛
) − 𝑧

𝑛
𝑧

𝑛−1
.

(41)

The actual control law 𝑢 and the adaptive laws 𝜁, ̂𝜃
𝑔𝑛
, ̂𝑏
𝑔𝑛
, and

̂

𝑔

𝑔𝑛
are designed as

𝑢 = 𝑁 (𝜁) [𝑘𝑛
𝑧

𝑛
+ 𝑧

𝑛−1
+

̂

𝜃

𝑔𝑛
𝑓

𝑛 (
𝑥) +

̂

𝑔

𝑔𝑛
tanh(

𝑧

𝑛

𝜔

)

+

̂

𝑏

𝑔𝑛
𝜌

𝑛 (
𝑥) tanh(

𝑧

𝑛
𝜌

𝑛 (
𝑥)

𝜔

) +

𝑒

𝑛−1

𝜏

𝑛−1

] ,

(42)

̇

𝜁 = 𝑘

𝑛
𝑧

2

𝑛
+ 𝑧

𝑛
𝑧

𝑛−1
+ 𝑧

𝑛
̂

𝜃

𝑔𝑛
𝑓

𝑛 (
𝑥) +

̂

𝑔

𝑔𝑛
𝑧

𝑛
tanh(

𝑧

𝑛

𝜔

)

+ 𝑧

𝑛
̂

𝑏

𝑔𝑛
𝜌

𝑛 (
𝑥) tanh(

𝑧

𝑛
𝜌

𝑛 (
𝑥)

𝜔

) + 𝑧

𝑛

𝑒

𝑛−1

𝜏

𝑛−1

,

̇

̂

𝜃

𝑔𝑛
= 𝛾

𝜃𝑛
(𝑧

𝑛
𝑓

𝑛 (
𝑥) − 𝜛𝑛

̂

𝜃

𝑔𝑛
) ,

̇

̂

𝑏

𝑔𝑛
= 𝛾

𝑏𝑛
(𝑧

𝑛
𝜌

𝑛 (
𝑥) tanh(

𝑧

𝑛
𝜌

𝑛 (
𝑥)

𝜔

) − 𝜇

𝑛
̂

𝑏

𝑔𝑛
) ,

̇

̂

𝑔

𝑔𝑛
= 𝛾

𝑔
𝑛

(𝑧

𝑛
tanh(

𝑧

𝑛

𝜔

) − ]
𝑛
̂

𝑔

𝑔𝑛
) ,

(43)

where 𝑘
𝑛
, 𝜛
𝑛
, 𝜇
𝑛
, and ]

𝑛
are positive design parameters.

Similarly, the following inequalities will be utilized:

𝜛

𝑛
̃

𝜃

𝑔𝑛

̂

𝜃

𝑔𝑛
≤

𝜛

𝑛

2

(−

̃

𝜃

2

𝑔𝑛
+ 𝜃

2

𝑔𝑛
) ,

𝜇

𝑛
̃

𝑏

𝑔𝑛

̂

𝑏

𝑔𝑛
≤

𝜇

𝑛

2

(−

̃

𝑏

2

𝑔𝑛
+ 𝑏

2

𝑔𝑛
) ,

]
𝑛
̃

𝑔

𝑔𝑛

̂

𝑔

𝑔𝑛
≤

]
𝑛

2

(−

̃

𝑔

2

𝑔𝑛
+ 𝑔

2

𝑔𝑛
) ;

(44)
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then, we obtain

̇

𝑉

𝑛
≤ −

𝑛

∑

𝑗=1

𝑘

𝑗
𝑧

2

𝑗
−

𝑛

∑

𝑗=1

(

𝜛

𝑗

2

̃

𝜃

2

𝑔𝑗
+

𝜇

𝑗

2

̃

𝑏

2

𝑔𝑗
+

]
𝑗

2

̃

𝑔

2

𝑔𝑗
)

+ [𝑔

𝑛
̇

𝜆 (𝜗)𝑁 (𝜁) + 1]

̇

𝜁 + 0.2785𝜔𝑔

𝑔𝑛

+

𝑛−1

∑

𝑗=1

(𝑧

𝑗
𝑒

𝑗
) +

𝑛

∑

𝑗=1

(0.2785𝜔𝑏

𝑔𝑗
+

𝜛

𝑗

2

𝜃

2

𝑔𝑗
+

𝜇

𝑖

2

𝑏

2

𝑔𝑗

+

]
𝑖

2

𝑔

2

𝑔𝑗
) .

