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We consider the stochastic functional differential equations with finite delay driven by 𝐺-Brownian motion. Under the global
Carathéodory conditions we prove the existence and uniqueness, and as an application, we price the European call option when
the underlying asset’s price follows such an equation.

1. Introduction

Motivated by various types of uncertainty and financial
problems, Peng [1] has introduced a new notion of nonlinear
expectation, the so-called 𝐺-expectation (see also Peng et al.
[2–4]), which is associated with the following nonlinear heat
equation:

𝜕

𝜕𝑡
𝑢 (𝑡, 𝑥) = 𝐺 (Δ𝑢) , (𝑡, 𝑥) ∈ [0, +∞) ×R,

𝑢 (0, 𝑥) = 𝜑 (𝑥) ,

(1)

where Δ is Laplacian and the sublinear function 𝐺 is defined
as

𝐺 (𝛼) =
1

2
(𝜎
2
𝛼
+
− 𝜎
2
𝛼
−
) , 𝛼 ∈ R (2)

with two given constants 0 < 𝜎 < 𝜎. Together with the
notion of 𝐺-expectations Peng also introduced the related
𝐺-normal distribution, the 𝐺-Brownian motion, and related
stochastic calculus under 𝐺-expectation, and moreover an
Itô’s formula for the 𝐺-Brownian motion was established.
𝐺-Brownian motion has a very rich and interesting new
structure which nontrivially generalizes the classical one.
Briefly speaking, a 𝐺-Brownian motion 𝐵 is a continu-
ous process with independent stationary increments 𝐵

𝑡+𝑠
−

𝐵
𝑡
being 𝐺-normally distributed under a given sublinear

expectation Ê. A very interesting new phenomenon of 𝐺-
Brownian motion 𝐵 is that its quadratic process ⟨𝐵⟩ is a con-
tinuous process with independent and stationary increments,
but not a deterministic process.

On the other hand, over the past decades, thanks for
the contribution of Black and Scholes [5] and Merton [6]
in the formulation of Black-Scholes model, the trading of
derivatives has become an important area in the world of
finance, and the Black-Scholes formula has been one of the
most important consequences of the study of continuous
time models in finance. Although Black-Scholes model is a
benchmark ofmathematical finance, the significant weakness
of it cannot be ignored since empirical evidence shows
that volatility actually depends on time in a way that is
not predictable and many empirical studies have outlined
that the volatility of underlying asset is highly unlikely to
be constant. This is sometimes pointed out as the reason
for inaccurate predictions made by the Black and Scholes
formula. Therefore, a number of alternative methods have
been studied for the underlying asset model. In this paper,
we consider the effect of the past in the determination of
the fair price of a call option under a sublinear framework.
In particular, we assume that the stock price satisfies a
stochastic functional differential equation (SFDE) with fixed
or variable delay driven by a 𝐺-Brownian motion. We con-
sider call options that can be exercised only at the maturity
date, namely, European call options. Let {𝐵(𝑡), 𝑡 ≥ 0} be
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the 𝐺-Brownian motion with the quadratic variation process
{⟨𝐵⟩(𝑡), 𝑡 ≥ 0}.We consider SFDEwith finite delay of the form

𝑑𝑋 (𝑡) = 𝑏 (𝑡, 𝑋
𝑡
) 𝑑𝑡 + ℎ (𝑡, 𝑋

𝑡
) 𝑑 ⟨𝐵⟩ (𝑡) + 𝜎 (𝑡, 𝑋𝑡) 𝑑𝐵 (𝑡) ,

𝑡 ∈ [𝑡
0
, 𝑇] ,

(3)

where (i) 𝑋
𝑡
= {𝑋(𝑡 + 𝜃); −𝜏 ≤ 𝜃 ≤ 0} and 𝑡 ∈ [𝑡

0
, 𝑇] is

a 𝐶([−𝜏, 0];R)-valued stochastic process; (ii) 𝑏, ℎ, and 𝜎 are
three given functions satisfying some satiable conditions; (iii)
𝜏 > 0 and 0 ≤ 𝑡

0
< ∞ are two given constants.

As an application we price the European call option when
the underlying asset’s price follows a special SFDE. In the case
of classical Brownian motion, this is first studied by Arriojas
et al. [7].

The note is organized as follows. In Section 2, we
present some preliminaries for sublinear expectation and 𝐺-
Brownian motion 𝐵. In Section 3, we express and prove our
main result. In Section 4, we give an application to price the
European call option when the underlying asset price follows
a special SFDE driven by a 𝐺-Brownian motion.

2. Preliminaries

In this section, we briefly recall some basic notations and
results for 𝐺-Brownian motion under 𝐺-framework. For
more aspects on these material we refer to Peng [4], Denis
et al. [8], and Hu and Peng [9]. More works for 𝐺-Brownian
motion can be found in Hu and Li [10], Lin [11], Peng et al.
[12], Song [13], Xu et al. [14], Yan et al. [15, 16], and the
references therein.

2.1. Sublinear Expectation Space. LetΩ ̸= 0 be a given set and
letH be a linear space of real-valued functions defined onΩ
such that 1 ∈ H and |𝑋| ∈ H for all 𝑋 ∈ H. It is important
to note that we can suppose that

𝜑 (𝑋
1
, . . . , 𝑋

𝑑
) ∈H (4)

if 𝑋
𝑖
∈ H, 𝑖 = 1, . . . , 𝑑, for all 𝜑 ∈ 𝐶

𝑏,Lip(R
𝑑
), where

𝐶
𝑏,Lip(R

𝑑
) denotes the space of all bounded and Lipschitz

functions on R𝑑.

Definition 1. A sublinear expectation Ê onH is a functional
with the following properties: for all𝑋, 𝑌 ∈H, we have

(i) monotonicity: if𝑋 ≥ 𝑌, then Ê[𝑋] ≥ Ê[𝑌];

(ii) constant preserving: Ê[𝑐] = 𝑐, for all 𝑐 ∈ R;

(iii) subadditivity: Ê[𝑋] − Ê[𝑌] ≤ Ê[𝑋 − 𝑌];

(iv) positive homogeneity: Ê[𝜆𝑋] = 𝜆Ê[𝑋], for all 𝜆 ≥ 0.

The triple (Ω,H, Ê) is called a sublinear expectation space,
andH is considered as the space of random variables onΩ.

In this paper we throughout let Ω = 𝐶
0
(R+) be the space

of all real-valued continuous functions on [0,∞) with initial
value 0, equipped with the distance

𝜌 (𝜔
1
, 𝜔
2
) =

∞

∑

𝑖=1

2
−𝑖
[(max
𝑡∈[0,𝑖]


𝜔
1

𝑡
− 𝜔
2

𝑡


) ∧ 1] ,

𝜔
1
, 𝜔
2
∈ Ω.

