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We introduced the ideal convergence of generalized difference sequence spaces combining an infinite matrix of complex numbers
with respect to A-sequences and the Musielak-Orlicz function over #n-normed spaces. We also studied some topological properties

and inclusion relations between these spaces.

1. Introduction

Throughout the paper w, £, ¢, ¢, and €, denote the classes
of all, bounded, convergent, null, and p-absolutely summable
sequences of complex numbers. The sets of natural numbers
and real numbers will be denoted by N and R, respectively.
Many authors studied various sequence spaces using normed
or seminormed linear spaces. In this paper, using an infinite
matrix of complex numbers and the notion of ideal, we
aimed to introduce some new sequence spaces with respect to
generalized difference operator A, on A-sequences and the
Musielak-Orlicz function in n-normed linear spaces. By an
ideal we mean a family I ¢ 2 of subsets of a nonempty
set Y satisfying the following: (i) ¢ € I; (ii) A,B «
I'imply AUB € I;(iii)A € I, B c AimplyB € I,
while an admissible ideal I of Y further satisfies {x} € I for
each x € Y. The notion of ideal convergence was introduced
first by Kostyrko et al. [1] as a generalization of statistical
convergence. The concept of 2-normed spaces was initially
introduced by Gahler [2] in the 1960s, while that of #-normed
spaces can be found in [3]; this concept has been studied
by many authors; see for instance [4-7]. The notion of ideal
convergence in a 2-normed space was initially introduced by
Giirdal [8]. Later on, it was extended to n-normed spaces by
Giirdal and Sahiner [9]. Given that I ¢ 2V is a nontrivial

idealin N, the sequence (x,,), ¢y inanormed space (X; ||||) is
said to be I-convergent to x € X, if, for each € > 0,

A()={neN:|x,—x|>¢} el (1)
A sequence (x;) in a normed space (X, | - ||) is said to
be I-bounded if there exists L > 0 such that
{keN:|x|>L}el )
A sequence (x;) in a normed space (X, | - ||) is said to

be I-Cauchy if, for each ¢
integer m = m(e) such that

{keN:|x;—x,|>¢ el 3)

> 0, there exists a positive

In paper [10], the notion of A-convergent and bounded
sequences is introduced as follows: let A = (A j)?il be a
strictly increasing sequence of positive real numbers tending
to infinity; that is,

0<A <A<+, Aj—o00 asj—o0o0. (4)

We say that a sequence x = (x;) € w is A-convergent
to the number I € C, called the A-limit of x, if Aj(x) —
l'as j — 00, where

j
A ) = %Z(A, A )x, jeN. (5)

Jr=1



The class of all sequences (A ) satisfying this property is
denoted by A.

In particular, we say that x is a A-null sequence
if Aj(x) — Oasj — oo. Further, we say that x is A-
bounded if suplej(x)l < 00. Here and in the sequel, we
will use the convention that any term with a zero subscript
is equal to naught; for example, A, = 0 and x, = 0. Now, it
is well known [10] that if lim;x; = a in the ordinary sense of
convergence, then

(1
]ll»rrolo<A_J; (/\r - /\r—l) |xr - al) =0. (6)
This implies that

lign 'Aj (x) - a|

L d (7)
A_Z (/\r - /\rfl) (xr - a)

Jr=1

= lim
j— oo

:0,

which yields thatlim;A ;(x) = a and hence x is A-convergent
to a. We therefore deduce that the ordinary convergence
implies the A-convergence to the same limit.

An Orlicz function is a function M [0,00) —
[0,00) which is continuous, nondecreasing, and convex
with M(0) = 0 and M(x) > 0for x > 0 and M(x) —
00, as x — 00. If convexity of M is replaced by M(x +
y) < M(x) + M(y), then it is called a modulus function,
introduced by Nakano [11]. Ruckle [12] and Maddox [13] used
the idea of a modulus function to construct some spaces of
complex sequences. An Orlicz function M is said to satisfy
the A,-condition for all values of x > 0, if there exists
a constant k > 0, such that M(2x) < kM(x). The A,-
condition is equivalent to M(Ix) < kIM(x) for all values
of x and for [ > 1. Lindentrauss and Tzafriri [14] used the
idea of an Orlicz function to define the following sequence

spaces:
€M={x€w:§M<|x(k)|><oo}, (8)
k=1 P

which is a Banach space with the Luxemburg norm defined

by
. S x (k)
=inf 0: M| ———)<1¢. 9
Ix|| = in {p> kzl ( , )<} (9)

The space €, is closely related to the space €,, which is

an Orlicz sequence space with M(x) = x? for 1 < p < oo.
Recently different classes of sequences have been introduced
using Orlicz functions. See [7, 9, 15-17].