(45)

4.2. Stability Analysis. In this subsection, the uniform ulti-
mate boundedness of all signals in the closed-loop systemwill
be proven.

From (27) and (31), we have

̇𝑒

𝑖
= ̇𝑠

𝑖
− �̇�

𝑖

= −

𝑒

𝑖

𝜏

𝑖

+ (

𝜕𝛼

𝑖

𝜕𝑧

𝑖

�̇�

𝑖
+

𝜕𝛼

𝑖

𝜕

̂

𝜃

𝑔𝑖

̇

̂

𝜃

𝑔𝑖
+

𝜕𝛼

𝑖

𝜕

̂

𝑏

𝑔𝑖

̇

̂

𝑏

𝑔𝑖
+

𝜕𝛼

𝑖

𝜕

̂

𝑔

𝑔𝑖

̇

̂

𝑔

𝑔𝑖
)

= −

𝑒

𝑖

𝜏

𝑖

+ 𝐵

𝑖
(𝑧

1
, . . . , 𝑧

𝑖
, 𝑒

1
, . . . , 𝑒

𝑖−1
,

̂

𝜃

𝑔1
, . . . ,

̂

𝜃

𝑔𝑖
,

̂

𝑏

𝑔1
, . . . ,

̂

𝑏

𝑔𝑖
,

̂

𝑔

𝑔1
, . . . , 𝑔

𝑔𝑖
, 𝑦

𝑑
, ̇𝑦

𝑑
, ̈𝑦

𝑑
) ,

(46)

where 𝐵

𝑖
(𝑧

1
, . . . , 𝑧

𝑖
, 𝑒

1
, . . . , 𝑒

𝑖−1
,

̂

𝜃

𝑔1
, . . . ,

̂

𝜃

𝑔𝑖
,

̂

𝑏

𝑔1
, . . . ,

̂

𝑏

𝑔𝑖
,

̂

𝑔

𝑔1
,

. . . , 𝑔

𝑔𝑖
, 𝑦

𝑑
, ̇𝑦

𝑑
, ̈𝑦

𝑑
) = (𝜕𝛼

𝑖
/𝜕𝑧

𝑖
)�̇�

𝑖
+ (𝜕𝛼

𝑖
/𝜕

̂

𝜃

𝑔𝑖
)

̇

̂

𝜃

𝑔𝑖
+

(𝜕𝛼

𝑖
/𝜕

̂

𝑏

𝑔𝑖
)

̇

̂

𝑏

𝑔𝑖
+ (𝜕𝛼

𝑖
/𝜕

̂

𝑔

𝑔𝑖
)

̇

̂

𝑔

𝑔𝑖
are the continuous functions,

𝑖 = 1, . . . , 𝑛 − 1.
To establish the boundedness of the closed-loop system,

the following Lyapunov function candidate is defined as

𝑉 = 𝑉

𝑛
+

1

2

𝑛−1

∑

𝑖=1

𝑒

2

𝑖
. (47)

The main results can be summarized as follows.

Theorem 9. Consider the closed-loop system consisting of the
plant (1), the controller (42), and adaptation laws (43) under
Assumptions 1–7. If 𝑉(0) ≤ 𝑃

0
for any 𝑃

0
> 0, there exist

the appropriate design parameters 𝑘
𝑖
, 𝜏
𝑖
, 𝛾
𝜃𝑖
, 𝛾
𝑏𝑖
, 𝛾
𝑔
𝑖

, 𝜛
𝑖
, 𝜇
𝑖
,

]
𝑖
, and 𝜔, such that all signals in the closed-loop system are

semiglobally uniformly ultimately bounded.

