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We consider some integral operators defined by analytic functions in the open unit disk and derive new univalence criteria for these
operators, using Kudriasov condition for a function to be univalent.

1. Introduction

Let A be the class of functions 𝑓 which are analytic in the
open unit disk 𝑈 = {𝑧 ∈ C : |𝑧| < 1} of the form

𝑓 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎
𝑛
𝑧𝑛, (1)

normalized by 𝑓(0) = 𝑓(0) − 1 = 0.
We denote byS the subclass ofA consisting of functions

𝑓 ∈ A, which are univalent in 𝑈.
We consider the integral operators

𝐻
𝑛
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)
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1/𝛽

,

𝑇
𝑛
(𝑧) = {𝛽∫

𝑧

0

𝑢𝛽−1(𝑓
1
(𝑢))
𝛾
1

⋅ ⋅ ⋅ (𝑓
𝑛
(𝑢))
𝛾
𝑛

𝑑𝑢}
1/𝛽

,

(2)

for 𝛽, 𝛾
𝑗
being complex numbers, 𝛽 ̸= 0, 𝑗 = 1, 𝑛, and the

functions 𝑓
𝑗
∈ A, 𝑗 = 1, 𝑛.

Some univalence criteria for these integral operators
were studied in [1]. Applying univalence conditions given by
Kudriasov [2] and Pascu [3], we obtain new Kudriasov type
univalence criteria for these two integral operators.

2. Preliminaries

Various generalizations of Becker’s univalence criteria for
analytic functions given in [4] were obtained by many
authors. For example, the result obtained by Pascu in [3]
is also known as an improvement of Becker’s univalence
criteria.This result or other similar generalizations of Becker’s
univalence criteria have been used further to derive new
univalence criteria for integral operators (see, e.g., some
relatively recent works as [1, 5, 6]). In this paper we use Pascu
improvement of Becker’s univalence criteria and also another
univalence condition for a function to be univalent, given
by Kudriasov in [2]. There are also some papers devoted to
univalence criteria that use some Kudriasov type conditions
(see, e.g., the work [1] containing a chapter dedicated to
Kudriasov type univalence conditions and other papers as,
e.g., [7–10]).

The following univalence criteria are given by Kudriasov
for a regular function.

Lemma 1 (see [2]). Let𝑓 be a regular function in𝑈,𝑓(𝑧) = 𝑧+
𝑎
2
𝑧2 + ⋅ ⋅ ⋅ . If



𝑓 (𝑧)

𝑓 (𝑧)


≤ 𝐾, 𝑧 ∈ 𝑈, (3)

for all 𝑧 ∈ 𝑈, where𝐾 ≅ 3.05, the function 𝑓 is univalent in𝑈.
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Remark 2. The constant 𝐾 is a solution of the equation
8[𝑥(𝑥 − 2)3]

1/2

− 3(4 − 𝑥)2 = 12. An approximation of
this solution in MATLAB environment is 3.03902118847875.
However, we call this constant in our further results like
Kudriasov gave it, approximately equal to 3.05.

The improvement of Becker’s univalence condition is
given by Pascu for integral operators as follows.

Lemma 3 (see [3]). Let 𝛼 be a complex number, Re𝛼 > 0, and
the function 𝑓 ∈ A. If

1 − |𝑧|2Re𝛼

Re𝛼



𝑧𝑓 (𝑧)

𝑓 (𝑧)


≤ 1, (4)

for all 𝑧 ∈ 𝑈, then for every complex number 𝛽, Re𝛽 ≥ Re𝛼,
the function

𝐹
𝛽
(𝑧) = [𝛽∫

𝑧

0

𝑢𝛽−1𝑓(𝑢)𝑑𝑢]
1/𝛽

(5)

is regular and univalent in 𝑈.

3. Main Results

Theorem 4. Let 𝛼, 𝛾
𝑗
be complex numbers, Re𝛼 > 0, 𝑗 = 1, 𝑛,

the functions𝑓
𝑗
∈ A,𝑓

𝑗
= 𝑧+𝑎

2𝑗
𝑧2+⋅ ⋅ ⋅ , 𝑗 = 1, 𝑛, 𝑛 ∈ N−{0},

and 𝐾 the positive real number 𝐾 ≅ 3.05.
If



𝑓
𝑗
(𝑧)

𝑓
𝑗
(𝑧)


≤ 𝐾, 𝑧 ∈ 𝑈, 𝑗 = 1, 𝑛, (6)

𝛾1
 +

𝛾2
 + ⋅ ⋅ ⋅ +

𝛾𝑛
 ≤ min {Re𝛼

4
,
1

4
} , (7)

then 𝑓
𝑗
∈ S, 𝑗 = 1, 𝑛, and for every complex number 𝛽, Re𝛽 ≥

Re𝛼, the integral operator𝐻
𝑛
is in the class S.

