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Well-known Banach space results (e.g., due to J. Koliha and Y. Katznelson/L. Tzafriri), which relate conditions on the spectrum of a
bounded operator T to the operator norm convergence of certain sequences of operators generated by T, are extended to the class
of quojection Fréchet spaces. These results are then applied to establish various mean ergodic theorems for continuous operators
acting in such Fréchet spaces and which belong to certain operator ideals, for example, compact, weakly compact, and Montel.

1. Introduction

Given a Banach space 𝑋 and a continuous linear operator
𝑇 on 𝑋, there are various classical results which relate con-
ditions on the spectrum 𝜎(𝑇) of 𝑇 with the operator norm
convergence of certain sequences of operators generated by
𝑇. For instance, if lim

𝑛→∞
(‖𝑇

𝑛

‖op/𝑛) = 0, with ‖ ‖op denoting
the operator norm, (even 𝑇

𝑛

/𝑛 → 0 in the weak operator
topology suffices), then necessarily 𝜎(𝑇) ⊆ D, where D :=

{𝑧 ∈ C : |𝑧| < 1}, [1, p. 709, Lemma 1].The stronger condition
lim

𝑛→∞
‖𝑇

𝑛

‖op = 0 is equivalent to the requirement that both
𝜎(𝑇) ⊆ D and lim

𝑛→∞
(‖𝑇

𝑛

‖op/𝑛) = 0 hold [2]. An alternate
condition, namely, that {𝑇

𝑛

}
∞

𝑛=1
is a convergent sequence

relative to the operator norm, is equivalent to the requirement
that the three conditions lim

𝑛→∞
(‖𝑇

𝑛

‖op/𝑛) = 0, the range
(𝐼−𝑇)

𝑚

(𝑋) is closed in𝑋 for some𝑚 ∈ N, and Γ(𝑇) ⊆ {1} are
satisfied [3]. Here Γ(𝑇) := 𝜎(𝑇)∩T with T := {𝑧 ∈ C : |𝑧| = 1}

being the boundary of D. Such results as above are often
related to the uniformmean ergodicity of𝑇, meaning that the
sequence of averages {(1/𝑛)∑𝑛

𝑚=1
𝑇
𝑚

} of 𝑇 is operator norm
convergent. For instance, if lim

𝑛→∞
(‖𝑇

𝑛

‖op/𝑛) = 0 and 1 ∉

𝜎(𝑇), then 𝑇 is uniformly mean ergodic [4, p. 90, Theorem
2.7]. Or if lim

𝑛→∞
(‖𝑇

𝑛

‖op/𝑛) = 0, then 𝑇 is uniformly mean
ergodic if and only if (𝐼 − 𝑇)(𝑋) is closed [5].

Our first aim is to extend results of the above kind to
the class of all Fréchet spaces referred to as prequojections;
this is achieved in Section 3. The extension to the class of
all Fréchet spaces is not possible; see Proposition 17 below
and [6, Example 3.11], for instance. We point out that a clas-
sical result of Katznelson and Tzafriri stating, for any Banach-
space-operator 𝑇 satisfying sup

𝑛∈N‖𝑇
𝑛

‖op < ∞, that
lim

𝑛→∞
‖𝑇

𝑛+1

− 𝑇
𝑛

‖op = 0 if and only if Γ(𝑇) ⊆ {1} [7], is also
extended to prequojection Fréchet spaces; see Theorem 20.

Our second aim is inspired by well-known applications
of the above mentioned Banach space results to determine
the uniform mean ergodicity of operators 𝑇 which satisfy
lim

𝑛→∞
(‖𝑇

𝑛

‖op/𝑛) = 0 and belong to certain operator ideals,
such as the compact or weakly compact operators; see, for
example, [1, Ch. VIII, § 8], [4, Ch. 2, § 2.2], and [8, Theorem
6.1], where 𝑇 can even be quasi-compact. An extension of
such a mean ergodic result to the class of quasi-precompact
operators acting in various locally convex Hausdorff spaces
is presented in [9]. For prequojection Fréchet spaces, this
result is further extended to the (genuinely) larger class of
quasi-Montel operators; see Proposition 32, Remark 33, and
Theorem 35. A mean ergodic theorem for Cesàro bounded,
weakly compact operators (and also reflexive operators) in
a certain class of locally convex spaces (which includes all
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Fréchet spaces), is also presented; see Proposition 23 and
Remark 24(ii).

2. Preliminaries and Spectra of Operators

Let 𝑋 be a lcHs and Γ
𝑋
a system of continuous seminorms

determining the topology of𝑋.The strong operator topology
𝜏
𝑠
in the spaceL(𝑋) of all continuous linear operators from

𝑋 into itself (from 𝑋 into another lcHs 𝑌 we writeL(𝑋, 𝑌))
is determined by the family of seminorms 𝑞

𝑥
(𝑆) := 𝑞(𝑆𝑥), for

𝑆 ∈ L(𝑋), for each 𝑥 ∈ 𝑋 and 𝑞 ∈ Γ
𝑋
, in which case we

write L
𝑠
(𝑋). Denote by B(𝑋) the collection of all bounded

subsets of 𝑋. The topology 𝜏
𝑏
of uniform convergence on

bounded sets is defined inL(𝑋) via the seminorms 𝑞
𝐵
(𝑆) :=

sup
𝑥∈𝐵

𝑞(𝑆𝑥), for 𝑆 ∈ L(𝑋), for each𝐵 ∈ B(𝑋) and 𝑞 ∈ Γ
𝑋
; in

this casewewriteL
𝑏
(𝑋). For𝑋 aBanach space, 𝜏

𝑏
is the oper-

ator norm topology inL(𝑋). If Γ
𝑋
is countable and𝑋 is com-

plete, then 𝑋 is called a Fréchet space. The identity operator
on a lcHs𝑋 is denoted by 𝐼.

By 𝑋
𝜎
we denote 𝑋 equipped with its weak topology

𝜎(𝑋,𝑋


), where 𝑋
 is the topological dual space of 𝑋. The

strong topology in𝑋 (resp. 𝑋) is denoted by 𝛽(𝑋,𝑋

) (resp.
𝛽(𝑋



, 𝑋)) and we write 𝑋
𝛽
(resp. 𝑋

𝛽
); see [10, IV, Ch. 23]

for the definition. The strong dual space (𝑋


𝛽
)


𝛽
of 𝑋



𝛽
is

denoted simply by𝑋. By𝑋

𝜎
we denote𝑋 equipped with its

weak-star topology 𝜎(𝑋


, 𝑋). Given 𝑇 ∈ L(𝑋), its dual
operator 𝑇

: 𝑋


→ 𝑋
 is defined by ⟨𝑥, 𝑇



𝑥


⟩ = ⟨𝑇𝑥, 𝑥


⟩

for all 𝑥 ∈ 𝑋, 𝑥 ∈ 𝑋
. It is known that 𝑇

∈ L(𝑋


𝜎
) and

𝑇


∈ L(𝑋


𝛽
), [11, p. 134].

For a Fréchet space 𝑋 and 𝑇 ∈ L(𝑋), the resolvent set
𝜌(𝑇) of 𝑇 consists of all 𝜆 ∈ C such that 𝑅(𝜆, 𝑇) := (𝜆𝐼 −𝑇)

−1

exists inL(𝑋). Then 𝜎(𝑇) := C \ 𝜌(𝑇) is called the spectrum
of 𝑇. The point spectrum 𝜎

𝑝
(𝑇) consists of all 𝜆 ∈ C such that

(𝜆𝐼 − 𝑇) is not injective. Unlike for Banach spaces, it may
happen that 𝜌(𝑇) = 0. For example, let 𝜔 = CN be the
Fréchet space equipped with the lc-topology determined via
the seminorms {𝑞

𝑛
}
∞

𝑛=1
, where 𝑞

𝑛
(𝑥) := max

1≤𝑗≤𝑛
|𝑥

𝑗
|, for 𝑥 =

(𝑥
𝑗
)
∞

𝑗=1
∈ 𝜔. Then the unit left shift operator 𝑇 : 𝑥 → (𝑥

2
, 𝑥

3
,

𝑥
4
, . . .), for 𝑥 ∈ 𝜔, belongs toL(𝜔) and, for every 𝜆 ∈ C, the

element (1, 𝜆, 𝜆2, 𝜆3, . . .) ∈ 𝜔 is an eigenvector corresponding
to 𝜆.

For a Fréchet space 𝑋, the natural imbedding Φ : 𝑋 →

𝑋
 is an isomorphism of𝑋 onto the closed subspaceΦ(𝑋) of

𝑋
. Moreover, we always have

𝑆


∘ Φ = Φ ∘ 𝑆, 𝑆 ∈ L (𝑋) ; (1)

that is, 𝑆 is an extension of 𝑆.
The following result will be required in the sequel. Since

the proof is standard we omit it. The polar of a set U ⊆ 𝑋 is
denoted byU∘

⊆ 𝑋
.

Lemma 1. Let 𝑋 be a Fréchet space.
(i) Let {𝑝

𝑗
}
∞

𝑗=1
⊆ Γ



𝑋
be a fundamental, increasing sequence

which determines the lc-topology of𝑋. For each 𝑗 ∈ N

define 𝑞
𝑗
on 𝑋 via 𝑞

𝑗
:= 𝑝

𝑗
∘ Φ. Then {𝑞

𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
is

a fundamental, increasing sequence which determines
the lc-topology of 𝑋.

(ii) Let {𝑟
𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
be a fundamental, increasing sequence

which determines the lc-topology of𝑋. For each 𝑗 ∈ N,
let 𝑟

𝑗
denote the Minkowski functional (in 𝑋

) of the
bipolar ofU

𝑗
:= 𝑟

−1

𝑗
([0, 1]) ⊆ 𝑋. Then {𝑟



𝑗
}
∞

𝑗=1
⊆ Γ



𝑋
is

a fundamental, increasing sequence which determines
the lc-topology of 𝑋. Moreover, for each 𝑗 ∈ N, we
have

𝑟
𝑗
(𝑥) = sup

𝑥

∈U∘
𝑗


⟨𝑥, 𝑥



⟩

, 𝑟



𝑗
(𝑥



) = sup
𝑥

∈U∘
𝑗


⟨𝑥



, 𝑥


⟩
 (2)

for each 𝑥 ∈ 𝑋 and 𝑥 ∈ 𝑋
. In particular, 𝑟

𝑗
∘Φ = 𝑟

𝑗
;

that is, the restriction of 𝑟
𝑗
to𝑋 ≃ Φ(𝑋) coincides with

𝑟
𝑗
, for each 𝑗 ∈ N.

For Banach spaces the following fact is well-known.

Lemma2. Let𝑋 be a lcHs and {𝑇
𝑛
}
∞

𝑛=1
⊆ L(𝑋) be an equicon-

tinuous sequence. Then also {𝑇

𝑛
}
∞

𝑛=1
⊆ L(𝑋



) is equicontinu-
ous.

Proof. Let 𝐵 ∈ B(𝑋). Then 𝐶 := ∪
∞

𝑛=1
𝑇
𝑛
(𝐵) ∈ B(𝑋) as

{𝑇
𝑛
}
∞

𝑛=1
is equicontinuous. So, for all 𝑥 ∈ 𝑋

 and 𝑛 ∈ N, we
have 𝑇

𝑛
𝑥


∈ 𝑋


𝛽
with

𝑝
𝐵
(𝑇



𝑛
𝑥


) := sup
𝑥∈𝐵


⟨𝑥, 𝑇



𝑛
𝑥


⟩


= sup
𝑥∈𝐵


⟨𝑇

𝑛
𝑥, 𝑥



⟩

≤ sup

𝑦∈𝐶


⟨𝑦, 𝑥



⟩

= 𝑝

𝐶
(𝑥



) .

(3)

As the seminorms {𝑝
𝐵
: 𝐵 ∈ B(𝑋)} generate the lc-topology

of𝑋

𝛽
, the previous inequality shows that {𝑇

𝑛
}
∞

𝑛=1
⊆ L(𝑋



𝛽
) is

equicontinuous.
Since {𝑇



𝑛
}
∞

𝑛=1
⊆ L(𝑋



𝛽
) is equicontinuous and the lc-

topology of𝑋 is generated by the polars of bounded subsets
of 𝑋

𝛽
, the same argument as above yields that {𝑇

𝑛
}
∞

𝑛=1
⊆

L(𝑋


) is equicontinuous.

Lemma 3. Let 𝑋 be a Fréchet space and 𝑇 ∈ L(𝑋). Then
𝑇 is an isomorphism of 𝑋 onto itself if and only if 𝑇 is an
isomorphism of𝑋 onto itself.

Proof. If 𝑇 is an isomorphism of 𝑋 onto itself, then there
exists 𝑇−1

∈ L(𝑋) with 𝑇𝑇
−1

= 𝑇
−1

𝑇 = 𝐼. It follows that 𝑇

,

(𝑇
−1

)


∈ L(𝑋


𝛽
) and so 𝑇



, (𝑇
−1

)


∈ L(𝑋


). Accordingly,
𝐼 = (𝑇𝑇

−1

)


= 𝑇


(𝑇
−1

)
 and 𝐼 = (𝑇

−1

𝑇)


= (𝑇
−1

)


𝑇
.

Thus, (𝑇

)
−1 exists in L(𝑋



) and (𝑇


)
−1

= (𝑇
−1

)
; that is,

𝑇
 is an isomorphism of𝑋 onto itself.
Conversely, suppose that 𝑇 is an isomorphism of 𝑋

onto itself. Since 𝑇
 is an extension of 𝑇 (i.e., 𝑇 = 𝑇



|
𝑋
),

we see that 𝑇 is one-to-one. Moreover, since 𝑋 is a closed
subspace of𝑋 (as𝑋 is a complete, barrelled lcHs), it follows
that 𝑇(𝑋) = 𝑇



(𝑋) is closed. It remains to show that 𝑇(𝑋) =

𝑋. But, if 𝑇(𝑋) ̸=𝑋, then there is 𝑓 ∈ 𝑋


\ {0} such that
⟨𝑇𝑥, 𝑓⟩ = ⟨𝑥, 𝑇



𝑓⟩ = 0 for all 𝑥 ∈ 𝑋. Hence, 𝑇

𝑓 = 0; this is
a contradiction because the surjectivity of 𝑇 implies that 𝑇

is necessarily one-to-one.
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We remark that Lemma 3 remains valid for𝑋 a complete
barrelled lcHs.

The next result is an immediate consequence of (1) and
Lemma 3.

Corollary 4. Let 𝑋 be a Fréchet space and 𝑇 ∈ L(𝑋). Then
𝜌(𝑇) = 𝜌(𝑇



) and 𝜎(𝑇) = 𝜎(𝑇


). Moreover,

Φ ∘ 𝑅 (𝜆, 𝑇) = 𝑅 (𝜆, 𝑇


) ∘ Φ, 𝜆 ∈ 𝜌 (𝑇) = 𝜌 (𝑇


) ; (4)

that is, the restriction of 𝑅(𝜆, 𝑇

) to the closed subspace 𝑋 ≃

Φ(𝑋) of 𝑋 coincides with 𝑅(𝜆, 𝑇). Briefly, 𝑅(𝜆, 𝑇

)|
𝑋

=

𝑅(𝜆, 𝑇).

A Fréchet space 𝑋 is always a projective limit of con-
tinuous linear operators 𝑅

𝑘
: 𝑋

𝑘+1
→ 𝑋

𝑘
, for 𝑘 ∈ N,

with each 𝑋
𝑘
a Banach space. If 𝑋

𝑘
and 𝑅

𝑘
can be chosen

such that each 𝑅
𝑘
is surjective and 𝑋 is isomorphic to the

projective limit proj
𝑗
(𝑋

𝑗
, 𝑅

𝑗
), then 𝑋 is called a quojection

[12, Section 5]. Banach spaces and countable products of
Banach spaces are quojections. Actually, every quojection is
the quotient of a countable product of Banach spaces [13]. In
[14] Moscatelli gave the first examples of quojections which
are not isomorphic to countable products of Banach spaces.
Concrete examples of quojection Fréchet spaces are 𝜔 =

CN, the spaces 𝐿
𝑝

loc(Ω), with 1 ≤ 𝑝 ≤ ∞, and 𝐶
(𝑚)

(Ω)

for 𝑚 ∈ N
0
, with Ω ⊆ R𝑁 any open set, all of which

are isomorphic to countable products of Banach spaces. The
spaces of continuous functions 𝐶(Λ), with Λ a 𝜎-compact,
completely regular topological space, endowed with the com-
pact open topology, are also quojections. Domański exhibited
a completely regular topological spaceΛ such that the Fréchet
space 𝐶(Λ) is a quojection which is not isomorphic to a
complemented subspace of a product of Banach spaces, [15,
Theorem]. A Fréchet space 𝑋 admits a continuous norm if
and only if𝑋 contains no isomorphic copy of 𝜔 [16,Theorem
7.2.7]. On the other hand, a quojection𝑋 admits a continuous
norm if and only if it is a Banach space [12, Proposition
3]. So, a quojection is either a Banach space or contains an
isomorphic copy of 𝜔, necessarily complemented, [16, Theo-
rem 7.2.7]. Also [17] is relevant.

Lemma 5. Let𝑋 be a quojection Fréchet space and 𝑆 ⊆ L(𝑋).
Suppose that 𝑋 = proj

𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
), with 𝑋

𝑗
a Banach space

(having norm ‖ ‖
𝑗
) and linking maps 𝑄

𝑗,𝑗+1
∈ L(𝑋

𝑗+1
, 𝑋

𝑗
)

which are surjective for all 𝑗 ∈ N, and suppose, for each 𝑗 ∈ N,
that there exists 𝑆

𝑗
∈ L(𝑋

𝑗
) satisfying

𝑆
𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑆, (5)

where 𝑄
𝑗
∈ L(𝑋,𝑋

𝑗
), 𝑗 ∈ N, denotes the canonical projection

of𝑋 onto𝑋
𝑗
(i.e., 𝑄

𝑗,𝑗+1
∘ 𝑄

𝑗+1
= 𝑄

𝑗
). Then

𝜎 (𝑆) ⊆

∞

⋃

𝑗=1

𝜎 (𝑆
𝑗
) ⊆ 𝜎 (𝑆) ∪

∞

⋃

𝑗=1

𝜎
𝑝
(𝑆

𝑗
) . (6)

Moreover,

𝜎
𝑝
(𝑆) ⊆

∞

⋃

𝑗=1

𝜎
𝑝
(𝑆

𝑗
) . (7)

If, in addition, for every 𝜆 ∈ 𝜌(𝑆), the resolvent operator
𝑅(𝜆, 𝑆) satisfies

𝑅 (𝜆, 𝑆) (Ker 𝑄
𝑗
) ⊆ Ker 𝑄

𝑗
, 𝑗 ∈ N, (8)

then 𝜎(𝑆) = ∪
∞

𝑗=1
𝜎(𝑆

𝑗
).

