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We introduced the ideal convergence of generalized difference sequence spaces combining an infinite matrix of complex numbers
with respect to 𝜆-sequences and the Musielak-Orlicz function over 𝑛-normed spaces. We also studied some topological properties
and inclusion relations between these spaces.

1. Introduction

Throughout the paper 𝜔, ℓ
∞
, 𝑐, 𝑐
0
, and ℓ

𝑝
denote the classes

of all, bounded, convergent, null, and p-absolutely summable
sequences of complex numbers. The sets of natural numbers
and real numbers will be denoted by N and R, respectively.
Many authors studied various sequence spaces using normed
or seminormed linear spaces. In this paper, using an infinite
matrix of complex numbers and the notion of ideal, we
aimed to introduce some new sequence spaces with respect to
generalized difference operator Δ

𝑠

𝑚
on 𝜆-sequences and the

Musielak-Orlicz function in 𝑛-normed linear spaces. By an
ideal we mean a family 𝐼 ⊂ 2

𝑌 of subsets of a nonempty
set 𝑌 satisfying the following: (i) 𝜙 ∈ 𝐼 ; (ii) 𝐴, 𝐵 ∈

𝐼 imply 𝐴 ∪ 𝐵 ∈ 𝐼 ; (iii) 𝐴 ∈ 𝐼, 𝐵 ⊂ 𝐴 imply 𝐵 ∈ 𝐼,
while an admissible ideal 𝐼 of 𝑌 further satisfies {𝑥} ∈ 𝐼 for
each 𝑥 ∈ 𝑌. The notion of ideal convergence was introduced
first by Kostyrko et al. [1] as a generalization of statistical
convergence. The concept of 2-normed spaces was initially
introduced byGähler [2] in the 1960s, while that of 𝑛-normed
spaces can be found in [3]; this concept has been studied
by many authors; see for instance [4–7]. The notion of ideal
convergence in a 2-normed space was initially introduced by
Gürdal [8]. Later on, it was extended to 𝑛-normed spaces by
Gürdal and Şahiner [9]. Given that 𝐼 ⊂ 2

N is a nontrivial

ideal inN, the sequence (𝑥
𝑛
)
𝑛∈N in a normed space (𝑋; ‖⋅‖) is

said to be 𝐼-convergent to 𝑥 ∈ 𝑋, if, for each 𝜀 > 0,
𝐴 (𝜀) = {𝑛 ∈ N :

󵄩󵄩󵄩󵄩𝑥
𝑛

− 𝑥
󵄩󵄩󵄩󵄩 ≥ 𝜀} ∈ 𝐼. (1)

A sequence (𝑥
𝑘
) in a normed space (𝑋, ‖ ⋅ ‖) is said to

be 𝐼-bounded if there exists 𝐿 > 0 such that
{𝑘 ∈ N :

󵄩󵄩󵄩󵄩𝑥
𝑘

󵄩󵄩󵄩󵄩 > 𝐿} ∈ 𝐼. (2)
A sequence (𝑥

𝑘
) in a normed space (𝑋, ‖ ⋅ ‖) is said to

be 𝐼-Cauchy if, for each 𝜀 > 0, there exists a positive
integer 𝑚 = 𝑚(𝜀) such that

{𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑥
𝑘

− 𝑥
𝑚

󵄩󵄩󵄩󵄩 ≥ 𝜀} ∈ 𝐼. (3)
In paper [10], the notion of 𝜆-convergent and bounded

sequences is introduced as follows: let 𝜆 = (𝜆
𝑗
)
∞

𝑗=1
be a

strictly increasing sequence of positive real numbers tending
to infinity; that is,

0 < 𝜆
1

< 𝜆
2

< ⋅ ⋅ ⋅ , 𝜆
𝑗

󳨀→ ∞ as 𝑗 󳨀→ ∞. (4)
We say that a sequence 𝑥 = (𝑥

𝑗
) ∈ 𝜔 is 𝜆-convergent

to the number 𝑙 ∈ C, called the 𝜆-limit of 𝑥, if Λ
𝑗
(𝑥) →

𝑙 as 𝑗 → ∞, where

Λ
𝑗
(𝑥) =

1

𝜆
𝑗

𝑗

∑

𝑟=1

(𝜆
𝑟

− 𝜆
𝑟−1

) 𝑥
𝑟
, 𝑗 ∈ N. (5)
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The class of all sequences (𝜆
𝑗
) satisfying this property is

denoted by Λ.
In particular, we say that 𝑥 is a 𝜆-null sequence

if Λ
𝑗
(𝑥) → 0 as 𝑗 → ∞. Further, we say that 𝑥 is 𝜆-

bounded if sup
𝑗
|Λ
𝑗
(𝑥)| < ∞. Here and in the sequel, we

will use the convention that any term with a zero subscript
is equal to naught; for example, 𝜆

0
= 0 and 𝑥

0
= 0. Now, it

is well known [10] that if lim
𝑗
𝑥
𝑗

= 𝑎 in the ordinary sense of
convergence, then

lim
𝑗→∞

(
1

𝜆
𝑗

𝑗

∑

𝑟=1

(𝜆
𝑟

− 𝜆
𝑟−1

)
󵄨󵄨󵄨󵄨𝑥𝑟 − 𝑎

󵄨󵄨󵄨󵄨) = 0. (6)

This implies that

lim
𝑗

󵄨󵄨󵄨󵄨󵄨
Λ
𝑗
(𝑥) − 𝑎

󵄨󵄨󵄨󵄨󵄨

= lim
𝑗→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝜆
𝑗

𝑗

∑

𝑟=1

(𝜆
𝑟

− 𝜆
𝑟−1

) (𝑥
𝑟

− 𝑎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0,

(7)

which yields that lim
𝑗
Λ
𝑗
(𝑥) = 𝑎 and hence 𝑥 is 𝜆-convergent

to 𝑎. We therefore deduce that the ordinary convergence
implies the 𝜆-convergence to the same limit.

An Orlicz function is a function 𝑀 : [0, ∞) →

[0, ∞) which is continuous, nondecreasing, and convex
with 𝑀(0) = 0 and 𝑀(𝑥) > 0 for 𝑥 > 0 and 𝑀(𝑥) →

∞, as 𝑥 → ∞. If convexity of 𝑀 is replaced by 𝑀(𝑥 +

𝑦) ≤ 𝑀(𝑥) + 𝑀(𝑦), then it is called a modulus function,
introduced byNakano [11]. Ruckle [12] andMaddox [13] used
the idea of a modulus function to construct some spaces of
complex sequences. An Orlicz function 𝑀 is said to satisfy
the Δ

2
-condition for all values of 𝑥 ≥ 0, if there exists

a constant 𝑘 > 0, such that 𝑀(2𝑥) ≤ 𝑘𝑀(𝑥). The Δ
2
-

condition is equivalent to 𝑀(𝑙𝑥) ≤ 𝑘𝑙𝑀(𝑥) for all values
of 𝑥 and for 𝑙 > 1. Lindentrauss and Tzafriri [14] used the
idea of an Orlicz function to define the following sequence
spaces:

ℓ
𝑀

= {𝑥 ∈ 𝜔 :

∞

∑

𝑘=1

𝑀 (
|𝑥 (𝑘)|

𝜌
) < ∞} , (8)

which is a Banach space with the Luxemburg norm defined
by

‖𝑥‖ = inf {𝜌 > 0 :

∞

∑

𝑘=1

𝑀 (
|𝑥 (𝑘)|

𝜌
) ≤ 1} . (9)

The space ℓ
𝑀

is closely related to the space ℓ
𝑝
, which is

an Orlicz sequence space with 𝑀(𝑥) = 𝑥
𝑝 for 1 ≤ 𝑝 < ∞.

