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Suppose𝑚, 𝑛 ≥ 2 are positive integers. LetT
𝑛
be the space of all 𝑛 × 𝑛 complex upper triangular matrices, and let 𝜙 be an injective

linear map onT
𝑚
⊗T
𝑛
. Then 𝜙(𝐴⊗𝐵) is an idempotent matrix inT

𝑚
⊗T
𝑛
whenever𝐴⊗𝐵 is an idempotent matrix inT

𝑚
⊗T
𝑛

if and only if there exists an invertible matrix 𝑃 ∈ T
𝑚
⊗T
𝑛
such that 𝜙(𝐴⊗𝐵) = 𝑃(𝜉

1
(𝐴)⊗𝜉

2
(𝐵))𝑃

−1

, ∀𝐴 ∈ T
𝑚
, 𝐵 ∈ T

𝑛
, or when

𝑚 = 𝑛, 𝜙(𝐴 ⊗ 𝐵) = 𝑃(𝜉
1
(𝐵) ⊗ 𝜉

2
(𝐴))𝑃

−1

, ∀𝐴 ∈ T
𝑚
, 𝐵 ∈ T

𝑚
, where 𝜉

1
([𝑎
𝑖𝑗
]) = [𝑎

𝑖𝑗
] or 𝜉
1
([𝑎
𝑖𝑗
]) = [𝑎

𝑚−𝑖+1,𝑚−𝑗+1
] and 𝜉

2
([𝑏
𝑖𝑗
]) = [𝑏

𝑖𝑗
]

or 𝜉
2
([𝑏
𝑖𝑗
]) = [𝑏

𝑛−𝑖+1,𝑛−𝑗+1
].

1. Introduction

Suppose𝑚, 𝑛 ≥ 2 are positive integers. LetM
𝑛
be the space of

all 𝑛 × 𝑛 complex matrices, and letT
𝑛
be all upper triangular

inM
𝑛
. For𝐴 ∈ M

𝑚
, 𝐵 ∈ M

𝑛
, we denote by𝐴⊗𝐵 their tensor

product (a.k.a. Kronecker product).
Linear preserver problem is a hot area in matrix and

operator theory; there aremany results about this area (see [1–
14]). Specially, the idempotence preservers and the rank one
preservers play an important role (see [1, 2]); therefore, it is
meaningful to study the idempotence preservers. Chan et al.
[3] first characterize linear transformations onM

𝑛
preserving

idempotent matrices. Šemrl [4] applying projective geometry
gives the form of transformations on rank-1 idempotents.
Tang et al. [5] investigate injective linear idempotence pre-
servers onT

𝑛
.

In quantum information science, quantum states of a
system with 𝑛 physical states are represented as density
matrices, that is, positive semidefinite matrices with trace
one. If 𝐴 ∈ M

𝑚
and 𝐵 ∈ M

𝑛
are two quantum states in

two quantum systems, then 𝐴 ⊗ 𝐵 describes a joint state in
bipartite systemM

𝑚
⊗M
𝑛
. Recently, many researchers con-

sider the problem combining linear preserver problem with

quantum information science. They determine the structure
of linear maps on M

𝑚
⊗ M
𝑛
by using information only

about the images of matrices possessing tensor product form.
One can see [15–18] and their references for some background
on linear preserver problems on tensor spaces arising in
quantum information science.

Inspired by the above, the purpose of this paper is to study
injective linear maps 𝜙 on T

𝑚
⊗ T
𝑛
satisfying 𝜙(𝐴 ⊗ 𝐵)

is an idempotent matrix whenever 𝐴 ⊗ 𝐵 is an idempotent
matrix inT

𝑚
⊗T
𝑛
. If we remove the assumption that map is

injective, then 𝜙may have various forms as follows.

Example 1. 𝐴 ⊗ 𝐵 → 𝑎
11
𝐼
𝑚

⊗ 𝐵 is a linear idempotent
preserver onT

𝑚
⊗T
𝑛
.

Example 2. 𝐴 ⊗ 𝐵 → 𝑎
11
(𝐸
(𝑚)

11
+ 𝐸
(𝑚)

22
) ⊗ (𝑏
11
𝐸
(𝑛)

11
+ 𝑏
12
𝐸
(𝑛)

12
+

𝑏
22
𝐸
(𝑛)

22
) is a linear idempotent preserver onT

𝑚
⊗T
𝑛
.

We end this section by introducing some notations which
will be used in the following sections. Let C be the complex
field, 𝐼

𝑘
the 𝑘 × 𝑘 identity matrix, 0 the zero matrix whose

order is omitted in different matrices just for simplicity, and
𝑋
𝑡 (resp., rank𝑋) the transpose (resp., rank) of 𝑋. 𝐸(𝑛)

𝑖𝑗
,
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∀𝑖, 𝑗 ∈ [1, 𝑛] stands for the 𝑛 × 𝑛 matrix with 1 at the
(𝑖, 𝑗)th entry and 0 otherwise. Denote by 𝐽

𝑘
(also 𝐽) thematrix

𝐸
(𝑘)

1,𝑘
+ 𝐸
(𝑘)

2,𝑘−1
+ ⋅ ⋅ ⋅ + 𝐸

(𝑘)

𝑘,1
. Clearly, if 𝐴 = [𝑎

𝑖𝑗
] ∈ T

𝑛
, then

𝐽𝐴
𝑡

𝐽 = [𝑎
𝑛−𝑗+1,𝑛−𝑖+1

] ∈ T
𝑛
. For positive integers 𝑛

1
and 𝑛

2

with 𝑛
1
< 𝑛
2
, let [𝑛

1
, 𝑛
2
] be the set of all integers between 𝑛

1

and 𝑛
2
. For any (𝑖, 𝑗) ∈ [1,𝑚] × [1, 𝑛], we define 𝜌 by

𝜌 (𝑖, 𝑗) = (𝑖 − 1) 𝑛 + 𝑗. (1)

For any 𝑘 ∈ [1,𝑚𝑛], we define 𝜎(𝑘) ∈ [1,𝑚] and 𝜏 (𝑘) ∈ [1, 𝑛]
such that 𝑘 = (𝜎(𝑘) − 1)𝑛 + 𝜏(𝑘) (it is easy to see that 𝜎 and 𝜏
are well defined). It is easy to see that

𝐸
(𝑚)

𝑟𝑠
⊗ 𝐸
(𝑛)

𝑢V = 𝐸
(𝑚𝑛)

(𝑟−1)𝑛+𝑢,(𝑠−1)𝑛+V = 𝐸
(𝑚𝑛)

𝜌(𝑟,𝑢),𝜌(𝑠,V), (2)

𝐸
(𝑚𝑛)

𝑖𝑗
= 𝐸
(𝑚)

𝜎(𝑖)𝜎(𝑗)
⊗ 𝐸
(𝑛)

𝜏(𝑖)𝜏(𝑗)
. (3)

We define a partial ordering of [1, 𝑚]×[1, 𝑛] by (𝑎, 𝑏) ≤ (𝑐, 𝑑)

if and only if 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑. We say that (𝑎, 𝑏) and (𝑐, 𝑑) are
comparable, if (𝑎, 𝑏) ≤ (𝑐, 𝑑) or (𝑐, 𝑑) ≤ (𝑎, 𝑏).

2. Preliminary Results

We need the form of injective linear idempotence preserver
onT
𝑛
, which was obtained in [5].

Lemma 3 (see [5, Theorem 1]). Let 𝜓 be an injective linear
map on T

𝑛
. Then 𝜓 (𝑋) is an idempotent matrix in T

𝑛

whenever𝑋 is an idempotent matrix inT
𝑛
if and only if there

exists an invertible matrix 𝑃 ∈ T
𝑛
such that

𝜓 (𝑋) = 𝑃𝜉 (𝑋) 𝑃
−1

, ∀𝑋 ∈ T
𝑛
, (4)

where 𝜉(𝑋) = 𝑋 or 𝜉(𝑋) = 𝐽𝑋
𝑡

𝐽.