Proof. Define the set Ω
𝑖
:= {[𝑧

1
, . . . , 𝑧

𝑖
, 𝑒

1
, . . . , 𝑒

𝑖−1
,

̂

𝜃

𝑔1
, . . .,

̂

𝜃

𝑔𝑖
,

̂

𝑏

𝑔1
, . . . ,

̂

𝑏

𝑔𝑖
,

̂

𝑔

𝑔1
, . . . , 𝑔

𝑔𝑖
] : 𝑉

𝑖
+ ∑

𝑖−1

𝑗=1
𝑒

2

𝑗
≤ 2𝑃

0
} ⊂ 𝑅

5𝑖−1.
From Assumption 1 and 𝑉(0) ≤ 𝑃

0
for any 𝑃

0
> 0,

the set Ω
𝑑
and Ω

𝑖
are compact in 𝑅

3 and 𝑅

5𝑖−1. Thus,

𝐵

𝑖
(𝑧

1
, . . . , 𝑧

𝑖
, 𝑒

1
, . . . , 𝑒

𝑖−1
,

̂

𝜃

𝑔1
, . . . ,

̂

𝜃

𝑔𝑖
,

̂

𝑏

𝑔1
, . . . ,

̂

𝑏

𝑔𝑖
,

̂

𝑔

𝑔1
, . . . , 𝑔

𝑔𝑖
,

𝑦

𝑑
, ̇𝑦

𝑑
, ̈𝑦

𝑑
) have a maximum value 𝑀

𝑖
, 𝑖 = 1, . . . , 𝑛 − 1, on

Ω

𝑑
× Ω

𝑖
. Equation (46) can be further derived as

𝑒

𝑖
̇𝑒 ≤ −

𝑒

2

𝑖

𝜏

𝑖

+











𝑒

𝑖
𝐵

𝑖
(𝑧

1
, . . . , 𝑧

𝑖
, 𝑒

1
, . . . , 𝑒

𝑖−1
,

̂

𝜃

𝑔1
, . . . ,

̂

𝜃

𝑔𝑖
,

̂

𝑏

𝑔1
, . . . ,

̂

𝑏

𝑔𝑖
,

̂

𝑔

𝑔1
, . . . , 𝑔

𝑔𝑖
, 𝑦

𝑑
, ̇𝑦

𝑑
, ̈𝑦

𝑑
)











≤ −

𝑒

2

𝑖

𝜏

𝑖

+

1

2

𝑒

2

𝑖
+

1

2

𝑀

2

𝑖
.

(48)

The derivative of 𝑉 with respect to 𝑡 follows from (45), (46),
and (48) that

̇

𝑉 ≤ −

𝑛

∑

𝑗=1

𝑘

𝑗
𝑧

2

𝑗
−

𝑛

∑

𝑗=1

(

𝜛

𝑗

2

̃

𝜃

2

𝑔𝑗
+

𝜇

𝑗

2

̃

𝑏

2

𝑔𝑗
+

]
𝑗

2

̃

𝑔

2

𝑔𝑗
)

+ [𝑔

𝑛
̇

𝜆 (𝜗)𝑁 (𝜁) + 1]

̇

𝜁 + 0.2785𝜔𝑔

𝑔𝑛
+

𝑛−1

∑

𝑗=1

(𝑧

𝑗
𝑒

𝑗
)

+

𝑛

∑

𝑗=1

(0.2785𝜔𝑏

𝑔𝑗
+

𝜛

𝑗

2

𝜃

2

𝑔𝑗
+

𝜇

𝑖

2

𝑏

2

𝑔𝑗
+

]
𝑖

2

𝑔

2

𝑔𝑗
) +

𝑛−1

∑

𝑖=1

𝑒

𝑖
̇𝑒

𝑖

≤ −

𝑛

∑

𝑗=1

𝑘

𝑗
𝑧

2

𝑗
−

𝑛

∑

𝑗=1

(

𝜛

𝑗

2

̃

𝜃

2

𝑔𝑗
+

𝜇

𝑗

2

̃

𝑏

2

𝑔𝑗
+

]
𝑗

2

̃

𝑔

2

𝑔𝑗
)

+ [𝑔

𝑛
̇

𝜆 (𝜗)𝑁 (𝜁) + 1]

̇

𝜁 + 0.2785𝜔𝑔

𝑔𝑛
+

1

2

𝑛−1

∑

𝑗=1

𝑧

𝑗

2

+

𝑛

∑

𝑗=1

(0.2785𝜔𝑏

𝑔𝑗
+

𝜛

𝑗

2

𝜃

2

𝑔𝑗
+

𝜇

𝑖

2

𝑏

2

𝑔𝑗
+

]
𝑖

2

𝑔

2

𝑔𝑗
)

−

1

2

𝑛−1

∑

𝑗=1

(

1

𝜏

𝑖

−

3

2

) 𝑒

𝑗

2
+

𝑛−1

∑

𝑖=1

1

2

𝑀

2

𝑖

≤ − 𝜉𝑉 + [𝑔

𝑛
̇

𝜆 (𝜗)𝑁 (𝜁) + 1]