Recently different classes of sequences have been introduced
using Orlicz functions. See [7, 9, 15–17].

A sequence 𝑀 = (𝑀
𝑘
) of Orlicz functions 𝑀

𝑘
for

all 𝑘 ∈ N is called a Musielak-Orlicz function.
Kizmaz [18] defined the difference sequences ℓ

∞
(Δ), 𝑐(Δ),

and 𝑐
0
(Δ) as follows.

𝑍(Δ) = {𝑥 = (𝑥
𝑘
) : (Δ𝑥

𝑘
) ∈ 𝑍}. For 𝑍 = ℓ

∞
, 𝑐, and

𝑐
0
, where Δ𝑥 = (𝑥

𝑘
− 𝑥
𝑘+1

), for all 𝑘 ∈ N. The above spaces

are Banach spaces, normed by ‖𝑥‖ = |𝑥
1
| + sup

𝑘
|Δ𝑥
𝑘
|. The

notion of difference sequence spaces was generalized by Et
and Colak [19] as follows: 𝑍(Δ

𝑠

) = {𝑥 = (𝑥
𝑘
) : (Δ

𝑠

𝑥
𝑘
) ∈ 𝑍}.

For 𝑍 = ℓ
∞
, 𝑐 and 𝑐

0
, where 𝑠 ∈ N, (Δ

𝑠

𝑥
𝑘
) = (Δ

𝑠−1

𝑥
𝑘

−

Δ
𝑠−1

𝑥
𝑘+1

) and so that Δ
𝑠

𝑥
𝑘

= ∑
𝑠

𝑛=0
(−1)
𝑛

𝐶
𝑠

𝑛
𝑥
𝑘+𝑛

. Tripathy
and Esi [20] introduced the following new type of difference
sequence spaces.

𝑍(Δ
𝑚

) = {𝑥 = (𝑥
𝑘
) : (Δ

𝑚
𝑥
𝑘
) ∈ 𝑍}, 𝑍 = ℓ

∞
, 𝑐, and 𝑐

0
,

where Δ
𝑚

𝑥
𝑘

= (𝑥
𝑘

− 𝑥
𝑘+𝑚

), for all 𝑘 ∈ N. Tripathy et al. [21],
generalized the previous notions and unified them as follows.

Let 𝑚 and 𝑠 be nonnegative integers, then for 𝑍 a given
sequence space we have

𝑍 (Δ
𝑠

𝑚
) = {𝑥 = (𝑥

𝑘
) : (Δ
𝑠

𝑚
𝑥
𝑘
) ∈ 𝑍} ,where

Δ
𝑠

𝑚
𝑥
𝑘

=

𝑠

∑

𝑛=0

(−1)
𝑛

𝐶
𝑠

𝑛
𝑥
𝑘+𝑚𝑛

(forward difference) ,

𝑍 (Δ
(𝑠)

𝑚
) = {𝑥 = (𝑥

𝑘
) : (Δ

(𝑠)

𝑚
𝑥
𝑘
) ∈ 𝑍} ,where

Δ
(𝑠)

𝑚
𝑥
𝑘

=

𝑠

∑

𝑛=0

(−1)
𝑛

𝐶
𝑠

𝑛
𝑥
𝑘−𝑚𝑛

(backward difference) ,

(10)

where 𝑥
𝑘

= 0, for 𝑘 < 0.

2. Definitions and Preliminaries

Let 𝑛 ∈ N and 𝑋 be a linear space over the field 𝐾 of
dimension 𝑑, where 𝑑 ≥ 𝑛 ≥ 2 and 𝐾 is the field of
real or complex numbers. A real valued function ‖ ⋅ . . . ⋅ ‖

on 𝑋
𝑛 satisfies the following four conditions:

(1) ‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ = 0 if and only if 𝑥

1
, 𝑥
2
, . . . , and

𝑥
𝑛
are linearly dependent in 𝑋;

(2) ‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ is invariant under permutation;

(3) ‖𝛼𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ = |𝛼|‖𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
‖ for any 𝛼 ∈ 𝐾;

(4) ‖𝑥+𝑥
󸀠

, 𝑥
2
, . . . , 𝑥

𝑛
‖ ≤ ‖𝑥, 𝑥

2
, . . . , 𝑥

𝑛
‖+‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
‖,

which is called an 𝑛-norm on 𝑋 and the
pair (𝑋; ‖ ⋅ . . . ⋅ ‖) is called an 𝑛-normed space over
the field 𝐾. For example, we may take 𝑋 = R𝑛 being
equipped with the 𝑛-norm ‖𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
‖
𝐸

= the
volume of the 𝑛-dimensional parallelepiped spanned
by the vectors 𝑥

1
, 𝑥
2
, . . . , and 𝑥

𝑛
which may be given

explicitly by the formula
󵄩󵄩󵄩󵄩𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

󵄩󵄩󵄩󵄩𝐸 =
󵄨󵄨󵄨󵄨󵄨
det (𝑥

𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨

= abs(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
11

𝑥
12

⋅ ⋅ ⋅ 𝑥
1𝑛

𝑥
21

𝑥
22

⋅ ⋅ ⋅ 𝑥
2𝑛

...
... d

...
𝑥
𝑛1

𝑥
𝑛2

⋅ ⋅ ⋅ 𝑥
𝑛𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) ,

(11)

where 𝑥
𝑖
= (𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝑛

) for each 𝑖 ∈ N.
Let (𝑋, ‖ ⋅ . . . ⋅ ‖) be an 𝑛-normed space of dimension 𝑑 ≥

𝑛 ≥ 2 and {𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , 𝑎

𝑛
} a linearly independent set in 𝑋.

Then, the function ‖ ⋅ . . . ⋅ ‖
∞

on 𝑋
𝑛−1 defined by

󵄩󵄩󵄩󵄩𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

󵄩󵄩󵄩󵄩∞ = max
1≤𝑖≤𝑛

󵄩󵄩󵄩󵄩𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑎
𝑖

󵄩󵄩󵄩󵄩 (12)
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defines an (𝑛 − 1)-norm on 𝑋 with respect to
𝑎
1
, 𝑎
2
, 𝑎
3
, . . . , and 𝑎

𝑛
and this is known as the derived

(𝑛 − 1)-norm. The standard (𝑛)-norm on 𝑋, a real inner
product space of dimension 𝑑 ≥ 𝑛, is as follows:

󵄩󵄩󵄩󵄩𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

󵄩󵄩󵄩󵄩𝑠

= abs(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨𝑥
1
, 𝑥
1
⟩ ⟨𝑥
1
, 𝑥
2
⟩ ⋅ ⋅ ⋅ ⟨𝑥

1
, 𝑥
𝑛
⟩

⟨𝑥
2
, 𝑥
1
⟩ ⟨𝑥
2
, 𝑥
2
⟩ ⋅ ⋅ ⋅ ⟨𝑥

2
, 𝑥
𝑛
⟩

...
... d

...
⟨𝑥
𝑛
, 𝑥
1
⟩ ⟨𝑥
𝑛
, 𝑥
2
⟩ ⋅ ⋅ ⋅ ⟨𝑥

𝑛
, 𝑥
𝑛
⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

1/2

,

(13)

where ⟨⋅, ⋅⟩ denotes the inner product on 𝑋. If we take 𝑋 =

R𝑛, then
󵄩󵄩󵄩󵄩𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

󵄩󵄩󵄩󵄩𝐸 =
󵄩󵄩󵄩󵄩𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛

󵄩󵄩󵄩󵄩𝑠. (14)

For 𝑛 = 1, this 𝑛-norm is the usual norm ‖𝑥
1
‖ =

√⟨𝑥
1
, 𝑥
1
⟩.