(5)

We denote byB(Ω) the Borel-algebra onΩ. We also denote,
for each 𝑡 ∈ [0,∞),

Ω
𝑡
= {𝜔
⋅∧𝑡
, 𝜔 ∈ Ω} (6)

andF
𝑡
=B(Ω

𝑡
), where 𝑥 ∧ 𝑦 = min{𝑥, 𝑦}. Let L𝑝

𝐺
(Ω) be the

closure ofH with respect to the norm

‖𝑋‖𝑝 = Ê[|𝑋|
𝑝
]
1/𝑝 (7)

with 𝑝 ∈ [1,∞). Clearly, the space L𝑝
𝐺
(Ω) is a Banach space

and the space 𝐶
𝑏
(Ω) of bounded continuous functions on

Ω is a subset of L𝑝
𝐺
(Ω), and moreover, there exists a weakly

compact familyP of probabilitymeasures on (Ω,B(Ω)) such
that

Ê = sup
𝑃∈P

𝐸
𝑃
. (8)

So we can introduce the Choquet capacity 𝐶 by

𝐶 (𝐴) = sup
𝑃∈P

𝑃 (𝐴) , 𝐴 ∈B (Ω) . (9)

Definition 2. A set 𝐴 ⊂ Ω is called polar if 𝐶(𝐴) = 0. A
property is said to hold “quasi sure” (q.s.) if it holds outside a
polar set.

The above family of probability measures 𝑃 allows char-
acterizing the space L𝑝

𝐺
(Ω) as follows:

L
𝑝

𝐺
(Ω) = {𝑋 :B (Ω) = measurable real-valued functions

on Ω such that sup
𝑃∈P

𝐸
𝑃
[|𝑋|
𝑝
] < ∞,

and is 𝐶-quasi surely continuous} .
(10)

Lemma 3 (Denis et al. [8]). Let 1 ≤ 𝑝 < ∞. Consider the sets
L
𝑝

𝐺
(Ω) and L𝑝 =L𝑝/N, where

L
𝑝
= {𝑋 :B (Ω) = measurable real-valued functions

𝑜𝑛 Ω such that Ê (|𝑋|𝑝) = sup
𝑃∈P

𝐸
𝑃
[|𝑋|
𝑝
] < ∞} ,

N = {𝑋 :B (Ω) = measurable real-valued functions
𝑜𝑛 Ω such that 𝑋 = 0 q.s} .

(11)

Then

(i) L𝑝 is a Banach space with respect to the norm ‖ ⋅ ‖
𝑝
;

(ii) L𝑝
𝐺
is the completion of 𝐶

𝑏
(Ω) with respect to the norm

‖ ⋅ ‖
𝑝
.
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Lemma 4 (Li and Peng [17]). For a given 𝑝 ∈ (0, +∞], If the
sequence {𝑋

𝑛
} ⊂ L𝑝 converges to 𝑋 in L𝑝, then there exists a

subsequence {𝑋
𝑛𝑘
} such that 𝑋

𝑛𝑘
converges to𝑋 quasi surely.

Lemma 5 (see [18]). Let 𝜌 : R → R be an increasing and
concave function. Then the inequality

Ê [𝜌 (𝑋)] ≤ 𝜌 (Ê [𝑋]) (12)

holds for allB(Ω)-measurable real-valued functions on Ω.

For𝑋 = (𝑋
1
, . . . , 𝑋

𝑛
) ∈H𝑛, the functional 𝐹

𝑋
defined by

𝐹
𝑋
[𝜑] := Ê [𝜑 (𝑋)] , 𝜑 ∈ 𝐶

𝑏,Lip (R
𝑛
) (13)

is called the distribution of 𝑋 under Ê. In a sublinear expec-
tation space (Ω,H, Ê), a random vector 𝑌 = (𝑌

1
, . . . , 𝑌

𝑛
),

𝑌
𝑖
∈ H, is said to be independent under Ê from another

random vector 𝑋 = (𝑋
1
, . . . , 𝑋

𝑚
), 𝑋
𝑖
∈ H, if for each test

function 𝜑 ∈ 𝐶
𝑏,Lip(R

𝑚+𝑛
) we have

Ê [𝜑 (𝑋, 𝑌)] = Ê [Ê[𝜑 (𝑥, 𝑌)]
𝑥=𝑋

] . (14)

2.2. 𝐺-Brownian Motion. Let 𝜎, 𝜎 be two real numbers with
0 ≤ 𝜎 ≤ 𝜎.

A random variable 𝜉 in a sublinear expectation space
(Ω,H, Ê) is called 𝐺-normal distributed, denoted by 𝜉 ∼

𝑁 (0, [𝜎
2
, 𝜎
2
]), if, for each𝜑 ∈ 𝐶

𝑏,Lip(R), the function defined
by

𝑢 (𝑡, 𝑥) := Ê [𝜑 (𝑥 + √𝑡𝜉)] , (𝑡, 𝑥) ∈ [0,∞) ×R (15)

is the unique viscosity solution of the following nonlinear
heat equation:

𝜕

𝜕𝑡
𝑢 (𝑡, 𝑥) = 𝐺 (Δ𝑢) , (𝑡, 𝑥) ∈ [0, +∞) ×R,

𝑢 (0, 𝑥) = 𝜑 (𝑥) ,

(16)

where Δ is Laplacian and the sublinear function 𝐺 is defined
as

𝐺 (𝛼) =
1

2
(𝜎
2
𝛼
+
− 𝜎
2
𝛼
−
) , 𝛼 ∈ R. (17)

In particular, 𝐸[𝜑(𝜉)] = 𝑢(1, 0) is the distribution of 𝜉.

Example 6 (Peng [1]). Let 𝜉 ∼ 𝑁 (0, [𝜎
2
, 𝜎
2
]). We then have

Ê [𝜑 (𝜉)] =
1

√2𝜋𝜎
∫
R

𝜑 (𝑥) 𝑒
−(1/2𝜎

2
)𝑥
2

𝑑𝑥 (18)

for all convex functions 𝜑 and

Ê [𝜓 (𝜉)] =
1

√2𝜋𝜎
∫
R

𝜓 (𝑥) 𝑒
−(1/2𝜎

2
)𝑥
2

𝑑𝑥 (19)

for all concave functions 𝜓.

Definition 7. A process 𝐵 = {𝐵(𝑡), 𝑡 ≥ 0} ⊂ H in a sublinear
expectation space (Ω,H, Ê) is called a𝐺-Brownianmotion if
the following properties are satisfied:

(i) 𝐵(0) = 0;
(ii) for each 𝑡, 𝑠 ≥ 0, the increment 𝐵(𝑡 + 𝑠) − 𝐵(𝑡)

is 𝑁 (0, [𝜎
2
𝑠, 𝜎
2
𝑠])-distributed and is independent of

(𝐵(𝑡
1
), . . . , 𝐵(𝑡

𝑛
)), for all 𝑛 = 0, 1, 2, . . . and 0 ≤ 𝑡

1
≤

𝑡
2
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑛
≤ 𝑡.