A sequence M = (M) of Orlicz functions M, for
all k e Nis called a Musielak-Orlicz function.

Kizmaz [18] defined the difference sequences €, (A), c(A),
and ¢;(A) as follows.

Z(A) = {x = (x;) : (Ax}) € Z}. For Z = €, ¢, and
6> Where Ax = (x; — x3,,), for all k € N. The above spaces
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are Banach spaces, normed by |x| = |x;| + sup;|Ax,|. The
notion of difference sequence spaces was generalized by Et
and Colak [19] as follows: Z(A®) = {x = (x) : (A’xy) € Z}.
For Z = £, cand ¢, where s € N, (A’x;) = (A" 'x; —
A'x;,;) and so that A'x, = Y (~1)"C’xy,,. Tripathy
and Esi [20] introduced the following new type of difference
sequence spaces.

Z(A,) ={x =(x) : (A, xp) € Z}, Z = €, , ¢, and ¢,
where A, x; = (x; — Xp,,,), for all k € N. Tripathy et al. [21],
generalized the previous notions and unified them as follows.

Let m and s be nonnegative integers, then for Z a given
sequence space we have

Z(N) ={x = (x) : (A, %) € Z}, where

S
A x = Y (-1)"CiXpyy,  (forward difference),
n=0
s) © (10)
Z(Afn) - {x = (o) - (A;xk) € Z},where

A(:n)xk = Z(—l)”CZxk_mn (backward difference),
n=0

where x; = 0, for k < 0.

2. Definitions and Preliminaries

Let n € N and X be a linear space over the field K of
dimension d, whered > n > 2 and K is the field of
real or complex numbers. A real valued function || - ... - |
on X" satisfies the following four conditions:

@) llxy, %55 ..., x, = 0if and only if x;,x,,...,and

x,, are linearly dependent in X;

(2) llxy, %55 - .., x, |l is invariant under permutation;

3) lleexys x5 - .o X0l = lexlll x> %55 - . . x|l for any « € K;

() lx+x", x50 2, < N1 2, s X1+ X0 X0 - 2l
which is called an#n-norm on X and the
pair (X | - ... |) is called an n-normed space over

the field K. For example, we may take X = R" being
equipped with the n-norm |[|x;, x,,...,x,/l; = the
volume of the n-dimensional parallelepiped spanned
by the vectors x, x,,...,and x,, which may be given
explicitly by the formula

l]xl,xz,...,xn”E = |det (xij)'
X1 X1 0 X
x x e x (1].)
21 %22 2n
= abs . . . )
Xnl X " Xy

where x; = (x;;, %;5,...,%;,) foreach i € N.

Let (X, ]I-...-]l) bean n-normed space of dimension d >
n>2 and {a;,a,,as,...,a,} alinearly independent set in X.
Then, the function || - ... |, on X" defined by

1 %5 -+ xn"00 = max 1> %25 - - o> Xy a1 12)
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defines an (n — 1)-norm on X with respect to
a,a,,0;,...,and a, and this is known as the derived
(n — 1)-norm. The standard (n)-norm on X, a real inner
product space of dimension d > #, is as follows:

[ESTEE )
(xp0) (x%5) - (xp5%,) 2
b (X2, %1) (x2,%5) -+ {%x,%,) (13)
= abs . . . >
<xn’x1> <xn’x2> <xn’xn>

where (:,-) denotes the inner product on X. If we take X =
R”, then

[ETFEZIRE ey PSSR (14)

Forn =

V(x5 x1)-

Definition 1. A sequence (x;) in an n-normed space is said
to be convergent to x € X if

1, this n-norm is the usual norm |x,|| =

klingol|(zl,z2, s Zy X — x)||, =0,
(15)
Vz,25,...,2,.1 € X.
Definition 2. A sequence (x;) inan n-normed space is called
Cauchy (with respect to n-norm) if

s Zp 1> X — x" =0,

lim "Zl,zz,... il

k,j—
e (16)
Vz,25,...,2,.; € X.
If every Cauchy sequence in X converges to an x € X,
then X is said to be complete (with respect to the n-norm).