Definition 1. A sequence (𝑥
𝑘
) in an 𝑛-normed space is said

to be convergent to 𝑥 ∈ 𝑋 if

lim
𝑘→∞

󵄩󵄩󵄩󵄩(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
, 𝑥
𝑘

− 𝑥)
󵄩󵄩󵄩󵄩𝑛 = 0,

∀𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋.

(15)

Definition 2. A sequence (𝑥
𝑘
) in an 𝑛-normed space is called

Cauchy (with respect to 𝑛-norm) if

lim
𝑘,𝑗→∞

󵄩󵄩󵄩󵄩󵄩
𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
, 𝑥
𝑘

− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩𝑛
= 0,

∀𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋.

(16)

If every Cauchy sequence in 𝑋 converges to an 𝑥 ∈ 𝑋,
then 𝑋 is said to be complete (with respect to the 𝑛-norm).
A complete 𝑛-normed space is called an 𝑛-Banach space.

Definition 3. A sequence (𝑥
𝑘
) in an 𝑛-normed space (𝑋, ‖ ⋅

. . . ⋅ ‖) is said to be 𝐼-convergent to 𝑥
0

∈ 𝑋 with respect to 𝑛-
norm, if, for each 𝜀 > 0, the set

{𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑥
𝑘

− 𝑥
0
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩

≥ 𝜀, for every 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
} ∈ 𝐼.

(17)

Definition 4. A sequence (𝑥
𝑘
) in an 𝑛-normed space (𝑋, ‖ ⋅

. . . ⋅ ‖) is said to be 𝐼-Cauchy if, for each 𝜀 > 0, there exists a
positive integer 𝑚 = 𝑚(𝜀) such that the set

{𝑘 ∈ N :
󵄩󵄩󵄩󵄩𝑥
𝑘

− 𝑥
𝑚

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩

≥ 𝜀, for every 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
} ∈ 𝐼.

(18)

Let 𝑥 = (𝑥
𝑘
) be a sequence; then 𝑆(𝑥) denotes the set

of all permutations of the elements of (𝑥
𝑘
); that is, 𝑆(𝑥) =

(𝑥
𝜋(𝑛)

) : 𝜋 is a permutation of N.

Definition 5. A sequence space 𝐸 is said to be symmetric
if 𝑆(𝑥) ⊂ 𝐸 for all 𝑥 ∈ 𝐸.

Definition 6. A sequence space 𝐸 is said to be normal (or
solid) if (𝛼

𝑘
𝑥
𝑘
) ∈ 𝐸, whenever (𝑥

𝑘
) ∈ 𝐸 and for all sequences

(𝛼
𝑘
) of scalars with |𝛼

𝑘
| ≤ 1 for all 𝑘 ∈ N.

Definition 7. A sequence space 𝐸 is said to be a sequence
algebra if 𝑥, 𝑦 ∈ 𝐸; then 𝑥 ⋅ 𝑦 = (𝑥

𝑘
𝑦
𝑘
) ∈ 𝐸.

Lemma 8. Every 𝑛-normed space is an (𝑛 − 𝑟)-normed space
for all 𝑟 = 1, 2, 3, . . . , 𝑛−1. In particular, every 𝑛-normed space
is a normed space.

Lemma9. On a standard 𝑛-normed space 𝑋, the derived (𝑛−

1)-norm ‖ ⋅ . . . ⋅ ‖
∞

defined with respect to the orthogonal
set {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} is equivalent to the standard (𝑛 − 1)-

norm ‖ ⋅ . . . ⋅ ‖
𝑠
. To be precise, one has

󵄩󵄩󵄩󵄩𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1

󵄩󵄩󵄩󵄩∞ ≤ ‖⋅ . . . ⋅‖
𝑠

≤ √𝑛
󵄩󵄩󵄩󵄩𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1

󵄩󵄩󵄩󵄩∞,

(19)

for all 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
∈ 𝑋, where ‖𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛−1
‖
∞

=

max
1≤𝑖≤𝑛

{‖𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑒
𝑖
‖
𝑆
}.

For any bounded sequence (𝑝
𝑛
) of positive numbers, one

has the following well known inequality: if 0 ≤ 𝑝
𝑘

≤ sup
𝑘
𝑝
𝑘

=

𝐺 and 𝐷 = max(1, 2
𝐺−1

), then |𝑎
𝑛

+ 𝑏
𝑛
|
𝑝
𝑛 ≤ 𝐷(|𝑎

𝑛
|
𝑝
𝑛 + |𝑏
𝑛
|
𝑝
𝑛),

for all 𝑘 and 𝑎
𝑘
, 𝑏
𝑘

∈ C.

3. Main Results

In this section, we define some new ideal convergent
sequence spaces and investigate their linear topological
structures. We find out some relations related to these
sequence spaces. Let 𝐼 be an admissible ideal of N,
M = (𝑀

𝑗
) a Musielak-Orlicz function, and Δ

𝑠

𝑚
the

forward generalized difference operator on the class of all
sequences (𝜆

𝑗
) satisfying the property Λ and an 𝑛-normed

space (𝑋, ‖ ⋅ . . . ⋅ ‖). Further, let 𝑝 = (𝑝
𝑘
) be any bounded

sequence of positive real numbers; we will define the follow-
ing sequence spaces:

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

=
{

{

{

𝑥 ∈ 𝜔 (𝑛 − 𝑋) : ∀𝜀 > 0

×
{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥)) − 𝑙

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥ 𝜀
}

}

}

∈ 𝐼,
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for some 𝜌 > 0, 𝑙 ∈ 𝑋 and each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}

}

}

,

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

0

=
{

{

{

𝑥 ∈ 𝜔 (𝑛 − 𝑋) : ∀𝜀 > 0

×
{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥ 𝜀
}

}

}

∈ 𝐼,

for some 𝜌 > 0, and each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}

}

}

,

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

∞

=
{

{

{

𝑥 ∈ 𝜔 (𝑛 − 𝑋) :

∃𝐾 > 0 st. sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

< ∞,

for some 𝜌 > 0 and each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}

}

}

,

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

∞

=
{

{

{

𝑥 ∈ 𝜔 (𝑛 − 𝑋) :

∃𝐾 > 0, s.t.
{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥ 𝐾
}

}

}

∈ 𝐼,

for some 𝜌 > 0,

and each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}

}

}

.

(20)

Let us consider a few special cases of the aforementioned
sets.

(1) If 𝑀
𝑘
(𝑥) = 𝑀(𝑥), for all 𝑘 ∈ N then the previous

classes of sequences are denoted by 𝑊[𝐴, 𝑀, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅

‖]
𝐼,𝑊[𝐴, 𝑀, Δ

𝑠

𝑚
, Λ, 𝑝, ‖⋅. . .⋅‖]

𝐼

0
,𝑊[𝐴, 𝑀, Δ

𝑠

𝑚
, Λ, 𝑝, ‖⋅. . .⋅‖]

∞
,

and 𝑊[𝐴, 𝑀, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

∞
, respectively.

(2) If 𝑝
𝑘

= 1 for all 𝑘 ∈ N then the previous classes
of sequences are denoted by 𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖]

I,
𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
, 𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖]

∞
, and

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖]

𝐼

∞
, respectively.