Proof. For the containments (6) and (7) we refer to [18,
Lemma 5.1].

Suppose now that (8) holds for each 𝜆 ∈ 𝜌(𝑆). To establish
the desired equality, let 𝜆 ∈ 𝜌(𝑆).Then 𝜆𝐼−𝑆 is surjective. Fix
𝑗 ∈ N. Since 𝑄

𝑗
: 𝑋 → 𝑋

𝑗
is surjective, it is routine to check

from the identity (𝜆𝐼
𝑗
−𝑆

𝑗
)𝑄

𝑗
= 𝑄

𝑗
(𝜆𝐼−𝑆) that also 𝜆𝐼

𝑗
−𝑆

𝑗
is

surjective (with 𝐼
𝑗
∈ L(𝑋

𝑗
) the identity operator). To verify

𝜆𝐼
𝑗
− 𝑆

𝑗
is injective suppose that (𝜆𝐼

𝑗
− 𝑆

𝑗
)𝑦 = 0 for some

𝑦 ∈ 𝑋
𝑗
, in which case 𝑦 = 𝑄

𝑗
𝑥 for some 𝑥 ∈ 𝑋. Accordingly,

𝑄
𝑗
(𝜆𝐼 − 𝑆) 𝑥 = (𝜆𝐼

𝑗
− 𝑆

𝑗
)𝑄

𝑗
𝑥 = (𝜆𝐼

𝑗
− 𝑆

𝑗
) 𝑦 = 0 (9)

shows that (𝜆𝐼 − 𝑆)𝑥 ∈ Ker 𝑄
𝑗
. It then follows from (8) that

𝑥 = 𝑅(𝜆, 𝑆)(𝜆𝐼 − 𝑆)𝑥 ∈ Ker 𝑄
𝑗
; that is, 𝑄

𝑗
𝑥 = 0. Since

𝑦 = 𝑄
𝑗
𝑥, we have 𝑦 = 0. Hence, 𝜆𝐼

𝑗
− 𝑆

𝑗
is injective. This

establishes that 𝜆 ∈ 𝜌(𝑆
𝑗
). Accordingly, 𝜌(𝑆) = ∩

∞

𝑗=1
𝜌(𝑆

𝑗
) as

desired.

The following result occurs in [18, Lemma 5.2].

Lemma 6. Let 𝑋 be a quojection Fréchet space and {𝑆
𝑛
}
∞

𝑛=1
⊆

L(𝑋). Suppose that 𝑋 = 𝑝𝑟𝑜𝑗
𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
), with 𝑋

𝑗
a

Banach space (having norm ‖ ‖
𝑗
) and linking maps 𝑄

𝑗,𝑗+1
∈

L(𝑋
𝑗+1

, 𝑋
𝑗
) which are surjective for all 𝑗 ∈ N, and suppose,

for each 𝑗, 𝑛 ∈ N, that there exists 𝑆(𝑗)
𝑛

∈ L(𝑋
𝑗
) satisfying

𝑆
(𝑗)

𝑛
𝑄

𝑗
= 𝑄

𝑗
𝑆
𝑛
, (10)

where 𝑄
𝑗
∈ L(𝑋,𝑋

𝑗
), 𝑗 ∈ N, denotes the canonical projection

of 𝑋 onto 𝑋
𝑗
(i.e., 𝑄

𝑗,𝑗+1
∘ 𝑄

𝑗+1
= 𝑄

𝑗
). Then the following

statements are equivalent.
(i) The limit 𝜏

𝑏
-lim

𝑛→∞
𝑆
𝑛
=: 𝑆 exists inL

𝑏
(𝑋).

(ii) For each 𝑗 ∈ N, the limit 𝜏
𝑏
-lim

𝑛→∞
𝑆
(𝑗)

𝑛
=: 𝑆

(𝑗) exists
inL

𝑏
(𝑋

𝑗
).

In this case, the operators 𝑆 ∈ L(𝑋) and 𝑆
(𝑗)

∈ L(𝑋
𝑗
), for

𝑗 ∈ N, satisfy

𝑆𝑥 = (𝑆
(𝑗)

𝑥
𝑗
)
𝑗

, 𝑥 = (𝑥
𝑗
)
𝑗

∈ 𝑋. (11)

Moreover, (i) and (ii) remain equivalent if 𝜏
𝑏
is replaced by

𝜏
𝑠
.

Given any lcHs 𝑋 and 𝑇 ∈ L(𝑋), let us introduce the
notation:

𝑇
[𝑛]

:=
1

𝑛

𝑛

∑

𝑚=1

𝑇
𝑚

, 𝑛 ∈ N, (12)

for the Cesàro means of 𝑇. Then 𝑇 is called mean ergodic
precisely when {𝑇

[𝑛]
}
∞

𝑛=1
is a convergent sequence in L

𝑠
(𝑋).

If {𝑇
[𝑛]
}
∞

𝑛=0
happens to be convergent in L

𝑏
(𝑋), then 𝑇 will

be called uniformly mean ergodic.
We always have the identities

(𝐼 − 𝑇) 𝑇
[𝑛]

= 𝑇
[𝑛]

(𝐼 − 𝑇) =
1

𝑛
(𝑇 − 𝑇

𝑛+1

) , 𝑛 ∈ N, (13)
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and also (setting 𝑇
[0]

:= 𝐼) that
1

𝑛
𝑇
𝑛

= 𝑇
[𝑛]

−
(𝑛 − 1)

𝑛
𝑇
[𝑛−1]

, 𝑛 ∈ N. (14)

Some authors prefer to use (1/𝑛)∑
𝑛−1

𝑚=0
𝑇
𝑚 in place of 𝑇

[𝑛]
;

since

𝑇
[𝑛]

= 𝑇(
1

𝑛

𝑛−1

∑

𝑚=0

𝑇
𝑚

) =
1

𝑛
(𝑇

𝑛

− 𝐼) +
1

𝑛

𝑛−1

∑

𝑚=0

𝑇
𝑚

, 𝑛 ∈ N,

(15)
this leads to identical results.

Recall that 𝑇 ∈ L(𝑋) is called power bounded if {𝑇𝑛

}
∞

𝑛=1

is an equicontinuous subset ofL(𝑋).
The final result that we require (i.e., [18, Lemma 5.4]) is as

follows.

Lemma 7. Let 𝑋 = 𝑝𝑟𝑜𝑗
𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
) be a quojection Fréchet

space and let operators 𝑆 ∈ L(𝑋) and 𝑆
𝑗
∈ L(𝑋

𝑗
), for 𝑗 ∈ N,

be given which satisfy the assumptions of Lemma 5 (with 𝑄
𝑗
∈

L(𝑋,𝑋
𝑗
), 𝑗 ∈ N, denoting the canonical projection of 𝑋 onto

𝑋
𝑗
and ‖ ‖

𝑗
being the norm in the Banach space 𝑋

𝑗
).

(i) 𝑆 ∈ L(𝑋) is power bounded if and only if each 𝑆
𝑗
∈

L(𝑋
𝑗
), 𝑗 ∈ N, is power bounded.

(ii) 𝑆 ∈ L(𝑋) is mean ergodic (resp., uniformly mean
ergodic) if and only if each 𝑆

𝑗
∈ L(𝑋

𝑗
), 𝑗 ∈ N, is mean

ergodic (resp., uniformly mean ergodic).

3. Spectrum, Uniform Convergence,
and Mean Ergodicity

A prequojection is a Fréchet space 𝑋 such that 𝑋 is a quo-
ection. Every quojection is a prequojection. A prequojection
is called nontrivial if it is not itself a quojection. It is known
that𝑋 is a prequojection if and only if𝑋

𝛽
is a strict (LB) space.

An alternative characterization is that 𝑋 is a prequojecton if
and only if 𝑋 has no Köthe nuclear quotient which admits a
continuous norm; see [12, 19–21].This implies that a quotient
of a prequojection is again a prequojection. In particular,
every complemented subspace of a prequojection is again a
prequojection.The problemof the existence of nontrivial pre-
quojections arose in a natural way in [12]; it has been solved,
in the positive sense, in various papers [19, 22, 23]. All of these
papers employ the same method, which consists in the con-
struction of the dual of a prequojection, rather than the pre-
quojection itself, which is often difficult to describe (see the
survey paper [24] for further information). However, in [25]
an alternative method for constructing prequojections is pre-
sented which has the advantage of being direct. For an exam-
ple of a concrete space (i.e., a space of continuous functions on
a suitable topological space), which is a nontrivial prequojec-
tion, see [26].

In this section we extend to prequojection Fréchet spaces
some well-known results from the Banach setting which con-
nect various conditions on the spectrum 𝜎(𝑇), of a continu-
ous linear operator 𝑇, to the operator norm convergence of
certain sequences of operators generated by 𝑇. Such results
have well-known consequences for the uniformmean ergod-
icity of 𝑇.

We begin with a construction for quojection Fréchet
spaces which is needed in the sequel.

Let 𝑋 be a quojection Fréchet space and {𝑞
𝑗
}
∞

𝑗=1
be any

fundamental, increasing sequence of seminorms generating
the lc-topology of𝑋. For each 𝑗 ∈ N, set𝑋

𝑗
:= 𝑋/𝑞

−1

𝑗
({0}) and

endow𝑋
𝑗
with the quotient lc-topology.Denote by𝑄

𝑗
: 𝑋 →

𝑋
𝑗
the corresponding canonical (surjective) quotient map

and define the quotient topology on 𝑋
𝑗
via the increasing

sequence of seminorms {(𝑞
𝑗
)
𝑘
}
∞

𝑘=1
on𝑋

𝑗
by

(𝑞
𝑗
)
𝑘

(𝑄
𝑗
𝑥) := inf {𝑞

𝑘
(𝑦) : 𝑦 ∈ 𝑋, 𝑄

𝑗
𝑦 = 𝑄

𝑗
𝑥} ,

𝑥 ∈ 𝑋,

(16)

for each 𝑘 ∈ N. Then

(𝑞
𝑗
)
𝑘

(𝑄
𝑗
𝑥) ≤ 𝑞

𝑘
(𝑥) , 𝑥 ∈ 𝑋, 𝑘, 𝑗 ∈ N. (17)

Moreover,

(𝑞
𝑗
)
𝑗

(𝑄
𝑗
𝑥) = 𝑞

𝑗
(𝑥) , 𝑥 ∈ 𝑋, 𝑗 ∈ N, (18)

which implies that (𝑞
𝑗
)
𝑗
is a norm on 𝑋

𝑗
. As noted above,

since𝑋 is a quojection Fréchet space and every quotient space
(of such a Fréchet space) with a continuous norm is necessar-
ily Banach [12, Proposition 3], it follows that for each 𝑗 ∈ N

there exists 𝑘(𝑗) ≥ 𝑗 such that the norm (𝑞
𝑗
)
𝑘(𝑗)

generates the
lc-topology of𝑋

𝑗
. Moreover, it is possible to choose 𝑘(𝑗+1) ≥

𝑘(𝑗) for all 𝑗 ∈ N. Thus, 𝑋 is isomorphic to the projective
limit of the sequence {(𝑋

𝑗
, (𝑞

𝑗
)
𝑘(𝑗)

)}
∞

𝑗=1
of Banach spaces with

respect to the continuous, surjective linking maps 𝑄
𝑗,𝑗+1

:

𝑋
𝑗+1

→ 𝑋
𝑗
defined by

𝑄
𝑗,𝑗+1

∘ 𝑄
𝑗+1

= 𝑄
𝑗
, 𝑗 ∈ N. (19)

This particular constructionwill be used on various occasions
in the sequel, where 𝐵

𝑗
will always denote the closed unit ball

of 𝑋
𝑗
, for 𝑗 ∈ N. The so-constructed Banach space norm

(𝑞
𝑗
)
𝑘(𝑗)

of𝑋
𝑗
will always be denoted by 𝑞

𝑗
, for 𝑗 ∈ N.

The following result is classical in Banach spaces [1, p. 709,
Lemma 1].

Proposition 8. Let 𝑋 be a quojection Fréchet space and 𝑇 ∈

L(𝑋) satisfy 𝜏
𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. Then 𝜎(𝑇) ⊆ D.
In case 𝑋 is a prequojection Fréchet space and 𝜏

𝑏
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0, the inclusion 𝜎(𝑇) ⊆ D is again valid.

Proof. We have the following two cases.

Case (I) (𝑋 is a quojection). Let {𝑟
𝑗
}
∞

𝑗=1
be a fundamental,

increasing sequence of seminorms generating the lc-topology
of𝑋. Since𝑇𝑛

/𝑛 → 0 inL
𝑠
(𝑋) as 𝑛 → ∞ and𝑋 is a Fréchet

space, the sequence {𝑇𝑛

/𝑛}
∞

𝑛=1
is equicontinuous. So, for each

𝑗 ∈ N there exists 𝑐
𝑗
> 0 such that

𝑟
𝑗
(
𝑇
𝑛

𝑥

𝑛
) ≤ 𝑐

𝑗
𝑟
𝑗+1

(𝑥) , 𝑥 ∈ 𝑋, 𝑛 ∈ N; (20)

there is no loss in generality by assuming that 𝑟
𝑗+1

can be
chosen.
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Define 𝑞
𝑗
on𝑋 by 𝑞

𝑗
(𝑥) := max{𝑟

𝑗
(𝑥), sup

𝑛∈N 𝑟𝑗(𝑇
𝑛

𝑥/𝑛)},
for 𝑥 ∈ 𝑋. Then (20) ensures that {𝑞

𝑗
}
∞

𝑗=1
is also a fundamen-

tal, increasing sequence of seminorms generating the lc-
topology of𝑋. Moreover,

𝑞
𝑗
(𝑇𝑥) ≤ 2𝑞

𝑗
(𝑥) , 𝑥 ∈ 𝑋, 𝑗 ∈ N. (21)

We now apply the construction (16)–(19) to the sequence
of seminorms {𝑞

𝑗
}
∞

𝑗=1
to yield the corresponding sequence

{(𝑋
𝑗
, 𝑞

𝑗
)}
∞

𝑗=1
of Banach spaces and the quotient maps 𝑄

𝑗
∈

L(𝑋,𝑋
𝑗
), for 𝑗 ∈ N; recall that 𝑞

𝑗
:= (𝑞

𝑗
)
𝑘(𝑗)

, for 𝑗 ∈ N.
Fix 𝑗 ∈ N. Define the operator 𝑇

𝑗
: 𝑋

𝑗
→ 𝑋

𝑗
via

𝑇
𝑗
𝑄

𝑗
𝑥 := 𝑄

𝑗
𝑇𝑥, 𝑥 ∈ 𝑋. (22)

Then𝑇
𝑗
is a well-defined, continuous linear operator from𝑋

𝑗

into 𝑋
𝑗
. Indeed, suppose 𝑄

𝑗
𝑥 = 𝑄

𝑗
𝑦 for some 𝑥, 𝑦 ∈ 𝑋; that

is, (𝑥−𝑦) ∈ Ker 𝑄
𝑗
, so that 𝑞

𝑗
(𝑥−𝑦) = 0. This, together with

(21), yields 0 ≤ 𝑞
𝑗
(𝑇(𝑥−𝑦)) ≤ 2𝑞

𝑗
(𝑥−𝑦) = 0. Since Ker 𝑄

𝑗
=

𝑞
−1

𝑗
({0}), it follows that𝑄

𝑗
𝑇(𝑥−𝑦) = 0, and hence, by (22) that

𝑇
𝑗
𝑄

𝑗
(𝑥 − 𝑦) = 𝑄

𝑗
𝑇(𝑥 − 𝑦) = 0. Therefore, 𝑇

𝑗
𝑄

𝑗
𝑥 = 𝑇

𝑗
𝑄

𝑗
𝑦.

This means that 𝑇
𝑗
is well defined. Clearly, 𝑇

𝑗
is also linear.

Moreover, (17), (21), and (22) imply that

𝑞
𝑗
(𝑇

𝑗
𝑥) = 𝑞

𝑗
(𝑇

𝑗
𝑄

𝑗
𝑥)

= 𝑞
𝑗
(𝑄

𝑗
𝑇𝑥) ≤ 𝑞

𝑘(𝑗)
(𝑇𝑥) ≤ 2𝑞

𝑘(𝑗)
(𝑥) ,

(23)

for all 𝑥 ∈ 𝑋
𝑗
and 𝑥 ∈ 𝑋 with 𝑄

𝑗
𝑥 = 𝑥. Taking the infimum

with respect to 𝑥 ∈ 𝑄
−1

𝑗
({𝑥}), it follows that

𝑞
𝑗
(𝑇

𝑗
𝑥) ≤ 2𝑞

𝑗
(𝑥) , 𝑥 ∈ 𝑋

𝑗
. (24)

Since 𝑞
𝑗
generates the quotient topology of 𝑋

𝑗
, (24) ensures

the continuity of 𝑇
𝑗
. Moreover, it follows from (22) that

(𝑇
𝑗
)
𝑛

𝑄
𝑗
𝑥 = 𝑄

𝑗
𝑇
𝑛

𝑥, 𝑥 ∈ 𝑋, 𝑛 ∈ N. (25)

The surjectivity and the continuity of 𝑄
𝑗
together with (25)

imply that 𝜏
𝑠
-lim

𝑛→∞
((𝑇

𝑗
)
𝑛

/𝑛) = 0. Indeed, fix any 𝑥 ∈ 𝑋
𝑗
.

By the surjectivity of𝑄
𝑗
there exists 𝑥 ∈ 𝑋 such that𝑄

𝑗
𝑥 = 𝑥.

By (25) it follows that (𝑇
𝑗
)
𝑛

𝑥/𝑛 = 𝑄
𝑗
(𝑇

𝑛

𝑥/𝑛), for 𝑛 ∈ N.
Moreover, 𝑇𝑛

𝑥/𝑛 → 0 as 𝑛 → ∞ by assumption. So, the
continuity of 𝑄

𝑗
yields that lim

𝑛→∞
((𝑇

𝑗
)
𝑛

𝑥/𝑛) = 0 in the
Banach space𝑋

𝑗
. We can then apply Lemma 1 in [1, p. 709] to

obtain that 𝜎(𝑇
𝑗
) ⊆ D.

We have just shown that (C \ D) ⊆ ∩
∞

𝑗=1
𝜌(𝑇

𝑗
). Moreover,

the operators𝑇 and𝑇
𝑗
satisfy (22). So, we can apply Lemma 5

which yields (C \ D) ⊆ 𝜌(𝑇); that is, 𝜎(𝑇) ⊆ D.