Recall that a process 𝑋 = {𝑋(𝑡) : 0 ≤ 𝑡 ≤ 𝑇} is called a
𝐺-martingale if, for each 0 ≤ 𝑡 ≤ 𝑇, we have 𝑋(𝑡) ∈ L1

𝐺
(Ω
𝑡
)

and

Ê [𝑋 (𝑡) | Ω
𝑠
] = 𝑋 (𝑠) (20)

for all 𝑠 ≤ 𝑡, and moreover, 𝑋 is called a symmetric 𝐺-
martingale if both𝑋 and −𝑋 are 𝐺-martingales.

Remark 8. For simplicity throughout this paper we let 𝜎 =

𝜎
0
> 0, and 𝜎 = 1.

2.3. Itô’s Integral. Wenow recall the definition of Itô’s integral
and quadratic variation process of the 𝐺-Brownian motion.
In Li and Peng [17], a generalized Itô integral and a general-
ized Itô formula with respect to the 𝐺-Brownian motion are
discussed as follows. For arbitrarily fixed 𝑝 ≥ 1 and 𝑇 ∈ R

+
,

we first denote by𝑀𝑝,0
𝐺
([0, 𝑇]) the set of step processes

𝜂
𝑡
(𝜔) =

𝑁

∑

𝑗=1

𝜉
𝑗
(𝜔) 𝐼
[𝑡𝑗−1 ,𝑡𝑗)

(𝑡) , 𝜉
𝑗
(𝜔) ∈ L

𝑝

𝐺
(Ω
𝑡𝑗
) (21)

with 0 = 𝑡
0
< ⋅ ⋅ ⋅ < 𝑡

𝑁
= 𝑇. Moreover, we denote by

𝑀
𝑝

𝐺
([0, 𝑇]) the completion of𝑀𝑝,0

𝐺
([0, 𝑇]) under the norm

𝜂
𝑀
𝑝

𝐺
([0,𝑇])

= (Ê [∫
𝑇

0

𝜂 (𝑠)


𝑝

𝑑𝑠])

1/𝑝

. (22)

Nowwe can define the stochastic integral∫𝑇
0
𝜂(𝑠)𝑑𝐵(𝑠) for 𝜂 ∈

𝑀
𝑝

𝐺
([0, 𝑇]).

Definition 9. For every 𝜂 ∈ 𝑀𝑝,0
𝐺
([0, 𝑇]) with the form (21),

we define Itô’s integral

𝐼 (𝜂) = ∫

𝑡

0

𝜂 (𝑠) 𝑑𝐵 (𝑠) :=

𝑁

∑

𝑗=1

𝜉
𝑗
(𝐵 (𝑠
𝑗
) − 𝐵 (𝑠

𝑗−1
)) . (23)

One can show that 𝐼(𝜂) ∈ L2
𝐺
and the linear mapping (see

Li and Peng [17])

𝐼 : 𝑀
2,0

𝐺
([0, 𝑇]) → L

2

𝐺
(24)

is continuous. Moreover, it can be continuously extended to

𝐼 : 𝑀
2

𝐺
([0, 𝑇]) → L

2

𝐺
. (25)
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And, for all 𝜂 ∈ 𝑀2
𝐺
([0, 𝑇]), we have

Ê(∫
𝑇

0

𝜂 (𝑠) 𝑑𝐵 (𝑠)) = 0,

Ê[(∫
𝑇

0

𝜂(𝑠)𝑑𝐵(𝑠))

2

] ≤ 𝜎
2
Ê [∫
𝑇

0

𝜂
2
(𝑠) 𝑑𝑠] .

(26)

We now recall the definition of quadratic variation process of
the 𝐺-Brownian motion 𝐵.

Definition 10 (quadratic variation). Let 𝜋𝑁
𝑡
= {0 = 𝑡

𝑁

0
< 𝑡
𝑁

1
<

⋅ ⋅ ⋅ < 𝑡
𝑁

𝑁−1
= 𝑡} be a partition of [0, 𝑡] for 𝑡 > 0, such that

𝜇(𝜋
𝑁

𝑡
) := max

𝑗
{𝑡
𝑗
− 𝑡
𝑗−1
} → 0 as 𝑁 → ∞. The quadratic

variation of 𝐺-Brownian motion 𝐵 can be defined as

⟨𝐵⟩ (𝑡) = lim
𝜇(𝜋
𝑁

𝑡
)→0

𝑁−1

∑

𝑘=0

(𝐵 (𝑡
𝑁

𝑘+1
) − 𝐵 (𝑡

𝑁

𝑘
))
2

= 𝐵
2
(𝑡) − 2∫

𝑡

0

𝐵 (𝑠) 𝑑𝐵 (𝑠)

(27)

in L2
𝐺
.

The function 𝑡 → ⟨𝐵⟩(𝑡) is continuous and increasing
outside a polar set. We can define the integral

∫

𝑇

0

𝜂 (𝑡) 𝑑 ⟨𝐵⟩ (𝑡) :=

𝑁

∑

𝑗=1

𝜉
𝑗
(⟨𝐵⟩ (𝑡𝑗) − ⟨𝐵⟩ (𝑡𝑗−1)) (28)

as a map from𝑀
1,0

𝐺
([0, 𝑇]) into L1

𝐺
, and the map is linear and

continuous, so it can be extended continuously to𝑀1
𝐺
([0, 𝑇]).

Finally, we recall some important results in order to get
our desired result. For detailed description of them, please
read the related papers.

Theorem 11 (Itô’s formula). Let 𝐹 ∈ 𝐶
2,1
(R × [0,∞)). One

then has

𝐹 (𝐵 (𝑡) , 𝑡) = 𝐹 (𝐵 (0) , 0) + ∫

𝑡

0

𝜕

𝜕𝑥
𝐹 (𝐵 (𝑠) , 𝑠) 𝑑𝐵 (𝑠)

+ ∫

𝑡

0

𝜕

𝜕𝑡
𝐹 (𝐵 (𝑠) , 𝑠) 𝑑𝑠

+
1

2
∫

𝑡

0

𝜕
2

𝜕𝑥2
𝐹 (𝐵 (𝑠) , 𝑠) 𝑑⟨𝐵⟩ (𝑠)

(29)

for all 𝑡 ≥ 0.

Lemma 12 (see [14]). If there exists an 𝜀
0
> 0 such that

Ê [exp{(1
2
+ 𝜀
0
)∫

𝑇

0

𝐻
2
(𝑠, 𝜔) 𝑑⟨𝐵⟩ (𝑠)}] < ∞ (30)

then the process

𝐵 (𝑡) − ∫

𝑡

0

𝐻(𝑠, 𝜔) 𝑑 ⟨𝐵⟩ (s) , 0 ≤ 𝑡 ≤ 𝑇 (31)

is a 𝐺-Brownian motion under some 𝐺-expectation.

Lemma 13 (see [19]). Let 𝑝 ≥ 2 and 𝜂 = {𝜂(𝑡), 𝑡 ∈ [0, 𝑇]} ∈
𝑀
𝑝

𝐺
([0, 𝑇]). Then

Ê [ sup
𝑠≤𝑢≤𝑡



∫

𝑢

𝑠

𝜂 (𝑟) 𝑑𝐵 (𝑟)



𝑝

] ≤ 𝐶
𝑝
Ê(∫
𝑡

𝑠

𝜂 (𝑟)


2

𝑑𝑟)

𝑝/2

(32)

for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇, where𝐶
𝑝
is a positive constant depending

only on 𝑝.