(3) If 𝑀
𝑘
(𝑥) = 𝑥, for all 𝑘 ∈ N and 𝑥 ∈ [0, ∞[,

then the previous classes of sequences are denoted by
𝑊[𝐴, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼, 𝑊[𝐴, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
,

𝑊[𝐴, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

∞
, and 𝑊[𝐴, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

∞
,

respectively.
(4) If we take 𝑀

𝑘
(𝑥) = 𝑀(𝑥), for all 𝑘 ∈ Nand 𝐴 =

(𝑎
𝑘𝑗

) as

𝑎
𝑘𝑗

=
{

{

{

1

𝑘
, 𝑘 ≥ 𝑗,

0, otherwise,
(21)

then we denote the previous classes of sequences
by 𝑊[𝐶, 𝑀, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼,𝑊[𝐶, 𝑀, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
,

𝑊[𝐶, 𝑀, Δ
𝑠

𝑚
, 𝑝, ‖⋅ . . . ⋅‖]

∞
, and 𝑊[𝐶, 𝑀, Δ

𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

∞
,

respectively.
(5) If we take 𝑀

𝑘
(𝑥) = 𝑀(𝑥) and 𝐴 = (𝑎

𝑘𝑗
) as

𝑎
𝑘𝑗

=
{

{

{

1

𝜙
𝑘

, 𝑗 ∈ 𝐼
𝑘

= [𝑘 − 𝜙
𝑘

+ 1, 𝑘] ,

0, otherwise,
(22)

where (𝜙
𝑘
) is a nondecreasing sequence of positive numbers

tending to ∞, 𝜙
1

= 1, and 𝜙
𝑘+1

≤ 𝜙
𝑘

+ 1, then we denote
the previous classes of sequences by 𝑊[Φ, 𝑀, Δ

𝑠

𝑚
, Λ, 𝑝, ‖⋅. . . ⋅

‖]
𝐼, 𝑊[Φ, 𝑀, Δ

𝑠

𝑚
, Λ, 𝑝, ‖⋅. . .⋅‖]

𝐼

0
,𝑊[Φ, 𝑀, Δ

𝑠

𝑚
, Λ, 𝑝, ‖⋅. . .⋅‖]

∞
,

and 𝑊[Φ, 𝑀, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

∞
.

(6) If 𝐴 = (𝑎
𝑘𝑗

) as in (22), then we denote the previ-
ous classes of sequences by 𝑊[Φ,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼,
𝑊[Φ,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
, 𝑊[Φ,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

∞
,

and 𝑊[Φ,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

∞
.

And if 𝜆
𝑗

= 𝑗 for all 𝑗 ∈ N, then the previous classes
of sequences are denoted by 𝑊[Φ,M, Δ

𝑠

𝑚
, 𝐶, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼,
𝑊[Φ,M, Δ

𝑠

𝑚
, 𝐶, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
, 𝑊[Φ,M, Δ

𝑠

𝑚
, 𝐶, 𝑝, ‖ ⋅ . . . ⋅

‖]
∞
, and 𝑊[Φ,M, Δ

𝑠

𝑚
, 𝐶, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

∞
and they are a
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generalization of the sequence spaces defined by Bakery et al.
[22].

(7) By a lacunary 𝜃 = (𝑗
𝑟
), 𝑟 = 0, 1, 2, . . ., where 𝑗

0
= 0,

we will mean an increasing sequence of nonnegative integers
with 𝑗

𝑟
− 𝑗
𝑟−1

→ ∞ as 𝑟 → ∞. The interval determined
by 𝜃 will be denoted by 𝐼

𝑟
=]𝑗
𝑟−1

, 𝑗
𝑟
] and ℎ

𝑟
= 𝑗
𝑟

− 𝑗
𝑟−1

and
let 𝐴 = (𝑎

𝑘𝑗
) as

𝑎
𝑘𝑗

=
{

{

{

1

ℎ
𝑟

, 𝑗 ∈ 𝐼
𝑟

= ]𝑗
𝑟−1

, 𝑗
𝑟
] ,

0, otherwise.
(23)

Then we denote the previous classes of sequences
by 𝑊[𝜃, 𝑀, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼, 𝑊[𝜃, 𝑀, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
,

𝑊[𝜃, 𝑀, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

∞
, and 𝑊[𝜃, 𝑀, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅

‖]
𝐼

∞
, respectively.
(8) If 𝑀

𝑘
(𝑥) = 𝑀(𝑥), for all 𝑘 ∈ N, 𝐴 = 𝐼,

and 𝜆
𝑗

= 𝑗, then the previous classes of sequences are
denoted by 𝑊[𝑀, Δ

𝑠

𝑚
, 𝐶, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼, 𝑊[𝑀, Δ
𝑠

𝑚
, 𝐶, 𝑝, ‖ ⋅ . . . ⋅

‖]
𝐼

0
,𝑊[𝑀, Δ

𝑠

𝑚
, 𝐶, 𝑝, ‖⋅. . .⋅‖]

∞
, and 𝑊[𝑀, Δ

𝑠

𝑚
, 𝐶, 𝑝, ‖⋅. . .⋅‖]

𝐼

∞
.

(9) If 𝑠 = 1, then the previous classes of sequences are
denoted by 𝑊[𝐴,M, Δ

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼, 𝑊[𝑀, Δ
𝑚

, 𝐶, 𝑝, ‖ ⋅

. . . ⋅ ‖]
𝐼

0
, 𝑊[𝑀, Δ

𝑚
, 𝐶, 𝑝, ‖ ⋅ . . . ⋅ ‖]

∞
, and 𝑊[𝑀, Δ

𝑚
, 𝐶, 𝑝, ‖ ⋅

. . . ⋅ ‖]
𝐼

∞
.

(10) If 𝑚 = 1, then the previous classes of sequences are
denoted by [𝐴,M, Δ

𝑠

, Λ, 𝑝, ‖⋅. . .⋅‖]
𝐼,𝑊[𝑀, Δ

𝑠

, 𝐶, 𝑝, ‖⋅. . .⋅‖]
𝐼

0
,

𝑊[𝑀, Δ
𝑠

, 𝐶, 𝑝, ‖ ⋅ . . . ⋅ ‖]
∞
, and 𝑊[𝑀, Δ

𝑠

, 𝐶, 𝑝, ‖ ⋅ . . . ⋅ ‖]
𝐼

∞
.

Theorem 10. The spaces 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼,
𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖⋅. . .⋅‖]

𝐼

0
and𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖⋅. . .⋅‖]

𝐼

∞

are linear spaces.

Proof. We will prove the assertion for 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅

. . . ⋅ ‖]
𝐼

0
; the others can be proved similarly. Assume that 𝑥 =

(𝑥
𝑘
), 𝑦 = (𝑦

𝑘
) ∈ 𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
, and 𝛼, 𝛽 ∈ C.

Then, there exist 𝜌
1
and 𝜌

2
such that the sets

{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥
𝜀

2

}

}

}

∈ 𝐼,

(24)

{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑦)

𝜌
2

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥
𝜀

2

}

}

}

∈ 𝐼.

(25)

Since (𝑋, ‖ ⋅ . . . ⋅ ‖) is an 𝑛-norm, Δ
𝑠

𝑚
and Λ

𝑗
are linear,

and the Orlicz function 𝑀
𝑗
is convex for all 𝑗 ∈ N, the

following inequality holds:

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝛼𝑥 + 𝛽𝑦))

|𝛼| 𝜌
1𝐹

+
󵄨󵄨󵄨󵄨𝛽

󵄨󵄨󵄨󵄨 𝜌
2

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≤ 𝐷

∞

∑

𝑗=1

𝑎
𝑘𝑗

|𝛼| 𝜌
1

|𝛼| 𝜌
1

+
󵄨󵄨󵄨󵄨𝛽

󵄨󵄨󵄨󵄨 𝜌
2

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

+ 𝐷

∞

∑

𝑗=1

𝑎
𝑘𝑗

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 𝜌
2

|𝛼| 𝜌
1

+
󵄨󵄨󵄨󵄨𝛽

󵄨󵄨󵄨󵄨 𝜌
2

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑦))

𝜌
2

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≤ 𝐷𝐿

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

+ 𝐷𝐿

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑦))

𝜌
2

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

) ]

𝑝
𝑗

,

(26)

where 𝐿 = max{|𝛼|𝜌
1
/(|𝛼|𝜌

1
+ |𝛽|𝜌

2
), |𝛽|𝜌

2
/(|𝛼|𝜌

1
+ |𝛽|𝜌

2
)}.