It is clear thatT
𝑚
⊗T
𝑛
⊊ T
𝑚𝑛
. For example, 𝐸(4)

23
∈ T
4

and

𝐸
(4)

23
∉ T
2
⊗T
2
=

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

[

[

[

[

[

[

[

[

[

𝑎
11

𝑎
12

𝑎
13

𝑎
14

0 𝑎
22

0 𝑎
24

0 0 𝑎
33

𝑎
34

0 0 0 𝑎
44

]

]

]

]

]

]

]

]

]

: 𝑎
𝑖𝑗
∈ C

}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}

}

.

(5)

It is easy to see that (𝜎(2), 𝜏(2)) = (1, 2) and (𝜎(3), 𝜏(3)) =

(2, 1). In fact, we can point out the positions of elements
which are inT

𝑚𝑛
\T
𝑚
⊗T
𝑛
.

Lemma 4. 𝜆𝐸(𝑚𝑛)
𝑖𝑗

∈ T
𝑚
⊗ T
𝑛
if and only if (𝜎(𝑖), 𝜏(𝑖)) ≤

(𝜎(𝑗), 𝜏(𝑗)) or 𝜆 = 0.

Proof. It is a direct corollary of (3).

The next Lemma describes the partial ordering we
defined in Section 1, which is useful to prove our main
Theorem.

Lemma 5 (see [19, Theorem 1]). Let 𝑚, 𝑛 ≥ 2, and let 𝐴 be
a matrix with 𝑚 rows and 𝑛 columns containing all elements
of [1, 𝑚] × [1, 𝑛]. If every two elements of 𝐴 in the same
row and column are comparable, respectively, then there exist
permutation matrices 𝑈 ∈ M

𝑚
and 𝑉 ∈ M

𝑛
such that

𝑈𝐴𝑉

=

[

[

[

[

[

[

[

[

[

[

[

[

[

(1, 1) (1, 2) ⋅ ⋅ ⋅ (1, 𝑛 − 1) (1, 𝑛)

(2, 1) (2, 2) ⋅ ⋅ ⋅ (2, 𝑛 − 1) (2, 𝑛)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(𝑚 − 1, 1) (𝑚 − 1, 2) ⋅ ⋅ ⋅ (𝑚 − 1, 𝑛 − 1) (𝑚 − 1, 𝑛)

(𝑚, 1) (𝑚, 2) ⋅ ⋅ ⋅ (𝑚, 𝑛 − 1) (𝑚, 𝑛)

]

]

]

]

]

]

]

]

]

]

]

]

]

(I)

or when𝑚 ≥ 3 or 𝑛 ≥ 3

𝑈𝐴𝑉

=

[

[

[

[

[

[

[

[

[

[

[

(𝑚, 𝑛) (1, 2) ⋅ ⋅ ⋅ (1, 𝑛 − 1) (1, 𝑛)

(2, 1) (2, 2) ⋅ ⋅ ⋅ (2, 𝑛 − 1) (2, 𝑛)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(𝑚 − 1, 1) (𝑚 − 1, 2) ⋅ ⋅ ⋅ (𝑚 − 1, 𝑛 − 1) (𝑚 − 1, 𝑛)

(𝑚, 1) (𝑚, 2) ⋅ ⋅ ⋅ (𝑚, 𝑛 − 1) (1, 1)

]

]

]

]

]

]

]

]

]

]

]

(II)

or when𝑚 = 𝑛

𝑈𝐴𝑉

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

(1, 1) (2, 1) ⋅ ⋅ ⋅ (𝑚 − 1, 1) (𝑚, 1)

(1, 2) (2, 2) ⋅ ⋅ ⋅ (𝑚 − 1, 2) (𝑚, 2)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(1, 𝑚 − 1) (2,𝑚 − 1) ⋅ ⋅ ⋅ (𝑚 − 1,𝑚 − 1) (𝑚,𝑚 − 1)

(1,𝑚) (2,𝑚) ⋅ ⋅ ⋅ (𝑚 − 1,𝑚) (𝑚,𝑚)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

(III)

or when𝑚 = 𝑛 ≥ 3

𝑈𝐴𝑉

=

[

[

[

[

[

[

[

[

[

[

[

[

(𝑚,𝑚) (2, 1) ⋅ ⋅ ⋅ (𝑚 − 1, 1) (𝑚, 1)

(1, 2) (2, 2) ⋅ ⋅ ⋅ (𝑚 − 1, 2) (𝑚, 2)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(1, 𝑚 − 1) (2,𝑚 − 1) ⋅ ⋅ ⋅ (𝑚 − 1,𝑚 − 1) (𝑚,𝑚 − 1)

(1,𝑚) (2,𝑚) ⋅ ⋅ ⋅ (𝑚 − 1,𝑚) (1, 1)

]

]

]

]

]

]

]

]

]

]

]

]

.

(IV)
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The following lemmas would make the proof of the main
theorem more concise.

Lemma6. Suppose𝑋 ∈ M
𝑛
is an idempotentmatrix such that

0
𝑠
⊕𝐼
𝑟
⊕0
𝑛−𝑟−𝑠

−𝑋 also is an idempotentmatrix.Then there exists
an idempotent matrix𝑋

𝑟
∈ M
𝑟
such that𝑋 = 0

𝑠
⊕𝑋
𝑟
⊕0
𝑛−𝑟−𝑠

.

Proof. By 𝑋2 = 𝑋 and (0
𝑠
⊕ 𝐼
𝑟
⊕ 0
𝑛−𝑟−𝑠

− 𝑋)
2

= 0
𝑠
⊕ 𝐼
𝑟
⊕

0
𝑛−𝑟−𝑠

− 𝑋, we have

2𝑋 = (0
𝑠
⊕ 𝐼
𝑟
⊕ 0
𝑛−𝑟−𝑠

)𝑋 + 𝑋 (0
𝑠
⊕ 𝐼
𝑟
⊕ 0
𝑛−𝑟−𝑠

) . (6)

Set

𝑋 =

[

[

[

[

[

𝑋
11

𝑋
12

𝑋
13

𝑋
21

𝑋
22

𝑋
23

𝑋
31

𝑋
32

𝑋
33

]

]

]

]

]

, (7)

where𝑋
11
∈ M
𝑠
, 𝑋
22
∈ M
𝑟
. Then (6) implies

2

[

[

[

[

[

𝑋
11

𝑋
12

𝑋
13

𝑋
21

𝑋
22

𝑋
23

𝑋
31

𝑋
32

𝑋
33

]

]

]

]

]

=

[

[

[

[

[

0 𝑋
12

0

𝑋
21

2𝑋
22

𝑋
23

0 𝑋
32

0

]

]

]

]

]

. (8)

Hence, 𝑋 = 0
𝑠
⊕ 𝑋
22

⊕ 0
𝑛−𝑟−𝑠

; therefore, the lemma holds.

Lemma 7. Let 𝑋 ∈ T
𝑚
⊗T
𝑛
be an idempotent matrix such

that 𝐸(𝑚)
𝑖𝑖

⊗ 𝐼
𝑛
− 𝑋 also is an idempotent matrix. Then there

exists an idempotent 𝑌 ∈ T
𝑛
such that 𝑋 = 𝐸

(𝑚)

𝑖𝑖
⊗ 𝑌.

Proof. The proof is similar to that of Lemma 6.