Lemma 14 (see [19]). Let 𝑝 ≥ 1 and 𝜂 ∈ 𝑀𝑝
𝐺
([0, 𝑇]). Then we

have

Ê [ sup
𝑠≤𝑢≤𝑡



∫

𝑢

𝑠

𝜂 (𝑟) 𝑑 ⟨𝐵⟩ (𝑟)



𝑝

] ≤ (𝑡 − 𝑠)
𝑝−1

Ê∫
𝑡

𝑠

[
𝜂 (𝑟)



𝑝

] 𝑑𝑟

(33)

for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇.

3. Existence and Uniqueness Theorem

In this section, we prove the existence and uniqueness of
solutions to (3) under global Carathéodory conditions. More
works for stochastic differential equations driven by 𝐺-
Brownianmotion can be found in Bai and Lin [18], Chen and
Zhang [20], Gao [19], Lin [21], Lin [22], Ren et al. [23, 24],
and the references therein.

Let 𝜏 > 0 and denote by 𝐶([−𝜏, 0];R) the family of
continuous functions 𝜑 from [−𝜏, 0] to R with the norm

𝜑
 = sup
−𝜏≤𝜃≤0

𝜑 (𝜃)
 . (34)

Given 0 ≤ 𝑡
0
< 𝑇 < ∞ let

𝑏, ℎ, 𝜎 : [𝑡
0
, 𝑇] × 𝐶 ([−𝜏, 0] ;R) → R (35)

be three Borel measurable functions satisfying

𝑏 (⋅, 𝑥) , ℎ (⋅, 𝑥) , 𝜎 (⋅, 𝑥) ∈ 𝑀
2

𝐺
([𝑡
0
, 𝑇]) (36)

for any 𝑥 ∈ 𝐶([−𝜏, 0];R). Consider the following SFDE with
finite delay of the form

𝑑𝑋 (𝑡) = 𝑏 (𝑡, 𝑋
𝑡
) 𝑑𝑡 + ℎ (𝑡, 𝑋

𝑡
) 𝑑⟨𝐵⟩ (𝑡) + 𝜎 (𝑡, 𝑋

𝑡
) 𝑑𝐵 (𝑡) ,

(37)

where 𝑋
𝑡
= {𝑋(𝑡 + 𝜃); −𝜏 ≤ 𝜃 ≤ 0} and 𝑡 ∈ [𝑡

0
, 𝑇] is

regarded as a 𝐶([−𝜏, 0];R)-valued stochastic process. Then
we can impose the initial data:

(i) 𝑋
𝑡0

= 𝜉
𝑡0

= {𝜉
𝑡0
(𝜃); −𝜏 ≤ 𝜃 ≤ 0} is an

F
𝑡0
-measurable, 𝐶([−𝜏, 0];R)-valued random vari-

able such that Ê‖𝜉‖2 < ∞.

Thus we can get the following equivalent form:

𝑋 (𝑡) = 𝜉
𝑡0
(0) + ∫

𝑡

𝑡0

𝑏 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

𝑡0

ℎ (𝑠, 𝑋
𝑠
) 𝑑 ⟨𝐵⟩ (𝑠)

+ ∫

𝑡

𝑡0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝐵 (𝑠)

(38)
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with 𝑡 ∈ [𝑡
0
, 𝑇]. In order to give the existence and uniqueness

we now propose the following assumptions:

(H1) There exists a function𝐻(𝑡, 𝑢) : [𝑡
0
, 𝑇] × R

+
→ R
+
,

such that

(1a) |𝑏(𝑡, 𝑥)|2 ∨ |ℎ(𝑡, 𝑥)|2 ∨ |𝜎(𝑡, 𝑥)|2 ≤ 𝐻(𝑡, |𝑥|2)
(1b) 𝐻(𝑡, 𝑢) is integrable in 𝑡 for each fixed 𝑢 ∈ R

+
,

and is continuous, concave, nondecreasing in 𝑢
for each fixed 𝑡 ∈ [𝑡

0
, 𝑇],

(1c) for any constant𝐾 > 0 the deterministic ODE

𝑑𝑢

𝑑𝑡
= 𝐾𝐻 (𝑡, 𝑢) , 𝑡 ∈ [𝑡

0
, 𝑇] , (39)

has a global solution for any initial value.

(H2) There exists a function Γ(𝑡, 𝑢) : [𝑡
0
, 𝑇] × R

+
→ R

+

such that

(2a)
𝑏 (𝑡, 𝑥) − 𝑏 (𝑡, 𝑦)



2

∨
ℎ (𝑡, 𝑥) − ℎ (𝑡, 𝑦)



2

∨
𝜎 (𝑡, 𝑥) − 𝜎 (𝑡, 𝑦)



2

≤ Γ (𝑡,
𝑥 − 𝑦



2

)

(40)

for all 𝑥, 𝑦 ∈ R and 𝑡 ∈ [𝑡
0
, 𝑇];

(2b) Γ(𝑡, 𝑢) is integrable in 𝑡 for each fixed 𝑢 ∈ R
+

and is continuous, concave, nondecreasing in 𝑢
for each fixed 𝑡 ≥ 𝑡

0
.Moreover, Γ(𝑡, 0) ≡ 0, and if

there exists a nonnegative continuous function
𝑍(𝑡), 𝑡 ∈ [𝑡

0
, 𝑇] satisfies

𝑍 (𝑡) ≤ 𝐷∫

𝑡

𝑡0

Γ (𝑠, 𝑍 (𝑠)) 𝑑𝑠, 𝑡 ∈ [𝑡
0
, 𝑇] , (41)

where𝐷 > 0 is a positive constant, then𝑍(𝑡) ≡ 0
for all 𝑡 ∈ [𝑡

0
, 𝑇].

Example 15 (see [25]). Let Γ(𝑡, 𝑢) = 𝜆(𝑡)𝛼(𝑢), 𝑡 ≥ 𝑡
0
, 𝑢 ≥ 0,

where 𝜆(𝑡) ≥ 0 is integrable and 𝛼 : R
+

→ R
+
is a

continuous, concave,monotone nondecreasing functionwith
𝛼(0) = 0 such that ∫

0
+
(1/𝛼(𝑢))𝑑𝑢 = ∞. Let 𝑢(𝑡) be a solution

of 𝑑𝑢/𝑑𝑡 = 𝜆(𝑡)𝛼(𝑢). If 𝑢(𝑡
0
) = 0, then we get 𝑢(𝑡) ≡ 0 for all

𝑡 ≥ 𝑡
0
. If not, we can suppose without loss of generality that

there exists 𝑡
1
> 𝑡
0
such that 𝑢(𝑡) is positive for all 𝑡 ∈ (𝑡

0
, 𝑡
1
].