Case (II). (𝑋 is a prequojection and 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) =

0). Observe that 𝑋 and 𝑋


𝛽
are barrelled and, hence, quasi-

barrelled as 𝑋 is a Fréchet space and 𝑋


𝛽
is the strong dual

of a prequojection Fréchet space. Since 𝑇


∈ L(𝑋


𝛽
) and

𝑇


∈ L(𝑋


), the condition 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 implies
that 𝜏

𝑏
-lim

𝑛→∞
((𝑇



)
𝑛

/𝑛) = 0 (see [27, Lemma 2.6] or [28,
Lemma 2.1]). On the other hand, 𝑋 is a quojection Fréchet
space. So, it follows from Case (I) that 𝜎(𝑇

) ⊆ D. Finally,
Corollary 4 ensures that 𝜎(𝑇) = 𝜎(𝑇



) and so 𝜎(𝑇) ⊆ D.

Remark 9. For a power-bounded operator 𝑇 ∈ L(𝑋) it is
always the case that 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 and so, when-
ever 𝑋 is a prequojection Fréchet space, it follows from
Proposition 8 that 𝜎(𝑇) ⊆ D.

For operators in Banach spaces, the following result is due
to Koliha [2].

Theorem 10. Let 𝑋 be a prequojection Fréchet space and 𝑇 ∈

L(𝑋). The following assertions are equivalent.

(i) 𝜏
𝑏
-lim

𝑛→∞
𝑇
𝑛

= 0.
(ii) The series ∑∞

𝑛=0
𝑇
𝑛 converges inL

𝑏
(𝑋).

(iii) 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 and 𝜎(𝑇) ⊆ D.

Moreover, if one (hence, all) of the above conditions holds, then
𝐼 − 𝑇 is an isomorphism of 𝑋 onto 𝑋 with inverse (𝐼 − 𝑇)

−1

=

∑
∞

𝑛=0
𝑇
𝑛 and the series converging inL

𝑏
(𝑋).

Proof. We have the following two cases.

Case (I) (𝑋 is a quojection). (i)⇒(ii). The assumption 𝜏
𝑏
-

lim
𝑛→∞

𝑇
𝑛

= 0 implies that 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. So, we
can proceed as in the proof of Proposition 8 to obtain that
𝑋 = proj

𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
) in such a way that, for every 𝑗 ∈ N,

there exists 𝑇
𝑗
in L(𝑋

𝑗
) satisfying 𝑇

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇. Then also

𝑇
𝑛

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇
𝑛, for every 𝑗, 𝑛 ∈ N. So, Lemma 6 implies that

𝜏
𝑏
-lim

𝑛→∞
𝑇
𝑛

𝑗
= 0 for all 𝑗 ∈ N. Thus, by [2, Theorem 2.1]

the series∑∞

𝑛=0
𝑇
𝑛

𝑗
converges inL

𝑏
(𝑋

𝑗
), for each 𝑗 ∈ N. With

𝑆
𝑛
:= ∑

𝑛

𝑘=0
𝑇
𝑘, for 𝑛 ∈ N, it follows again from Lemma 6 that

the series ∑∞

𝑛=0
𝑇
𝑛 converges inL

𝑏
(𝑋).

(ii)⇒(iii). The assumption clearly implies 𝜏
𝑏
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0. So, as in the proof of (i)⇒(ii), we may
assume that 𝑋 = proj

𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
) in such a way that, for

every 𝑗 ∈ N, there exists 𝑇
𝑗
inL(𝑋

𝑗
) satisfying 𝑇

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇.

Then also 𝑇
𝑛

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇
𝑛, for every 𝑗, 𝑛 ∈ N. Since ∑∞

𝑛=0
𝑇
𝑛

converges in L
𝑏
(𝑋) and 𝑋 is a quojection, the series

∑
∞

𝑛=0
𝑇
𝑛

𝑗
also converges inL

𝑏
(𝑋

𝑗
) for all 𝑗 ∈ N; see Lemma 6.

By [2, Theorem 2.1] we have that 𝜎(𝑇
𝑗
) ⊂ D and so Λ :=

(C \D) ⊆ 𝜌(𝑇
𝑗
), for all 𝑗 ∈ N. Accordingly, since 𝑇

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇

for all 𝑗 ∈ N, Lemma 5 yields Λ ⊆ ∩
∞

𝑗=1
𝜌(𝑇

𝑗
) ⊆ 𝜌(𝑇); that is,

𝜎(𝑇) ⊂ D.
(iii)⇒(i). Since Λ ⊆ 𝜌(𝑇), for every 𝜆 ∈ Λ, the operator

𝐼 − 𝜆
−1

𝑇 = 𝜆
−1

(𝜆𝐼 − 𝑇) ∈ L(𝑋) is invertible, that is, biject-
ive with (𝐼 − 𝜆

−1

𝑇)
−1

∈ L(𝑋). On the other hand,
𝜏
𝑏
-lim

𝑛→∞
((𝜆

−1

𝑇)
𝑛

/𝑛) = 0 for every 𝜆 ∈ Λ as 𝜏
𝑏
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0 and |𝜆
−1

| ≤ 1. So, by Theorem 4.1 in [29]
(see also Theorem 3.5 of [6]) we can conclude that

𝜏
𝑏
- lim
𝑛→∞

(𝜆
−1

𝑇)
[𝑛]

= 0, 𝜆 ∈ Λ. (26)

Let {𝑟
𝑗
}
∞

𝑗=1
be a fundamental, increasing sequence of semi-

norms generating the lc-topology of 𝑋. Arguing as in the
proof of Proposition 8 (and adopting the notation from there)
we conclude that (20) is satisfied. Define 𝑞

𝑗
on 𝑋 by 𝑞

𝑗
(𝑥) :=

max{𝑟
𝑗
(𝑥), sup

𝑛∈N 𝑟𝑗(𝑇
𝑛

𝑥/𝑛)}, for 𝑥 ∈ 𝑋. Then again (21)
is satisfied and, for each 𝑗 ∈ N, there exists a continuous
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linear operator 𝑇
𝑗
: 𝑋

𝑗
→ 𝑋

𝑗
satisfying both (22) and (24).

Moreover, it follows from (22) that

(𝜆
−1

𝑇
𝑗
)
𝑛

𝑄
𝑗
𝑥 := 𝑄

𝑗
(𝜆

−1

𝑇)
𝑛

𝑥, 𝑥 ∈ 𝑋, 𝑛 ∈ N, 𝜆 ∈ Λ.

(27)

Fix 𝜆 ∈ Λ and consider the sequences {𝑅
𝑛
}
∞

𝑛=1
and {𝐻

𝑛
}
∞

𝑛=1

in L(𝑋) given by 𝑅
𝑛
:= (1/𝑛)∑

𝑛−1

𝑚=0
∑

𝑚

ℎ=0
(𝜆

−1

𝑇)
ℎ and 𝐻

𝑛
:=

𝐼 − (𝜆
−1

𝑇)
[𝑛]
, for 𝑛 ∈ N. Then the operator 𝐴 := 𝐼 − 𝜆

−1

𝑇

satisfies 𝐻
𝑛
= 𝐴𝑅

𝑛
= 𝑅

𝑛
𝐴 for all 𝑛 ∈ N. Moreover, (26)

implies that𝐻
𝑛
→ 𝐼 inL

𝑏
(𝑋). Since all the assumptions of

Lemma 3.4 in [6] are satisfied with 𝐹 = 𝐸 = 𝑋, 𝑅 = 𝐼 ∈ L(𝑋,

𝑋), and 𝐴 = 𝐼 − 𝜆
−1

𝑇, we can proceed as in the proof of that
result to conclude, for every 𝑗 ∈ N, that the operator 𝐼−𝜆−1𝑇

𝑗

is invertible inL(𝑋
𝑗
) (hence, also 𝜆𝐼 − 𝑇

𝑗
is invertible); that

is, 𝜆 ∈ 𝜌(𝑇
𝑗
).

By the arbitrariness of 𝜆 ∈ Λ, we have that Λ ⊆ 𝜌(𝑇
𝑗
), for

all 𝑗 ∈ N. So, there exists 𝛿
𝑗
∈ (0, 1) such that 𝜌(𝑇

𝑗
) ⊃ {𝜆 ∈

C : |𝜆| ≥ 1 − 𝛿
𝑗
}. It follows that

𝑟 (𝑇
𝑗
) := max {|𝜆| : 𝜆 ∈ 𝜎 (𝑇

𝑗
)}

= lim
𝑛→∞

𝑛
√

𝑇
𝑛

𝑗

op
≤ (1 − 𝛿

𝑗
) < 1, 𝑗 ∈ N,

(28)

and, hence, that lim
𝑛→∞

‖𝑇
𝑛

𝑗
‖
op

= 0. Because of (27), with
𝜆 = 1 ∈ Λ, it follows from Lemma 6 (with 𝑆

𝑛
:= 𝑇

𝑛) that 𝜏
𝑏
-

lim
𝑛→∞

𝑇
𝑛

= 0.

Case (II) (𝑋 is a prequojection). As noted before 𝑋 and 𝑋


𝛽

are barrelled with 𝑇


∈ L(𝑋


𝛽
) and 𝑇



∈ L(𝑋


).
(i)⇒(ii). If 𝑇𝑛

→ 0 inL
𝑏
(𝑋) for 𝑛 → ∞, then an argu-

ment as for Case (II) in the proof of Proposition 8 shows that
(𝑇



)
𝑛

= (𝑇
𝑛

)


→ 0 in L
𝑏
(𝑋



) for 𝑛 → ∞. Since 𝑋 is a
quojection Fréchet space, we can apply (i)⇒(ii) of Case (I)
above to conclude that the series ∑

∞

𝑛=0
(𝑇



)
𝑛 converges in

L
𝑏
(𝑋



). Then also∑∞

𝑛=0
𝑇
𝑛 converges inL

𝑏
(𝑋) as 𝑇

|
𝑋
= 𝑇

and𝑋 is a closed subspace of𝑋.
(ii)⇒(iii). If∑∞

𝑛=0
𝑇
𝑛 converges inL

𝑏
(𝑋), then∑∞

𝑛=0
(𝑇



)
𝑛

converges in L
𝑏
(𝑋



); see [27, Lemma 2.6] or [28, Lemma
2.1]. Since 𝑋

 is a quojection Fréchet space, we can apply
(ii)⇒(iii) of Case (I) above to conclude that 𝜎(𝑇

) ⊂ D (the
condition 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 clearly follows from the
assumption). So, 𝜎(𝑇) ⊆ D by Corollary 4.

(iii)⇒(i). As already noted (cf. proof of Case (II)
in Proposition 8) 𝑋 and 𝑋



𝛽
are barrelled (hence, quasi-

barrelled) and 𝜏
𝑏
-lim

𝑛→∞
((𝑇



)
𝑛

/𝑛) = 0. By Corollary 4,
𝜌(𝑇



) = 𝜌(𝑇) and so Λ ⊆ 𝜌(𝑇


) by assumption. Since 𝑋 is
a quojection Fréchet space, we can apply Case (I) to conclude
that 𝜏

𝑏
-lim

𝑛→∞
(𝑇



)
𝑛

= 0. So, also 𝜏
𝑏
-lim

𝑛→∞
𝑇
𝑛

= 0 as
𝑇


|
𝑋
= 𝑇 and𝑋 is a closed subspace of𝑋.

Finally, suppose that one (hence, all) of the above condi-
tions holds. Then the series∑∞

𝑛=0
𝑇
𝑛 converges inL

𝑏
(𝑋) and

so 𝑇
𝑛

→ 0 in L
𝑏
(𝑋) for 𝑛 → ∞. But, for every 𝑛 ∈ N, we

have

(𝐼 − 𝑇)

𝑛

∑

𝑚=0

𝑇
𝑚

=

𝑛

∑

𝑚=0

(𝑇
𝑚

− 𝑇
𝑚+1

) = (𝐼 − 𝑇
𝑛+1

) (29)

and so, for 𝑛 → ∞, we can conclude that (𝐼 − 𝑇)∑
∞

𝑛=0
𝑇
𝑛

=

𝐼 with convergence of the series in L
𝑏
(𝑋). In a similar way

one shows that (∑∞

𝑛=0
𝑇
𝑛

)(𝐼 − 𝑇) = 𝐼, with the series again
converging inL

𝑏
(𝑋).

Remark 11. In the proof of (iii)⇒(i) in Case (I) above, if
inf

𝑗∈N 𝛿𝑗 =: 𝛿 > 0, then it follows that 𝜌(𝑇) ⊃ {𝜆 ∈ C : |𝜆| ≥

(1 − 𝛿)}. But, this is not the case in general as the following
example shows.

Let 𝑋 be a Banach space and let {𝜆
𝑛
}
∞

𝑛=1
∈ (0, 1) be an

increasing sequence with sup
𝑛∈N𝜆𝑛

= 1. Consider the quojec-
tion Fréchet space 𝑋N (endowed with the product topology)
and the operator 𝑇 on 𝑋

N defined by 𝑇(𝑥
𝑛
)
𝑛
:= (𝜆

𝑛
𝑥
𝑛
)
𝑛
, for

(𝑥
𝑛
)
𝑛
∈ 𝑋

N. It is easy to show that 𝑇 ∈ L(𝑋) and that 𝑇 is
even power bounded.Moreover,Λ ⊆ 𝜌(𝑇). Indeed, for a fixed
𝜆 ∈ Λ, if 𝑥 ∈ Ker (𝜆𝐼 − 𝑇), then 𝜆𝑥 − 𝑇𝑥 = 0; that is, (𝜆 −

𝜆
𝑛
)𝑥

𝑛
= 0 for all 𝑛 ∈ N. Since 𝜆 ∉ {𝜆

𝑛
}
∞

𝑛=1
, it follows that

𝑥
𝑛
= 0 for all 𝑛 ∈ N and so 𝑥 = 0. On the other hand, if

𝑦 ∈ 𝑋
N, then 𝑥 := (𝑦

𝑛
/(𝜆 − 𝜆

𝑛
))
𝑛
belongs to 𝑋N and 𝑇𝑥 = 𝑦.

Hence, 𝜆𝐼 − 𝑇 is bijective and so 𝜆 ∈ 𝜌(𝑇). Moreover, fix any
𝑥 ∈ 𝑋\{0} and set 𝑒

𝑛
:= (𝛿

𝑛𝑚
𝑥)

𝑚
for every 𝑛 ∈ N.Then 𝑇𝑒

𝑛
=

𝜆
𝑛
𝑒
𝑛
for every 𝑛 ∈ N. Thus, each 𝜆

𝑛
is an eigenvalue of 𝑇.

Now, suppose that 𝜌(𝑇) ⊃ {𝜆 ∈ C : |𝜆| ≥ 1 − 𝛿} for some
𝛿 ∈ (0, 1). Then 𝐵(1, 𝛿/2) := {𝜇 ∈ C : |𝜇 − 1| < 𝛿/2} ⊂ 𝜌(𝑇).
But 𝜆

𝑛
→ 1 for 𝑛 → ∞, and hence, there is 𝑛

0
∈ N such

that 𝜆
𝑛
0

∈ 𝐵(1, 𝛿/2) ⊂ 𝜌(𝑇). This contradiction as 𝜆
𝑛
0

is an
eigenvalue for 𝑇.

If 𝑇 is uniformly mean ergodic, then (14) implies that 𝜏
𝑏
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0. With an extra condition the converse is
also valid.

Corollary 12. Let 𝑋 be a prequojection Fréchet space and
𝑇 ∈ L(𝑋). If 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 and 1 ∈ 𝜌(𝑇), then 𝑇

is uniformly mean ergodic.

Proof. Since 1 ∈ 𝜌(𝑇), the operator 𝐼−𝑇 is bijective and so the
space (𝐼 − 𝑇)(𝑋) = 𝑋 is closed in 𝑋. By [6, Theorem 3.5], 𝑇
is uniformly mean ergodic. In particular, as Ker (𝐼 −𝑇) = {0},
we have that 𝑇

[𝑛]
→ 0 inL

𝑏
(𝑋) for 𝑛 → ∞.

Remark 13. Let 𝑋 be a prequojection Fréchet space and let
𝑇 ∈ L(𝑋) satisfy 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. If 1 ∈ 𝜌(𝑇), then the
proof of Corollary 12 shows that𝑇 is uniformlymean ergodic
with 𝜏

𝑏
-lim

𝑛→∞
𝑇
[𝑛]

= 0. On the other hand, if 𝜎(𝑇) ⊆ D (a
stronger condition than 1 ∈ 𝜌(𝑇)), then Theorem 10 implies
that 𝜏

𝑏
-lim

𝑛→∞
𝑇
𝑛

= 0 and hence again 𝜏
𝑏
-lim

𝑛→∞
𝑇
[𝑛]

= 0

follows [30, Remark 3.1]. However, the stronger conclusion
that 𝜏

𝑏
-lim

𝑛→∞
𝑇
𝑛

= 0 does not follow from Corollary 12
in general. Indeed, let 𝑋 ̸= {0} be any Banach space (even
finite dimensional). Then every power of 𝑇 := 𝑖𝐼 belongs
to the set {−𝐼, 𝐼, −𝑖𝐼, 𝑖𝐼} and so 𝑇 is power bounded. This
implies that 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. Since 𝜎(𝑇) = {𝑖},
surely 1 ∈ 𝜌(𝑇) and so, by Corollary 12, it follows that 𝜏

𝑏
-

lim
𝑛→∞

𝑇
[𝑛]

= 0. However, for every 𝑛 ∈ N we have ‖𝑇𝑛

‖op =

1 and so {‖𝑇𝑛

‖op}
∞

𝑛=1
does not converge to zero. This does not

contradict Theorem 10 as 𝜎(𝑇) is not included in D.

Remark 14. Let 𝑋 be a prequojection Fréchet space and 𝑇 ∈

L(𝑋). We observe the following.
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(i) Proposition 8 and (14) yield that if 𝑇 is uniformly
mean ergodic, then 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 and
𝜎(𝑇) ⊆ D.

(ii) Suppose that 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. If 𝜎(𝑇) ⊆

D, then 𝑇 is uniformly mean ergodic and 𝜏
𝑏
-

lim
𝑛→∞

𝑇
[𝑛]

= 0 (cf. Remark 13).

For Banach spaces the next result is due to Mbekhta and
Zemànek [3]. Recall that Γ(𝑇) := 𝜎(𝑇) ∩ T .

Theorem 15. Let 𝑋 be a prequojection Fréchet space and 𝑇 ∈

L(𝑋). The following statements are equivalent.

(i) {𝑇𝑛

}
∞

𝑛=1
is convergent inL

𝑏
(𝑋).

(ii) 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0, the linear space (𝐼 − 𝑇)
𝑚

(𝑋) is
closed in𝑋 for some𝑚 ∈ N and Γ(𝑇) ⊆ {1}.

(iii) 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

− 𝑇
𝑛+1

) = 0 and (𝐼 − 𝑇)
𝑚

(𝑋) is closed
for some𝑚 ∈ N.