Lemma 8. Suppose 𝑟, 𝑠 ∈ [1, 𝑛 − 1]. If for any 𝜆 ∈ C, 𝐼
𝑟
⊕

0
𝑛−𝑟

+𝜆𝑋 and 0
𝑟
⊕𝐼
𝑠
⊕0
𝑛−𝑟−𝑠

+𝜆𝑋 are idempotent inT
𝑛
, then

X = [

0
𝑟
𝑋
1

0 0
𝑠

] ⊕ 0
𝑛−𝑟−𝑠

. (9)

Proof. It follows from 𝐼
𝑟
⊕ 0
𝑛−𝑟

+ 𝜆𝑋, ∀𝜆 ∈ C is idempotent
that

(𝐼
𝑟
⊕ 0
𝑛−𝑟

)𝑋 + 𝑋 (𝐼
𝑟
⊕ 0
𝑛−𝑟

) = 𝑋. (10)

Let

𝑋 =
[

[

[

𝑋
𝑟
𝑋
1

𝑋
2

0 𝑋
𝑠

𝑋
3

0 0 𝑋
𝑛−𝑟−𝑠

]

]

]

, (11)

where𝑋
𝑟
∈ T
𝑟
,𝑋
𝑠
∈ T
𝑠
, then (10) implies

[

[

[

[

[

2𝑋
𝑟
𝑋
1
𝑋
2

0 0 0

0 0 0

]

]

]

]

]

=

[

[

[

[

[

𝑋
𝑟
𝑋
1

𝑋
2

0 𝑋
𝑠

𝑋
3

0 0 𝑋
𝑛−𝑟−𝑠

]

]

]

]

]

. (12)

Hence, 𝑋
𝑟
= 0, 𝑋

𝑠
= 0, 𝑋

𝑛−𝑟−𝑠
= 0, 𝑋

3
= 0. Similarly, from

0
𝑟
⊕ 𝐼
𝑠
⊕ 0
𝑛−𝑟−𝑠

+ 𝜆𝑋 being idempotent, we have𝑋
2
= 0.

Lemma 9 (see [6, Page 62, Exercise 1]). Suppose𝐴
1
, . . . , 𝐴

𝑘
∈

M
𝑛
are idempotent matrices such that, for any 𝑖 ̸= 𝑗 ∈ [1, 𝑘],

𝐴
𝑖
+ 𝐴
𝑗
is idempotent. Let 𝑟

𝑖
= rank𝐴

𝑖
. Then there exists an

invertible matrix 𝑃 ∈ M
𝑛
such that

𝐴
𝑖
= 𝑃 diag (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) 𝑃−1, (13)

where diag (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) is the diagonalmatrix in
which all diagonal entries are zero except those in the (𝑟

1
+⋅ ⋅ ⋅+

𝑟
𝑖−1

+ 1)st to the (𝑟
1
+ ⋅ ⋅ ⋅ + 𝑟

𝑖
)th rows.

Similar to Lemma 9, we have the following.

Lemma 10. Let 𝐴
1
, . . . , 𝐴

𝑚𝑛
∈ T
𝑚
⊗ T
𝑛
be idempotent

matrices of rank-1 such that for any 𝑖 ̸= 𝑗 ∈ [1,𝑚𝑛], 𝐴
𝑖
+ 𝐴
𝑗
is

idempotent. Then there exist a permutation 𝜋 on [1, 𝑚𝑛] and
an invertible matrix 𝑃 ∈ T

𝑚
⊗T
𝑛
such that

𝐴
𝑖
= 𝑃𝐸
(𝑚𝑛)

𝜋(𝑖)𝜋(𝑖)
𝑃
−1

, 𝑖 = 1, . . . , 𝑚𝑛. (14)

Proof. By𝐴
𝑖
∈ T
𝑚
⊗T
𝑛
being an idempotentmatrix of rank-

1, we can assume

𝐴
𝑖
= 𝐸
(𝑚𝑛)

𝜋(𝑖)𝜋(𝑖)
+ 𝐵
𝑖
, 𝑖 = 1, . . . , 𝑚𝑛, (15)

where 𝐵
𝑖
∈ T
𝑚
⊗ T
𝑛
with zero diagonal entries. It follows

from 𝐴
𝑖
+ 𝐴
𝑗
, ∀𝑖 ̸= 𝑗 being is idempotent that 𝜋(𝑖) ̸= 𝜋(𝑗),

∀𝑖 ̸= 𝑗. Hence, 𝜋 is a permutation on [1, 𝑚𝑛]. By 𝐴2
𝜋
−1

(1)
=

𝐴
𝜋
−1

(1)
, we can see 𝐴

𝜋
−1

(1)
= 𝐸
(𝑚𝑛)

11
+ Σ
(𝑚𝑛)

𝑘=2
𝜆
1𝑘
𝐸
(𝑚𝑛)

1𝑘
. Let

𝑃
1
= 𝐼
𝑚𝑛

− Σ
(𝑚𝑛)

𝑘=2
𝜆
1𝑘
𝐸
(𝑚𝑛)

1𝑘
∈ T
𝑚
⊗ T
𝑛
; then 𝑃

−1

1
= 𝐼
𝑚𝑛

+

Σ
(𝑚𝑛)

𝑘=2
𝜆
1𝑘
𝐸
(𝑚𝑛)

1𝑘
and

𝐴
𝜋
−1

(1)
= 𝑃
1
𝐸
(𝑚𝑛)

11
𝑃
−1

1
. (16)

By 𝐴
𝜋
−1

(1)
+ 𝐴

𝜋
−1

(2)
being idempotent, we obtain

𝑃
−1

1
𝐴
𝜋
−1

(2)
𝑃
1

= 𝐸
(𝑚𝑛)

22
+ Σ
(𝑚𝑛)

𝑘=3
𝜆
2𝑘
𝐸
(𝑚𝑛)

2𝑘
. Let 𝑃

2
=

𝐼
𝑚𝑛

− Σ
(𝑚𝑛)

𝑘=3
𝜆
2𝑘
𝐸
(𝑚𝑛)

2𝑘
; then

𝐴
𝜋
−1

(1)
= 𝑃
2
𝑃
1
𝐸
(𝑚𝑛)

11
𝑃
−1

1
𝑃
−1

2
,

𝐴
𝜋
−1

(2)
= 𝑃
2
𝑃
1
𝐸
(𝑚𝑛)

22
𝑃
−1

1
𝑃
−1

2
.

(17)

Continuing to do this, we can find 𝑃
3
, . . . , 𝑃

𝑚𝑛
. Let 𝑃 =

𝑃
𝑚𝑛
𝑃
𝑚𝑛−1

⋅ ⋅ ⋅ 𝑃
2
𝑃
1
∈ T
𝑚
⊗T
𝑛
; then

𝐴
𝜋
−1

(𝑖)
= 𝑃𝐸
(𝑚𝑛)

𝑖𝑖
𝑃
−1

, 𝑖 = 1, . . . , 𝑚𝑛. (18)

This completes the proof.

3. The Main Result

Themain result of this paper is as follows.

Theorem 11. Suppose 𝑚, 𝑛 ≥ 2 are positive integers and 𝜙

is an injective linear map on T
𝑚
⊗ T
𝑛
. Then 𝜙 (𝐴 ⊗ 𝐵)
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is an idempotent matrix in T
𝑚
⊗ T
𝑛
whenever 𝐴 ⊗ 𝐵 is an

idempotent matrix in T
𝑚
⊗ T
𝑛
if and only if there exists an

invertible matrix 𝑃 ∈ T
𝑚
⊗T
𝑛
such that

𝜙 (𝐴 ⊗ 𝐵) = 𝑃 (𝜉
1
(𝐴) ⊗ 𝜉

2
(𝐵)) 𝑃

−1

, ∀𝐴 ∈ T
𝑚
, 𝐵 ∈ T

𝑛
,

(i)

or when𝑚 = 𝑛

𝜙 (𝐴 ⊗ 𝐵) = 𝑃 (𝜉
1
(𝐵) ⊗ 𝜉

2
(𝐴)) 𝑃

−1

, ∀𝐴 ∈ T
𝑚
, 𝐵 ∈ T

𝑚
,

(ii)

where, for 𝑖 = 1, 2, 𝜉
𝑖
(𝑋) = 𝑋 or 𝜉

𝑖
(𝑋) = 𝐽𝑋

𝑡

𝐽.

Proof. The sufficiency is obvious. We will prove the necessity
by the following six steps.