Let 𝑡
0
< 𝑡 < 𝑡

1
. Thus,

∫

𝑢(𝑡1)

𝑢(𝑡)

(
1

𝛼 (𝑢)
) 𝑑𝑢 = ∫

𝑡1

𝑡

𝜆 (𝑠) 𝑑𝑠, (42)

which implies a contradiction letting 𝑡 → 𝑡
0
. Therefore,

𝑢(𝑡) ≡ 0 for all 𝑡 ≥ 𝑡
0
.

Ourmain object of this section is to explain and prove the
following theorem.

Theorem 16. Let the assumptions (H1) and (H2) hold. Then,
SFDE (37) brings a unique solution 𝑋 with the above initial
data and𝑋 ∈ L2

𝐺
.

Proof. Define 𝑋0
𝑡0
= 𝜉
𝑡0
, 𝑋0(𝑡) = 𝜉

𝑡0
(0) for 𝑡 ∈ [𝑡

0
, 𝑇], and let

𝑋
𝑛

𝑡0
= 𝜉
𝑡0
for each 𝑛 = 1, 2, . . .. Consider the following Picard

iterations:

𝑋
𝑛
(𝑡) = 𝜉

𝑡0
(0) + ∫

𝑡

𝑡0

𝑏 (𝑠, 𝑋
𝑛−1

𝑠
) 𝑑𝑠 + ∫

𝑡

𝑡0

ℎ (𝑠, 𝑋
𝑛−1

𝑠
) 𝑑 ⟨𝐵⟩ (𝑠)

+ ∫

𝑡

𝑡0

𝜎 (𝑠, 𝑋
𝑛−1

𝑠
) 𝑑𝐵 (𝑠)

(43)

for 𝑛 = 0, 1, 2, . . .. Then we get

𝑋
1
(𝑡) = 𝜉

𝑡0
(0) + ∫

𝑡

𝑡0

𝑏 (𝑠, 𝑋
0

𝑠
) 𝑑𝑠 + ∫

𝑡

𝑡0

ℎ (𝑠, 𝑋
0

𝑠
) 𝑑 ⟨𝐵⟩ (𝑠)

+ ∫

𝑡

𝑡0

𝜎 (𝑠, 𝑋
0

𝑠
) 𝑑𝐵 (𝑠) .

(44)

Step 1.We claim that

Ê
𝑋
𝑛
(𝑡)


2

≤ 𝑢 (𝑡) ,

Ê

𝑋
𝑛
(𝑡) − 𝑋

0
(𝑡)


2

≤ 𝐶

(45)

for all 𝑛 = 1, 2, . . . and all 𝑡 ∈ [𝑡
0
, 𝑇], where 𝐶 is a positive

constant, which points out that there exists a real number𝑅 >
0 depending only on 𝑡

0
and 𝑇 such that

Ê
𝑋
𝑛
(𝑡)


2

≤ 𝑅 (46)

for all 𝑡 ∈ [𝑡
0
, 𝑇] and all 𝑛 = 0, 1, 2, . . ., since𝑢(𝑡) is continuous

on [𝑡
0
, 𝑇].

We will use the induction to prove this. It follows from
Lemmas 5, 13, and 14 and assumptions (1a), (1b) that there
exist three positive constants 𝑘

1
, 𝑘
2
, and 𝑘

3
independent of 𝑡

such that

Ê

𝑋
1
(𝑡)


2

≤ 4Ê

𝜉
𝑡0
(0)


2

+ 4𝑘
1
𝑡Ê∫
𝑡

𝑡0


𝑏 (𝑠, 𝑋

0

𝑠
)


2

𝑑𝑠

+ 4𝑘
2
𝑡Ê∫
𝑡

𝑡0


ℎ (𝑠, 𝑋

0

𝑠
)


2

𝑑𝑠 + 4𝑘
3
Ê∫
𝑡

𝑡0


𝜎 (𝑠, 𝑋

0

𝑠
)


2

𝑑𝑠

≤ 4Ê
𝜉


2

+ 4 (𝑘
1
𝑇 + 𝑘
2
𝑇 + 𝑘
3
) Ê∫
𝑡

𝑡0

𝐻(𝑠,

𝑋
0

𝑠



2

) 𝑑𝑠

≤ 4Ê
𝜉


2

+ 4 (𝑘
1
𝑇 + 𝑘
2
𝑇 + 𝑘
3
) ∫

𝑡

𝑡0

𝐻(𝑠, Ê

𝑋
0

𝑠



2

) 𝑑𝑠

(47)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. Notice that 𝑑𝑢/𝑑𝑡 = 𝐾𝐻(𝑡, 𝑢) has a global

solution with any initial value (𝑡
0
, 𝑢
0
). We can take 𝑢

0
∈ R
+
,

such that 𝑢
0
> 4Ê‖𝜉‖

2, andmay assume that 𝑢(𝑡) = 𝑢(𝑡; 𝑡
0
, 𝑢
0
)
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is the solution of the above ODEwith the initial value (𝑡
0
, 𝑢
0
),

which implies that

𝑢 (𝑡) − Ê

𝑋
1
(𝑡)


2

> 4 (𝑘
1
𝑇 + 𝑘
2
𝑇 + 𝑘
3
)

× ∫

𝑡

𝑡0

(𝐻 (𝑠, 𝑢 (𝑠)) − 𝐻(𝑠, Ê

𝑋
0

𝑠



2

)) 𝑑𝑠 ≥ 0.

(48)

Denote that 𝑝
0
= max{𝑢(𝑡) | 𝑡 ∈ [𝑡

0
, 𝑇]}. Then continuity

of 𝑢(𝑡) on [𝑡
0
, 𝑇] deduces 𝑝

0
< ∞ and

𝐻(𝑠, 𝑢 (𝑠)) ≤ 𝐻 (𝑠, 𝑝
0
) (49)

for each 𝑠 ∈ [𝑡
0
, 𝑇]. Therefore, there exists a positive constant

𝐶 such that

Ê

𝑋
1
(𝑡) − 𝑋

0
(𝑡)


2

≤ 3 (𝑘
1
𝑇 + 𝑘
2
𝑇 + 𝑘
3
) ∫

𝑡

𝑡0

𝐻(𝑠, 𝑝
0
) 𝑑𝑠 ≤ 𝐶.

(50)

We now suppose that the inequalities

Ê

𝑋
𝑘
(𝑡)


2

≤ 𝑢 (𝑡) ,

Ê

𝑋
𝑘
(𝑡) − 𝑋

0
(𝑡)


2

≤ 𝐶

(51)

hold for all 𝑡 ∈ [𝑡
0
, 𝑇] and 𝑘 ≥ 1. Then we have

𝑋
𝑘+1

(𝑡) = 𝜉
𝑡0
(0) + ∫

𝑡

𝑡0

𝑏 (𝑠, 𝑋
𝑘

𝑠
) 𝑑𝑠

+ ∫

𝑡

𝑡0

ℎ (𝑠, 𝑋
𝑘

𝑠
) 𝑑 ⟨𝐵⟩ (𝑠) + ∫

𝑡

𝑡0

𝜎 (𝑠, 𝑋
𝑘

𝑠
) 𝑑𝐵 (𝑠) ,

Ê

𝑋
𝑘+1

(𝑡)


2

≤ 4Ê
𝜉


2

+ 4 (𝑘
1
𝑇 + 𝑘
2
𝑇 + 𝑘
3
)

× ∫

𝑡

𝑡0

𝐻(𝑠, Ê

𝑋
𝑘

𝑠



2

) 𝑑𝑠.