Proof. (i)⇒(ii). If {𝑇𝑛

}
∞

𝑛=1
converges inL

𝑏
(𝑋) to 𝑃, say, then

𝑇 is uniformlymean ergodic with ergodic projection equal to
𝑃 [30, Remark 3.1]. Moreover, as {𝑇𝑛

}
∞

𝑛=1
is necessarily equi-

continuous, it follows that 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. Hence, by
Theorem 3.5 and Remark 3.6 of [6] the space (𝐼 − 𝑇)

𝑚

(𝑋) is
closed for every 𝑚 ∈ N. Moreover, by Proposition 8 we have
𝜎(𝑇) ⊆ D. To establish the remaining condition Γ(𝑇) ⊆ {1}

we distinguish two cases.

(a)𝑋 is a quojection. Let {𝑟
𝑗
}
∞

𝑗=1
be any fundamental, increas-

ing sequence of seminorms generating the lc-topology of 𝑋.
By equicontinuity of {𝑇𝑛

}
∞

𝑛=1
, for each 𝑗 ∈ N, there exists

𝑐
𝑗
> 0 such that

𝑟
𝑗
(𝑇

𝑛

𝑥) ≤ 𝑐
𝑗
𝑟
𝑗+1

(𝑥) , 𝑥 ∈ 𝑋, 𝑛 ∈ N. (30)

Define 𝑞
𝑗
, for each 𝑗 ∈ N, by 𝑞

𝑗
(𝑥) := sup

𝑛≥0
𝑟
𝑗
(𝑇

𝑛

𝑥), for
𝑥 ∈ 𝑋. Then (30) ensures that {𝑞

𝑗
}
∞

𝑗=1
is also a fundamental,

increasing sequence of seminorms generating the lc-topology
of𝑋. Moreover, it is routine to check (using also that 𝑇𝑛

𝑥 →

𝑃𝑥 for each 𝑥 ∈ 𝑋) that

𝑞
𝑗
(𝑇𝑥) ≤ 𝑞

𝑗
(𝑥) , 𝑞

𝑗
(𝑃𝑥) ≤ 𝑞

𝑗
(𝑥) , 𝑥 ∈ 𝑋, 𝑗 ∈ N. (31)

With (31) in place of (21), we can argue as in the proof of
Proposition 8 to deduce that 𝑋 = proj

𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
) and that,

for every 𝑗 ∈ N, there exist operators𝑇
𝑗
and𝑃

𝑗
inL(𝑋

𝑗
) satis-

fying 𝑇
𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇 and 𝑃

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑃. Hence, 𝑇𝑛

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇
𝑛 for

every 𝑗, 𝑛 ∈ N. Since also 𝜏
𝑏
-lim

𝑛→∞
𝑇
𝑛

= 𝑃, it follows from
Lemma 6 (with 𝑆

𝑛
:= 𝑇

𝑛 and 𝑆 := 𝑃) that 𝜏
𝑏
-lim

𝑛→∞
𝑇
𝑛

𝑗
= 𝑃

𝑗
,

for each 𝑗 ∈ N. By [3, Corollaire 3]we have that Γ(𝑇
𝑗
) ⊆ {1} for

every 𝑗 ∈ N.This implies that Γ(𝑇) ⊆ {1}. Indeed, if𝜆 ∈ T\{1},
then for every 𝑗 ∈ N we have 𝜆 ∉ Γ(𝑇

𝑗
) and so 𝜆 ∈ 𝜌(𝑇

𝑗
); that

is, 𝜆 ∈ ∩
∞

𝑗=1
𝜌(𝑇

𝑗
). As𝑇

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇 for every 𝑗 ∈ N, an appeal to

Lemma 5 yields that 𝜆 ∈ 𝜌(𝑇).

(b) 𝑋 is a prequojection. As noted before, 𝑋 and 𝑋


𝛽
are bar-

relled (hence, quasi-barrelled) with 𝑇


, 𝑃


∈ L(𝑋


𝛽
) and

𝑇


, 𝑃


∈ L(𝑋


). Hence, 𝜏
𝑏
-lim

𝑛→∞
𝑇
𝑛

= 𝑃 implies that 𝜏
𝑏
-

lim
𝑛→∞

(𝑇


)
𝑛

= 𝑃
; see [27, Lemma 2.6] or [28, Lemma 2.1].

Since𝑋 is a quojection Fréchet space, we can apply the result
from case (a) to conclude that Γ(𝑇

) ⊆ {1} and so Γ(𝑇) ⊆ {1};
see Corollary 4.

(ii)⇒(i). The assumptions 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 and the
space (𝐼 − 𝑇)

𝑚

(𝑋) being closed for some𝑚 ∈ N imply that 𝑇
is uniformly mean ergodic [6, Theorem 3.4 and Remark 3.6].
In particular, (𝐼 − 𝑇)(𝑋) is closed and

𝑋 = Ker (𝐼 − 𝑇) ⊕ (𝐼 − 𝑇) (𝑋) (32)

[6, Theorem 3.4]. Moreover, Proposition 8 implies that
𝜎(𝑇) ⊆ D. It then follows from the assumption Γ(𝑇) ⊆ {1}

that either Γ(𝑇) = 0 or Γ(𝑇) = {1}.
If Γ(𝑇) = 0, then necessarily 𝜎(𝑇) ⊆ D and so, by (iii)⇒(i)

of Theorem 10, we have 𝜏
𝑏
-lim

𝑛→∞
𝑇
𝑛

= 0.
In the event that Γ(𝑇) = {1} we have that 1 ∈ 𝜎(𝑇) and

so Ker(𝐼 − 𝑇) ̸= {0} (otherwise, (𝐼 − 𝑇) is injective and from
𝑋 = Ker (𝐼 − 𝑇) ⊕ (𝐼 − 𝑇)(𝑋) = (𝐼 − 𝑇)(𝑋) also surjective;
that is, 1 ∈ 𝜌(𝑇)). Define 𝑌 := (𝐼 −𝑇)(𝑋) and 𝑇

1
:= 𝑇|

𝑌
. Then

𝑌 is a prequojection Fréchet space (being a quotient space of
the prequojection𝑋) which is 𝑇-invariant and so 𝑇

1
∈ L(𝑌).

The claim is that

𝜌 (𝑇
1
) = 𝜌 (𝑇) ∪ {1} . (33)

It follows from (32) that 1 ∈ 𝜌(𝑇
1
). Fix 𝜆 ∈ 𝜌(𝑇) (so that

𝜆 ̸= 1). If (𝜆𝐼 − 𝑇
1
)𝑥 = 0 for some 𝑥 ∈ 𝑌 (i.e., (𝜆𝐼 − 𝑇)𝑥 = 0),

then 𝑥 = 0 as 𝜆 ∈ 𝜌(𝑇). Hence, (𝜆𝐼 − 𝑇
1
) is injective. Next, let

𝑦 ∈ 𝑌. Then there exists 𝑥 ∈ 𝑋 such that (𝜆𝐼 − 𝑇)𝑥 = 𝑦.
Since 𝑥 = 𝑥

1
+ 𝑥

2
with 𝑥

1
∈ Ker (𝐼 − 𝑇) and 𝑥

2
∈ 𝑌 (cf.

(32)), it follows that (𝜆 − 1)𝑥
1
+ (𝜆𝐼 − 𝑇

1
)𝑥

2
= 𝑦; that is,

(𝜆 − 1)𝑥
1
= 𝑦 − (𝜆𝐼 − 𝑇

1
)𝑥

2
, with (𝜆 − 1)𝑥

1
∈ Ker (𝐼 − 𝑇) and

(𝑦 − (𝜆𝐼 − 𝑇
1
)𝑥

2
) ∈ 𝑌. As Ker (𝐼 − 𝑇) ∩ 𝑌 = {0} and 𝜆 ̸= 1,

this implies that 𝑥
1
= 0 and so (𝜆𝐼 − 𝑇

1
)𝑥

2
= 𝑦 with 𝑥

2
∈ 𝑌;

that is, (𝜆𝐼−𝑇
1
) is surjective.These facts show that 𝜆 ∈ 𝜌(𝑇

1
).

This establishes 𝜌(𝑇) ∪ {1} ⊆ 𝜌(𝑇
1
).

Fix 𝜆 ∈ 𝜌(𝑇
1
) \ {1}. Suppose that (𝜆𝐼 − 𝑇)𝑥 = 0 for some

𝑥 ∈ 𝑋. Then 𝑥 = 𝑥
1
+𝑥

2
with 𝑥

1
∈ Ker (𝐼 −𝑇) and 𝑥

2
∈ 𝑌 (cf.

(32)). It follows that (𝜆−1)𝑥
1
+(𝜆𝐼−𝑇

1
)𝑥

2
= 0with (𝜆−1)𝑥

1
∈

Ker (𝐼 − 𝑇) and (𝜆𝐼 − 𝑇
1
)𝑥

2
∈ 𝑌. Arguing as in the previous

paragraph, this implies that 𝑥
1
= 0 and (𝜆𝐼−𝑇

1
)𝑥

2
= 0. Since

𝑥
2
∈ 𝑌 and 𝜆 ∈ 𝜌(𝑇

1
), we can conclude that 𝑥 = 0; that is,

(𝜆𝐼 − 𝑇) is injective. Next, let 𝑦 ∈ 𝑋. Then 𝑦 = 𝑦
1
+ 𝑦

2
with

𝑦
1
∈ Ker (𝐼−𝑇) and 𝑦

2
∈ 𝑌 (cf. (32)). Since 𝜆 ̸= 1, the element

𝑥
1
:= 𝑦

1
/(𝜆−1) ∈ Ker (𝐼−𝑇) exists. Moreover, 𝜆 ∈ 𝜌(𝑇

1
)with

𝑦
2
∈ 𝑌 implies the existence of 𝑥

2
∈ 𝑌 such that 𝑦

2
= (𝜆𝐼 −

𝑇
1
)𝑥

2
= (𝜆𝐼 − 𝑇)𝑥

2
. It follows that 𝑥 := (𝑥

1
+ 𝑥

2
) ∈ 𝑋 satis-

fies (𝜆𝐼−𝑇)𝑥 = 𝑦. Hence, (𝜆𝐼−𝑇) is also surjective and so 𝜆 ∈

𝜌(𝑇). Accordingly, 𝜌(𝑇
1
) ⊆ 𝜌(𝑇) ∪ {1} is proved. This estab-

lishes (33).
Since 𝜎(𝑇) ⊆ D ∪ {1} and (33) is equivalent to 𝜎(𝑇

1
) =

𝜎(𝑇) \ {1}, it follows that 𝜎(𝑇
1
) ⊆ D. Moreover, 𝑌 is a prequo-

jection Fréchet space and (𝑇
1
)
𝑛

/𝑛 → 0 inL
𝑏
(𝑌) as 𝑛 → ∞

(because 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 and 𝑇
1
= 𝑇 on 𝑌). So, we

can apply Theorem 10 to conclude that 𝑇𝑛

1
→ 0 inL

𝑏
(𝑌) as

𝑛 → ∞. On the other hand, 𝑇 = 𝐼 on Ker (𝐼−𝑇).These facts
ensure that 𝑇𝑛

= 𝐼 ⊕ (𝑇
1
)
𝑛

→ 𝐼 ⊕ 0 in L
𝑏
(𝑋) because 𝑋 =

Ker (𝐼 − 𝑇) ⊕ 𝑌 and 𝑇
1
= 𝑇 on 𝑌.

(i)⇒(iii). If {𝑇𝑛

}
∞

𝑛=1
converges to some𝑃 inL

𝑏
(𝑋), then𝑇

is uniformly mean ergodic with ergodic projection equal to 𝑃
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[30, Remark 3.1]. Hence, by [6,Theorem 3.5 and Remark 3.6]
the space (𝐼 − 𝑇)

𝑚

(𝑋) is closed for every 𝑚 ∈ N. Moreover,
(𝑇

𝑛

− 𝑇
𝑛+1

) → 𝑃 − 𝑃 = 0 inL
𝑏
(𝑋) as 𝑛 → ∞.

(iii)⇒(i). We first observe that

1

𝑛

𝑛

∑

𝑚=1

(𝑇
𝑚

− 𝑇
𝑚+1

) =
1

𝑛
(𝑇 − 𝑇

𝑛+1

) , 𝑛 ∈ N. (34)

This identity (together with the fact that 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

−

𝑇
𝑛+1

) = 0 implies for the averages that 𝜏
𝑏
-lim

𝑛→∞
(1/𝑛)

∑
𝑛

𝑚=1
(𝑇

𝑚

−𝑇
𝑚+1

) = 0 [30, Remark 3.1]) yields 𝜏
𝑏
-lim

𝑛→∞
(1/

𝑛)(𝑇 − 𝑇
𝑛+1

) = 0. But, 𝜏
𝑏
-lim

𝑛→∞
(𝑇/𝑛) = 0 and so we can

conclude that 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. As also (𝐼 − 𝑇)
𝑚

(𝑋) is
closed for some 𝑚 ∈ N, we can apply [6, Theorem 3.4 and
Remark 3.6] to conclude that 𝑇 is uniformly mean ergodic
and, in particular, that (32) is valid with (𝐼 − 𝑇)(𝑋) being
closed. We claim that this fact, together with the assump-
tion that 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

−𝑇
𝑛+1

) = 0, implies that {𝑇𝑛

}
∞

𝑛=1
con-

verges inL
𝑏
(𝑋). To see this, note that𝑇 = 𝐼 onKer (𝐼−𝑇) and

so 𝑇𝑛

= 𝐼 → 𝐼 inL
𝑏
(Ker (𝐼 − 𝑇)) as 𝑛 → ∞. On the other

hand, the surjective operator (𝐼 − 𝑇) : 𝑋 → (𝐼 − 𝑇)(𝑋) lifts
bounded sets via [10, Lemma 26.13] because𝑋 andKer (𝐼−𝑇),
both being prequojections, are quasinormable Fréchet spaces
[24, Proposition 2.1], [21]; that is, for every𝐶 ∈ B((𝐼−𝑇)(𝑋))

there exists 𝐵 ∈ B(𝑋) such that 𝐶 ⊆ (𝐼 − 𝑇)(𝐵). So, for fixed
𝐶 ∈ B((𝐼 − 𝑇)(𝑋)) (with corresponding set 𝐵 ∈ B(𝑋)) and
𝑝 ∈ Γ

𝑋
(every 𝑞 ∈ Γ

(𝐼−𝑇)𝑋
is the restriction of some 𝑝 ∈ Γ

𝑋
),

we have

sup
𝑦∈𝐶

𝑝 (𝑇
𝑛

𝑦) ≤ sup
𝑥∈𝐵

𝑝 (𝑇
𝑛

(𝐼 − 𝑇) 𝑥)

= sup
𝑥∈𝐵

𝑝 ((𝑇
𝑛

− 𝑇
𝑛+1

) 𝑥) , 𝑛 ∈ N,

(35)

where sup
𝑥∈𝐵

𝑝((𝑇
𝑛

− 𝑇
𝑛+1

)𝑥) → 0 as 𝑛 → ∞ by assump-
tion. Set 𝑇

1
:= 𝑇|

(𝐼−𝑇)(𝑋)
. The arbitrariness of 𝐶 and 𝑝 shows

that (𝑇
1
)
𝑛

→ 0 inL
𝑏
((𝐼 − 𝑇)(𝑋)) (after observing that (𝐼 −

𝑇)(𝑋) is𝑇-invariant and so 𝑇
1
= 𝑇|

(𝐼−𝑇)(𝑋)
∈ L((𝐼−𝑇)(𝑋))).

These facts ensure that 𝑇𝑛

= 𝐼 ⊕ (𝑇
1
)
𝑛

→ 𝐼 ⊕ 0 inL
𝑏
(𝑋) as

𝑋 = Ker (𝐼 − 𝑇) ⊕ 𝑌.

Remark 16. In assertion (ii) ofTheorem 15 the condition that
“(𝐼 − 𝑇)

𝑚

(𝑋) is closed in 𝑋 for some 𝑚 ∈ N” can be replaced
with the condition that “𝑇 is uniformly mean ergodic”; see [6,
Theorem 3.5 and Remark 3.6].

Theorems 10 and 15 do not necessarily hold for operators
acting in general Fréchet spaces.

Proposition 17. Let 𝑝 ∈ [1,∞) or 𝑝 = 0 and let 𝐴 be a
Köthe matrix on N such that 𝜆

𝑝
(𝐴) is a Montel space with

𝜆
𝑝
(𝐴) ̸=CN. Then there exists an operator 𝑇 ∈ L(𝜆

𝑝
(𝐴)) such

that 𝑇𝑛

→ 0 in L
𝑏
(𝜆

𝑝
(𝐴)) as 𝑛 → ∞ and Γ(𝑇) = {1} but

(𝐼 − 𝑇)
𝑚

(𝜆
𝑝
(𝐴)) is not closed for every𝑚 ∈ N.

Proof. By the proof of Proposition 3.1 in [6] there exists 𝑑 :=

(𝑑
𝑖
)
𝑖
∈ RN with 0 < 𝑑

𝑖
< 1 for all 𝑖 ∈ N such that the diagonal

operator 𝑇 : 𝜆
𝑝
(𝐴) → 𝜆

𝑝
(𝐴) given by 𝑇((𝑥

𝑖
)
𝑖
) := (𝑑

𝑖
𝑥
𝑖
)
𝑖
, for

𝑥 = (𝑥
𝑖
)
𝑖
∈ 𝜆

𝑝
(𝐴), is power bounded, uniformly mean ergodic

and (𝐼 − 𝑇)(𝜆
𝑝
(𝐴)) is dense but, not closed in 𝜆

𝑝
(𝐴). So, for

every𝑚 ∈ N, also (𝐼 − 𝑇)
𝑚

(𝜆
𝑝
(𝐴)) is dense but not closed in

𝜆
𝑝
(𝐴). To see this, note that the arguments in the proof of [6,

Remark 3.6, (5)⇒(4)] are valid for any operator 𝑇 satisfying
𝜏
𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 and acting in any Fréchet space. So,
in the case that (𝐼 − 𝑇)

𝑚

(𝜆
𝑝
(𝐴)) was closed for some 𝑚 ∈

N, we could apply [6, Remark 3.6, (5)⇒(4)] to conclude that
(𝐼 − 𝑇)(𝜆

𝑝
(𝐴)) is also closed; a contradiction. So 1 ∈ Γ(𝑇).