Step 1. There exist a permutation 𝜋 on [1, 𝑚𝑛] and an
invertible matrix 𝑃 ∈ T

𝑚
⊗T
𝑛
such that

𝜙 (𝐸
(𝑚𝑛)

𝑘𝑘
) = 𝑃𝐸

(𝑚𝑛)

𝜋(𝑘)𝜋(𝑘)
𝑃
−1

, ∀𝑘 ∈ [1,𝑚𝑛] . (19)

Proof of Step 1. By Lemma 10, we only need to prove that

rank 𝜙 (𝐸(𝑚)
𝑖𝑖

⊗ 𝐸
(𝑛)

𝑗𝑗
) = 1, ∀𝑖 ∈ [1,𝑚] , 𝑗 ∈ [1, 𝑛] . (20)

And for any (𝑖, 𝑗) ̸= (𝑢, V) ∈ [1,𝑚] × [1, 𝑛],

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
) + 𝜙 (𝐸

(𝑚)

𝑢𝑢
⊗ 𝐸
(𝑛)

VV ) is an idempotentmatrix.
(21)

It follows from 𝐸
(𝑚)

11
⊗ 𝐼
𝑛
, . . . , 𝐸

(𝑚)

𝑚𝑚
⊗ 𝐼
𝑛
and (𝐸(𝑚)

𝑖𝑖
+𝐸
(𝑚)

𝑗𝑗
) ⊗

𝐼
𝑛
∀𝑖 ̸= 𝑗 ∈ [1,𝑚] are idempotent matrices in T

𝑚
⊗ T
𝑛
that

𝜙 (𝐸
(𝑚)

11
⊗𝐼
𝑛
), . . . , 𝜙 (𝐸

(𝑚)

𝑚𝑚
⊗𝐼
𝑛
) and 𝜙 (𝐸(𝑚)

𝑖𝑖
⊗𝐼
𝑛
)+𝜙 (𝐸

(𝑚)

𝑗𝑗
⊗𝐼
𝑛
),

∀𝑖 ̸= 𝑗 ∈ [1,𝑚] are idempotent matrices. We obtain by using
Lemma 9 that there exists an invertible matrix 𝑃

1
∈ M
𝑚𝑛

such that

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐼
𝑛
) = 𝑃
1

[

[

[

[

[

0
𝑠
𝑖

0 0

0 𝐼
𝑟
𝑖

0

0 0 0
𝑚𝑛−𝑠−𝑟

𝑖

]

]

]

]

]

𝑃
−1

1
, (22)

where 𝑟
𝑖
= rank 𝜙 (𝐸(𝑚)

𝑖𝑖
⊗ 𝐼
𝑛
) and 𝑠

𝑖
= 𝑟
1
+ ⋅ ⋅ ⋅ + 𝑟

𝑖−1
. For any

𝑗 ∈ [1, 𝑛], it follows from 𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
and 𝐸(𝑚)

𝑖𝑖
⊗ (𝐼
𝑛
− 𝐸
(𝑛)

𝑗𝑗
)

being idempotent matrices in T
𝑚
⊗ T
𝑛
that 𝜙 (𝐸(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
)

and 𝜙 (𝐸(𝑚)
𝑖𝑖

⊗ 𝐼
𝑛
) − 𝜙 (𝐸

(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
) are idempotent matrices;

we obtain by (22) and Lemma 6 that

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
) = 𝑃
1

[

[

[

[

[

0
𝑠
𝑖

0 0

0 𝑋
𝑗

0

0 0 0
𝑚𝑛−𝑠

𝑖

−𝑟
𝑖

]

]

]

]

]

𝑃
−1

1
,

∀𝑗 ∈ [1, 𝑛] ,

(23)

where 𝑋
𝑗
∈ M
𝑟
𝑖

is an idempotent matrix. For any 𝑗 ̸= 𝑙 ∈

[1, 𝑛],𝐸(𝑚)
𝑖𝑖

⊗(𝐸
(𝑛)

𝑗𝑗
+𝐸
(𝑛)

𝑙𝑙
) is an idempotentmatrix inT

𝑚
⊗T
𝑛
;

we have 𝜙 (𝐸(𝑚)
𝑖𝑖

⊗ 𝐸
(𝑛)

𝑗𝑗
) + 𝜙 (𝐸

(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑙𝑙
) is an idempotent

matrix. It follows from (23) that 𝑋
𝑗
+ 𝑋
𝑙
is an idempotent

matrix. If 𝑟
𝑖
< 𝑛, by Lemma 9, we can obtain that there exists

some 𝑗
0
∈ [1, 𝑛] such that 𝑋

𝑗
0

= 0. This, together with
(23), implies 𝜙 (𝐸(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗
0

𝑗
0

) = 0, which is a contradiction
to the fact that 𝜙 is injective. Hence, 𝑟

𝑖
= 𝑛, ∀𝑖 ∈ [1, 𝑛]. By

Lemma 9, there exists an invertible matrix𝑄
𝑖
∈ M
𝑛
such that

𝑋
𝑗
= 𝑄
𝑖
𝐸
(𝑛)

𝑗𝑗
𝑄
−1

𝑖
, ∀𝑗 ∈ [1, 𝑛]. Let 𝑄 = diag (𝑄

1
, . . . , 𝑄

𝑚
); it

follows from (23) that

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
) = 𝑃
1
𝑄(𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
)𝑄
−1

𝑃
−1

1
,

∀𝑖 ∈ [1,𝑚] , 𝑘 ∈ [1, 𝑛] .

(24)

Hence, (20) and (21) hold. This completes the proof of Step 1.
By Step 1, we may assume that for any 𝑖 ∈ [1, 𝑚], 𝑗 ∈

[1, 𝑛],

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
) = 𝐸
(𝑚𝑛)

𝜋(𝜌(𝑖,𝑗))𝜋(𝜌(𝑖,𝑗))
. (25)

From this, together with (3), we can also write

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
) = 𝐸

(𝑚)

𝜎(𝜋(𝜌(𝑖,𝑗)))𝜎(𝜋(𝜌(𝑖,𝑗)))

⊗ 𝐸
(𝑛)

𝜏(𝜋(𝜌(𝑖,𝑗)))𝜏(𝜋(𝜌(𝑖,𝑗)))
.

(26)

Step 2.(i) For any 𝑖 ∈ [1, 𝑚], 𝑗
1
, 𝑗
2

∈ [1, 𝑛], (𝜎(𝜋(𝜌(𝑖,
𝑗
1
))), 𝜏(𝜋(𝜌(𝑖, 𝑗

1
)))) and (𝜎(𝜋(𝜌(𝑖, 𝑗

2
))), 𝜏(𝜋(𝜌(𝑖, 𝑗

2
)))) are

comparable.
(ii) For any 𝑖

1
, 𝑖
2
∈ [1,𝑚], 𝑗 ∈ [1, 𝑛], (𝜎(𝜋(𝜌(𝑖

1
, 𝑗))),

𝜏(𝜋(𝜌(𝑖
1
, 𝑗)))) and (𝜎(𝜋(𝜌(𝑖

2
, 𝑗))), 𝜏(𝜋(𝜌(𝑖

2
, 𝑗)))) are compa-

rable.
Proof of Step 2. (i) Suppose there exist some 𝑖

0
∈ [1,𝑚] and

𝑗
1
< 𝑗
2
∈ [1, 𝑛] such that (𝜎(𝜋(𝜌(𝑖

0
, 𝑗
1
))), 𝜏(𝜋(𝜌(𝑖

0
, 𝑗
1
)))) and

(𝜎(𝜋(𝜌(𝑖
0
, 𝑗
2
))), 𝜏(𝜋(𝜌(𝑖

0
, 𝑗
2
)))) are not comparable. Without

loss of generality, we may assume that

𝜎 (𝜋 (𝜌 (𝑖
0
, 𝑗
1
))) < 𝜎 (𝜋 (𝜌 (𝑖

0
, 𝑗
2
))) ,

𝜏 (𝜋 (𝜌 (𝑖
0
, 𝑗
1
))) > 𝜏 (𝜋 (𝜌 (𝑖

0
, 𝑗
2
))) .