̇

𝜁 + 𝜅,

(49)

where

𝜉 = min {2𝑔
𝑗
(𝑘

𝑗
−

1

2

) , 2𝑔

𝑛
𝑘

𝑛
, 𝜛

𝑗
𝛾

𝜃𝑗
, 𝜛

𝑛
𝛾

𝜃𝑛
,

𝜇

𝑗
𝛾

𝑏𝑗
, 𝜇

𝑛
𝛾

𝑏𝑛
, . . . , ]

𝑗
𝛾

𝑔
𝑗

, ]
𝑛
𝛾

𝑔
𝑛

,

1

𝜏

𝑖

−

3

2

} ,

𝑗 = 1, . . . , 𝑛 − 1,

𝜅 = 0.2785𝜔𝑔

𝑔𝑛

+

𝑛

∑

𝑗=1

(0.2785𝜔𝑏

𝑔𝑗
+

𝜛

𝑗

2

𝜃

2

𝑔𝑗
+

𝜇

𝑖

2

𝑏

2

𝑔𝑗
+

]
𝑖

2

𝑔

2

𝑔𝑗
)

+

𝑛−1

∑

𝑖=1

1

2

𝑀

2

𝑖
.

(50)



8 Abstract and Applied Analysis

Multiplying both sides of (49) by 𝑒𝜉𝑡 yields

𝑑

𝑑𝑡

(𝑉𝑒

𝜉𝑡
) ≤ 𝜅𝑒

𝜉𝑡
+ [𝑔

𝑛
̇

𝜆 (𝜗)𝑁 (𝜁) + 1]

̇

𝜁𝑒

𝜉𝑡
.

(51)

Integrating (51) over [0, 𝑡], it is deduced that

𝑉 ≤

𝜅

𝜉

+ [𝑉 (0) −

𝜅

𝜉

] 𝑒

𝜉𝑡

+ 𝑒

−𝜉𝑡
∫

𝑡

0

[𝑔

𝑛
̇

𝜆 (𝜗)𝑁 (𝜁) + 1]

̇

𝜁𝑒

𝜉
𝑑

≤

𝜅

𝜉

+ 𝑉 (0) + 𝑒

−𝜉𝑡
∫

𝑡

0

[𝑔

𝑛
̇

𝜆 (𝜗)𝑁 (𝜁) + 1]

̇

𝜁𝑒

𝜉
𝑑,

(52)

where 𝑐
1
= (𝜅/𝜉) + 𝑉(0).

From Condition 1 of Duhem model and Assumption 7,
it is easily concluded that ̇

𝜆(𝑢) > 0, and ̇

𝜆(𝑢) is a
bounded smooth even function of 𝑢, and hence 𝑔

𝑛
̇

𝜆(𝜗) is a
nonzero bounded time-varying function. By using Lemma 8,
it implies that 𝑉(𝑡), 𝜁, ∫𝑡

0
[𝑔

𝑛
̇

𝜆(𝜗)𝑁(𝜁) + 1]

̇

𝜁𝑒

𝜉
𝑑 are all

bounded on [0, 𝑡

𝑓
). From proposition 2 in [31], 𝑡

𝑓
= ∞, it

can be concluded that all error signals 𝑧
1
, . . . , 𝑧

𝑛
, ̃𝜃
𝑔1
, . . . ,

̃

𝜃

𝑔𝑛
,

̃

𝑏

𝑔1
, . . . ,

̃

𝑏

𝑔𝑛
, ̃𝑔
𝑔1
, . . . ,

̃

𝑔

𝑔𝑛
, 𝑒
𝑖
, . . . , 𝑒

𝑛−1
in the closed-loop system

are semiglobally uniformly ultimately bounded.