A complete n-normed space is called an n-Banach space.

Definition 3. A sequence (x;) in an n-normed space (X, || -
...-|l) is said to be I-convergent to x, € X with respect to n-
norm, if, for each € > 0, the set
{k eN:|xe = x0,21, 255> 24|
(17)
> ¢, for every z,,25,...,2,_1} € L.
Definition 4. A sequence (x;) in an n-normed space (X, | -
...~ ) is said to be I-Cauchy if, for each € > 0, there exists a
positive integer m = m(e) such that the set
{k e N:|xp = x,.215 255> 24|
(18)
> ¢, for every zy,25,...,2,_1} € L.
Let x = (x;) be a sequence; then S(x) denotes the set
of all permutations of the elements of (x;); that is, S(x) =
(Xn(n)) 7 is @ permutation of N.

Definition 5. A sequence space E is said to be symmetric
if S(x) C E forall x € E.

Definition 6. A sequence space E is said to be normal (or
solid) if (a;x;) € E, whenever (x;) € E and for all sequences
(o) of scalars with |o | < 1 forall k € N.

Definition 7. A sequence space E is said to be a sequence
algebra if x, y € E;then x- y = (x ;) € E.

Lemma 8. Every n-normed space is an (n — r)-normed space
forall r = 1,2,3,...,n—1. In particular, every n-normed space

is a normed space.

Lemma9. On astandard n-normed space X, the derived (n—

1)-norm | - ... |l defined with respect to the orthogonal
set {e),e,,...,e,} is equivalent to the standard (n — 1)-
norm || - ... ||,. To be precise, one has

o1 %05 s Xyl S -eeevlls < VAl X005 Xy [l oo
forall x|, x,,...,x, 1 € X, where |x),%,5,...,%, 1l
max; g, {lI%;, x5 ..., X1, €l g}

For any bounded sequence (p,) of positive numbers, one
has the following well known inequality: if 0 < p, < sup, py =
G and D = max(1,297"), then |a, +b,|P* < D(|a,|P + |b,|P),
forall k and ay, b, € C.

3. Main Results

In this section, we define some new ideal convergent
sequence spaces and investigate their linear topological
structures. We find out some relations related to these
sequence spaces. Let I be an admissible ideal of N,
M = (Mj) a Musielak-Orlicz function, and AS, the
forward generalized difference operator on the class of all
sequences (A ;) satisfying the property A and an n-normed
space (X, || - ... - |I). Further, let p = (p;) be any bounded
sequence of positive real numbers; we will define the follow-
ing sequence spaces:

WA, M, 8%, A, p, -]

xe€wmn-X):Ve>0

(o)
x 1k eN: Zakj
j=1

o

A, (A () -1

Pj
>:| >epr €1,
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pj
forsomep>0,leXandeachzl,zz,...,zn_lEX}, 2152952 1 ) ZK}EL
WA, M, A, A, p, ||.._..||](I) for some p > 0,
={x€w(n—X):V£>0 andeachzl,zz,...,zn_lGX}.
(20)
x {k €N: Zakj Let us consider a few special cases of the aforementioned
i=t sets.
A (A (1) If M(x) = M(x), for all k € N then the previous
% [M < m ( j (x)) classes of sequences are denoted by W[A, M, A% , A, p, |l -...-
! p N WA M, 85, A, py - 15 WA, M, A, A, py -l
’, and WA, M, A5, A, p, |l - ... II]iO, respectively.
! (2) If pp = 1forallk € N then the previous classes
215295052y >epr €l s I
of sequences are denoted by WI[A, #, A5, ,All-...- ],
s I s
W[A7 ‘%, Am) A’ || Teeet ||]O’ W[A, ‘%7Am) A) || Teeet ||]OO’ and
WIA, M, N, A ... ||]£0, respectively.
for some p > 0, and each z,,2,,...,2,, € X ¢, (3) f Mi(x) = «x, forallk € Nandx € [0,00],
then the previous classes of sequences are denoted by
s 1 s 1
W[A,ﬂ,Asm,A,p, ”'..'.“]OO W[A’Asﬂl’A’P’ " e "] > W[AaAm;Aap) " e ”I]())
W[A7Am) A)p) " EEREES "]OO’ and W[A>Am) A)p) " BERRIS "]OO’
respectively.
=dxcwmn-X): (4) If we take M;(x) = M(x), for all k € Nand A =
(akj) as
3K > 0 st. supOZO:ak- 1, k> j,
k j=1 ! akj =1k (21)
0, otherwise,
A%, (Aj (x)) .
x| M| |———— then we denote the previous classes of sequences
P by WIC, M, A5, Ayl 11 WIC, M, A, A oD
2 WIC, M, A5, p, I+ [loor and WIC, M, A5, A pu - 115
respectively.
ZoZp 2 ):| (5) If we take M(x) = M(x) and A = (a;) as
< 00, 1 .
—, jeL=[k-¢+LKk],
a; = { Pk (22)
0, otherwise,