(52)

Since 𝑢
0
> 4Ê‖𝜉‖

2, we obtain that

𝑢 (𝑡) − Ê

𝑋
𝑘+1

(𝑡)


2

> 4 (𝑘
1
𝑇 + 𝑘
2
𝑇 + 𝑘
3
)

× ∫

𝑡

𝑡0

(𝐻 (𝑠, 𝑢 (𝑠)) − 𝐻(𝑠, Ê

𝑋
𝑘

𝑠



2

)) 𝑑𝑠 ≥ 0;

(53)

then Ê|𝑋𝑘+1(𝑡)|
2

≤ 𝑢(𝑡) for all 𝑡 ∈ [𝑡
0
, 𝑇], and

Ê

𝑋
𝑘+1

(𝑡) − 𝑋
0
(𝑡)


2

≤ 3 (𝑘
1
𝑇 + 𝑘
2
𝑇 + 𝑘
3
)

× ∫

𝑡

𝑡0

𝐻(𝑠, 𝑝
0
) 𝑑𝑠 ≤ 𝐶

(54)

for all 𝑡 ∈ [𝑡
0
, 𝑇]. Thus, we obtain our assertion by induction.

Step 2. We claim that {𝑋𝑛(𝑡)} is a Cauchy sequence in L2
𝐺
.

Thus, 𝑋𝑛(𝑡) → 𝑋(𝑡) in L2
𝐺
as 𝑛 → ∞. From Lemmas

5, 13, and 14 and assumptions (2a) and (2b), we get, for all
𝑚 ≥ 𝑛 ≥ 0,

Ê( sup
𝑡0≤V≤𝑡

𝑋
𝑚
(V) − 𝑋

𝑛
(V)


2

)

= Ê( sup
𝑡0≤V≤𝑡



∫

V

𝑡0

(𝑏 (𝑠, 𝑋
𝑚−1

𝑠
) − 𝑏 (𝑠, 𝑋

𝑛−1

𝑠
)) 𝑑𝑠

+ ∫

V

𝑡0

(ℎ (𝑠, 𝑋
𝑚−1

𝑠
) − ℎ (𝑠, 𝑋

𝑛−1

𝑠
)) 𝑑 ⟨𝐵⟩ (𝑠)

+∫

V

𝑡0

(𝜎 (𝑠, 𝑋
𝑚−1

𝑠
) − 𝜎 (𝑠, 𝑋

𝑛−1

𝑠
)) 𝑑𝐵 (𝑠)



2

)

≤ 3𝑘
1
𝑇Ê∫
𝑡

𝑡0


𝑏 (V, 𝑋

𝑚−1

V ) − 𝑏 (V, 𝑋
𝑛−1

V )


2

𝑑V

+ 3𝑘
2
𝑇Ê∫
𝑇

𝑡0


ℎ (V, 𝑋

𝑚−1

V ) − ℎ (V, 𝑋
𝑛−1

V )


2

𝑑V

+ 3𝑘
3
Ê∫
𝑡

𝑡0


𝜎 (V, 𝑋

𝑚−1

V ) − 𝜎 (V, 𝑋
𝑛−1

V )


2

𝑑V

≤ (3𝑘
1
𝑇 + 3𝑘

2
𝑇 + 3𝑘

3
)

× ∫

𝑡

𝑡0

Γ (V, Ê

𝑋
𝑚−1

V − 𝑋
𝑛−1

V



2

) 𝑑V

≤ (3𝑘
1
𝑇 + 3𝑘

2
𝑇 + 3𝑘

3
)

× ∫

𝑡

𝑡0

Γ(V, Ê( sup
𝑡0≤𝑠≤V


𝑋
𝑚−1

(𝑠) − 𝑋
𝑛−1

(𝑠)


2

))𝑑V.

(55)

Let 𝑎(𝑡) = lim
𝑚,𝑛→∞

Ê(sup
𝑡0≤V≤𝑡

|𝑋
𝑚
(V) − 𝑋𝑛(V)|

2
); then we

get

𝑎 (𝑡)

≤ (3𝑘
1
𝑇 + 3𝑘

2
𝑇 + 3𝑘

3
)

⋅ ∫

𝑡

𝑡0

( lim
𝑚,𝑛→∞

Γ(V, Ê( sup
𝑡0≤𝑠≤V


𝑋
𝑚−1

(𝑠) − 𝑋
𝑛−1

(𝑠)


2

)))𝑑V

= (3𝑘
1
𝑇 + 3𝑘

2
𝑇 + 3𝑘

3
)

× ∫

𝑡

𝑡0

Γ(V, lim
𝑚,𝑛→∞

Ê( sup
𝑡0≤𝑠≤V


𝑋
𝑚−1

(𝑠) − 𝑋
𝑛−1

(𝑠)


2

))𝑑V,

(56)

which implies that

𝑎 (𝑡) ≤ (3𝑘
1
𝑇 + 3𝑘

2
𝑇 + 3𝑘

3
) ∫

𝑡

𝑡0

Γ (𝑠, 𝑎 (𝑠)) 𝑑𝑠. (57)
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It follows that 𝑎(𝑡) ≡ 0 for all 𝑡 ∈ [𝑡
0
, 𝑇]. That is,

lim
𝑚,𝑛→∞

Ê( sup
𝑡0≤𝑡≤𝑇

𝑋
𝑚
(𝑡) − 𝑋

𝑛
(𝑡)


2

) = 0. (58)

This shows that the sequence {𝑋𝑛(⋅)} is a Cauchy sequence
in L2
𝐺
, which deduces 𝑋𝑛(⋅) → 𝑋(⋅) in L2

𝐺
as 𝑛 → ∞.

Moreover, it is uniformly convergent on [𝑡
0
, 𝑇], and therefore,

𝑋(𝑡) is continuous.