Proof. Let us consider the function
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The function ℎ
𝑛
is regular in𝑈 and ℎ

𝑛
(0) = ℎ

𝑛
(0) − 1 = 0.

We have
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(9)

for all 𝑧 ∈ 𝑈.
From (9), we obtain further
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(10)

By (6) and Lemma 1, we have 𝑓
𝑗
∈ S, 𝑗 = 1, 𝑛, and hence

we obtain


𝑧𝑓
𝑗
(𝑧)

𝑓
𝑗
(𝑧)


≤
1 + |𝑧|

1 − |𝑧|
, 𝑧 ∈ 𝑈, 𝑗 = 1, 𝑛. (11)

From (10) and (11), we get

1 − |𝑧|2Re𝛼

Re𝛼



𝑧ℎ
𝑛
(𝑧)

ℎ
𝑛
(𝑧)


≤
1 − |𝑧|2Re𝛼

Re𝛼
2

1 − |𝑧|
(
𝛾1
 + ⋅ ⋅ ⋅ +

𝛾𝑛
)

(12)

for all 𝑧 ∈ 𝑈.
Now we consider the following cases.
(1) 0 < Re𝛼 < 1. The function 𝑠 : (0, 1) → R, 𝑠(𝑥) =

1 − 𝑎2𝑥, 𝑥 = Re𝛼, 𝑎 = |𝑧|, (0 ≤ 𝑎 < 1) is increasing and we
obtain

1 − |𝑧|
2Re𝛼 ≤ 1 − |𝑧|

2, 𝑧 ∈ 𝑈. (13)

From (12) and (13), we obtain

1 − |𝑧|2Re𝛼

Re𝛼
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𝑛
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ℎ
𝑛
(𝑧)


≤

4

Re𝛼
(
𝛾1
 + ⋅ ⋅ ⋅ +

𝛾𝑛
) (14)

for all 𝑧 ∈ 𝑈.
Using the hypothesis condition (7), from (14), we have

1 − |𝑧|2Re𝛼

Re𝛼
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𝑛
(𝑧)

ℎ
𝑛
(𝑧)


≤ 1, (15)

for all 𝑧 ∈ 𝑈.
(2) Re𝛼 ≥ 1. We notice that the function

𝑞 : [1,∞) → R, 𝑞 (𝑥) =
1 − 𝑎2𝑥

𝑥
,

𝑥 = Re𝛼, 𝑎 = |𝑧| , (0 ≤ 𝑎 < 1)

(16)

is decreasing function, and we obtain

1 − |𝑧|2Re𝛼

Re𝛼
≤ 1 − |𝑧|

2, 𝑧 ∈ 𝑈. (17)

Using the last inequality in (12), we have

1 − |𝑧|2Re𝛼

Re𝛼
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for all 𝑧 ∈ 𝑈.
Now using the hypothesis condition (7), from (18), we get

1 − |𝑧|2Re𝛼
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𝑛
(𝑧)

ℎ
𝑛
(𝑧)


≤ 1 (19)

for all 𝑧 ∈ 𝑈.
Hence, based on the conditions obtained in (15) and in

(19), applying Lemma 3, we have that𝐻
𝑛
∈ S.
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Theorem 5. Let 𝛼, 𝛾
𝑗
be complex numbers, 𝑗 = 1, 𝑛, Re𝛼 > 0,

the functions 𝑓
𝑗
∈ A, 𝑓

𝑗
(𝑧) = 𝑧 + 𝑎

2𝑗
𝑧2 + ⋅ ⋅ ⋅ , 𝑗 = 1, 𝑛, 𝑛 ∈

N − {0}, and 𝐾 the positive real number, 𝐾 ≅ 3.05.
If



𝑓
𝑗
(𝑧)

𝑓
𝑗
(𝑧)


≤ 𝐾, 𝑧 ∈ 𝑈, 𝑗 = 1, 𝑛, (20)

𝛾1
 +

𝛾2
 + ⋅ ⋅ ⋅ +

𝛾𝑛
 ≤

(2Re𝛼 + 1)(2Re𝛼+1)/(2Re𝛼)

2𝐾
, (21)

then 𝑓
𝑗
∈ S, 𝑗 = 1, 𝑛, and for every complex number 𝛽, Re𝛽 ≥

Re𝛼, the integral operator 𝑇
𝑛
is in the class S.

Proof. By (20) and Lemma 1, we obtain that 𝑓
𝑗
∈ S, 𝑗 = 1, 𝑛.

We consider the function
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The function 𝑝
𝑛
is regular in 𝑈 and 𝑝
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(0) − 1 = 0.