On the other hand from the above inequality we get

{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝛼𝑥 + 𝛽𝑦))

|𝛼| 𝜌
1

+
󵄨󵄨󵄨󵄨𝛽

󵄨󵄨󵄨󵄨 𝜌
2

,
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𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

) ]

𝑝
𝑗

≥ 𝜀
}

}

}

⊆
{

{

{

𝑘 ∈ N : 𝐷𝐿

×

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥
𝜀

2

}

}

}

∪
{

{

{

𝑘 ∈ N : 𝐷𝐿

×

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑦))

𝜌
2

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥
𝜀

2

}

}

}

.

(27)

Since the two sets on the right hand side belong to 𝐼, this
completes the proof.

Theorem 11. The spaces 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼,
𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖⋅. . .⋅‖]

𝐼

0
, and𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖⋅. . .⋅‖]

𝐼

∞

are paranormed spaces (not totally paranormed)with respect to
the paranorm 𝑔

Δ
defined by

𝑔
Δ

(𝑥)

=

𝑚𝑠

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑗
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ inf
{{

{{

{

𝜌
𝑝
𝑘
/𝐻

:

sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

]

]

1/𝐻

≤ 1, for some 𝜌 > 0,

and each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}}

}}

}

,

(28)

where 𝐻 = max{1, sup
𝑘
𝑝
𝑘
}.

Proof. Clearly 𝑔
Δ
(−𝑥) = 𝑔

Δ
(𝑥) and 𝑔

Δ
(𝜃) = 0. Let 𝑥 =

(𝑥
𝑘
) and 𝑦 = (𝑦

𝑘
) ∈ 𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
. Then,

for 𝜌 > 0 we set

𝐴
1

=

{{

{{

{

𝜌 : sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

]

]

1/𝐻

≤ 1,

for each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}}

}}

}

,

𝐴
2

=

{{

{{

{

𝜌 : sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [

[

𝑀
𝑗

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑦))

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

]

𝑝
𝑗

]

]

1/𝐻

≤ 1, for each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}}

}}

}

.

(29)

Let 𝜌
1

∈ 𝐴
1
, 𝜌
2

∈ 𝐴
2
, and 𝜌 = 𝜌

1
+ 𝜌
2
; then we have

sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥 + 𝑦))

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

]

]

1/𝐻
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≤
𝜌
1

𝜌
1

+ 𝜌
2

× sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

]

]

1/𝐻

+
𝜌
2

𝜌
1

+ 𝜌
2

× sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑦))

𝜌
2

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

]

]

1/𝐻

≤ 1,

𝑔
Δ

(𝑥 + 𝑦)

=

𝑚𝑠

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑗

+ 𝑦
𝑗
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ inf {(𝜌
1

+ 𝜌
2
)
𝑝
𝑘
/𝐻

: 𝜌
1

∈ 𝐴
1
, 𝜌
2

∈ 𝐴
2
}

≤

𝑚𝑠

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑗
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ inf {(𝜌
1
)
𝑝
𝑘
/𝐻

: 𝜌
1

∈ 𝐴
1
}

+

𝑚𝑠

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑗
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ inf {(𝜌
2
)
𝑝
𝑘
/𝐻

: 𝜌
2

∈ 𝐴
2
}

= 𝑔
Δ

(𝑥) + 𝑔
Δ

(𝑦) .

(30)

Let 𝜆
𝑡

→ 𝜆 where 𝜆
𝑡

, 𝜆 ∈ C, and let 𝑔
Δ
(𝑥
𝑡

− 𝑥) → 0

as 𝑡 → ∞. We have to show that 𝑔
Δ
(𝜆
𝑡

𝑥
𝑡

− 𝜆𝑥) → 0 as
𝑡 → ∞. We set

𝐴
3

=

{{

{{

{

𝜌
𝑡

: sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
𝑡

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

]

]

1/𝐻

≤ 1,

for each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}}

}}

}

,

𝐴
4

=

{{

{{

{

𝜌
1

𝑡
: sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑦))

𝜌1
𝑡

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

]

]

1/𝐻

≤ 1,

for each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}}

}}

}

.

(31)

If 𝜌
𝑡

∈ 𝐴
3
and 𝜌
1

𝑡
∈ 𝐴
4
, then by using non-decreasing and

convexity of the Orlicz function 𝑀
𝑗
for all 𝑗 ∈ N we get

sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [

[

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(𝜆
𝑡

𝑥
𝑡

𝑗
− 𝜆𝑥
𝑗
)

|𝜆𝑡 − 𝜆| 𝜌
𝑡
+ |𝜆| 𝜌1

𝑡

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

]

𝑝
𝑗

]

]

1/𝐻

≤ sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [

[

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(Δ
𝑠

𝑚
𝜆
𝑡

𝑥
𝑡

𝑗
− 𝜆𝑥
𝑡

𝑗
)

|𝜆𝑡 − 𝜆| 𝜌
𝑡
+ |𝜆| 𝜌1

𝑡

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

]

𝑝
𝑗

]

]

1/𝐻

+ sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗
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× [

[

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(𝜆𝑥
𝑡

𝑗
− 𝜆𝑥
𝑗
)

|𝜆𝑡 − 𝜆| 𝜌
𝑡
+ |𝜆| 𝜌1

𝑡

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

]

𝑝
𝑗

]

]

1/𝐻

≤

󵄨󵄨󵄨󵄨𝜆
𝑡

− 𝜆
󵄨󵄨󵄨󵄨 𝜌
𝑡

|𝜆𝑡 − 𝜆| 𝜌
𝑡
+ |𝜆| 𝜌1

𝑡

× sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
𝑥
𝑡

𝑗

𝜌
𝑡

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

]

]

1/𝐻

+
|𝜆| 𝜌
1

𝑡

|𝜆𝑡 − 𝜆| 𝜌
𝑡
+ |𝜆| 𝜌1

𝑡

× sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

[

[

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(𝑥
𝑡

𝑗
− 𝑥
𝑗
)

𝜌1
𝑡

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

]

𝑝
𝑗

]

]

1/𝐻

.

(32)

From the previous inequality, it follows that

sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [

[

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(𝜆
𝑡

𝑥
𝑡

𝑗
− 𝜆𝑥
𝑗
)

|𝜆𝑡 − 𝜆| 𝜌
𝑡
+ |𝜆| 𝜌1

𝑡

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

]

𝑝
𝑗

]

]

1/𝐻

≤ 1,

(33)

and consequently

𝑔
Δ

(𝜆
𝑡

𝑥
𝑡

− 𝜆𝑥)

=

𝑚𝑠

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑡

𝑥
𝑡

𝑗
− 𝜆𝑥
𝑗
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ inf {(
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑡

− 𝜆
󵄨󵄨󵄨󵄨󵄨
𝜌
𝑡
+ |𝜆| 𝜌

1

𝑡
)
𝑝
𝑘
/𝐻

: 𝜌
𝑡

∈ 𝐴
3
, 𝜌
1

𝑡
∈ 𝐴
4
}

≤
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑡

− 𝜆
󵄨󵄨󵄨󵄨󵄨

𝑚𝑠

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑡

𝑗
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑡

− 𝜆
󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘
/𝐻

inf {(𝜌
𝑡
)
𝑝
𝑘
/𝐻

: 𝜌
𝑡

∈ 𝐴
3
}

+ |𝜆|

𝑚𝑠

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝜆
𝑡

𝑥
𝑡

𝑗
− 𝜆𝑥
𝑗
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ |𝜆|
𝑝
𝑘
/𝐻 inf {(𝜌

1

𝑡
)
𝑝
𝑘
/𝐻

: 𝜌
1

𝑡
∈ 𝐴
4
}

≤ max {
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑡

− 𝜆
󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑡

− 𝜆
󵄨󵄨󵄨󵄨󵄨

𝑝
𝑘
/𝐻

} 𝑔
Δ

(𝑥
𝑡

)

+ max {|𝜆| , |𝜆|
𝑝
𝑘
/𝐻

} 𝑔
Δ

(𝑥
𝑡

− 𝑥) .