(27)

It follows that

𝜋 (𝜌 (𝑖
0
, 𝑗
1
)) = (𝜎 (𝜋 (𝜌 (𝑖

0
, 𝑗
1
))) − 1) 𝑛 + 𝜏 (𝜋 (𝜌 (𝑖

0
, 𝑗
1
)))

≤ (𝜎 (𝜋 (𝜌 (𝑖
0
, 𝑗
1
))) − 1) 𝑛 + 𝑛

≤ (𝜎 (𝜋 (𝜌 (𝑖
0
, 𝑗
1
)))) 𝑛

≤ (𝜎 (𝜋 (𝜌 (𝑖
0
, 𝑗
2
))) − 1) 𝑛

< (𝜎 (𝜋 (𝜌 (𝑖
0
, 𝑗
2
))) − 1) 𝑛 + 𝜏 (𝜋 (𝜌 (𝑖

0
, 𝑗
2
)))

= 𝜋 (𝜌 (𝑖
0
, 𝑗
2
)) .

(28)
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For any 𝑥 ∈ C, by 𝐸(𝑚)
𝑖
0

𝑖
0

⊗(𝐸
(𝑛)

𝑗
1

𝑗
1

+𝑥𝐸
(𝑛)

𝑗
1

𝑗
2

) and 𝐸(𝑚)
𝑖
0

𝑖
0

⊗(𝐸
(𝑛)

𝑗
2

𝑗
2

+

𝑥𝐸
(𝑛)

𝑗
1

𝑗
2

) being idempotent matrices inT
𝑚
⊗T
𝑛
, we obtain by

(25) that

𝐸
(𝑚𝑛)

𝜋(𝜌(𝑖
0

,𝑗
1

))𝜋(𝜌(𝑖
0

,𝑗
1

))
+ 𝑥𝜙 (𝐸

(𝑚)

𝑖
0

𝑖
0

⊗ 𝐸
(𝑛)

𝑗
1

𝑗
2

) ,

𝐸
(𝑚𝑛)

𝜋(𝜌(𝑖
0

,𝑗
2

))𝜋(𝜌(𝑖
0

,𝑗
2

))
+ 𝑥𝜙 (𝐸

(𝑚)

𝑖
0

𝑖
0

⊗ 𝐸
(𝑛)

𝑗
1

𝑗
2

)

(29)

are idempotent matrices inT
𝑚
⊗T
𝑛
; hence, by Lemma 8

𝜙 (𝐸
(𝑚)

𝑖
0

𝑖
0

⊗ 𝐸
(𝑛)

𝑗
1

𝑗
2

) = 𝜆𝐸
(𝑚𝑛)

𝜋(𝜌(𝑖
0

,𝑗
1

))𝜋(𝜌(𝑖
0

,𝑗
2

))
. (30)

From (27), by Lemma 4, we obtain that 𝜆 = 0, which is a
contradiction to the fact that 𝜙 is injective. Using a similar
method, we may prove (ii) holds. This completes the proof of
Step 2.
Note. It is easy to see that 𝜌 is a bijective map from [1, 𝑚] ×

[1, 𝑛] to [1, 𝑚𝑛] with 𝜌
−1

: 𝑘 → (𝜎(𝑘), 𝜏(𝑘)) from [1, 𝑚𝑛]

to [1, 𝑚] × [1, 𝑛]. This, together with 𝜋, is a permutation on
[1, 𝑚𝑛]; we obtain that

{(𝜎 (𝜋𝜌 (𝑖, 𝑗)) , 𝜏 (𝜋𝜌 (𝑖, 𝑗))) : 𝑖 ∈ [1, 𝑚] , 𝑗 ∈ [1, 𝑛]}

= [1,𝑚] × [1, 𝑛] .

(31)

Let 𝑎
𝑖𝑗
= (𝜎(𝜋𝜌(𝑖, 𝑗)), 𝜏(𝜋𝜌(𝑖, 𝑗))); then [𝑎

𝑖𝑗
] forms an 𝑚 × 𝑛

matrix containing all elements of [1, 𝑚]×[1, 𝑛]. Step 2 implies
that every two elements of [𝑎

𝑖𝑗
] in the same row and column

are comparable, respectively.Thus, applying Lemma 5 to [𝑎
𝑖𝑗
],

we conclude that one of (I)–(IV) holds. If (I) holds, then,
for any but fixed 𝑖 ∈ [1, 𝑚], all (𝜎(𝜋𝜌(𝑖, 𝑗)), 𝜏(𝜋𝜌(𝑖, 𝑗))),
𝑗 = 1, . . . , 𝑛, are in the same row; that is, 𝜎(𝜋(𝜌(𝑖, 𝑗))) =

𝜎(𝜋(𝜌(𝑖, 1))), ∀𝑗 ∈ [1, 𝑛] and {𝜏(𝜋𝜌(𝑖, 𝑗)) : 𝑗 = 1, . . . , 𝑛} =

[1, 𝑛]; hence, it follows from (26) that

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐼
𝑛
) = 𝐸
(𝑚)

𝜎(𝜋(𝜌(𝑖,1)))𝜎(𝜋(𝜌(𝑖,1)))
⊗ 𝐼
𝑛
. (32)

Similarly, if (III) holds, then 𝑚 = 𝑛 and, for any but fixed
𝑗 ∈ [1,𝑚], all (𝜎(𝜋𝜌(𝑖, 𝑗)), 𝜏(𝜋𝜌(𝑖, 𝑗))), 𝑖 = 1, . . . , 𝑚, are in the
same row; that is, 𝜎(𝜋𝜌(𝑖, 𝑗)) = 𝜎(𝜋𝜌(1, 𝑗)), ∀𝑖 ∈ [1,𝑚] and
{𝜏(𝜋𝜌(𝑖, 𝑗)) : 𝑖 = 1, . . . , 𝑚} = [1,𝑚]; hence, it follows from
(26) that

𝜙 (𝐼
𝑚
⊗ 𝐸
(𝑚)

𝑗𝑗
) = 𝐸
(𝑚)

𝜎(𝜋(𝜌(1,𝑗)))𝜎(𝜋(𝜌(1,𝑗)))
⊗ 𝐼
𝑚
. (33)

We claim that (II) and (IV) do not hold. Indeed, if (II)
holds, for convenience, we assume 𝑚 ≥ 3 and we first
consider the special case 𝑈 = 𝐼

𝑚
, 𝑉 = 𝐼

𝑛
in (II) (one can

use a similar method to prove the case of 𝑛 ≥ 3). Thus, by
(26), we have

𝜙 (𝐸
(𝑚)

11
⊗ 𝐸
(𝑚)

11
) = 𝐸
(𝑚)

𝑚𝑚
⊗ 𝐸
(𝑛)

𝑛𝑛
,

𝜙 (𝐸
(𝑚)

𝑚𝑚
⊗ 𝐸
(𝑛)

𝑛𝑛
) = 𝐸
(𝑚)

11
⊗ 𝐸
(𝑚)

11
,

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
) = 𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
, ∀ (𝑖, 𝑗) ̸= (1, 1) , (𝑚, 𝑛) .