We claim that𝑇𝑛

→ 0 inL
𝑏
(𝜆

𝑝
(𝐴)) as 𝑛 → ∞. Indeed,

since {𝑇
𝑛

}
∞

𝑛=1
is equicontinuous and convergence of a

sequence in L
𝑏
(𝜆

𝑝
(𝐴)) is equivalent to its convergence in

L
𝑠
(𝜆

𝑝
(𝐴)) (as 𝜆

𝑝
(𝐴) is Montel), it suffices to show that

lim
𝑛→∞

𝑇
𝑛

𝑒
𝑗
= 0 in 𝜆

𝑝
(𝐴) for each 𝑗 ∈ N, where 𝑒

𝑗
:= (𝛿

𝑖𝑗
)
𝑖
∈

𝜆
𝑝
(𝐴). But, this is immediate because 𝑇

𝑛

𝑒
𝑗
= 𝑑

𝑛

𝑗
𝑒
𝑗
, for all

𝑗, 𝑛 ∈ N.
It remains to show that Γ(𝑇) ⊆ {1}. Set 𝐷 := {𝑑

𝑖
: 𝑖 ∈ N}.

Then 𝐷 ⊆ [0, 1]. Let 𝜆 ∈ T \ {1}. Then inf
𝑖∈N|𝜆 − 𝑑

𝑖
| =:

𝛿 > 0. It is routine to check that, for a fixed 𝑦 ∈ 𝜆
𝑝
(𝐴), the

element 𝑥 := ((1/(𝜆 − 𝑑
𝑖
))𝑦

𝑖
)
𝑖
belongs to 𝜆

𝑝
(𝐴) and satisfies

(𝜆𝐼 − 𝑇)𝑥 = 𝑦. This means that the operator (𝜆𝐼 − 𝑇) is
surjective. On the other handKer (𝜆𝐼−𝑇) = {0}which follows
from 𝜆 ∉ {𝑑

𝑖
: 𝑖 ∈ N}. Therefore, as 𝜆

𝑝
(𝐴) is a Fréchet space,

𝜆 ∈ 𝜌(𝑇); that is, T \ {1} ⊆ 𝜌(𝑇). Since 1 ∈ Γ(𝑇), it follows that
Γ(𝑇) = {1}.

Concerning the example in Proposition 17we note that (i)
of Theorem 10 holds but (iii) of Theorem 10 fails (as Γ(𝑇) =

{1} implies that 𝜎(𝑇) ̸⊆ D). Moreover, (i) ofTheorem 15 holds
(as 𝜏

𝑏
-lim

𝑛→∞
𝑇
𝑛

= 0) but (ii) and (iii) of Theorem 15 fail
(because (𝐼−𝑇)𝑚(𝜆

𝑝
(𝐴)) is not closed in 𝜆

𝑝
(𝐴) for every𝑚 ∈

N). Of course, 𝜆
𝑝
(𝐴) is not a prequojection.

A well-known result of Katznelson and Tzafriri states that
a power bounded operator 𝑇 on a Banach space satisfies
lim

𝑛→∞
‖𝑇

𝑛+1

− 𝑇
𝑛

‖op = 0 if and only if Γ(𝑇) ⊆ {1}, [7,
Theorem 1 and p. 317 Remark]. In order to extend this result
to prequojection Fréchet spaces (see Theorem 20 below) we
require the following notion.

Let 𝑋 be a Fréchet space and 𝑇 ∈ L(𝑋). A fundamental,
increasing sequence {𝑞

𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
which generates the lc-

topology of 𝑋 is called 𝑇 contractively admissible if, for each
𝑗 ∈ N, we have

𝑞
𝑗
(𝑇𝑥) ≤ 𝑞

𝑗
(𝑥) , 𝑥 ∈ 𝑋. (36)

Lemma 18. Let 𝑋 be a Fréchet space and 𝑇 ∈ L(𝑋). Then
there exists a𝑇 contractively admissible sequence of seminorms
which generates the lc-topology of 𝑋 if and only if 𝑇 is power
bounded.

Proof. If {𝑞
𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
is 𝑇 contractively admissible, then it is

clear from (36) that 𝑞
𝑗
(𝑇

𝑛

𝑥) ≤ 𝑞
𝑗
(𝑥), for 𝑥 ∈ 𝑋 and every 𝑛 ∈

N
0
, 𝑗 ∈ N.Thismeans precisely that {𝑇𝑛

}
∞

𝑛=1
is equicontinuous

inL(𝑋); that is, 𝑇 is power bounded.
Conversely, suppose that 𝑇 is power bounded. Let {𝑟

𝑗
}
∞

𝑗=1

be a fundamental, increasing sequence in Γ
𝑋
which generates

the lc-topology of 𝑋. Via the equicontinuity of {𝑇𝑛

}
∞

𝑛=1
for

every 𝑗 ∈ N there exist 𝑘(𝑗) ≥ 𝑗 and 𝛼
𝑗
> 0 such that

𝑟
𝑗
(𝑇

𝑛

𝑥) ≤ 𝛼
𝑗
𝑟
𝑘(𝑗)

(𝑥) , 𝑥 ∈ 𝑋, 𝑛 ∈ N. (37)
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Define 𝑞
𝑗
(𝑥) := sup

𝑛∈N
0

𝑟
𝑗
(𝑇

𝑛

𝑥), for 𝑥 ∈ 𝑋 and each 𝑗 ∈ N.
Then the previous inequality implies that

𝑟
𝑗
(𝑥) ≤ 𝑞

𝑗
(𝑥) ≤ 𝛼

𝑗
𝑟
𝑘(𝑗)

(𝑥) , 𝑥 ∈ 𝑋, 𝑗 ∈ N, (38)

and so {𝑞
𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
is a fundamental, increasing sequence

determining the lc topology of𝑋, which clearly satisfies (36).
That is, {𝑞

𝑗
}
∞

𝑗=1
is 𝑇 contractively admissible.

Remark 19. (i) For a Banach space𝑋, Lemma 18 simply states
that 𝑇 is power bounded if and only if it is a contraction for
some equivalent norm in𝑋.

(ii) Let 𝑋 be a Fréchet space and let 𝑇 ∈ L(𝑋) be an
isomorphism which is bipower bounded; that is, {𝑇𝑛

: 𝑛 ∈ Z}

is equicontinuous in L(𝑋). An examination of the proof of
Lemma 18 shows that there exists a sequence {𝑞

𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
,

again called 𝑇 contractively admissible, which generates the
lc-topology of𝑋 and satisfies, for each 𝑗 ∈ N,

𝑞
𝑗
(𝑇

𝑛

𝑥) ≤ 𝑞
𝑗
(𝑥) , 𝑥 ∈ 𝑋, 𝑛 ∈ Z. (39)

Theorem 20. Let 𝑋 be a prequojection Fréchet space and let
𝑇 ∈ L(𝑋) be power bounded. The following assertions are
equivalent.

(i) 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛+1

− 𝑇
𝑛

) = 0.
(ii) Γ(𝑇) ⊆ {1} and there exists a𝑇 contractively admissible

sequence {𝑝
𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
such that, for each 𝜆 ∈ T \ {1}

and 𝑗 ∈ N, there exists𝑀
𝜆,𝑗

> 0 satisfying

𝑝
𝑗
(𝑅 (𝜆, 𝑇) 𝑥) ≤ 𝑀

𝜆,𝑗
𝑝
𝑗
(𝑥) , 𝑥 ∈ 𝑋. (40)

Remark 21. (i) If Γ(𝑇) ⊆ {1}, then necessarily T \ {1} ⊆ 𝜌(𝑇)

and so the resolvent family {𝑅(𝜆, 𝑇) : 𝜆 ∈ T \ {1}} is defined.
(ii) If Γ(𝑇) = 0, then (i) of Theorem 20 follows without

any further conditions. Indeed, by Remark 9 we actually have
𝜎(𝑇) ⊆ D. Then Theorem 10 implies that 𝜏

𝑏
-lim

𝑛→∞
𝑇
𝑛

= 0

and, hence, also 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛+1

− 𝑇
𝑛

) = 0.
(iii) If 𝑋 is a Banach space and ‖ ⋅ ‖ is any norm in 𝑋 for

which 𝑇 is a contraction (i.e., ‖ ⋅ ‖ is 𝑇 contractively admis-
sible), then the requirement (40) automatically holds with
𝑀

𝜆
:= ‖𝑅(𝜆, 𝑇)‖op. That is, condition (ii) in Theorem 20

simply reduces to Γ(𝑇) ⊆ {1} and we recover the result of
Katznelson and Tzafriri.

Proof of Theorem 20 (i)⇒(ii). As usual we distinguish two
cases.

Case (I) (𝑋 is a quojection). According to Lemma 18 there is
a 𝑇 contractively admissible sequence {𝑞

𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
satisfying

(36) and, hence, also 𝑞
𝑗
(𝑇

𝑛

𝑥) ≤ 𝑞
𝑗
(𝑥), for 𝑥 ∈ 𝑋 and all 𝑗, 𝑛 ∈

N. We proceed as in the proof of Proposition 8 (now using
(36) in place of (21) so that (24) becomes 𝑞

𝑗
(𝑇

𝑗
𝑥) ≤ 𝑞

𝑗
(𝑥), for

𝑥 ∈ 𝑋
𝑗
and 𝑗 ∈ N) to obtain that𝑋 = proj

𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
) in such

a way that, for every 𝑗 ∈ N, there exists a contraction 𝑇
𝑗
∈

L(𝑋
𝑗
) satisfying 𝑇

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇. Then also 𝑇

𝑛

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇
𝑛 for

all 𝑗, 𝑛 ∈ N. For each 𝑗 ∈ N, define 𝑝
𝑗
(𝑥) := 𝑞

𝑗
(𝑄

𝑗
𝑥) for

𝑥 ∈ 𝑋. By the properties of projective limits {𝑝
𝑗
}
∞

𝑗=1
⊆ Γ

𝑋

is a fundamental sequence generating the lc-topology of 𝑋.
Moreover,
𝑝
𝑗
(𝑇𝑥) = 𝑞

𝑗
(𝑄

𝑗
𝑇𝑥)

= 𝑞
𝑗
(𝑇

𝑗
𝑄

𝑗
𝑥) ≤ 𝑞

𝑗
(𝑄

𝑗
𝑥) = 𝑝

𝑗
(𝑥) , 𝑥 ∈ 𝑋,

(41)

shows that {𝑞
𝑗
}
∞

𝑗=1
is also 𝑇 contractively admissible. Accord-

ing to Lemma 6 (applied to the norms ‖ ‖
𝑗
:= 𝑞

𝑗
and with

𝑆
𝑛
:= (𝑇

𝑛+1

− 𝑇
𝑛

), 𝑛 ∈ N, and 𝑆
(𝑗)

𝑛
:= (𝑇

𝑛+1

𝑗
− 𝑇

𝑛

𝑗
), for 𝑗,

𝑛 ∈ N), the assumption 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛+1

− 𝑇
𝑛

) = 0 implies
that lim

𝑛→∞
‖𝑇

𝑛+1

𝑗
− 𝑇

𝑛

𝑗
‖
op

= 0, for each 𝑗 ∈ N. By [7, Theo-
rem 1] we can conclude that Γ(𝑇

𝑗
) ⊆ {1}. On the other hand,

𝜎(𝑇
𝑗
) ⊆ D as 𝑇

𝑗
is a contraction and so 𝜎(𝑇

𝑗
) ⊆ D ∪ {1}; that

is, 𝜌(𝑇
𝑗
) ⊇ C \ (D ∪ {1}), for 𝑗 ∈ N. According to Lemma 5

also 𝜌(𝑇) ⊇ C \ (D ∪ {1}); that is, Γ(𝑇) ⊆ {1}.
Concerning (40), fix𝜆 ∈ T \{1} and 𝑗 ∈ N. By the previous

paragraph 𝜆 ∈ 𝜌(𝑇) ∩ 𝜌(𝑇
𝑗
). It follows from 𝑇

𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇 that

𝑄
𝑗
𝑅(𝜆, 𝑇) = 𝑅(𝜆, 𝑇

𝑗
)𝑄

𝑗
. Hence, for 𝑥 ∈ 𝑋, we have

𝑝
𝑗
(𝑅 (𝜆, 𝑇) 𝑥) = 𝑞

𝑗
(𝑄

𝑗
𝑅 (𝜆, 𝑇) 𝑥)

= 𝑞
𝑗
(𝑅 (𝜆, 𝑇

𝑗
)𝑄

𝑗
𝑥) ≤


𝑅(𝜆, 𝑇

𝑗
)
op

𝑞
𝑗
(𝑄

𝑗
𝑥)

=

𝑅(𝜆, 𝑇

𝑗
)
op

𝑝
𝑗
(𝑥)

(42)
which establishes (40).

Case (II) (𝑋 is a prequojection). As noted before, 𝑋 and 𝑋


𝛽

are barrelled (hence, quasi-barrelled) with 𝑇


∈ L(𝑋


𝛽
) and

𝑇


∈ L(𝑋


). So, the assumption 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛+1

− 𝑇
𝑛

) = 0

implies that 𝜏
𝑏
-lim

𝑛→∞
((𝑇



)
𝑛+1

− (𝑇


)
𝑛

) = 0. Moreover,𝑋

is a quojection Fréchet space and 𝑇
 is power bounded; see

Lemma 2. So, the result of Case (I) yields Γ(𝑇

) ⊆ {1}. But,
Γ(𝑇) = Γ(𝑇



) (see Corollary 4) and so Γ(𝑇) ⊆ {1}.
By (i)⇒(ii) for quojections there exists a 𝑇 contractively

admissible sequence {𝑝

𝑗
}
∞

𝑗=1
⊆ Γ



𝑋
such that, for every 𝜆 ∈

T \ {1} and 𝑗 ∈ N, there exists𝑀
𝜆,𝑗

> 0 satisfying

𝑝


𝑗
(𝑅 (𝜆, 𝑇



) 𝑥


) ≤ 𝑀
𝜆,𝑗
𝑝


𝑗
(𝑥



) , 𝑥


∈ 𝑋


. (43)

By Lemma 1 and Corollary 4 the seminorms 𝑝
𝑗
:= 𝑝



𝑗
∘ Φ,

𝑗 ∈ N, satisfy (40).
(ii)⇒(i). Case (I). (𝑋 is a quojection).
Let {𝑝

𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
be as in the statement of (ii), in which

case (36) holds. Proceed as in Case (I) of the proof of (i)⇒(ii)
to obtain that 𝑋 = proj

𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
) in such a way that, for

every 𝑗 ∈ N, there exists a contraction 𝑇
𝑗
∈ L(𝑋

𝑗
), satisfying

𝑇
𝑗
𝑄

𝑗
= 𝑄

𝑗
𝑇.

Claim 1. Γ(𝑇
𝑗
) ⊆ {1}, for every 𝑗 ∈ N.

To establish this, let 𝜆 ∈ T \{1}. Since Γ(𝑇) ⊆ {1}, it follows
that 𝜆 ∈ 𝜌(𝑇), and hence, 𝜆𝐼 − 𝑇 is surjective. But, also 𝑄

𝑗
:

𝑋 → 𝑋
𝑗
is surjective. It is then routine to check from the

identity (𝜆𝐼
𝑗
− 𝑇

𝑗
)𝑄

𝑗
= 𝑄

𝑗
(𝜆𝐼 − 𝑇) that 𝜆𝐼

𝑗
− 𝑇

𝑗
is surjective.

To verify that 𝜆𝐼
𝑗
−𝑇

𝑗
is injective suppose that (𝜆𝐼

𝑗
−𝑇

𝑗
)𝑦 = 0

for some 𝑦 ∈ 𝑋
𝑗
, in which case 𝑦 = 𝑄

𝑗
𝑥 for some 𝑥 ∈ 𝑋.

Accordingly,

𝑄
𝑗
(𝜆𝐼 − 𝑇) 𝑥 = (𝜆𝐼

𝑗
− 𝑇

𝑗
)𝑄

𝑗
𝑥 = (𝜆𝐼

𝑗
− 𝑇

𝑗
) 𝑦 = 0 (44)
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shows that (𝜆𝐼 − 𝑇)𝑥 ∈ Ker𝑄
𝑗
= Ker𝑝

𝑗
. It then follows from

(40) that 𝑥 = 𝑅(𝜆, 𝑇)(𝜆𝐼 − 𝑇)𝑥 ∈ Ker𝑝
𝑗
; that is, 𝑄

𝑗
𝑥 = 0.

Since𝑦 = 𝑄
𝑗
𝑥, we have𝑦 = 0. Hence,𝜆𝐼

𝑗
−𝑇

𝑗
is injective.This

establishes that 𝜆 ∈ 𝜌(𝑇
𝑗
), and hence, Claim 1 follows as 𝜆 ∈

T \ {1} was arbitrary.
Fix 𝑗 ∈ N. From Claim 1 and the fact that 𝑇

𝑗
is a con-

traction, it follows from [7, Theorem 1] that
lim

𝑛→∞
‖𝑇

𝑛

𝑗
− 𝑇

𝑛+1

𝑗
‖
op

= 0. According to Lemma 6 (with
𝑆
𝑛

:= (𝑇
𝑛+1

− 𝑇
𝑛

), 𝑛 ∈ N) we can conclude that 𝜏
𝑏
-

lim
𝑛→∞

(𝑇
𝑛+1

− 𝑇
𝑛

) = 0.

Case (II) (𝑋 is a prequojection). By Corollary 4 we have from
Γ(𝑇) ⊆ {1} that Γ(𝑇

) ⊆ {1}. Moreover, Lemma 2 implies that
𝑇


∈ L(𝑋


) is power bounded.
Let {𝑝

𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
be as stated in part (ii). Apply Lemma 1

to construct the seminorms {𝑝

𝑗
}
∞

𝑗=1
⊆ Γ



𝑋
given there.We first

verify that {𝑝

𝑗
}
∞

𝑗=1
⊆ Γ



𝑋
is 𝑇 contractively admissible. Since

{𝑝
𝑗
}
∞

𝑗=1
is 𝑇 contractively admissible, we have 𝑇(U

𝑗
) ⊆ U

𝑗

withU
𝑗
the closed unit ball of 𝑝

𝑗
; that is,U

𝑗
= 𝑝

−1

𝑗
([0, 1]), for

𝑗 ∈ N. By the Bi-polar Theorem, [10, Theorem 22.13] applied
twice we have

𝑇


(U
∘∘

𝑗
) = 𝑇



(U
𝜎

𝑗
) ⊆ 𝑇(U

𝑗
)
𝜎

⊆ U
𝜎

𝑗
= U

∘∘

𝑗
, (45)

where 𝑉𝜎 denotes the closure for the weak∗ topology 𝜎(𝑋

,

𝑋


) of a subset 𝑉 ⊆ 𝑋
 (or, of 𝑉 ⊆ 𝑋 ⊆ 𝑋

). Then (45)
implies that𝑝

𝑗
(𝑇



𝑥


) ≤ 𝑝


𝑗
(𝑥



) for each𝑥 ∈ 𝑋
 and 𝑗 ∈ N;

that is, {𝑝

𝑗
}
∞

𝑗=1
is 𝑇 contractively admissible.