for some p > 0 and each z;,2,,...,2,; € X} ,

where (¢) is a nondecreasing sequence of positive numbers

s Y tending to co, ¢; = 1, and ¢,; < ¢ + 1, then we denote
WA, MK A po - ”]00 the previous classes of sequences by W[®, M, A’ , A, p, |-.. .-
", WD, M, A5, A, p, [l o1, WI®, M, A A, p -l o
={xcwmn-X): and W[®, M, AS, A, p, |l -...- I,
6)IfA = (akj) as in (22), then we denote the previ-
ous classes of sequences by W[®, Z, A5, A, p,l - ... - 17,
3K>O,S.t. k € N:Zakj W[(D,%,AS,WA,I% "”](I),W[Iq),,%,ASm,A,p, "”]OO’
p= and WD, 22,85, A, p | .. 1L
Andif A; = jforall j € N, then the previous classes
o A, (Aj (x)) of sequences are denoted by W[®, Z,A’,,C,p,| - ... - 17,
i p ’ WD, M, A, Cpll - ... - e, WID, M, Cop,l - ... -

Neo» and W[, 4, A°5,,C, p, || - ... - I}, and they are a
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generalization of the sequence spaces defined by Bakery et al.
[22].

(7) By a lacunary 0 = (j,),r = 0,1,2,..., where j, = 0,
we will mean an increasing sequence of nonnegative integers

with j, — j,_, — oo asr — oo. The interval determined
by 0 will be denoted by I, =]j,_;, j,] and h, = j, — j,._; and
let A = (akj) as
i . e I _ ] . . ]
akj _ hr) J r Jr-1>Jr > (23)
0,  otherwise.

Then we denote the previous classes of sequences
by WO, M, A5, A py - 11, WO, M, A5 A pu -
W0, M, A, A p |l - ...+ oo, and WO, M, A A, pul - -
II]IOO, respectively.

(8) If M(x) = Milx), for allk ¢ N, A = 1,
and A; = j, then the previous classes of sequences are
denoted by WM, AS,,C, p, ||-...- 11, WIM, AS,,C, p, | -...-
g WM, AS,,C, pII-... oo-and WM, A, C, p, |- [11%,

(9) If s = 1, then the previous classes of sequences are
denoted by W[A, 4, A, A, p, | -...- I, WIM, A,,,,C, p, |-

Mg WIM A, Copol- - ooy and WM. A, C, -

Moo

(10) If m = 1, then the previous classes of sequences are
denoted by [A, 4, A°, A, p, ||-.. -], WM, A%, C, p, |I-.... 15
WIM, A% Copoll- o or and WIM, A5G p - e

Theorem 10. The spaces WA, M, A, A, p,Il - ... - ',
WA, M, N, A Ny and WA, 85, A, p - g
are linear spaces.