(34)

Since, for any 𝑥 ∈ C, (𝐸(𝑚)
11

+ 𝑥𝐸
(𝑚)

12
) ⊗ 𝐸
(𝑛)

11
, 𝐸(𝑚)
11

⊗ (𝐸
(𝑛)

11
+

𝑥𝐸
(𝑛)

12
) and (𝐸

(𝑚)

22
+ 𝑥𝐸
(𝑚)

12
) ⊗ 𝐸
(𝑛)

11
, 𝐸(𝑚)
11

⊗ (𝐸
(𝑛)

22
+ 𝑥𝐸
(𝑛)

12
) are

idempotent matrices inT
𝑚
⊗T
𝑛
, we obtain by (34) that

𝐸
(𝑚)

𝑚𝑚
⊗ 𝐸
(𝑛)

𝑛𝑛
+ 𝑥𝜙 (𝐸

(𝑚)

12
⊗ 𝐸
(𝑛)

11
) ,

𝐸
(𝑚)

𝑚𝑚
⊗ 𝐸
(𝑛)

𝑛𝑛
+ 𝑥𝜙 (𝐸

(𝑚)

11
⊗ 𝐸
(𝑛)

12
) ,

𝐸
(𝑚)

22
⊗ 𝐸
(𝑛)

11
+ 𝑥𝜙 (𝐸

(𝑚)

12
⊗ 𝐸
(𝑛)

11
) ,

𝐸
(𝑚)

11
⊗ 𝐸
(𝑛)

22
+ 𝑥𝜙 (𝐸

(𝑚)

11
⊗ 𝐸
(𝑛)

12
)

(35)

are idempotent matrices in T
𝑚
⊗ T
𝑛
. This, together with

Lemma 8, implies

𝜙 (𝐸
(𝑚)

12
⊗ 𝐸
(𝑛)

11
) = 𝜆𝐸

(𝑚𝑛)

(𝑛+1),𝑚𝑛
̸= 0,

𝜙 (𝐸
(𝑚)

11
⊗ 𝐸
(𝑛)

12
) = 𝜇𝐸

(𝑚𝑛)

2,𝑚𝑛
̸= 0.

(36)

For any 𝑥 ∈ C, (𝐸(𝑚)
11

+ 𝑥𝐸
(𝑚)

12
) ⊗ (𝐸

(𝑛)

11
+𝐸
(𝑛)

12
) is an idempotent

matrix inT
𝑚
⊗T
𝑛
. Thus, by (34) and (36)

𝜙 (𝐸
(𝑚)

12
⊗ 𝐸
(𝑛)

12
) = Σ
𝑘
𝛽
𝑘
𝐸
(𝑚𝑛)

𝑘,𝑚𝑛
. (37)

Similarly, since for any 𝑥 ∈ C, (𝐸(𝑚)
22

+ 𝑥𝐸
(𝑚)

12
) ⊗ 𝐸
(𝑛)

22
, (𝐸(𝑚)
11

+

𝑥𝐸
(𝑚)

12
) ⊗ 𝐸
(𝑛)

22
and 𝐸(𝑚)

22
⊗ (𝐸
(𝑛)

22
+ 𝑥𝐸
(𝑛)

12
), 𝐸(𝑚)
22

⊗ (𝐸
(𝑛)

11
+ 𝑥𝐸
(𝑛)

12
)

are idempotent matrices inT
𝑚
⊗T
𝑛
, we have

𝜙 (𝐸
(𝑚)

12
⊗ 𝐸
(𝑛)

22
) = 𝜆


𝐸
(𝑚𝑛)

2,(𝑛+2)
̸= 0,

𝜙 (𝐸
(𝑚)

22
⊗ 𝐸
(𝑛)

12
) = 𝜇


𝐸
(𝑚𝑛)

(𝑛+1),(𝑛+2)
̸= 0.

(38)

For any 𝑥 ∈ C, (𝐸(𝑚)
22

+ 𝐸
(𝑚)

12
) ⊗ (𝐸

(𝑛)

22
+ 𝐸
(𝑛)

12
) is an idempotent

matrix inT
𝑚
⊗T
𝑛
; we obtain

𝜙 (𝐸
(𝑚)

12
⊗ 𝐸
(𝑛)

12
) = Σ
𝑘
𝛽


𝑘
𝐸
(𝑚𝑛)

𝑘,(𝑛+2)
. (39)

It follows from (37) and (39) that 𝜙 (𝐸(𝑚)
12

⊗𝐸
(𝑛)

12
) = 0, which is

a contradiction to that 𝜙 is injective.
For general case, by (II), we can choose a permutation

𝑝
1
, . . . , 𝑝

𝑚
of [1,𝑚] and a permutation 𝑞

1
, . . . , 𝑞

𝑛
of [1, 𝑛] such

that

(𝜎 (𝜋 (𝜌 (𝑝
1
, 𝑞
1
))) , 𝜏 (𝜋 (𝜌 (𝑝

1
, 𝑞
1
)))) = (𝑚, 𝑛) ,

(𝜎 (𝜋 (𝜌 (𝑝
𝑚
, 𝑞
𝑛
))) , 𝜏 (𝜋 (𝜌 (𝑝

𝑚
, 𝑞
𝑛
)))) = (1, 1) ,

(𝜎 (𝜋 (𝜌 (𝑝
𝑖
, 𝑞
𝑗
))) , 𝜏 (𝜋 (𝜌 (𝑝

𝑖
, 𝑞
𝑗
)))) = (𝑖, 𝑗) ,

∀ (𝑖, 𝑗) ̸= (1, 1) , (𝑚, 𝑛) .

(40)

From this, together with (26), we obtain

𝜙 (𝐸
(𝑚)

𝑝
1

𝑝
1

⊗ 𝐸
(𝑚)

𝑞
1

𝑞
1

) = 𝐸
(𝑚)

𝑚𝑚
⊗ 𝐸
(𝑛)

𝑛𝑛
,

𝜙 (𝐸
(𝑚)

𝑝
𝑚

𝑝
𝑚

⊗ 𝐸
(𝑛)

𝑞
𝑛

𝑞
𝑛

) = 𝐸
(𝑚)

11
⊗ 𝐸
(𝑚)

11
,

𝜙 (𝐸
(𝑚)

𝑝
𝑖

𝑝
𝑖

⊗ 𝐸
(𝑛)

𝑞
𝑗

𝑞
𝑗

) = 𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑗𝑗
, ∀ (𝑖, 𝑗) ̸= (1, 1) , (𝑚, 𝑛) .

(41)
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Using a similar method as the above, we can drive a contra-
diction. Similarly, we may prove (IV) does not hold.

If (32) holds, we may assume

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐼
𝑛
) = 𝐸
(𝑚)

𝑔(𝑖)𝑔(𝑖)
⊗ 𝐼
𝑛
, (42)

where 𝑔 is a permutation on [1, 𝑚]. If (33) holds, we may
assume

𝜙 (𝐼
𝑚
⊗ 𝐸
(𝑚)

𝑖𝑖
) = 𝐸
(𝑚)

𝑔(𝑖)𝑔(𝑖)
⊗ 𝐼
𝑚
. (43)

We next assume (42) to prove (i) of theorem holds and one
can use similarmethods to prove (ii) of theorem if (43) holds.
Step 3. There exists an invertible matrix 𝑃 ∈ T

𝑚
⊗T
𝑛
such

that

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝑋) = 𝑃 (𝐸

(𝑚)

𝑔(𝑖)𝑔(𝑖)
⊗ 𝜉
𝑖
(𝑋)) 𝑃

−1

,

∀𝑖 ∈ [1,𝑚] , 𝑋 ∈ T
𝑛
,

(44)

where, for 𝑖 ∈ [1,𝑚], 𝜉
𝑖
(𝑋) = 𝑋 or 𝜉

𝑖
(𝑋) = 𝐽𝑋

𝑡

𝐽.
Proof of Step 3. For any idempotent matrix 𝐴 ∈ T

𝑛
, since

𝐸
(𝑚)

𝑖𝑖
⊗𝐴 and 𝐸(𝑚)

𝑖𝑖
⊗(𝐼
𝑛
−𝐴) are idempotent matrices inT

𝑚
⊗

T
𝑛
, we obtain by (42) that

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐴) , 𝐸

(𝑚)

𝑔(𝑖)𝑔(𝑖)
⊗ 𝐼
𝑛
− 𝜙 (𝐸

(𝑚)

𝑖𝑖
⊗ 𝐴) (45)

are idempotent matrices inT
𝑚
⊗T
𝑛
. By Lemma 7, we have

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐴) = 𝐸

(𝑚)

𝑔(𝑖)𝑔(𝑖)
⊗ 𝜓
𝑖
(𝐴) , (46)

where 𝜓
𝑖
(𝐴) ∈ T

𝑛
is an idempotent matrix. By the

arbitrariness of𝐴, we can expand𝜓
𝑖
to be a linearmap onT

𝑛
.

