Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 386459, 5 pages
http://dx.doi.org/10.1155/2014/386459

Research Article

The Yang-Laplace Transform for Solving the IVPs with

Local Fractional Derivative

Chun-Guang Zhao,' Ai-Min Yang,”’ Hossein Jafari,’ and Ahmad Haghbin*

! Department of Mathematics, Handan College, Handan, Hebei 056004, China

? College of Science, Hebei United University, Tangshan 063009, China

? College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

* Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar 47415-416, Iran

Correspondence should be addressed to Ai-Min Yang; aimin_heut@163.com

Received 25 October 2013; Accepted 7 November 2013; Published 8 January 2014

Academic Editor: Abdon Atangana

Copyright © 2014 Chun-Guang Zhao et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

The IVPs with local fractional derivative are considered in this paper. Analytical solutions for the homogeneous and
nonhomogeneous local fractional differential equations are discussed by using the Yang-Laplace transform.

1. Introduction

In recent years, the ordinary and partial differential equations
have found applications in many problems in mathematical
physics [1, 2]. Initial value problems (IVPs) for ordinary
and partial differential equations have been developed by
some authors in [3-6]. There are analytical methods and
numerical methods for solving the differential equations,
such as the finite element method [6], the harmonic wavelet
method [7-9], the Adomian decomposition method [10-12],
the homotopy analysis method [13, 14], the homotopy decom-
position method [15, 16], the heat balance integral method
[17, 18], the homotopy perturbation method [19], the varia-
tional iteration method [20], and other methods [21].
Recently, owing to limit of classical and fractional dif-
ferential equations, the local fractional differential equations
have been applied to describe nondifferentiable problems for
the heat and wave in fractal media [22, 23], the structure
relation in fractal elasticity [24], and Fokker-Planck equa-
tion in fractal media [25]. Some methods were utilized to
solve the local fractional differential equations. For example,
the local fractional variation iteration method was used
to solve the heat conduction in fractal media [26, 27].
The local fractional decomposition method for solving the
local fractional diffusion and heat-conduction equations was
considered in [28, 29]. The local fractional series expansion
method for solving the Schrodinger equation with the local

fractional derivative was presented [30]. The Yang-Laplace
transform structured in 2011 [22] was suggested to deal with
local fractional differential equations [31, 32]. The coupling
method for variational iteration method within Yang-Laplace
transform for solving the heat conduction in fractal media
was proposed in [33].

In this paper, our aim is to use the Yang-Laplace trans-
form to solve IVPs with local fractional derivative. The struc-
ture of the paper is as follows. In Section 2, some definitions
and properties for the Yang-Laplace transform are given.
Section 3 is devoted to the solutions for the homogeneous
and nonhomogeneous IVPs with local fractional derivative.
Finally, conclusions are presented in Section 4.

2. Yang-Laplace Transform

In this section we show some definitions and properties for
the Yang-Laplace transform.

The local fractional integral operator is defined as
[22, 23, 26-33]
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where At; = ;. — t;, At = max{At,,Aty,..., AL,
(tjtinl, j = 0,...,N - 1,t, = a,ty = b, is a partition of
the interval [a, b].

As the inverse operator of (1), the local fractional deriva-
tive operator is given by [22, 23, 26-33]
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The Yang-Laplace transform is expressed by [22, 31-33]
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where f(x) is a local fractional continuous function.
The inverse Yang-Laplace transform reads as [22, 31-33]
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where s* = 8% + ic0® and Re(s*) = 8%
Some properties for Yang-Laplace transform are pre-
sented as follows [21, 22, 22-33]:
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3. IVPs with Local Fractional Derivatives

In this section we handle the homogeneous and non-
homogeneous IVPs with local fractional derivative.

3.1. Homogeneous IVPs with Local Fractional Derivative

Example 1. The homogeneous IVPs with local fractional
derivative are expressed by

dZ(xy dtxy
- 2y =0. (17)
d*x d*x Ty

The initial boundary conditions are presented as

yO =1, y90) =0 (18)

From (6) we have
Ly 0} = "L {y )} -
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Hence, making use of (19) and (20), (19) can be written as
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Hence, we obtain
- 1 1
L = 0) = 22
= 5y 0= o (22)
So, making use of (13), we get the solution of (17):
y(x) = E, (—2x%). (23)

The solution of (17) for & = In2/1In 3 is shown in Figure 1.

Example 2. Let us consider the homogeneous IVPs with local
fractional derivative in the form

d40¢

Yy
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subject to initial boundary conditions
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FIGURE 1: Graph of y(x) for« =1n2/In3.
Hence, (27) can be written as
Liy@}-1-Ly{yw)} = (28)

which leads to
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Therefore, we get
-~ 1
y) =1L, {54"‘—1}
~1 (171 1 1 1 1
b )
“l2\2s*—1 2s*+1 s¥41 (30)

= L Fa (5 - LB (57) -

—sma (X ) .

The exact solution of (24) for « = In2/In3 is shown in
Figure 2.
3.2. Nonhomogeneous IVPs with Local Fractional Derivative

Example 3. We now consider the non-homogeneous IVPs
with local fractional derivative
dZOC y
d*x

-y =sin, (x%) (31)
subject to initial boundary conditions

y©0) =0, y90)=1. (32)

By using (6), we have
L {y* @} =Ty 0} -5*y (0) - F90),
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FIGURE 2: Graph of y(x) fora =1n2/1n3.

so that
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So,
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The exact solution of (31) for « = In2/In3 is shown in
Figure 3.

Example 4. The non-homogeneous IVPs with local fractional
derivative are

2a

ary
d*xx
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The initial boundary conditions are

yO =1, y*90) =0. (37)
In view of (6), we give
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FIGURE 3: Graph of y(x) fora« =In2/In3.
= cos, (x")
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2
cos, (x*){E, (x%) [sing (x*) — cos, (x*)] + 1}
2
1
=5 [cos, (x*) — sin, (x¥) + E, (x)].
(39)
The exact solution of (36) for « = In2/In3 is shown in
Figure 4.

4. Conclusions

In this work we have used the Yang-Laplace transform to
handle the homogeneous and non-homogeneous IVPs with
looselocal fractional derivative. Some illustrative examples of
approximate solutions for local fractional IVPs are discussed.
The nondifferentiable solutions for fractal dimension o =
In 2/ In 3 are shown graphically. The obtained results illustrate
that the Yang-Laplace transform is an efficient mathematical
tool to solve the homogeneous and non-homogeneous IVPs
with local fractional derivative.
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