It follows from (40) that 𝑅(𝜆, 𝑇)(U
𝑗
) ⊆ U

𝑗
, for all 𝜆 ∈ T \

{1} and 𝑗 ∈ N. Using 𝑅(𝜆, 𝑇

)|
𝑋
= 𝑅(𝜆, 𝑇) (c.f. Corollary 4)

one can repeat the argument via the Bi-polar Theorem to
conclude that 𝑅(𝜆, 𝑇

)(U∘∘

𝑗
) ⊆ 𝑀

𝜆,𝑗
U∘∘

𝑗
, which then implies

that
𝑝


𝑗
(𝑅 (𝜆, 𝑇



) 𝑥


) ≤ 𝑀
𝜆,𝑗
𝑝


𝑗
(𝑥



) , 𝑥


∈ 𝑋


. (46)

So, the conditions in part (ii) are satisfied for the power
bounded operator 𝑇



∈ L(𝑋


) with respect to {𝑝


𝑗
}
∞

𝑗=1
.

Applying (ii)⇒(i) for the quojection Fréchet space 𝑋
 we

conclude that 𝜏
𝑏
-lim

𝑛→∞
((𝑇



)
𝑛+1

− (𝑇


)
𝑛

) = 0. But, 𝑇

|
𝑋
=

𝑇 with 𝑋 closed in 𝑋
. So, 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛+1

− 𝑇
𝑛

) = 0; that
is, (i) holds.

Let 𝑋 be a prequojection Fréchet space and 𝑇 ∈ L(𝑋)

be power bounded. By Remark 9 we have 𝜎(𝑇) ⊆ D. Suppose
that 𝑇 is actually bipower bounded. Then also 𝜎(𝑇

−1

) ⊆ D.
Clearly, 0 ∈ 𝜌(𝑇). Moreover, if 𝜇 ∈ D \ {0}, then 1/𝜇 ∈ C \ D

and so 1/𝜇 ∈ 𝜌(𝑇
−1

), that is, ((1/𝜇)𝐼 − 𝑇
−1

)
−1

∈ L(𝑋). It is
routine to check that 𝑅

𝜇
:= −(1/𝜇)𝑇

−1

((1/𝜇)𝐼 − 𝑇
−1

)
−1

∈

L(𝑋) satisfies (𝜇𝐼 − 𝑇)𝑅
𝜇

= 𝐼 = 𝑅
𝜇
(𝜇𝐼 − 𝑇) and hence,

(𝜇𝐼 − 𝑇) is invertible in L(𝑋) with (𝜇𝐼 − 𝑇)
−1

= 𝑅
𝜇
. This

shows that D ⊆ 𝜌(𝑇). Accordingly, 𝜎(𝑇) ⊆ T ; for 𝑋 a Banach
space, see [31, Proposition 1.31], for example. Suppose now, in
addition, that 𝜎(𝑇) = {1} in which case 𝜎(𝑇 − 𝐼) = {0}; that
is, 𝑇 is quasinilpotent. For𝑋 a Banach space, a classical result
of Gelfand-Hille then states that necessarily 𝑇 = 𝐼; see the
survey article [32] for a complete discussion of this topic.The
following fact is an extension of this result.

Corollary 22. Let𝑋 be a prequojection Fréchet space and 𝑇 ∈

L(𝑋) be an isomorphism which is bipower bounded. Suppose
that Γ(𝑇) = {1} and there exists a 𝑇 contractively admissible
sequence {𝑝

𝑗
}
∞

𝑗=1
⊆ Γ

𝑋
such that, for each 𝜆 ∈ T \ {1}, the

inequalities (40) are satisfied. Then 𝑇 = 𝐼.

Proof. According to Theorem 20 we can conclude that 𝜏
𝑏
-

lim
𝑛→∞

(𝑇
𝑛+1

−𝑇
𝑛

) = 0. Fix 𝑥 ∈ 𝑋. For each 𝑗 ∈ N, it follows
that

𝑝
𝑗
((𝑇 − 𝐼) 𝑥) = 𝑝

𝑗
(𝑇

−𝑛

𝑇
𝑛

(𝑇 − 𝐼) 𝑥)

≤ 𝑝
𝑗
(𝑇

𝑛

(𝑇 − 𝐼) 𝑥) = 𝑝
𝑗
((𝑇

𝑛+1

− 𝑇
𝑛

) 𝑥)

(47)

for every 𝑛 ∈ N. Since lim
𝑛→∞

(𝑇
𝑛+1

− 𝑇
𝑛

)𝑥 = 0, it follows
that 𝑝

𝑗
((𝑇− 𝐼)𝑥) = 0with 𝑗 ∈ N arbitrary; that is, 𝑇𝑥 = 𝑥. So,

𝑇 = 𝐼.

4. Operator Ideals and Uniform
Mean Ergodicity

Let 𝑋, 𝑌 be lcHs’. An operator 𝑇 ∈ L(𝑋, 𝑌) is called Montel
(resp. reflexive) if𝑇maps bounded subsets of𝑋 into relatively
compact (resp. relatively weakly compact) subsets of 𝑌 [33]
(resp., [34]). According to Grothendieck, [35, Chapter 5, Part
2], 𝑇 is called compact (resp., weakly compact) if there exists
a 0-neighbourhood U ⊆ 𝑋 such that 𝑇(U) is relatively
compact (resp., relatively weakly compact) in 𝑌. Clearly, the
2-sided ideal M(𝑋, 𝑌) (resp., R(𝑋, 𝑌)) of all Montel (resp.,
reflexive) operators coincides with the 2-sided idealK(𝑋, 𝑌)

(resp., WK(𝑋, 𝑌)) of all compact (resp., weakly compact)
operators whenever𝑋,𝑌 are Banach spaces. For general lcHs’
we always have K(𝑋, 𝑌) ⊆ M(𝑋, 𝑌) but the containment
may be proper; consider the identity operator on an infinite
dimensional Montel lcHs. Clearly, M(𝑋, 𝑌) ⊆ R(𝑋, 𝑌) and
WK(𝑋, 𝑌) ⊆ K(𝑋, 𝑌). Criteria for membership ofM(𝑋, 𝑌)

(resp.R(𝑋, 𝑌)) occur inTheorem 9.2.1 (resp. Corollary 9.3.2)
of [36], for example.

In this section we present various connections between
the uniform convergence of sequences of operators generated
by an operator 𝑇 ∈ H(𝑋) and the uniform mean ergodicity
of 𝑇, where H stands for one of the operator ideals K, M,
WK,R.

Every compact operator 𝑇 acting in a Banach space
has the property that (𝐼 − 𝑇) has closed range. Hence, if
lim

𝑛→∞
(‖𝑇

𝑛

‖op/𝑛) = 0, then 𝑇 is uniformly mean ergodic
[1, p. 711, Corollary 4], [4, p. 87, Theorem 2.1]. For any lcHs
𝑋 and 𝑇 ∈ K(𝑋), it is also the case that (𝐼 − 𝑇)(𝑋) is
a closed subspace of 𝑋 [36, Theorem 9.10.1]. Hence, if 𝑋
is a prequojection Fréchet space, then Theorem 3.5 of [6]
implies that 𝑇 is uniformly mean ergodic whenever 𝜏

𝑏
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0 (equivalently, 𝜏
𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0

because 𝐾 ∈ K(𝑋); see Remark 26(ii)). Since K(𝑋) ⊆

M(𝑋), the question arises of whether the same is true for
𝑇 ∈ M(𝑋)? This is indeed so; see Theorem 27 below.

In a lcHs𝑋 all relatively𝜎(𝑋,𝑋

)-compact sets and all rel-
atively sequentially 𝜎(𝑋,𝑋

)-compact sets are necessarily rel-
atively countably 𝜎(𝑋,𝑋

) compact.These are the only impli-
cations between these three notions which hold in general.
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All three notions coincide whenever 𝑋
𝜎
is angelic [37, p. 31].

Such spaces 𝑋 include all Fréchet spaces (actually, all (LF)-
spaces), all (DF)-spaces and many more, [37, Section 3.10],
[38, Theorem 11, Examples 1.2].

Operators 𝑇 ∈ L(𝑋) for which {𝑇
[𝑛]
}
∞

𝑛=1
⊆ L(𝑋) is

equicontinuous will be called Cesàro bounded; see [4, p. 72]
for𝑋 a Banach space.

Proposition 23. Let 𝑋 be a lcHs such that 𝑋
𝜎
is angelic and

𝑇 ∈ L(𝑋).
(i) If 𝑇 ∈ R(𝑋) is Cesàro bounded and satisfies 𝜏

𝑠
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0, then 𝑇 is mean ergodic.
(ii) If 𝑇 ∈ M(𝑋) is Cesàro bounded and satisfies 𝜏

𝑏
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0, then𝑇 is uniformly mean ergodic.

Proof. (i) Fix 𝑥 ∈ 𝑋. It follows from (13) that

𝑇
[𝑛]
𝑥 = 𝑇

[𝑛]
(𝐼 − 𝑇) 𝑥 + 𝑇

[𝑛]
𝑇𝑥

=
1

𝑛
(𝑇 − 𝑇

𝑛+1

) 𝑥 + 𝑇𝑇
[𝑛]
𝑥, 𝑛 ∈ N.

(48)

The equicontinuity of {𝑇
[𝑛]
}
∞

𝑛=1
ensures that {𝑇

[𝑛]
𝑥}

∞

𝑛=1
∈

B(𝑋). Since 𝑇 ∈ R(𝑋), the set {𝑇(𝑇
[𝑛]
𝑥)}

∞

𝑛=1
is relatively

weakly compact in𝑋. Moreover, lim
𝑛→∞

(1/𝑛)(𝑇 −𝑇
𝑛+1

)𝑥 =

0 in 𝑋 because of 𝜏
𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. These facts,
together with𝑋

𝜎
being angelic and (48), show that {𝑇

[𝑛]
𝑥}

∞

𝑛=1

is relatively weakly (hence, relatively weakly sequentially)
compact in 𝑋. Since 𝑥 is arbitrary, we can apply Theorem
2.4 of [39] (an examination of its proof shows that it is
not necessary to assume the barrelledness of 𝑋 stated there
because of the equicontinuity of {𝑇

[𝑛]
}
∞

𝑛=1
assumed here) to

conclude that 𝑇 is mean ergodic.
(ii) By part (i) the operator 𝑇 is mean ergodic, that is, 𝜏

𝑠
-

lim
𝑛→∞

𝑇
[𝑛]

=: 𝑃 exists inL
𝑠
(𝑋). In particular,𝑃 = 𝑇𝑃 = 𝑃𝑇

(which follows from (13)) and so𝑃 = 𝑇
[𝑛]
𝑃 = 𝑃𝑇

[𝑛]
, for 𝑛 ∈ N.

To establish the uniformmean ergodicity of𝑇, fix 𝑝 ∈ Γ
𝑋
,

𝜀 > 0, and 𝐵 ∈ B(𝑋). By the equicontinuity of {𝑇
[𝑛]
}
∞

𝑛=1
there

exist𝑀 > 0 and 𝑞 ∈ Γ
𝑋
such that

𝑝 ((𝑇
[𝑛]

− 𝑃) 𝑥) ≤ 𝑀𝑞 (𝑥) , 𝑥 ∈ 𝑋, 𝑛 ∈ N. (49)

On the other hand, 𝑇(𝐵) is a relatively compact subset of 𝑋
and so there exist 𝑧

1
, . . . , 𝑧

ℎ
∈ 𝑇(𝐵) such that, for every 𝑦 ∈

𝑇(𝐵), we have 𝑞(𝑦 − 𝑧
𝑖
) < 𝜀/(2𝑀) for some 𝑖 ∈ {1, . . . , ℎ}.

Hence, via (49) we obtain, for every 𝑥 ∈ 𝐵 and 𝑛 ∈ N, that

𝑝 (𝑇
[𝑛]
𝑇𝑥 − 𝑃𝑥) = 𝑝 ((𝑇

[𝑛]
− 𝑃)𝑇𝑥)

≤ 𝑝 ((𝑇
[𝑛]

− 𝑃) (𝑇𝑥 − 𝑧
𝑖
)) + 𝑝 ((𝑇

[𝑛]
− 𝑃) 𝑧

𝑖
)

≤ 𝑀𝑞 (𝑇𝑥 − 𝑧
𝑖
) + 𝑝 ((𝑇

[𝑛]
− 𝑃) 𝑧

𝑖
)

<
𝜀

2
+ 𝑝 ((𝑇

[𝑛]
− 𝑃) 𝑧

𝑖
) .

(50)

It follows that

sup
𝑥∈𝐵

𝑝 (𝑇
[𝑛]
𝑇𝑥 − 𝑃𝑥) ≤

𝜀

2
+ max

𝑖=1,...,ℎ

𝑝 ((𝑇
[𝑛]

− 𝑃) 𝑧
𝑖
) , 𝑛 ∈ N,

(51)

with lim
𝑛→∞

max
𝑖=1,...,ℎ

𝑝((𝑇
[𝑛]

− 𝑃)𝑧
𝑖
) = 0. The arbitrariness

of 𝜀 > 0 implies that lim
𝑛→∞

sup
𝑥∈𝐵

𝑝(𝑇
[𝑛]
𝑇𝑥 − 𝑃𝑥) = 0. So,

𝜏
𝑏
-lim

𝑛→∞
𝑇
[𝑛]
𝑇 = 𝑃.

Finally, the arbitrariness of 𝑝 ∈ Γ
𝑋
and of 𝐵 ∈ B(𝑋)

together with the assumption 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 implies,
via (48), that 𝑇 is uniformly mean ergodic.

Remark 24. (i) Let 𝑋 be a lcHs and let 𝑇 ∈ L(𝑋) be mean
ergodic with 𝑃 := 𝜏

𝑠
-lim

𝑛→∞
𝑇
[𝑛]
. Then it follows from 𝑃 =

𝑃𝑇 that 𝑃 ∈ H(𝑋) whenever 𝑇 ∈ H(𝑋) (here,H stands for
the operator ideal K, M, WK, or R). In particular, if 𝑇 ∈

K(𝑋), then Fix(𝑇) := {𝑥 ∈ 𝑋 : 𝑇𝑥 = 𝑥} = Ker (𝐼−𝑇) = 𝑃(𝑋)

is finite dimensional, [36, Theorem 9.10.1(1)].
(ii) Let 𝑋 be a lcHs such that 𝑋

𝜎
is angelic. Then the

class of all weakly completely continuous operators in L(𝑋)

in the sense of Definition 2 in [40] is precisely WK(𝑋).
Moreover, if 𝑋 is additionally barrelled, then, for any 𝑇 ∈

L(𝑋), the boundedness of the set {𝑇
𝑛

}
∞

𝑛=1
in L

𝑠
(𝑋) is

equivalent to 𝑇 being power bounded. In particular, 𝑇 is
necessarily Cesàro bounded and satisfies 𝜏

𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) =

0. Accordingly, the containment WK(𝑋) ⊆ R(𝑋) shows
that Proposition 23(i) is an extension of the following result
of Altman [40, Theorem].

Fact 1. Let𝑋 be a barrelled lcHs with𝑋
𝜎
being angelic. Then

every power bounded operator𝑇 ∈ WK(𝑋) ismean ergodic.

The following technical result should be compared with
[33, Proposition 3.1].

Lemma 25. Let𝑋 be a quojection Fréchet space, and let𝑌 be a
Fréchet space and 𝑇 ∈ M(𝑋, 𝑌) (resp. 𝑇 ∈ R(𝑋, 𝑌)). Suppose
that 𝑋 = 𝑝𝑟𝑜𝑗

𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
), with 𝑋

𝑗
a Banach space (having

norm ‖ ‖
𝑗
) and surjective linking maps 𝑄

𝑗,𝑗+1
∈ L(𝑋

𝑗+1
, 𝑋

𝑗
),

for all 𝑗 ∈ N, and that 𝑌 = 𝑝𝑟𝑜𝑗
𝑗
(𝑌

𝑗
, 𝑅

𝑗,𝑗+1
), with 𝑌

𝑗
a

Banach space (having norm ||| |||
𝑗
) and linking maps 𝑅

𝑗,𝑗+1
∈

L(𝑌
𝑗+1

, 𝑌
𝑗
) for all 𝑗 ∈ N. Then, for every 𝑗 ∈ N, there exist

𝑘(𝑗) ≥ 𝑗 and 𝑇
𝑗
∈ K(𝑋

𝑘(𝑗)
, 𝑌

𝑗
)(resp. 𝑇

𝑗
∈ WK(𝑋

𝑘(𝑗)
, 𝑌

𝑗
))

such that

𝑅
𝑗
𝑇 = 𝑇

𝑗
𝑄

𝑘(𝑗)
, (52)

where 𝑅
𝑗
∈ L(𝑌, 𝑌

𝑗
), 𝑗 ∈ N, is the canonical projection of 𝑌

into 𝑌
𝑗
(i.e., 𝑅

𝑗,𝑗+1
∘ 𝑅

𝑗+1
= 𝑅

𝑗
).

Proof. If we define 𝑞
𝑗
(𝑥) := ‖𝑄

𝑗
𝑥‖

𝑗

for 𝑥 ∈ 𝑋 and 𝑗 ∈ N

and 𝑟
𝑗
(𝑦) := |||𝑅

𝑗
𝑦|||

𝑗

for 𝑦 ∈ 𝑌 and 𝑗 ∈ N, then {𝑞
𝑗
}
∞

𝑗=1
and

{𝑟
𝑗
}
∞

𝑗=1
are fundamental sequences of seminorms generating

the lc-topology of𝑋 and of 𝑌, respectively.
Fix 𝑗 ∈ N. The continuity of 𝑇 implies that there exist

𝑘(𝑗) ≥ 𝑗 and 𝐶
𝑗
> 0 satisfying

𝑟
𝑗
(𝑇𝑥) ≤ 𝐶

𝑗
𝑞
𝑘(𝑗)

(𝑥) , 𝑥 ∈ 𝑋, (53)

or equivalently, that





𝑅
𝑗
𝑇
𝑥





𝑗
≤ 𝐶

𝑗


𝑄

𝑘(𝑗)
𝑥
𝑘(𝑗)

, 𝑥 ∈ 𝑋. (54)

As noted before such an inequality ensures that there exists
𝑇
𝑗
∈ L(𝑋

𝑘(𝑗)
, 𝑌

𝑗
) defined via 𝑅

𝑗
𝑇 = 𝑇

𝑗
𝑄

𝑘(𝑗)
.
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Denote by U
𝑘(𝑗)

the closed unit ball of 𝑋
𝑘(𝑗)

. Since 𝑋 is
a quojection Fréchet space, there exists 𝐵 ∈ B(𝑋) such that
U

𝑘(𝑗)
⊆ 𝑄

𝑘(𝑗)
(𝐵) [17, Proposition 1]. Since 𝑇 is Montel (resp.

reflexive) and 𝑅
𝑗
is continuous, it follows from 𝑇

𝑗
(U

𝑘(𝑗)
) ⊆

𝑇
𝑗
(𝑄

𝑘(𝑗)
(𝐵)) = 𝑅

𝑗
(𝑇(𝐵)), with 𝑅

𝑗
(𝑇(𝐵)) a relatively compact

subset (resp. relatively weakly compact subset) of 𝑌
𝑗
, that

𝑇
𝑗
(U

𝑘(𝑗)
) is a relatively compact (resp. relatively weakly com-

pact) subset of 𝑌
𝑗
. That is, 𝑇

𝑗
∈ K(𝑋

𝑘(𝑗)
, 𝑌

𝑗
) (resp. 𝑇

𝑗
∈

WK(𝑋
𝑘(𝑗)

, 𝑌
𝑗
)).