Hence

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝑋) = 𝐸

(𝑚)

𝑔(𝑖)𝑔(𝑖)
⊗ 𝜓
𝑖
(𝑋) , ∀𝑋 ∈ T

𝑛
. (47)

It is easy to see that𝜓
𝑖
is injective and preserving idempotents.

Thus, by Lemma 3, there exists an invertible 𝑃
𝑔(𝑖)

∈ T
𝑛
such

that 𝜓
𝑖
(𝑋) = 𝑃

𝑔(𝑖)
𝜉
𝑖
(𝑋)𝑃
−1

𝑔(𝑖)
, where 𝜉

𝑖
(𝑋) = 𝑋 or 𝜉

𝑖
(𝑋) =

𝐽𝑋
𝑡

𝐽. Let 𝑃 = diag (𝑃
1
, . . . , 𝑃

𝑚
) ∈ T

𝑚
⊗T
𝑛
; we complete the

proof of this step.
By Step 3, we may assume

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝑋) = 𝐸

(𝑚)

𝑔(𝑖)𝑔(𝑖)
⊗ 𝜉
𝑖
(𝑋) , ∀𝑖 ∈ [1,𝑚] , 𝑋 ∈ T

𝑛
.

(48)

Step 4. 𝑔 (𝑖) = 𝑖 or 𝑔(𝑖) = 𝑚 − 𝑖 + 1.
Proof of Step 4. If 𝑚 = 2, then this claim is clear. For 𝑚 ≥ 3,
we prove that if 𝑖 < 𝑗 < 𝑘, then 𝑔 (𝑖) < 𝑔 (𝑗) < 𝑔 (𝑘) or 𝑔 (𝑖) >
𝑔 (𝑗) > 𝑔 (𝑘). Otherwise, we assume 𝑔 (𝑖) < 𝑔 (𝑘) < 𝑔 (𝑗)

(other cases can be proven by using similar methods). Since
for any 𝑥 ∈ C, (𝐸(𝑚)

𝑖𝑖
+ 𝑥𝐸
(𝑚)

𝑖𝑗
) ⊗ 𝐼
𝑛
and (𝐸(𝑚)

𝑗𝑗
+ 𝑥𝐸
(𝑚)

𝑖𝑗
) ⊗ 𝐼
𝑛
are

idempotent matrices inT
𝑚
⊗T
𝑛
, we have by using (48) that

𝐸
(𝑚)

𝑔(𝑖)𝑔(𝑖)
⊗ 𝐼
𝑛
+ 𝑥𝜙 (𝐸

(𝑚)

𝑖𝑗
⊗ 𝐼
𝑛
) and 𝐸(𝑚)

𝑔(𝑗)𝑔(𝑗)
⊗ 𝐼
𝑛
+ 𝑥𝜙 (𝐸

(𝑚)

𝑖𝑗
⊗ 𝐼
𝑛
)

are idempotent matrices in 𝑇
𝑚
⊗ 𝑇
𝑛
. This, together with

Lemma 8, implies

𝜙 (𝐸
(𝑚)

𝑖𝑗
⊗ 𝐼
𝑛
) = 𝐸
(𝑚)

𝑔(𝑖)𝑔(𝑗)
⊗ 𝐴 for some𝐴 ̸= 0 ∈ T

𝑛
. (49)

Similarly,

𝜙 (𝐸
(𝑚)

𝑖𝑘
⊗ 𝐼
𝑛
) = 𝐸
(𝑚)

𝑔(𝑖)𝑔(𝑘)
⊗ 𝐵 for some𝐵 ̸= 0 ∈ T

𝑛
,

𝜙 (𝐸
(𝑚)

𝑗𝑘
⊗ 𝐼
𝑛
) = 𝐸
(𝑚)

𝑔(𝑘)𝑔(𝑗)
⊗ 𝐶 for some𝐶 ̸= 0 ∈ T

𝑛
.

(50)

By (𝐸(𝑚)
𝑗𝑗

+𝐸
(𝑚)

𝑖𝑗
+𝐸
(𝑚)

𝑖𝑘
+𝐸
(𝑚)

𝑗𝑘
)⊗𝐼
𝑛
being an idempotent matrix

inT
𝑚
⊗T
𝑛
, we obtain by using (48), (49), and (50) that

𝐸
(𝑚)

𝑔(𝑗)𝑔(𝑗)
⊗ 𝐼
𝑛
+ 𝐸
(𝑚)

𝑔(𝑖)𝑔(𝑗)
⊗ 𝐴 + 𝐸

(𝑚)

𝑔(𝑖)𝑔(𝑘)
⊗ 𝐵 + 𝐸

(𝑚)

𝑔(𝑘)𝑔(𝑗)
⊗ 𝐶

(51)

is an idempotent matrix inT
𝑚
⊗T
𝑛
; that is,

[

[

[

[

[

0 𝐴 𝐵

0 0 𝐶

0 0 𝐼
𝑛

]

]

]

]

]

2

=

[

[

[

[

[

0 𝐴 𝐵

0 0 𝐶

0 0 𝐼
𝑛

]

]

]

]

]

. (52)

This implies 𝐴 = 0, which is a contradiction. Hence, we
complete the proof of Step 4.
Step 5. For any 𝑖 < 𝑗, 𝜉

𝑖
= 𝜉
𝑗
, and there exists 𝜆

𝑖𝑗
̸= 0 such that

𝜙 (𝐸
(𝑚)

𝑖𝑗
⊗ 𝑋) = 𝜆

𝑖𝑗
𝐸
(𝑚)

𝑔(𝑖)𝑔(𝑗)
⊗ 𝜉
𝑖
(𝑋) , ∀𝑖 ̸= 𝑗, 𝑋 ∈ T

𝑛
.

(53)

Proof of Step 5. We prove the case of 𝑔 (𝑖) = 𝑖 (one can use a
similar method to prove the case of 𝑔 (𝑖) = 𝑚 − 𝑖 + 1). Hence,

𝜙 (𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑘𝑘
) = 𝐸
(𝑚)

𝑖𝑖
⊗ 𝐸
(𝑛)

𝑘𝑘
, ∀𝑖 ∈ [1,𝑚] , 𝑘 ∈ [1, 𝑛] .

(54)

Without loss of generality, we may assume 𝑖 = 1, 𝑗 = 2. Since
for any 𝑥 ∈ C, (𝐸(𝑚)

11
+ 𝑥𝐸
(𝑚)

12
) ⊗ 𝐸
(𝑛)

𝑘𝑘
and (𝐸(𝑚)

22
+ 𝑥𝐸
(𝑚)

12
) ⊗ 𝐸
(𝑛)

𝑘𝑘

are idempotent matrices inT
𝑚
⊗T
𝑛
, we obtain by (54) that

𝐸
(𝑚)

11
⊗𝐸
(𝑛)

𝑘𝑘
+𝑥𝜙 (𝐸

(𝑚)

12
⊗𝐸
(𝑛)

𝑘𝑘
) and𝐸(𝑚)

22
⊗𝐸
(𝑛)

𝑘𝑘
+𝑥𝜙 (𝐸

(𝑚)

12
⊗𝐸
(𝑛)

𝑘𝑘
) are

idempotentmatrices in𝑇
𝑚
⊗𝑇
𝑛
.This, together with Lemma 8,

implies 𝜙(𝐸(𝑚)
12

⊗ 𝐸
(𝑛)

𝑘𝑘
) = 𝜆
𝑘
𝐸
(𝑚)

12
⊗ 𝐸
(𝑛)

𝑘𝑘
, where 𝜆

𝑘
̸= 0. Let Λ =

diag (𝜆
1
, . . . , 𝜆

𝑚
); then

𝜙 (𝐸
(𝑚)

12
⊗ 𝐼
𝑛
) =

[

[

0 Λ

0 0

]

]

⊕ 0. (55)

Let𝑄 = [
𝐼
𝑚

−Λ

0 𝐼
𝑚

]⊕𝐼
(𝑚−2)𝑛

∈ T
𝑚
⊗T
𝑛
; by (55), one can obtain

𝜙 ((𝐸
(𝑚)

11
+ 𝐸
(𝑚)

12
) ⊗ 𝐼
𝑛
) =

[

[

𝐼
𝑛
Λ

0 0

]

]

⊕ 0

= 𝑄 (𝐸
(𝑚)

11
⊗ 𝐼
𝑛
)𝑄
−1

,

𝜙 ((𝐸
(𝑚)

22
− 𝐸
(𝑚)

12
) ⊗ 𝐼
𝑛
) =

[

[

0 −Λ

0 𝐼
𝑛

]

]

⊕ 0

= 𝑄 (𝐸
(𝑚)

22
⊗ 𝐼
𝑛
)𝑄
−1

.