Step 3.We show that the stochastic process𝑋(𝑡) given above
is a solution of (37). We have

Ê



∫

𝑡

𝑡0

(𝑏 (𝑠, 𝑋
𝑛

𝑠
) − 𝑏 (𝑠, 𝑋

𝑠
)) 𝑑𝑠



2

+ Ê



∫

𝑡

𝑡0

(ℎ (𝑠, 𝑋
𝑛

𝑠
) − ℎ (𝑠, 𝑋

𝑠
)) 𝑑 ⟨𝐵⟩ (𝑠)



2

+ Ê



∫

𝑡

𝑡0

(𝜎 (𝑠, 𝑋
𝑛

𝑠
) − 𝜎 (𝑠, 𝑋

𝑠
)) 𝑑𝐵 (𝑠)



2

≤ 𝑘
1
𝑇Ê∫
𝑡

𝑡0

𝑏 (𝑠, 𝑋
𝑛

𝑠
) − 𝑏 (𝑠, 𝑋

𝑠
)


2

𝑑s

+ 𝑘
2
𝑇Ê∫
𝑡

𝑡0

ℎ (𝑠, 𝑋
𝑛

𝑠
) − ℎ (𝑠, 𝑋

𝑠
)


2

𝑑𝑠

+ 𝑘
3
Ê∫
𝑡

𝑡0

𝜎 (𝑠, 𝑋
𝑛

𝑠
) − 𝜎 (𝑠, 𝑋

𝑠
)


2

𝑑𝑠

≤ (𝑘
1
𝑇 + 𝑘
2
𝑇 + 𝑘
3
) ∫

𝑡

𝑡0

Γ (𝑠, Ê
𝑋
𝑛

𝑠
− 𝑋
𝑠



2

) 𝑑𝑠

(59)

for all 𝑡 ∈ [𝑡
0
, 𝑇] and 𝑛 ≥ 0. Noting that the sequence {𝑋𝑛(𝑡)}

uniformly converges on [𝑡
0
, 𝑇], we get

∫

𝑡

𝑡0

𝑏 (𝑠, 𝑋
𝑛

𝑠
) 𝑑𝑠 → ∫

𝑡

𝑡0

𝑏 (𝑠, 𝑋
𝑠
) 𝑑𝑠,

∫

𝑡

𝑡0

ℎ (𝑠, 𝑋
𝑛

𝑠
) 𝑑 ⟨𝐵⟩ (𝑠) → ∫

𝑡

𝑡0

ℎ (𝑠, 𝑋
𝑠
) 𝑑 ⟨𝐵⟩ (𝑠) ,

∫

𝑡

𝑡0

𝜎 (𝑠, 𝑋
𝑛

𝑠
) 𝑑𝐵 (𝑠) → ∫

𝑡

𝑡0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝐵 (𝑠)

(60)

in L2
𝐺
, as 𝑛 → ∞, which deduces

𝑋(𝑡) = 𝜉
𝑡0
(0) + ∫

𝑡

𝑡0

𝑏 (𝑠, 𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

𝑡0

ℎ (𝑠, 𝑋
𝑠
) 𝑑⟨𝐵⟩ (𝑠)

+ ∫

𝑡

𝑡0

𝜎 (𝑠, 𝑋
𝑠
) 𝑑𝐵 (𝑠) .

(61)

Thanks to Lemmas 13, 14, and 5 and assumptions (1a), (1b),
and (1c), we can also get𝑋(𝑡) ∈ L2

𝐺
for all 𝑡 ∈ [𝑡

0
, 𝑇].

Step 4. Finally, we will show that the uniqueness of the
solution. Let𝑋 and 𝑌 be two solutions existing on [𝑡

0
, 𝑇] and

𝑋(𝑡
0
) = 𝑌(𝑡

0
) = 𝜉
𝑡0
(0). Then, we have

Ê( sup
𝑡0≤V≤𝑡

|𝑋 (V) − 𝑌 (V)|
2
)

= Ê[ sup
𝑡0≤V≤𝑡



∫

V

𝑡0

(𝑏 (𝑠, 𝑋
𝑠
) − 𝑏 (𝑠, 𝑌

𝑠
)) 𝑑𝑠

+ ∫

V

𝑡0

(ℎ (𝑠, 𝑋
𝑠
) − ℎ (𝑠, 𝑌

𝑠
)) 𝑑⟨𝐵⟩ (𝑠)

+∫

V

𝑡0

(𝜎(𝑠, 𝑋
𝑠
) − 𝜎(𝑠, 𝑌

𝑠
))𝑑𝐵(𝑠)



2

]

≤ (3𝑘
1
𝑇 + 3𝑘

2
𝑇 + 3𝑘

3
) ∫

𝑡

𝑡0

Γ (𝑠, Ê
𝑋𝑠 − 𝑌𝑠



2

) 𝑑𝑠

≤ (3𝑘
1
𝑇 + 3𝑘

2
𝑇 + 3𝑘

3
)

× ∫

𝑡

𝑡0

Γ(𝑠, Ê( sup
𝑡0≤V≤𝑠

|𝑋 (V) − 𝑌 (V)|
2
))𝑑𝑠,

(62)

which deduces 𝑋(𝑡) = 𝑌(𝑡) for all 𝑡 ∈ [𝑡
0
, 𝑇] q.s. This shows

that the uniqueness of the solution and the theorem follows.

4. An Application

In this section, we consider an application of the above
theorem. Suppose that the stock price satisfies the following
equation:

𝑑𝑆 (𝑡) = 𝑏 (𝑆
𝑡
) 𝑆 (𝑡) 𝑑𝑡 + 𝜎 (𝑆

𝑡
) 𝑆 (𝑡) 𝑑𝐵 (𝑡)

+ ℎ (𝑆
𝑡
) 𝑆 (𝑡) 𝑑 ⟨𝐵⟩ (𝑡) ,

𝑆
0
= 𝜉 = {𝜉 (𝜃) ; −𝜏 ≤ 𝜃 ≤ 0} ,

(63)

where 𝑆
𝑡
= {𝑆(𝑡 + 𝜃); −𝜏 ≤ 𝜃 ≤ 0, 𝑡 ∈ [0, 𝑇]} is regarded as a

𝐶([−𝜏, 0];R)-valued stochastic process. {⟨𝐵⟩(𝑡), 𝑡 ≥ 0} is the
quadratic variation process of 𝐺-Brownian motion {𝐵(𝑡), 𝑡 ≥
0}.

In the rest of this section, we want to consider a special
case of the above equation. We let the functions

𝑏, 𝜎, ℎ : 𝐶 ([−𝜏, 0] ;R) → R (64)

satisfy the following conditions:

(1) there exists a 𝜀
1
> 0 such that |𝜎(𝑥)| > 𝜀

1
;

(2) |𝑏(𝑥)| > 𝑟, where 𝑟 > 0 denotes the rate of return on a
riskless asset, which is compounded continuously;

(3) there exists a𝑀 > 0, such that |𝑏(𝑥)|∨|𝜎(𝑥)|∨|ℎ(𝑥)| ≤
𝑀.
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Corollary 17. Under the above assumption, the above SDDE
brings a unique solution and

𝑆 (𝑡) = 𝜉 (0) exp{∫
𝑡

0

𝑏 (𝑆V) 𝑑V + ∫
𝑡

0

𝜎 (𝑆V) 𝑑𝐵 (V)

+∫

𝑡

0

[(ℎ (𝑆V))
2

−
1

2
(𝜎 (𝑆V))

2

] 𝑑 ⟨𝐵⟩ (V)} .