Remark 26. (i) Let𝑋 = proj
𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
) be a quojection Fré-

chet space and𝑇 ∈ L(𝑋). Suppose, for every 𝑗 ∈ N, that there
exists 𝐶

𝑗
> 0 such that 𝑞

𝑗
(𝑇𝑥) ≤ 𝐶

𝑗
𝑞
𝑗
(𝑥) for 𝑥 ∈ 𝑋 (here, the

notation is according to Lemma 25 and its proofwith𝑌 := 𝑋).
Then, for every 𝑗 ∈ N, there exists 𝑇

𝑗
∈ L(𝑋

𝑗
) satisfying

𝑄
𝑗
𝑇 = 𝑇

𝑗
𝑄

𝑗
. So, if 𝑇 ∈ M(𝑋) (resp., 𝑇 ∈ R(𝑋)), then each

𝑇
𝑗
∈ K(𝑋

𝑗
) (resp., 𝑇

𝑗
∈ WK(𝑋

𝑗
)).

(ii) Let 𝑋 be a Fréchet space and 𝑇 ∈ M(𝑋). Then 𝜏
𝑠
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0 if and only if 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0.
As 𝜏

𝑠
⊆ 𝜏

𝑏
, it suffices to show 𝜏

𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0

implies 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0.
Since𝑋 is a Fréchet space and 𝜏

𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0, the
set {𝑇𝑛

/𝑛}
∞

𝑛=1
is equicontinuous inL(𝑋); that is, for every𝑝 ∈

Γ
𝑋
there exist 𝑞 ∈ Γ

𝑋
and𝑀 > 0 such that

𝑝(
𝑇
𝑛

𝑥

𝑛
) ≤ 𝑀𝑞 (𝑥) , 𝑥 ∈ 𝑋, 𝑛 ∈ N. (55)

Now, fix 𝑝 ∈ Γ
𝑋
, 𝐵 ∈ B(𝑋), and 𝜀 > 0. Choose 𝑞 ∈ Γ

𝑋

and 𝑀 > 0 according to (55). Since 𝑇 is a Montel operator,
𝑇(𝐵) is a relatively compact subset of 𝑋 and so there exist
𝑥
1
, . . . , 𝑥

𝑘
∈ 𝑋 such that

𝑇 (𝐵) ⊆

𝑘

⋃

𝑖=1

(𝑥
𝑖
+

𝜀

2𝑀
U

𝑞
) , (56)

withU
𝑞
:= {𝑥 ∈ 𝑋 : 𝑞(𝑥) ≤ 1}. Let 𝑥 ∈ 𝐵. By (56) there exist

𝑖 ∈ {1, . . . , 𝑘} and 𝑧 ∈ U
𝑞
such that 𝑇(𝑥) = 𝑥

𝑖
+ (𝜀/2𝑀)𝑧.

Then, by (55), we have for every 𝑛 > 1 that

𝑝(
𝑇
𝑛

𝑥

𝑛
) = 𝑝(

𝑇
𝑛−1

𝑛
𝑇 (𝑥))

≤ 𝑝(
𝑇
𝑛−1

𝑥
𝑖

𝑛
) +

𝜀

2𝑀
𝑝(

𝑇
𝑛−1

𝑧

𝑛
)

≤ 𝑝(
𝑇
𝑛−1

𝑥
𝑖

𝑛 − 1
) +

𝜀

2
.

(57)

But, 𝑝(𝑇𝑛−1

𝑥
𝑖
/(𝑛 − 1)) → 0 as 𝑛 → ∞. So, there exists 𝑛

0
∈

N (depending only on 𝑥
𝑖
) such that 𝑝(𝑇𝑛

𝑥/𝑛) < 𝜀 for every
𝑛 ≥ 𝑛

0
. Since 𝑥 is arbitrary and the set {𝑥

1
, . . . , 𝑥

𝑘
} is finite,

we can conclude that sup
𝑥∈𝐵

𝑝(𝑇
𝑛

𝑥/𝑛) → 0 for 𝑛 → ∞. By
the arbitrariness of 𝐵 and 𝑝 we have 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0.

The following result should be compared with
Proposition 23(ii). We point out (even if dim(𝑋) < ∞) that
a Cesàro bounded operator 𝑇 need not satisfy 𝑇𝑛

/𝑛 → 0 in
L

𝑠
(𝑋) [4, p. 85].

Theorem 27. Let 𝑋 be a prequojection Fréchet space and 𝑇 ∈

M(𝑋). If 𝜏
𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0, then 𝑇 is uniformly mean
ergodic.
Proof. We have the following two cases.
Case (I) (𝑋 is a quojection). The condition 𝜏

𝑠
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0 ensures that both 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0

(see Remark 26(ii)) and that we can represent 𝑋 = proj
𝑗
(𝑋

𝑗
,

𝑄
𝑗,𝑗+1

) such that, for every 𝑗 ∈ N, there exists 𝑇
𝑗
∈ L(𝑋

𝑗
)

satisfying 𝑄
𝑗
𝑇 = 𝑇

𝑗
𝑄

𝑗
; see the proof of Proposition 8.

According to Lemma 25 and Remark 26(i) we have 𝑇
𝑗
∈ K

(𝑋
𝑗
) for all 𝑗 ∈ N. Moreover, 𝑇𝑛

𝑗
/𝑛 → 0 in L

𝑏
(𝑋

𝑗
) for

𝑛 → ∞; see Remark 26(ii) and Lemma 6 with 𝑆
𝑛
:= 𝑇

𝑛

/𝑛,
for 𝑛 ∈ N.

Since 𝑇
𝑗
∈ K(𝑋

𝑗
) and 𝑇

𝑛

𝑗
/𝑛 → 0 in L

𝑏
(𝑋

𝑗
) for 𝑛 →

∞, for every 𝑗 ∈ N, each 𝑇
𝑗
is uniformly mean ergodic [1, p.

711, Corollary 4], which implies that𝑇 is also uniformlymean
ergodic; see Lemma 7.

Case (II) (X is a prequojection). As noted before 𝑋 and 𝑋


𝛽

are barrelled (hence, quasi-barrelled) with 𝑇


∈ L(𝑋


𝛽
) and

𝑇


∈ L(𝑋


). So, the condition 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 (see
Remark 26(ii)) implies that 𝜏

𝑏
-lim

𝑛→∞
((𝑇



)
𝑛

/𝑛) = 0. More-
over, 𝑋 is a quojection Fréchet space. Also, Corollaries 2.3
and 2.4 of [33] yield that 𝑇

∈ M(𝑋


). We can then apply
Case (I) to conclude that 𝑇 is uniformly mean ergodic. So,
𝑇 is also uniformly mean ergodic as 𝑇

|
𝑋

= 𝑇 and 𝑋 is a
closed subspace of𝑋.

It was noted prior to Proposition 23, for 𝑋 a prequojec-
tion Fréchet space and 𝑇 ∈ K(𝑋), that 𝑇 is uniformly mean
ergodic whenever 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. Since K(𝑋) ⊂

M(𝑋) in general, Theorem 27 can be viewed as an extension
of this fact.

Corollary 28. Let 𝑋 be a prequojection Fréchet space and let
𝑇 ∈ M(𝑋) be power bounded. Then Γ(𝑇) ⊆ {1} if and only if
𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛+1

− 𝑇
𝑛

) = 0.

Proof. If 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛+1

− 𝑇
𝑛

) = 0, thenTheorem 20 yields
Γ(𝑇) ⊆ {1}.

Conversely, suppose that Γ(𝑇) ⊆ {1}. Since 𝑇 is power
bounded, 𝑇𝑛

/𝑛 → 0 in L
𝑏
(𝑋) for 𝑛 → ∞ and so 𝑇 is

uniformly mean ergodic by Theorem 27. By Theorem 3.5 of
[6] this is equivalent to the fact that (𝐼 − 𝑇)(𝑋) is closed
in 𝑋. So, by Theorem 15(ii)⇔(iii) we can conclude that 𝜏

𝑏
-

lim
𝑛→∞

(𝑇
𝑛+1

− 𝑇
𝑛

) = 0.

In a Banach space 𝑋, an operator 𝑇 ∈ L(𝑋) is called
quasi-compact if there exist 𝑚 ∈ N and 𝐾 ∈ K(𝑋) such that
‖𝑇

𝑚

− 𝐾‖op < 1 [8, § 6], [4, p. 88]. For example, if some power
of 𝑇 ∈ L(𝑋) is compact or if some power of 𝑇 has norm
less than one, then 𝑇 is quasi-compact. For a quasi-compact
operator 𝑇 it is known that 𝜏

𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 suffices for
𝑇 to be uniformly mean ergodic [1, Ch.VIII, Corollary 8.4].
For 𝑋 non-normable, the question arises of how to extend
the notion of a quasi-compact operator.
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According to [9, Definition 1], for a lcHs 𝑋 an operator
𝑇 ∈ L(𝑋) is called quasi-precompact if there exists a 0-
neighbourhood 𝑊 such that for every 0-neighbourhood U
in𝑋 there exist 𝑝 ∈ N and a finite set 𝐹 ⊆ 𝑋 (both depending
on U) with the property that 𝑇𝑝

(𝑊) ⊆ ∪
𝑦∈𝐹

(𝑦 + U). For 𝑋
a Banach space, this notion coincides precisely with 𝑇 being
quasi-compact [9,Theorem 3]. In [41] an operator𝐾 ∈ L(𝑋)

is called 𝑉-compact if 𝐾(𝑉) is a relatively compact subset of
𝑋, where 𝑉 is some 0-neighbourhood in 𝑋. More generally,
𝑇 ∈ L(𝑋) is called 𝑉-quasicompact [41, Definition 2.1], if
there exist 𝑚 ∈ N, a 𝑉-compact operator 𝐾 and 𝛿 ∈ (0, 1)

such that (𝑇𝑚

− 𝐾)(𝑉) ∈ B(𝑋) and (𝑇
𝑚

− 𝐾)(𝑉) ⊆ 𝛿𝑉.

Lemma 29. Let 𝑋 be a lcHs and let 𝑉 be any 0-neighbour-
hood in 𝑋. Then every 𝑉-quasicompact operator is quasi-pre-
compact.

Proof. Let 𝑇 ∈ L(𝑋) be 𝑉-quasicompact. Choose 𝑚 ∈ N, a
𝑉-compact operator 𝐾 and 𝛿 ∈ (0, 1) such that the set 𝐵 :=

(𝑇
𝑚

− 𝐾)(𝑉) is bounded and 𝐵 ⊆ 𝛿𝑉. Then
(𝑇

𝑚

− 𝐾)
2

(𝑉) = (𝑇
𝑚

− 𝐾) (𝐵) ⊆ (𝑇
𝑚

− 𝐾) (𝛿𝑉) = 𝛿𝐵.

(58)
Proceeding inductively yields

(𝑇
𝑚

− 𝐾)
𝑝

(𝑉) ⊆ 𝛿
𝑝−1

𝐵, 𝑝 ∈ N. (59)
Fix 𝑝 ∈ N. Note that 𝑇𝑚 and 𝐾 need not commute. By

expanding (𝑇𝑚

− 𝐾)
𝑝 it can be seen that (𝑇𝑚

− 𝐾)
𝑝

= 𝑇
𝑚𝑝

−

𝐻
𝑝
, where𝐻

𝑝
is a finite sum of operators all of the form 𝐴𝐾

or 𝐵𝐾(𝑇
𝑚

)
𝑛 with 𝐴, 𝐵 ∈ L(𝑋) and 𝑛 ∈ {1, . . . , 𝑝 − 1}. The

claim is that𝐻
𝑝
is a𝑉-compact operator. Indeed, since𝐴𝐾 is

always𝑉-compact and the finite sum of𝑉-compact operators
is clearly 𝑉-compact, it suffices to show that 𝐾(𝑇

𝑚

)
𝑛 (hence,

also 𝐵𝐾(𝑇
𝑚

)
𝑛) is 𝑉-compact for all 1 ≤ 𝑛 < 𝑝.

For 𝑛 = 1, observe that 𝑇𝑚

(𝑉) = 𝐾(𝑉) + 𝐵 ⊆ 𝐾(𝑉) + 𝛿𝑉

yields
𝐾𝑇

𝑚

(𝑉) ⊆ 𝐾
2

(𝑉) + 𝛿𝐾 (𝑉) , (60)
which is a relatively compact subset of 𝑋. For 𝑛 = 2, we then
have
(𝑇

𝑚

)
2

(𝑉) ⊆ 𝑇
𝑚

(𝐾 (𝑉) + 𝛿𝑉) = 𝑇
𝑚

𝐾 (𝑉) + 𝛿𝑇
𝑚

(𝑉) (61)
and, hence, that

𝐾(𝑇
𝑚

)
2

(𝑉) ⊆ 𝐾𝑇
𝑚

𝐾 (𝑉) + 𝛿𝐾𝑇
𝑚

(𝑉) . (62)

Since both 𝑇
𝑚

𝐾(𝑉) and 𝐾𝑇
𝑚

(𝑉) are relatively compact, it
follows that 𝐾(𝑇

𝑚

)
2

(𝑉) is also relatively compact. This argu-
ment can be continued to yield the above stated claim for all
1 ≤ 𝑛 < 𝑝.

Define now𝑊:= 𝑉 and letU be any convex, balanced 0-
neighbourhood of𝑋. Since 𝐵 is bounded, there is 𝜆 > 0 such
that 𝐵 ⊆ (1/2)𝜆U. Choose 𝑝 ∈ N large enough to ensure that
𝛿
𝑝−1

𝜆 ≤ 1. It follows from (59) that

(𝑇
𝑚𝑝

− 𝐻
𝑝
) (𝑊) = (𝑇

𝑚

− 𝐾)
𝑝

(𝑉) ⊆ 𝛿
𝑝−1

𝐵 (63)

and so
𝑇
𝑚𝑝

(𝑊) ⊆ 𝐻
𝑝
(𝑉) + (𝑇

𝑚𝑝

− 𝐻
𝑝
) (𝑊)

⊆ 𝐻
𝑝
(𝑉) +

1

2
𝛿
𝑝−1

𝜆U ⊆ 𝐻
𝑝
(𝑉) +

1

2
U.

(64)

But, 𝐻
𝑝
(𝑉) is relatively compact and so there is a finite set

𝐹 ⊆ 𝑋 such that𝐻
𝑝
(𝑉) ⊆ ∪

𝑥∈𝐹
(𝑥 + (1/2)U). Accordingly,

𝑇
𝑚𝑝

(𝑊) ⊆
1

2
U + ⋃

𝑥∈𝐹

(𝑥 +
1

2
𝑊) ⊆ ⋃

𝑥∈𝐹

(𝑥 +U) , (65)

which establishes that 𝑇 is quasi-precompact.

Returning to mean ergodicity, we have the following
result of Pietsch [9, Theorem 7].

Fact 2. Let 𝑋 be a complete, barrelled lcHs and let
𝑇 ∈ L(𝑋) be a quasi-precompact operator satisfying 𝜏

𝑠
-

𝑙𝑖𝑚
𝑛→∞

(𝑇
𝑛

/𝑛) = 0. Then 𝑇 is uniformly mean ergodic and
Fix(𝑇) = Ker(𝐼 − 𝑇) is finite dimensional.

In order to be able to extend this result to a larger class of
operators we recall, for a Banach space 𝑋, that 𝑇 ∈ L(𝑋) is
quasi-compact if and only if there exists a sequence {𝐾

𝑛
}
∞

𝑛=1
⊆

K(𝑋) such that lim
𝑛→∞

‖𝑇
𝑛

−𝐾
𝑛
‖ = 0 [4, p. 88, Lemma 2.4].

Definition 30. Let 𝑋 be a lcHs. An operator 𝑇 ∈ L(𝑋) is
called quasi-Montel (resp., quasi reflexive) if there exists a
sequence {𝑀

𝑛
}
∞

𝑛=1
⊆ M(𝑋) (resp., {𝑀

𝑛
}
∞

𝑛=1
⊆ R(𝑋)) such

that (𝑇𝑛

−𝑀
𝑛
) → 0 inL

𝑏
(𝑋) as 𝑛 → ∞.

Remark 31. (i) Let 𝑋 be a Fréchet space and 𝑇 ∈ L(𝑋)

be quasi-Montel. Then 𝑇


∈ L(𝑋


) is also quasi-Montel.
Indeed, in the notation of Definition 30, we have {𝑀

𝑛
}
∞

𝑛=1
⊆

M(𝑋


) [33, Corollaries 2.3 and 2.4], with ((𝑇

)
𝑛

−𝑀


𝑛
) → 0

in L
𝑏
(𝑋



) as 𝑛 → ∞; see [27, Lemma 2.6] or [28, Lemma
2.1].

(ii) Let 𝑋 be a Fréchet space and 𝑇 ∈ L(𝑋) be quasi-
Montel. Then 𝜏

𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 if and only if 𝜏
𝑏
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0.
Again it suffices to show that 𝜏

𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0

implies 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0.
Arguing as in Remark 26(ii), for every 𝑝 ∈ Γ

𝑋
there exist

𝑞 ∈ Γ
𝑋
and 𝑀 > 0 such that (55) holds. Fix 𝑝 ∈ Γ

𝑋
, 𝐵 ∈

B(𝑋), and 𝜀 > 0. Choose 𝑞 and 𝑀 according to (55). Since
𝑇 is a quasi-Montel operator, there is {𝑀

𝑛
}
∞

𝑛=1
⊆ M(𝑋) with

(𝑇
𝑛

−𝑀
𝑛
) → 0 inL

𝑏
(𝑋) as 𝑛 → ∞. So there exists𝑚 ∈ N

such that

sup
𝑥∈𝐵

𝑞 ((𝑇
𝑚

−𝑀
𝑚
) 𝑥) <

𝜀

4𝑀
. (66)

But,𝑀
𝑚
∈ M(𝑋) and so𝑀

𝑚
(𝐵) is a relatively compact subset

of𝑋. It follows that there exist 𝑥
1
, . . . , 𝑥

𝑘
∈ 𝑋 such that

𝑀
𝑚
(𝐵) ⊆

𝑘

⋃

𝑖=1

(𝑥
𝑖
+

𝜀

4𝑀
U

𝑞
) , (67)

whereU
𝑞
:= {𝑥 ∈ 𝑋 : 𝑞(𝑥) ≤ 1}. From (66) and (67) it follows

that
𝑇
𝑚

(𝐵) ⊆ (𝑇
𝑚

−𝑀
𝑚
) (𝐵) + 𝑀

𝑚
(𝐵)

⊆
𝜀

4𝑀
U

𝑞
+

𝑘

⋃

𝑖=1

(𝑥
𝑖
+

𝜀

4𝑀
U

𝑞
)

⊆

𝑘

⋃

𝑖=1

(𝑥
𝑖
+

𝜀

2𝑀
U

𝑞
) .