(34)

Note that 𝑔
Δ
(𝑥
𝑡

) ≤ 𝑔
Δ
(𝑥) + 𝑔

Δ
(𝑥
𝑡

− 𝑥), for all 𝑡 ∈ N.
Hence, by our assumption, the right hand of (34) tends to 0
as 𝑡 → ∞, and the result follows. This completes the proof
of the theorem.

Theorem 12. Let M = (𝑀
𝑗
), M󸀠 = (𝑀

󸀠

𝑗
), and M󸀠󸀠 = (𝑀

󸀠󸀠

𝑗
)

be the Musielak-Orlicz functions. Then, the following hold:

(a) 𝑊[𝐴,M󸀠, Δ𝑠
𝑚

, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]
𝐼

0
⊆

𝑊[𝐴,M.M󸀠, Δ𝑠
𝑚

, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]
𝐼

0
, provided 𝑝 = (𝑝

𝑘
)

such that 𝐺
0

= inf 𝑝
𝑘

> 0,

(b) 𝑊[𝐴,M󸀠, Δ𝑠
𝑚

, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]
𝐼

0
⊆ 𝑊[𝐴,M󸀠 +

M󸀠󸀠, Δ𝑠
𝑚

, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]
𝐼

0
.

Proof. (a) Let 𝜀 > 0 be given. Choose 𝜀
1

> 0 such
that sup

𝑘
(∑
∞

𝑗=1
𝑎
𝑘𝑗

)max{𝜀
𝐺

1
, 𝜀
𝐺
0

1
} < 𝜀. Using the continuity of

the Orlicz function 𝑀, choose 0 < 𝛿 < 1 such that 0 < 𝑡 <

𝛿 implies that 𝑀(𝑡) < 𝜀
1
.

Let 𝑥 = (𝑥
𝑘
) be any element in 𝑊[𝐴,M󸀠, Δ𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅

‖]
𝐼

0
and put

𝐴
𝛿

=
{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
󸀠

𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥ 𝛿
𝐺
}

}

}

.

(35)

Then, by the definition of ideal convergent, we have the
set 𝐴
𝛿

∈ 𝐼. If 𝑛 ∉ 𝐴
𝛿
, then we have



Abstract and Applied Analysis 9

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
󸀠

𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

< 𝛿
𝐺

[𝑀
󸀠

𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

< 𝛿
𝐺

󳨐⇒ 𝑀
󸀠

𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

) < 𝛿.

(36)

Using the continuity of the Orlicz function 𝑀
𝑗
for

all 𝑗 and the relation (36), we have

𝑀
𝑗
[𝑀
󸀠

𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)] < 𝜀
1
. (37)

Consequently, we get

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
𝑀
󸀠

𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

< sup
𝑘

(

∞

∑

𝑗=1

𝑎
𝑘𝑗

)max {𝜀
𝐺

1
, 𝜀
𝐺
0

1
} < 𝜀

󳨐⇒

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
𝑀
󸀠

𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

< 𝜀.

(38)

This shows that

{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
𝑀
󸀠

𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥ 𝜀
}

}

}

⊆ 𝐴
𝛿

∈ 𝐼.

(39)

This proves the assertion.

(b) Let 𝑥 = (𝑥
𝑘
) be any element in 𝑊[𝐴,M󸀠, Λ, 𝑝, ‖ ⋅ . . . ⋅

‖]
𝐼

0
. Then, by the following inequality, the results follow:

∞

∑

𝑗=1

𝑎
𝑘𝑗

[(𝑀
󸀠

𝑗
+ 𝑀
󸀠󸀠

𝑗
) (

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≤ 𝐷

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
󸀠

𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

+ 𝐷

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
󸀠󸀠

𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

.

(40)

Theorem 13. The inclusions 𝑍[𝐴,M, Δ
𝑠−1

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖] ⊆

𝑍[𝐴,M, Δ
𝑠

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖] are strict for 𝑠, 𝑚 ≥ 1 in general

where 𝑍 = 𝑊
𝐼

, 𝑊
𝐼

0
, and 𝑊

𝐼

∞
.

Proof. Wewill give the proof for𝑊[𝐴,M, Δ
𝑠−1

𝑚
, Λ, ‖⋅ . . . ⋅‖]

𝐼

0
⊆

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
only. The others can be proved by

similar arguments. Let 𝑥 = (𝑥
𝑘
) ∈ 𝑊[𝐴,M, Δ

𝑠−1

𝑚
, Λ, ‖⋅. . .⋅‖]

𝐼

0
.

Then let 𝜀 > 0 be given; there exist 𝜌 > 0 such that

{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠−1

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

≥
𝜀

2

}

}

}

∈ 𝐼.

(41)
Since 𝑀

𝑗
for all 𝑗 ∈ N is non-decreasing and convex, it

follows that
∞

∑

𝑗=1

𝑎
𝑘𝑗

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

2𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

=

∞

∑

𝑗=1

𝑎
𝑘𝑗

× 𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠−1

𝑚
Λ
𝑗+1

(𝑥) − Δ
𝑠−1

𝑚
(Λ
𝑗
(𝑥))

2𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

≤
1

2

∞

∑

𝑗=1

𝑎
𝑘𝑗

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠−1

𝑚
(Λ
𝑗+1

(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

+
1

2

∞

∑

𝑗=1

𝑎
𝑘𝑗

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠−1

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

) ,

(42)
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and then we have

{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

× 𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

2𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

) ≥ 𝜀}

⊆
{

{

{

𝑘 ∈ N :
1

2

×

∞

∑

𝑗=1

𝑎
𝑘𝑗

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠−1

𝑚
𝑥
𝑗+1

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

) ≥
𝜀

2

}

}

}

∪
{

{

{

𝑘 ∈ N :
1

2

×

∞

∑

𝑗=1

𝑎
𝑘𝑗

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠−1

𝑚
(Λ
𝑗
(𝑥))

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

) ≥
𝜀

2

}

}

}

.

(43)

Let 𝑀
𝑘
(𝑥) = 𝑀(𝑥) = 𝑥 for all 𝑥 ∈ [0, ∞[, 𝑘 ∈ N and

𝜆
𝑘

= 𝑘 for all 𝑘 ∈ N. Consider a sequence 𝑥 = (𝑥
𝑘
) = (𝑘

𝑠

).
Then, 𝑥 ∈ 𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
but does not belong to

𝑊[𝐴,M, Δ
𝑠−1

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
, for 𝑠 = 𝑚 = 1. This shows that

the inclusion is strict.

Theorem 14. Let 0 < 𝑝
𝑘

≤ 𝑞
𝑘
for all 𝑘 ∈ N; then

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

∞

⊆ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑞, ‖⋅ . . . ⋅‖]

∞
.