(56)
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Let 𝐹
1
= 𝐸
(𝑚)

11
+ 𝐸
(𝑚)

12
, 𝐹
2
= 𝐸
(𝑚)

22
− 𝐸
(𝑚)

12
. Then, (56) turn into

𝜙 (𝐹
𝑖
⊗ 𝐼
𝑛
) = 𝑄 (𝐸

(𝑚)

𝑖𝑖
⊗ 𝐼
𝑛
)𝑄
−1

, 𝑖 = 1, 2. (57)

By (57), using a similar method to Step 3, one can obtain

𝜙 (𝐹
𝑖
⊗ 𝑋) = 𝑄 (𝐸

(𝑚)

𝑖𝑖
⊗ 𝜁
𝑖
(𝑋))𝑄

−1

, ∀𝑋 ∈ T
𝑛
, 𝑖 = 1, 2,

(58)

where 𝜁
𝑖
(𝑋) = 𝑋 or 𝜁

𝑖
(𝑋) = 𝐽𝑋

𝑡

𝐽. Hence

𝜙 (𝐹
1
⊗ 𝑋) =

[

[

𝐼
𝑚

−Λ

0 𝐼
𝑚

]

]

[

[

𝜁
1
(𝑋) 0

0 0

]

]

[

[

𝐼
𝑚

Λ

0 𝐼
𝑚

]

]

=
[

[

𝜁
1
(𝑋) 𝜁

1
(𝑋)Λ

0 0

]

]

, ∀𝑋 ∈ T
𝑛
,

𝜙 (𝐹
2
⊗ 𝑋) =

[

[

𝐼
𝑚

−Λ

0 𝐼
𝑚

]

]

[

[

0 0

0 𝜁
2
(𝑋)

]

]

[

[

𝐼
𝑚

Λ

0 𝐼
𝑚

]

]

=
[

[

0 −Λ𝜁
2
(𝑋)

0 𝜁
2
(𝑋)

]

]

, ∀𝑋 ∈ T
𝑛
.

(59)

Thus,

𝜙 (𝐸
(𝑚)

12
⊗ 𝑋) = 𝜙 (𝐹

1
⊗ 𝑋) − 𝜙 (𝐸

(𝑚)

11
⊗ 𝑋)

=
[

[

𝜁
1
(𝑋) − 𝜉

1
(𝑋) 𝜁

1
(𝑋)Λ

0 0

]

]

,

𝜙 (𝐸
(𝑚)

12
⊗ 𝑋) = 𝜙 (𝐸

(𝑚)

22
⊗ 𝑋) − 𝜙 (𝐹

2
⊗ 𝑋)

=
[

[

0 Λ𝜁
2
(𝑋)

0 𝜉
2
(𝑋) − 𝜁

2
(𝑋)

]

]

.

(60)

This implies

[

[

𝜁
1
(𝑋) − 𝜉

1
(𝑋) 𝜁

1
(𝑋)Λ

0 0

]

]

=
[

[

0 Λ𝜁
2
(𝑋)

0 𝜉
2
(𝑋) − 𝜁

2
(𝑋)

]

]

. (61)

From 𝜁
1
(𝑋)Λ = Λ𝜁

2
(𝑋), ∀𝑋 ∈ T

𝑛
, one can easily see that

Λ = 𝜆
12
𝐼
𝑛

̸= 0 and 𝜁
1
(𝑋) = 𝜁

2
(𝑋); thus 𝜉

1
(𝑋) = 𝜉

2
(𝑋). This

completes the proof of Step 5.
By Step 5, we may assume 𝜉 = 𝜉

𝑖
.

Step 6. For𝑚 ≥ 3 and 𝑖 < 𝑗 < 𝑘, we have 𝜆
𝑖𝑗
𝜆
𝑗𝑘
= 𝜆
𝑖𝑘
.

Proof of Step 6. From (𝐸
(𝑚)

𝑗𝑗
+ 𝐸
(𝑚)

𝑖𝑗
+ 𝐸
(𝑚)

𝑗𝑘
+ 𝐸
(𝑚)

𝑖𝑘
) ⊗ 𝐼
𝑛
is an

idempotent matrix inT
𝑚
⊗T
𝑛
, we have

(𝐸
(𝑚)

𝑔(𝑗)𝑔(𝑗)
+ 𝜆
𝑖𝑗
𝐸
(𝑚)

𝑔(𝑖)𝑔(𝑗)
+ 𝜆
𝑗𝑘
𝐸
(𝑚)

𝑔(𝑗)𝑔(𝑘)
+ 𝜆
𝑖𝑘
𝐸
(𝑚)

𝑔(𝑖)𝑔(𝑘)
) ⊗ 𝐼
𝑛

(62)

is an idempotent matrix inT
𝑚
⊗T
𝑛
. It follows from 𝑔 (𝑖) = 𝑖

or 𝑔 (𝑖) = 𝑚 − 𝑖 + 1 that 𝜆
𝑖𝑗
𝜆
𝑗𝑘
= 𝜆
𝑖𝑘
.

When 𝑔(𝑖) = 𝑖, let 𝑃 = diag (𝜆
12
, . . . , 𝜆

1𝑚
); then

𝜙 (𝐸
(𝑚)

𝑖𝑗
⊗ 𝑋) = 𝑃𝐸

(𝑚)

𝑖𝑗
𝑃
−1

⊗ 𝜉 (𝑋) , ∀𝑖 ≤ 𝑗, 𝑋 ∈ T
𝑛
. (63)

Hence,

𝜙 (𝐴 ⊗ 𝑋) = (𝑃 ⊗ 𝐼
𝑛
) (𝐴 ⊗ 𝜉 (𝑋)) (𝑃 ⊗ 𝐼

𝑛
)
−1

,

∀𝐴 ∈ T
𝑚
, 𝑋 ∈ T

𝑛
.

(64)

When 𝑔(𝑖) = 𝑚 − 𝑖 + 1, let 𝑃 = diag (𝜆
1𝑚
, . . . , 𝜆

12
); then

𝜙 (𝐸
(𝑚)

𝑖𝑗
⊗ 𝑋) = 𝑃𝐸

(𝑚)

𝑛−𝑖+1,𝑛−𝑗+1
𝑃
−1

⊗ 𝜉 (𝑋) , ∀𝑖 ≤ 𝑗, 𝑋 ∈ T
𝑛
.

(65)

Thus

𝜙 (𝐴 ⊗ 𝑋) = (𝑃 ⊗ 𝐼
𝑛
) ((𝐽𝐴

𝑇

𝐽) ⊗ 𝜉 (𝑋)) (𝑃 ⊗ 𝐼
𝑛
)
−1

,

∀𝐴 ∈ T
𝑚
, 𝑋 ∈ T

𝑛
.

(66)

This completes the proof of the theorem.
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