(68)
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Fix 𝑥 ∈ 𝐵. By (68) there exist 𝑖 ∈ {1, . . . , 𝑘} and 𝑧 ∈ U
𝑞
such

that 𝑇𝑚

(𝑥) = 𝑥
𝑖
+ (𝜀/2𝑀)𝑧. Then, by (55), for every 𝑛 > 𝑚we

have that

𝑝(
𝑇
𝑛

𝑥

𝑛
) = 𝑝(

𝑇
𝑛−𝑚

𝑛
𝑇
𝑚

(𝑥))

≤ 𝑝(
𝑇
𝑛−𝑚

𝑥
𝑖

𝑛
) +

𝜀

2𝑀
𝑝(

𝑇
𝑛−𝑚

𝑧

𝑛
)

≤ 𝑝(
𝑇
𝑛−𝑚

𝑥
𝑖

𝑛 − 𝑚
) +

𝜀

2
.

(69)

But, 𝑝(𝑇𝑛−𝑚

𝑥
𝑖
/(𝑛−𝑚)) → 0 as 𝑛 → ∞. So, there exists 𝑛

0
∈

N (depending only on 𝑥
𝑖
) such that 𝑝(𝑇𝑛

𝑥/𝑛) < 𝜀, for every
𝑛 ≥ 𝑛

0
. Since 𝑥 is arbitrary and the set {𝑥

1
, . . . , 𝑥

𝑘
} is finite,

we can conclude that sup
𝑥∈𝐵

𝑝(𝑇
𝑛

𝑥/𝑛) → 0 for 𝑛 → ∞. By
the arbitrariness of 𝐵 and 𝑝 we have 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0.

Proposition 32. Let 𝑋 be a prequojection Fréchet space and
let 𝑇 ∈ L(𝑋) satisfy 𝜏

𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. If 𝑇 is quasi-
precompact, then there exists a sequence {𝐾

𝑛
}
∞

𝑛=1
⊆ K(𝑋) such

that 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

−𝐾
𝑛
) = 0. In particular,𝑇 is quasi-Montel

asK(𝑋) ⊆ M(𝑋).

Proof. The completeness of𝑋 ensures that every precompact
subset of 𝑋 is also relatively compact. By Fact 2 the operator
𝑇 is uniformly mean ergodic and so 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0.
By [9, Theorems 1, 2 and Satz 10] there exist 𝑅 ∈ L(𝑋)

and a projection 𝑃 ∈ L(𝑋) commuting with 𝑇 such that
dim𝑃(𝑋) < ∞ and satisfying

𝑇
𝑛

= 𝑅
𝑛

+ 𝑇
𝑛

𝑃, 𝑛 ∈ N, (70)

C \ D ⊆ 𝜌 (𝑅) . (71)

Since 𝑃 ∈ K(𝑋), also 𝐾
𝑛
:= 𝑇

𝑛

𝑃 ∈ K(𝑋) for each 𝑛 ∈ N.
Moreover, (70) yields 𝑅𝑛

= 𝑇
𝑛

(𝐼 − 𝑃) = (𝐼 − 𝑃)𝑇
𝑛, for 𝑛 ∈

N, and so 𝜏
𝑏
-lim

𝑛→∞
𝑅
𝑛

/𝑛 = 0. Since (71) is equivalent to
𝜎(𝑅) ⊆ D, it then follows fromTheorem 10 applied to 𝑅 that
𝜏
𝑏
-lim

𝑛→∞
𝑅
𝑛

= 0. It is then clear (see (70)) that (𝑇𝑛

− 𝐾
𝑛
) =

𝑅
𝑛

→ 0 inL
𝑏
(𝑋) as 𝑛 → ∞.

Remark 33. There exist quasi-Montel operators, even in
quojection Fréchet spaces, which fail to be quasi-precompact.

(i) For𝑋 := 𝜔 = CN, define the projection 𝑃 ∈ L(𝑋) via

𝑃𝑥 := (𝑥
1
, 0, 𝑥

3
, 0, 𝑥

5
, . . .) , 𝑥 = (𝑥

𝑛
)
𝑛
∈ 𝑋. (72)

Since 𝑋 is a Montel space, all of its bounded subsets are
relatively compact. It is then clear that 𝑃 ∈ M(𝑋), and hence,
𝑃 is surely quasi-Montel. Of course, 𝑃 ∉ K(𝑋). On the other
hand, since Ker (𝐼 − 𝑃) is infinite-dimensional, 𝑃 cannot be
quasi-precompact [9, Satz 3].

(ii) Let 𝑋 be as in (i) and define the diagonal operator
𝑇 ∈ L(𝑋) by

𝑇𝑥 := (𝑥
1
,
1

2
𝑥
2
,
1

3
𝑥
3
, . . .) , 𝑥 = (𝑥

𝑛
)
𝑛
∈ 𝑋. (73)

The same argument as in (i) shows that 𝑇 ∈ M(𝑋).
In this case, in contrast to (i), the space Ker (𝐼 − 𝑇) =

span{(1, 0, 0, . . .)} is finite-dimensional. However, 𝑇 still fails
to be quasi-precompact [9, p. 24].

Remark 34. The converse of Proposition 32 is not valid.
Indeed, let 𝑋 := 𝜔 and let 𝑇 ∈ L(𝑋) be as Remark 33(ii), in
which case 𝑋 is a quojection Fréchet space. For each 𝑛 ∈ N,
let 𝐾

𝑛
∈ L(𝑋) be the finite rank operator given by

𝐾
𝑛
𝑥 := (𝑥

1
,
𝑥
2

2𝑛
,
𝑥
3

3𝑛
, . . . ,

𝑥
𝑛

𝑛𝑛
, 0, 0, . . .) , 𝑥 = (𝑥

𝑗
)
𝑗

∈ 𝑋.

(74)

ThenU
𝑛
:= {𝑥 ∈ 𝑋 : max

1≤𝑗≤𝑛
|𝑥

𝑗
| ≤ 1} is a 0-neighbourhood

in 𝑋. Since 𝐾
𝑛
has finite-dimensional range, it follows that

𝐾
𝑛
(U

𝑛
) is a relatively compact subset of𝑋; that is,𝐾

𝑛
∈ K(𝑋)

for each 𝑛 ∈ N. Direct calculations show that the sequence of
operators

(𝑇
𝑛

− 𝐾
𝑛
) 𝑥 = (0, . . . , 0,

𝑥
𝑛+1

(𝑛 + 1)
𝑛
,

𝑥
𝑛+2

(𝑛 + 2)
𝑛
, . . .) ,

𝑥 = (𝑥
𝑗
)
𝑗

∈ 𝑋,

(75)

converges to 0 in L
𝑠
(𝑋) as 𝑛 → ∞. Since 𝑋 is a Montel

space, also 𝜏
𝑏
-lim

𝑛→∞
(𝑇

𝑛

− 𝐾
𝑛
) = 0. However, as noted in

Remark 33(ii), the diagonal operator 𝑇 is not quasi-compact.

In view of Remark 33 the following result is an extension
of Fact 2 above for prequojection Fréchet spaces (without the
condition dim Ker (𝐼 − 𝑇) < ∞).

Theorem 35. Let 𝑋 be a prequojection Fréchet space and
𝑇 ∈ L(𝑋). If 𝑇 is a quasi-Montel operator and 𝜏

𝑠
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0, then 𝑇 is uniformly mean ergodic.

Proof. We have the following two cases.

Case (I) (𝑋 is a quojection). The assumption 𝜏
𝑠
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0 ensures that we can proceed as in
the proof of Proposition 8 to obtain 𝑋 = proj

𝑗
(𝑋

𝑗
, 𝑄

𝑗,𝑗+1
) in

such away that, for every 𝑗 ∈ N, there exists𝑇
𝑗
inL(𝑋

𝑗
) satis-

fying 𝑄
𝑗
𝑇 = 𝑇

𝑗
𝑄

𝑗
. Then also 𝑄

𝑗
𝑇
𝑛

= 𝑇
𝑛

𝑗
𝑄

𝑗
and 𝑄

𝑗
(𝑇

𝑛

/𝑛) =

(𝑇
𝑛

𝑗
/𝑛)𝑄

𝑗
, for every 𝑗, 𝑛 ∈ N. So, Lemma 6 (with 𝑆

𝑛
:= 𝑇

𝑛

/𝑛,
for 𝑛 ∈ N) implies that 𝜏

𝑠
-lim

𝑛→∞
(𝑇

𝑛

𝑗
/𝑛) = 0 for all 𝑗 ∈ N.

Since 𝑇 is quasi-Montel, there exists a sequence
{𝑀

𝑛
}
𝑛∈N ⊆ M(𝑋) such that 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

−𝑀
𝑛
) = 0. From

this it follows that the operator 𝑇
𝑗
, for any fixed 𝑗 ∈ N, is

quasi-precompact. To see this, let 𝑞
𝑗
denote the norm of 𝑋

𝑗

and 𝜀 > 0. Since 𝑝
𝑗
:= 𝑞

𝑗
∘ 𝑄

𝑗
∈ Γ

𝑋
, there exists 𝑛 ∈ N such

that

sup
𝑥∈𝐵

𝑝
𝑗
(𝑇

𝑛

𝑥 −𝑀
𝑛
𝑥) <

𝜀

2
, (76)

with 𝐵 ∈ B(𝑋) chosen such that 𝐵
𝑗
⊆ 𝑄

𝑗
(𝐵). Since

sup
𝑥∈𝐵

𝑝
𝑗
(𝑇

𝑛

𝑥 −𝑀
𝑛
𝑥) = sup

𝑥∈𝐵

𝑞
𝑗
(𝑄

𝑗
(𝑇

𝑛

𝑥 −𝑀
𝑛
𝑥))

= sup
𝑥∈𝐵

𝑞
𝑗
(𝑇

𝑛

𝑗
𝑄

𝑗
𝑥 − 𝑄

𝑗
𝑀

𝑛
𝑥) ,

(77)

it follows that

𝑇
𝑛

𝑗
(𝐵

𝑗
) ⊆ 𝑇

𝑛

𝑗
(𝑄

𝑗
(𝐵)) ⊆ 𝑄

𝑗
(𝑀

𝑛
(𝐵)) +

𝜀

2
𝐵
𝑗
. (78)



Abstract and Applied Analysis 15

Hence, by the relative compactness (hence, precompactness)
of 𝑄

𝑗
(𝑀

𝑛
(𝐵)) in 𝑋

𝑗
, due to 𝑀

𝑛
∈ M(𝑋) and the continuity

of 𝑄
𝑗
, there exist 𝑥

1
, . . . , 𝑥

𝑘
∈ 𝑋

𝑗
such that

𝑇
𝑛

𝑗
(𝐵

𝑗
) ⊆

𝑘

⋃

𝑖=1

(𝑥
𝑖
+ 𝜀𝐵

𝑗
) . (79)

By the arbitrariness of 𝜀 > 0 it follows that 𝑇
𝑗
∈ L(𝑋

𝑗
)

is quasi-precompact. As 𝑋
𝑗
is a Banach space, 𝑇

𝑗
is quasi-

compact [9, Theorem 3] and satisfies 𝑇𝑛

𝑗
/𝑛 → 0 in L

𝑠
(𝑋

𝑗
)

for 𝑛 → ∞. By Fact 2, each operator 𝑇
𝑗
, for 𝑗 ∈ N, is

uniformlymean ergodic.Then Lemma 7 implies that𝑇 is also
uniformly mean ergodic.

Case (II) (X is a prequojection). The condition
𝜏
𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0 actually means that 𝜏
𝑏
-

lim
𝑛→∞

(𝑇
𝑛

/𝑛) = 0 because 𝑇 is quasi-Montel (see
Remark 31(ii)). So, arguing as for Case (II) in the proof of
Theorem 27, it follows that also 𝜏

𝑏
-lim

𝑛→∞
((𝑇



)
𝑛

/𝑛) = 0.
Moreover, by Remark 31(i) the operator 𝑇 is quasi-Montel.
Since 𝑋

 is a quojection Fréchet space, we can apply Case
(I) to conclude that 𝑇 is uniformly mean ergodic. Then 𝑇 is
also uniformly mean ergodic as 𝑇

|
𝑋

= 𝑇 with 𝑋 a closed
subspace of𝑋.

Since the only Fréchet-Montel spaces which are normable
are the finite-dimensional ones, the following result may be
viewed as an analogue of the fact that Ker (𝜆𝐼 − 𝑇) is finite
dimensional whenever 𝑇 is quasi-precompact; see Definition
3 andTheorem 1 of [9].

Proposition 36. Let𝑋 be a Fréchet space and let𝑇 ∈ L(𝑋) be
a quasi-Montel operator.ThenKer(𝜆𝐼−𝑇) is a Fréchet-Montel
space, for every 𝜆 ∈ T .

Proof. It suffices to show that Fix(𝑇) = Ker (𝐼−𝑇) is a Fréchet-
Montel space. Indeed, for every 𝜆 ∈ T , the operator 𝜆−1𝑇 is
quasi-Montel if and only if 𝑇 is quasi-Montel, with Ker (𝜆𝐼 −
𝑇) = Fix(𝜆−1𝑇).

Let {𝑟
𝑗
}
∞

𝑗=1
be any fundamental, increasing sequence of

seminorms generating the lc-topology of 𝑋. Let {𝑥
𝑘
}
∞

𝑘=1
⊆

Fix(𝑇) be a bounded sequence. Since 𝑇 is quasi-Montel, there
exists {𝑀

𝑛
}
∞

𝑛=1
⊆ M(𝑋) such that 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

− 𝑀
𝑛
) = 0

and so, for every 𝑗 ∈ N, we have sup
𝑘∈N𝑟𝑗(𝑥𝑘 − 𝑀

𝑛
𝑥
𝑘
) → 0

as 𝑛 → ∞.
Since {𝑥

𝑘
}
∞

𝑘=1
is bounded and each operator𝑀

𝑛
, for 𝑛 ∈ N,

isMontel, wemay construct recursively subsequences {𝑥𝑛
𝑘
}
∞

𝑘=1

of {𝑥
𝑘
}
∞

𝑘=1
such that each {𝑥𝑛+1

𝑘
}
∞

𝑘=1
is a subsequence of {𝑥𝑛

𝑘
}
∞

𝑘=1

and {𝑀
𝑛
𝑥
𝑛

𝑘
}
∞

𝑘=1
converges in 𝑋 for all 𝑛 ∈ N. Consider the

diagonal sequence {𝑥𝑘
𝑘
}
∞

𝑘=1
. Clearly, {𝑀

𝑛
𝑥
𝑘

𝑘
}
∞

𝑘=1
converges in𝑋

for each 𝑛 ∈ N (by observing that {𝑀
𝑛
𝑥
𝑘

𝑘
}
∞

𝑘=1
⊆ {𝑀

𝑛
𝑥
𝑛

𝑘
}
∞

𝑘≥𝑛
).

Fix 𝜀 > 0 and 𝑗 ∈ N. Then, for every 𝑘, 𝑘 ∈ N and 𝑛 ∈ N, we
have

𝑟
𝑗
(𝑥

𝑘

𝑘
− 𝑥

𝑘


𝑘
) ≤ 𝑟

𝑗
(𝑥

𝑘

𝑘
−𝑀

𝑛
𝑥
𝑘

𝑘
)

+ 𝑟
𝑗
(𝑀

𝑛
𝑥
𝑘

𝑘
−𝑀

𝑛
𝑥
𝑘


𝑘
) + 𝑟

𝑗
(𝑀

𝑛
𝑥
𝑘


𝑘
 − 𝑥

𝑘


𝑘
)

≤ 2 sup
ℎ∈N

𝑟
𝑗
(𝑥

ℎ
−𝑀

𝑛
𝑥
ℎ
)

+ 𝑟
𝑗
(𝑀

𝑛
𝑥
𝑘

𝑘
−𝑀

𝑛
𝑥
𝑘


𝑘
) ,

(80)

with sup
ℎ∈N 𝑟𝑗(𝑥ℎ − 𝑀

𝑛
𝑥
ℎ
) → 0 as 𝑛 → ∞. So, there is

𝑛
0
∈ N such that sup

ℎ∈N 𝑟𝑗(𝑥ℎ−𝑀𝑛
𝑥
ℎ
) < 𝜀/4 for every 𝑛 ≥ 𝑛

0
.

But, {𝑀
𝑛
0

𝑥
𝑘

𝑘
}
∞

𝑘=1
converges in𝑋 and, hence, there is also 𝑘

0
∈

N such that 𝑟
𝑗
(𝑀

𝑛
0

𝑥
𝑘

𝑘
− 𝑀

𝑛
0

𝑥
𝑘


𝑘
 ) < 𝜀/2 for all 𝑘, 𝑘 ≥ 𝑘

0
. It

follows that 𝑟
𝑗
(𝑥

𝑘

𝑘
− 𝑥

𝑘


𝑘
 ) < 𝜀 whenever 𝑘, 𝑘 ≥ 𝑘

0
. By the

arbitrariness of 𝑗 ∈ N and 𝜀 > 0 this means that {𝑥𝑘
𝑘
}
∞

𝑘=1
is

a Cauchy sequence in 𝑋 and so it converges in 𝑋. Since 𝑋
is a Fréchet space, this shows that Fix(𝑇) is a Fréchet-Montel
space.

Proposition 37. Let 𝑋 be a prequojection Fréchet space and
𝑇 ∈ L(𝑋) be a quasi-Montel operator. If 𝜏

𝑠
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) =

0, then (𝐼 − 𝑇)(𝑋) is closed.

Proof. By Theorem 35 the operator 𝑇 is uniformly mean
ergodic. Also 𝜏

𝑏
-lim

𝑛→∞
(𝑇

𝑛

/𝑛) = 0. By [6,Theorem 3.5] this
is equivalent to (𝐼 − 𝑇)(𝑋) being closed in𝑋.
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