(44)

Proof. Let 𝑥 = (𝑥
𝑗
) ∈ 𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

∞
; then

there exists some 𝜌 > 0 such that

sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

< ∞.

(45)

This implies that

𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

) < 1, (46)

for a sufficiently large value of 𝑗. Since 𝑀
𝑗
for all 𝑗 ∈ N is

non-decreasing, we get

sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑞
𝑗

≤ sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

< ∞.

(47)

Thus, 𝑥 ∈ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑞, ‖ ⋅ . . . ⋅ ‖]

∞
. This completes

the proof of the theorem.

Theorem 15. (i) If 0 < inf 𝑝
𝑘

≤ 𝑝
𝑘

< 1, then

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

∞

⊆ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, ‖⋅ . . . ⋅‖]

∞
.

(48)

(ii) If 1 < 𝑝
𝑘

≤ sup
𝑘
𝑝
𝑘

< ∞, then 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, ‖ ⋅ . . . ⋅

‖]
∞

⊆ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

∞
.

Proof. (i) Let 𝑥 = (𝑥
𝑗
) ∈ 𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

∞
; since

0 < inf
𝑘
𝑝
𝑘

≤ 𝑝
𝑘

< 1, then we have

sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

≤ sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

< ∞,

(49)

and hence 𝑥 ∈ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖]

∞
.

(ii) Let 1 < 𝑝
𝑘

≤ sup
𝑘
𝑝
𝑘

< ∞ and 𝑥 = (𝑥
𝑗
) ∈

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, ‖ ⋅ . . . ⋅ ‖]

∞
. Then for each 0 < 𝜀 < 1 there

exists a positive integer 𝑗
0
such that

sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

≤ 𝜀 < 1,

(50)

for all 𝑗 ≥ 𝑗
0
. This implies that

sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≤ sup
𝑘

∞

∑

𝑗=1

𝑎
𝑘𝑗

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥))

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)] < ∞.

(51)

Thus 𝑥 ∈ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

∞
and this completes

the proof.

Theorem 16. For any sequence of the Orlicz functions
M = (𝑀

𝑗
) which satisfies the Δ

2
-condition, we have

𝑊[𝐴, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

⊂ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼.
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Proof. Let 𝑥 = (𝑥
𝑗
) ∈ 𝑊[𝐴, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼 and 𝜀 > 0 be
given. Then, there exist 𝜌 > 0 such that the set

{

{

{

𝑘 ∈ N :

∞

∑

𝑗=1

𝑎
𝑘𝑗

[

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥)) − 𝑙

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

]

𝑝
𝑗

≥ 𝜀
}

}

}

∈ 𝐼, for some 𝑙.

(52)

By taking 𝑦
𝑗

= ‖(Δ
𝑠

𝑚
(Λ
𝑗

(𝑥)) − 𝑙)/𝜌, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
‖, let

𝜀 > 0 and choose 𝛿 wit 0 < 𝛿 < 1 such that 𝑀
𝑗
(𝑡) < 𝜀 for all

𝑗 ∈ N; for 0 ≤ 𝑡 ≤ 𝛿, consider that
∞

∑

𝑗=1

[𝑀
𝑗
(𝑦
𝑗
)]
𝑝
𝑗

=

∞

∑

𝑗=1,𝑦
𝑗
≤𝛿

[𝑀
𝑗
(𝑦
𝑗
)]
𝑝
𝑗

+

∞

∑

𝑗=1,𝑦
𝑗
>𝛿

[𝑀
𝑗
(𝑦
𝑗
)]
𝑝
𝑗

,

(53)

since 𝑀
𝑗
is continuous for all 𝑛 ∈ N.

∑
𝑗∈𝐼
𝑘
,𝑦
𝑗
≤𝛿

[𝑀
𝑗
(𝑦
𝑗
)]
𝑝
𝑗 < 𝜀 and for 𝑦

𝑗
> 𝛿, we use the fact

that 𝑦
𝑗

< 𝑦
𝑗
/𝛿 < 1+𝑦

𝑗
/𝛿. SinceM = (𝑀

𝑗
) is non-decreasing

and convex, it follows that

𝑀
𝑗
(𝑦
𝑗
) < 𝑀

𝑗
(1 +

𝑦
𝑗

𝛿
) <

1

2
𝑀
𝑗
(2) +

1

2
𝑀
𝑗
(

2𝑦
𝑗

𝛿
) . (54)

SinceM = (𝑀
𝑗
) satisfies the Δ

2
-condition, then

𝑀
𝑗
(𝑦
𝑗
) <

𝑦
𝑗

2𝛿
𝐿𝑀
𝑗
(2) +

𝑦
𝑗

2𝛿
𝐿𝑀
𝑗
(2) =

𝑦
𝑗

𝛿
𝐿𝑀
𝑗
(2) . (55)

Hence
∞

∑

𝑗=1,𝑦
𝑗
>𝛿

[𝑀
𝑗
(𝑦
𝑗
)]
𝑝
𝑗

< max{1, sup
𝑗

(𝐿𝛿
−1

𝑀
𝑗
(2))
𝑝
𝑗

}

×

∞

∑

𝑗=1,𝑦
𝑗
>𝛿

(𝑦
𝑗
)
𝑝
𝑗

,

(56)

and then we have
∞

∑

𝑗=1

[𝑀
𝑗
(𝑦
𝑗
)]
𝑝
𝑗

< 𝜀 + max{1, sup
𝑗

(𝐿𝛿
−1

𝑀
𝑗
(2))
𝑝
𝑗

}

∞

∑

𝑗=1,𝑦
𝑗
>𝛿

(𝑦
𝑗
)
𝑝
𝑗

.

(57)

This proves that 𝑊[𝐴, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

⊂

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼.

Theorem 17. Let 0 < 𝑝
𝑛

≤ 𝑞
𝑛

< 1 and (𝑞
𝑛
/𝑝
𝑛
) be bounded;

then

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑞, ‖⋅ . . . ⋅‖]

𝐼

⊆ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

.

(58)

Proof. Let 𝑥 = (𝑥
𝑗
) ∈ 𝑊[𝐴,M, Λ, 𝑞, ‖ ⋅ . . . ⋅ ‖]

∞
and we put

𝑦
𝑗

= [𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
𝑠

𝑚
(Λ
𝑗
(𝑥)) − 𝑙

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑞
𝑗

,

𝛽
𝑗

=
𝑝
𝑗

𝑞
𝑗

∀𝑗 ∈ N.

(59)

Then 0 < 𝛽
𝑗

≤ 1, for all 𝑗 ∈ N. Let it be such that 0 <

𝛽 ≤ 𝛽
𝑗
for all 𝑗 ∈ N. Define the sequences (𝑎

𝑗
) and (𝑏

𝑗
) as

follows: for 𝑦
𝑗

≥ 1, let 𝑎
𝑗

= 𝑦
𝑗
and 𝑏
𝑗

= 0; for 𝑦
𝑗

< 1, let 𝑎
𝑗

=

0 and 𝑏
𝑗

= 𝑦
𝑗
. Then clearly, for all 𝑗 ∈ N we have 𝑦

𝑗
= 𝑎
𝑗

+

𝑏
𝑗
, 𝑦
𝛽
𝑗

𝑗
= 𝑎
𝛽
𝑗

𝑗
+ 𝑏
𝛽
𝑗

𝑗
, 𝑎𝛽𝑗
𝑗

≤ 𝑎
𝑗

≤ 𝑦
𝑗
, and 𝑏

𝛽
𝑗

𝑗
≤ 𝑏
𝛽

𝑗
. Therefore, we

have

∞

∑

𝑗=1

𝑎
𝑘𝑗

𝑦
𝛽
𝑗

𝑗
≤

∞

∑

𝑗=1

𝑎
𝑘𝑗

𝑦
𝑗

≤ [

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

𝑦
𝑗

]

]

𝛽

. (60)

Hence 𝑥 ∈ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

∞
.