We have
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for all 𝑧 ∈ 𝑈.
Further we obtain

1 − |𝑧|2Re𝛼
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𝑓
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𝑓
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(24)

From (24) and from the Kudriasov condition within the
hypothesis, (20), we have

1 − |𝑧|2Re𝛼

Re𝛼



𝑧𝑝
𝑛
(𝑧)

𝑝
𝑛
(𝑧)


≤ [

1 − |𝑧|2Re𝛼

Re𝛼
|𝑧|]

× (𝐾
𝛾1
 + ⋅ ⋅ ⋅ + 𝐾

𝛾𝑛
) ,

(25)

for all 𝑧 ∈ 𝑈.
Let us consider the function 𝐺 : [0, 1] → R, 𝐺(𝑥) =

((1 − 𝑥2𝑎)/𝑎)𝑥, 𝑥 = |𝑧|, 𝑎 = Re𝛼. We have

max
𝑥∈[0,1]

𝐺 (𝑥) =
2

(2𝑎 + 1)(2𝑎+1)/(2𝑎)
. (26)

By (25), (26), and (21) we obtain

1 − |𝑧|2Re𝛼

Re𝛼



𝑧𝑝
𝑛
(𝑧)

𝑝
𝑛
(𝑧)


< 1, (27)

for all 𝑧 ∈ 𝑈.
Now from (27) and Lemma 3, it results that 𝑇

𝑛
∈ S.

4. Corollaries

Corollary 1. Let 𝛾 be complex number, Re[𝑛(𝛾 − 1) + 1] > 0,
the functions 𝑓

𝑗
∈ A, 𝑗 = 1, 𝑛, 𝑛 ∈ N − {0}, and 𝐾 the positive

real number, 𝐾 ≅ 3.05.
If



𝑓
𝑗
(𝑧)

𝑓
𝑗
(𝑧)


≤ 𝐾, 𝑧 ∈ 𝑈, 𝑗 = 1, 𝑛,

𝑛
𝛾 − 1

 ≤ min{
Re [𝑛 (𝛾 − 1) + 1]

4
,
1

4
} ,

(28)

then 𝑓
𝑗
∈ S, 𝑗 = 1, 𝑛, and the integral operator 𝐼

𝛼,𝑛
defined by

𝐼
𝛼,𝑛
(𝑧)={[𝑛(𝛾 − 1) + 1]∫
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(29)

is in the class S.

Proof. From (29), we have

𝐼
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,
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and for 𝛼 = 𝛽 = 𝑛(𝛾 − 1) + 1, 𝛾
1
= 𝛾
2
= ⋅ ⋅ ⋅ = 𝛾

𝑛
= 𝛾 − 1, from

Theorem 4, we obtain Corollary 1.

Corollary 2. Let 𝛼, 𝛾
𝑗
be complex numbers, 𝑗 = 1, 𝑛, 0 <

Re𝛼 ≤ 1, the functions 𝑓
𝑗
∈ A, 𝑓

𝑗
(𝑧) = 𝑧 + 𝑎

2𝑗
𝑧2 + ⋅ ⋅ ⋅ ,

𝑗 = 1, 𝑛, 𝑛 ∈ N− {0}, and𝐾 the positive real number𝐾 ≅ 3.05.
If
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,

(31)

then 𝑓
𝑗
∈ S, 𝑗 = 1, 𝑛 and the integral operator 𝐿

𝑛
defined by

𝐿
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𝑢
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𝛾
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𝑓
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𝛾
𝑛
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belongs to the class S.

Corollary 3. Let 𝛼, 𝛾
𝑗
be complex numbers, 𝑗 = 1, 𝑛, 0 <

Re𝛼 ≤ 1, the functions 𝑓
𝑗
∈ A, 𝑓

𝑗
(𝑧) = 𝑧 + 𝑎

2𝑗
𝑧2 + ⋅ ⋅ ⋅ ,

𝑗 = 1, 𝑛, 𝑛 ∈ N−{0}, and𝐾 the positive real number,𝐾 ≅ 3.05.
If
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𝑓
𝑗
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≤ 𝐾, 𝑧 ∈ 𝑈, 𝑗 = 1, 𝑛,
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 + ⋅ ⋅ ⋅ +

𝛾𝑛
 ≤

(2Re𝛼 + 1)(2Re𝛼+1)/(2Re𝛼)

2𝐾
,

(33)
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then 𝑓
𝑗
∈ S, 𝑗 = 1, 𝑛, and the integral operator 𝐺

𝑛
defined by

𝐺
𝑛
(𝑧) = ∫

𝑧

0

(𝑓
1
(𝑢))
𝛾
1

⋅ ⋅ ⋅ (𝑓
𝑛
(𝑢))
𝛾
𝑛

𝑑𝑢 (34)

is in the class S.
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