5. Numerical Example

To demonstrate the effectiveness of the proposed control
algorithm, in this section, one second-order nonlinear system
with unknown Duhem hysteresis is considered:

�̇�

1
= 𝜃

1
𝑓

1
(𝑥

1
) + 𝑔

1
𝑥

2
+ 𝑑

1 (
𝑥, 𝑡) ,

�̇�

2
= 𝜃

2
𝑓

2 (
𝑥) + 𝑔2

𝑤 (𝑢) + 𝑑2 (
𝑥, 𝑡) ,

𝑦 = 𝑥

1
,

(53)

where 𝜃
1
, 𝜃
2
,𝑔
1
, and𝑔

2
are unknown parameters, 𝑑

1
(𝑥, 𝑡) and

𝑑

2
(𝑥, 𝑡) are unknown disturbances, and𝑤 is the output of the

unknown hysteresis described by the Duhemmodel as (3). In
the simulation, 𝜃

1
= 0.1, 𝜃

2
= 1, 𝑔

1
= 1, 𝑔

2
= 1, 𝑓

1
(𝑥

1
) = 𝑥

2

1
,

𝑓

2
(𝑥) = −2𝑥

1
−𝑥

2
, 𝑑
1
(𝑥, 𝑡) = 0.2 sin(𝑥

2
) sin(𝑡), and 𝑑

2
(𝑥, 𝑡) =

0.1(𝑥

2

1
+ 𝑥

2

2
) sin(𝑡). Correspondingly, 𝑏

1
= 0.2, 𝜌

1
(𝑥

1
) = 1,

𝑏

2
= 0.1, and 𝜌

2
(𝑥) = 𝑥

2

1
+ 𝑥

2

2
. For the Duhem model, 𝛼 = 1,

𝜆(𝑢) = 5 tanh 1.3𝑢+0.25𝑢, and𝜓(𝑢) = ̇

𝜆(𝑢)(1−𝑒

(−2.3|𝑢|)
).The

objective is to make the output 𝑦 of system (53) to track the
desired trajectory 𝑦

𝑑
= sin(1.5𝑡) − 0.3 cos(𝑡).

In this simulation, the initial values of adaptive laws are
selected as ̂𝜃

𝑔1
= 0, ̂𝜃

𝑔2
= 0, ̂𝑏

𝑔1
= 0, ̂𝑏

𝑔2
= 0, ̂𝑔

𝑔1
= 0, and

̂

𝑔

𝑔2
= 0. In addition, the design parameters are chosen as 𝑘

1
=

2, 𝑘
2
= 1, 𝛾

𝜃1
= 𝛾

𝜃2
= 2, 𝛾

𝑏1
= 𝛾

𝑏2
= 3, 𝛾

𝑔
1

= 𝛾

𝑔
2

= 4, 𝜛
1
=

𝜛

2
= 𝜇

1
= 𝜇

2
= ]
1
= ]
2
= 0.0001, 𝜔 = 0.01, and 𝜏

1
= 0.1.

The Nussbaum function is chosen as 𝑁(𝜁) = 𝜁

2 cos(𝜁) with
𝜁(0) = 0. The initial states of (53) are chosen as 𝑥

1
(0) = 0,

𝑥

2
(0) = 0.5.
The simulation results are shown in Figures 4, 5, 6, 7,

8, and 9. From Figure 4, it is observed that the good track-
ing performance is achieved under the proposed approach.
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Figure 4: Tracking performance of the closed-loop system.
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Figure 5: Control input 𝑢 (real line) and hysteresis output𝑤 (dashed
line).
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Figure 5 shows the control input 𝑢 and the hysteresis output
𝑤. Figures 6, 7, 8, and 9 show the response curves of adaptive
parameters ̂𝜃

𝑔1
, ̂𝜃
𝑔2
,̂𝑏
𝑔1
,̂𝑏
𝑔2
, ̂𝑔
𝑔1
, ̂𝑔
𝑔2
, and 𝜁. From these results,

the proposed scheme can mitigate the detrimental effects of
the unknown hysteresis and guarantee the boundedness of
the closed-loop system.

6. Conclusion

In this paper, the adaptive DSC approach for a class of
uncertain nonlinear systems in strict-feedback form with
unknown Duhem hysteresis is discussed. How to utilize the
properties of the hysteresis model and design the related
control approach is the main task for this topic. To overcome
the design difficulties of Duhem model, three conditions are

Time (s)
0 10 20 30 40 50

0

0.5

1

1.5

2

2.5

𝜁

Figure 9: Variable 𝜁.

used to get the analytical output expression of Duhemmodel.
By using DSC technique, the “explosion complexity” in the
standard backstepping design procedure is improved. For the
last recursive step arising from the unknown hysteresis, the
nonlinear smooth term of Duhemmodel is considered in the
robust controller design by using mean value theorem and
Nussbaum function lemma. Under the proposed approach,
all the signals in the closed-loop system are uniformly
semiglobally bounded, and a numerical example is shown to
verify the effectiveness.
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