Theorem 18. For any two sequences 𝑝 = (𝑝
𝑘
) and 𝑞 =

(𝑞
𝑘
) of positive real numbers and for any two n-

norms ‖ ⋅ . . . ⋅ ‖
1
and ‖ ⋅ . . . ⋅ ‖

2
on 𝑋, the following holds:

𝑍 [𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖

1
]

∩ 𝑍 [𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑞, ‖⋅ . . . ⋅‖

2
] ̸= 𝜙,

(61)

where 𝑍 = 𝑊
𝐼

, 𝑊
𝐼

0
, 𝑊
𝐼

∞
, and 𝑊

∞
.

Proof. The proof of the theorem is obvious, because the zero
element belongs to each of the sequence spaces involved in
the intersection.

Theorem 19. The sequence spaces 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅

‖]
𝐼, 𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

0
, 𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅

‖]
∞
, and 𝑊[𝐴,M, Δ

𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]

𝐼

∞
are neither solid nor

symmetric nor sequence algebras for 𝑠, 𝑚 ≥ 1 in general.

Proof. The proof is obtained by using the same techniques of
Et [23] andTheorems 15, 17, and 18.

Note 1. It is clear from definitions that

𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

0

⊆ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

⊆ 𝑊[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

∞
.

(62)
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Theorem 20. The spaces 𝑍[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖] and

𝑍[𝐴,M, 𝑝, ‖ ⋅ . . . ⋅ ‖] are equivalent as topological spaces, where
𝑍 = 𝑊

𝐼

, 𝑊
𝐼

0
, 𝑊
𝐼

∞
, and 𝑊

∞
.

Proof. Consider the mapping

𝑇 : 𝑍 [𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖] 󳨀→ 𝑍 [𝐴,M, 𝑝, ‖⋅ . . . ⋅‖] ,

(63)

defined by 𝑇(𝑥) = (Δ
𝑠

𝑚
(Λ
𝑗
𝑥)) for each 𝑥 ∈

𝑍[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖]. Then, clearly 𝑇 is a linear

homeomorphism and the proof follows.

Remark 21. If we replace the difference operator Δ
𝑠

𝑚
by Δ
(𝑠)

𝑚
,

then for each 𝜀 > 0 we get the following sequence spaces:

𝑊[𝐴,M, Δ
(𝑠)

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

=
{

{

{

𝑥 ∈ 𝜔 (𝑛 − 𝑋) :

{

{

{

𝑘 ∈ N :

𝜆
−1

𝑘
∑

𝑗∈𝐼
𝑘

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
(𝑠)

𝑚
𝑥
𝑗

− 𝑙

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥ 𝜀
}

}

}

∈ 𝐼,

for some 𝜌 > 0, 𝑙 ∈ 𝑋 and each

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}

}

}

,

𝑊[𝐴,M, Δ
(𝑠)

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

0

=
{

{

{

𝑥 ∈ 𝜔 (𝑛 − 𝑋) :

{

{

{

𝑘 ∈ N :

𝜆
−1

𝑘
∑

𝑗∈𝐼
𝑘

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
(𝑠)

𝑚
𝑥
𝑗

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

≥ 𝜀
}

}

}

∈ 𝐼,

for some 𝜌 > 0 and each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}

}

}

,

𝑊[𝐴,M, Δ
(𝑠)

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

∞

=
{

{

{

𝑥 ∈ 𝜔 (𝑛 − 𝑋) :

sup
𝑘

𝜆
−1

𝑘
∑

𝑗∈𝐼
𝑘

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
(𝑠)

𝑚
𝑥
𝑗

𝜌
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

< ∞,

for some 𝜌 > 0 and each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}

}

}

,

𝑊[𝐴,M, Δ
(𝑠)

𝑚
, Λ, 𝑝, ‖⋅ . . . ⋅‖]

𝐼

∞

=
{

{

{

𝑥 ∈ 𝜔 (𝑛 − 𝑋) : ∃𝐾 > 0,

s.t.
{

{

{

𝑘 ∈ N : 𝜆
−1

𝑘
∑

𝑗∈𝐼
𝑘

[𝑀
𝑗
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
(𝑠)

𝑚
𝑥
𝑗

𝜌
,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

]

𝑝
𝑗

≥ 𝐾
}

}

}

∈ 𝐼,

for some 𝜌 > 0 and each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}

}

}

.

(64)

Corollary 22. The sequence spaces 𝑍[𝐴,M, Δ
𝑠

𝑚
, Λ, 𝑝, ‖ ⋅

. . . ⋅ ‖], where 𝑍 = 𝑊
𝐼

, 𝑊
𝐼

0
, 𝑊
𝐼

∞
, and 𝑊

∞
, are para-

normed spaces (not totally paranormed) with respect to the
paranorm ℎ

Δ
defined by

ℎ
Δ

(𝑥) =

𝑚𝑠

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑗
, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ inf
{{

{{

{

𝜌
𝑝
𝑘
/𝐻

:
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sup
𝑘

[

[

∞

∑

𝑗=1

𝑎
𝑘𝑗

× [𝑀
𝑗

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Δ
(𝑠)

𝑚
(Λ
𝑗
(𝑥))

𝜌
1

,

𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)]

𝑝
𝑗

]

]

1/𝐻

≤ 1, for some 𝜌 > 0,

and each 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛−1
∈ 𝑋

}}

}}

}

,

(65)

where 𝐻 = max{1, sup
𝑘
𝑝
𝑘
} and 𝑍 = 𝑊

𝐼

, 𝑊
𝐼

0
, 𝑊
𝐼

∞
, and 𝑊

∞
.

Also it is clear that the paranorms 𝑔
Δ
and ℎ

Δ
are equivalent.

We state the following theorem in view of Lemma 9.

Theorem 23. Let 𝑋 be a standard 𝑛-normed space and
{𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} an orthogonal set in𝑋.Then, the following hold:

(a) 𝑊[𝐴,M, Δ
(𝑠)

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖

∞
]
𝐼

= 𝑊[𝐴,M, Δ
(𝑠)

𝑚
, Λ,

𝑝, ‖ ⋅ . . . ⋅ ‖
𝑛−1

]
𝐼,

(b) 𝑊[𝐴,M, Δ
(𝑠)

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖

∞
]
𝐼

0
= 𝑊[𝐴,M, Δ

(𝑠)

𝑚
, Λ,

𝑝, ‖ ⋅ . . . ⋅ ‖
𝑛−1

]
𝐼

0
,

(c) 𝑊[𝐴,M, Δ
(𝑠)

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖

∞
]
∞

= 𝑊[𝐴,M, Δ
(𝑠)

𝑚
, Λ,

𝑝, ‖ ⋅ . . . ⋅ ‖
𝑛−1

]
∞
,

(d) 𝑊[𝐴,M, Δ
(𝑠)

𝑚
, Λ, 𝑝, ‖ ⋅ . . . ⋅ ‖

∞
]
𝐼

∞
= 𝑊[𝐴,M, Δ

(𝑠)

𝑚
, Λ,

𝑝, ‖ ⋅ . . . ⋅ ‖
𝑛−1

]
𝐼

∞
,

where ‖ ⋅ . . . ⋅ ‖
∞

is the derived (𝑛 − 1)-norm defined with
respect to the set {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
} and ‖ ⋅ . . . ⋅ ‖

𝑛−1
is the

standard (𝑛 − 1)-norm on 𝑋.
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