(65)

Furthermore, if 𝜉(0) ≥ 0 (𝜉(0) > 0) q.s., then 𝑆(𝑡) ≥ 0 (𝑆(𝑡) >
0) for all 𝑡 ≥ 0 q.s.

Proof. Let 𝜃
0
∈ [−𝜏, 0]. Consider the case 𝑡 ∈ [0, −𝜃

0
], and in

this situation, we have 𝜃
0
≤ 𝑡 + 𝜃

0
≤ 0 and

𝑆
𝑡
= 𝑆 (𝑡 + 𝜃

0
) = 𝜉 (𝑡 + 𝜃

0
) , (66)

which deduces

𝑑𝑆 (𝑡) = 𝑏 (𝜉 (𝑡 + 𝜃
0
)) 𝑆 (𝑡) 𝑑𝑡 + 𝜎 (𝜉 (𝑡 + 𝜃

0
)) 𝑆 (𝑡) 𝑑𝐵 (𝑡)

+ ℎ (𝜉 (𝑡 + 𝜃
0
)) 𝑆 (𝑡) 𝑑 ⟨𝐵⟩ (𝑡) ,

𝑆 (0) = 𝜉 (0) .

(67)

It follows fromTheorem 16 and Itô’s formula that the unique
solution of (67)

𝑆 (𝑡)

= 𝜉 (0) exp{∫
𝑡

0

𝑏 (𝜉 (V + 𝜃
0
)) 𝑑V + ∫

𝑡

0

𝜎 (𝜉 (V + 𝜃
0
)) 𝑑𝐵 (V)

+ ∫

𝑡

0

[(ℎ (𝜉 (V + 𝜃
0
)))
2

−
1

2
(𝜎 (𝜉 (V + 𝜃

0
)))
2

]

× 𝑑 ⟨𝐵⟩ (V) }

(68)

for all 𝑡 ∈ [0, −𝜃
0
]. This implies that 𝑆(𝑡) > 0 for all 𝑡 ∈

[0, −𝜃
0
], when 𝜉(0) > 0 q.s. By a similar argument, it follows

that 𝑆(𝑡) > 0 for all 𝑡 ∈ [−𝜃
0
, −2𝜃
0
] q.s. Therefore 𝑆(𝑡) > 0 for

all 𝑡 ≥ 0 q.s. By induction, we can also get the solution to (67)
as follows:

𝑆 (𝑡)

= 𝜉 (0) exp{∫
𝑡

0

𝑏 (𝑆 (V + 𝜃
0
)) 𝑑V + ∫

𝑡

0

𝜎 (𝑆 (V + 𝜃
0
)) 𝑑𝐵 (V)

+ ∫

𝑡

0

[(ℎ (𝑆 (V + 𝜃
0
)))
2

−
1

2
(𝜎 (𝑆 (V + 𝜃

0
)))
2

]

× 𝑑 ⟨𝐵⟩ (V) }

(69)

for 𝑡 ∈ [0, 𝑇]. Since that equality is true for all −𝜏 ≤ 𝜃
0
≤ 0,

we get our result.

We denote the wealth process by 𝑉(𝑡) and units of the
stock that we hold by 𝛼(𝑡). Thanks to the assumption of self-
financing, we can get

𝑑𝑉 (𝑡) = 𝑟 (𝑉 (𝑡) − 𝛼 (𝑡) 𝑆 (𝑡)) 𝑑𝑡 + 𝛼 (𝑡) 𝑑𝑆 (𝑡)

= 𝑟 (𝑉 (𝑡) − 𝛼 (𝑡) 𝑆 (𝑡)) 𝑑𝑡

+ 𝛼 (𝑡) [𝑏 (𝑆
𝑡
) 𝑆 (𝑡) 𝑑𝑡 + 𝜎 (𝑆

𝑡
) 𝑆 (𝑡) 𝑑𝐵 (𝑡)

+ ℎ (𝑆
𝑡
) 𝑆 (𝑡) 𝑑⟨𝐵⟩ (𝑡)]

(70)

for all 𝑡 ∈ [0, 𝑇]. Let

𝐻(𝑡, 𝜔) =

((𝑟 − 𝑏 (𝑆
𝑡
)) /𝜎
2

0
) − ℎ (𝑆

𝑡
)

𝜎 (𝑆
𝑡
)

. (71)

Then there exists a 𝜀
0
> 0 such that

Ê exp [(1
2
+ 𝜀
0
)∫

𝑇

0

𝐻
2
(𝑡, 𝜔) 𝑑 ⟨𝐵⟩ (𝑡)] < ∞, (72)

which shows that

𝐵 (𝑡) = 𝐵 (𝑡) − ∫

𝑡

0

𝐻(𝑠, 𝜔) 𝑑⟨𝐵⟩ (𝑠) (73)

is 𝐺-Brownian motion under some 𝐺-expectation Ẽ by 𝐺-
Girsanov theorem. Let now Γ(𝑡) = 𝑒−𝑟𝑡; then

𝑑Γ (𝑡) = −𝑟Γ (𝑡) 𝑑𝑡,

𝑑Γ (𝑡) 𝑉 (𝑡) = Γ (𝑡) 𝑑𝑉 (𝑡) + 𝑉 (𝑡) 𝑑Γ (𝑡) + 𝑑Γ (𝑡) 𝑑𝑉 (𝑡)

= − 𝑟Γ (𝑡) 𝑉 (𝑡) 𝑑𝑡 + Γ (𝑡) 𝑑𝑉 (𝑡)

= 𝛼 (𝑡) Γ (𝑡) 𝑆 (𝑡) [(𝑏 (𝑆
𝑡
) − 𝑟) 𝑑𝑡

+ 𝜎 (𝑆
𝑡
) 𝑑𝐵 (𝑡)

+ℎ (𝑆
𝑡
) 𝑑 ⟨𝐵⟩ (𝑡)]

= 𝛼 (𝑡) Γ (𝑡) 𝑆 (𝑡) [ (𝑏 (𝑆
𝑡
) − 𝑟) 𝑑𝑡

+ 𝜎 (𝑆
𝑡
) 𝑑𝐵 (𝑡)

+
𝑟 − 𝑏 (𝑆

𝑡
)

𝜎
2

0

𝑑 ⟨𝐵⟩ (𝑡)]

= 𝛼 (𝑡) Γ (𝑡)𝐷 (𝑡) 𝑆 (𝑡) [𝑑 (𝜎
2

0
𝑡) − 𝑑 ⟨𝐵⟩ (𝑡)]

+ 𝛼 (𝑡) Γ (𝑡) 𝑆 (𝑡) 𝜎 (𝑆
𝑡
) 𝑑𝐵 (𝑡) ,

(74)

where 𝐷(𝑡) = (𝑏(𝑆
𝑡
) − 𝑟)/𝜎

2

0
; we can get that the discounted

wealth process is 𝐺-martingale under some 𝐺-expectation.
Thus, we can obtain that the price of European call option
𝐶(0) is

𝐶 (0) ≤ Ẽ [𝑉 (𝑇) Γ (𝑇)] . (75)
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