Proof. We will prove the assertion for W[A, /4, A5, A, p, || -

. ||]0, the others can be proved similarly. Assume that x =
(xk)a )’ = (yk) € W[A) ﬂ) Asma A: P, ” Teet "](I)’ and (xaﬁ € C
Then, there exist p; and p, such that the sets

Jj=1

o

21,29
}GI,
<|k€N:

{keN:iakj

A, (A ()
P1 '

|

(24)

>Zp-1

>

N | m

5
& A% (A () &
Zakj[Mj ( L,zl,zz,...,zn_1 )]
j=1 P2
zf}eL
2
(25)
Since (X, | -...-|) is an n-norm, A}, and A ; are linear,

and the Orlicz function M j is convex for all j € N, the
following inequality holds:

S

A, (Aj (ax + ﬁy))

ol py e + |/3| %)
)|

Z15 2950325

Z ;s |0‘|P1
Mo py + 18] py

s Pj
A (A
X [M]( M’Zl’zz,...,zn_l >:|
P
© |ﬁ|P2
+D
Z kJ|‘X|P1 |/3|P2
S pJ
AN (A
X[M]( M>Zl’22""’zn—l >]
%)
SDLZakJ
j=1

A, (A ()

&l |

o 321529552y
o0
+DLZakj
j=1
A (A
x[ﬂg( m(,UD,
P2
Pj
21525+ > 2y >] >

(26)

where L = max{lalp,/(lxlpy + [Blp,), |Blp,/(ledlpy + 1Blpy)}-
On the other hand from the above inequality we get

v g o

A, (Aj (ax + ﬁy))
|l o1 + B8] o,




N——
—
=
vV
(]
N——

2152500521
c {k eN:DL
© A% (A ()
X Z“kj [Mj < . >
= P1
Pj
€
2152500521 )] 2 5}
U «‘k e N: DL
p.
® N, (A5 (9) :
1 2

(27)

Since the two sets on the right hand side belong to I, this
completes the proof. O
Theorem 11. The spaces WI[A, M, N, A p,| - ... - 17
WIA, M, A, A, |l g, and WA, M, A5, A, p, - <115,

are paranormed spaces (not totally paranormed) with respect to
the paranorm g, defined by

ga (x)

ms
= S 22z

j=1

+ inf ppk/H :

© A, (A ()
m\"*j
sup a.; | M| |—————,
k I:]—Z; ][ ]( P1
pj 1/H
2152955 Zp] )] ]

<1, forsome p >0,

and each z,,2z,,...,2,.1 € X |,

(28)

where H = max{1, sup, p}.
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Proof. Clearly gy(—x) = gp(x) and g,(0) = 0. Let x =
(x) and y = () € WA M, A, A p, |l - ... [l Then,
for p > 0 we set

A= 1pisup [Zakj

=1
A (A (x)
X [M]( M’
P
pVH
215295000521 >:| ] <1,
for each z,,2,,...,2,., € X,
Ay
[ee]
= qp:sup Zakj
k j=1
A (A
§ Mj( n(8;0))
P
pj 1/H
215295052 >] ]
<1, foreach z},2,,...,2, , €X
(29)

Let p, € A}, p, € A,,and p = p; + p,; then we have

(o]
sup Zakj
k j=1

o

A, (Aj (x+ y))
—P ,

iR

215295032y
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_P
prtp

o[

j=1

<

A5, (A (x)
P1 ’

VH

21,29 > %y

I

L P
PLt P2
x A (A
k j=1 P2

1/H

e

21529502

ga(x+y)
ms
B
=1
+ inf{(Pl + Pz)Pk/H TP EALP € Az}
ms
) T
=
+ inf{(Pl)Pk/H “p € Al}
ms
+ Z ”yj,zl,zz,...,zn,l“
=1

+inf {(Pz)Pk/H 1Py € Az}

=ga(X) + ga (¥).
(30)

Let A' — A where A',A € C, and let g,(x' —x) — 0
ast — 00. We have to show that gA(/\txt - Ax) — Oas
t — 00. We set

Ay

= {p i sup |:Zakj
k j=1

o

A, (A ()
Pt ,

for each z;,2,5,...,2,., € X

(o)
1
Ag=1p isup | Y ay
k j=1

A (A
X[MJ( m( 1](y))’
Py
pVH
2152550052 >] jl <1,
for each z,2,,...,2,., € X

(31)

Ifp, € Ayand p; € A, then by using non-decreasing and
convexity of the Orlicz function M; forall j € N we get

[o0)
sup Zak j
k j=1

A, (/\tx; - ij)
A=Al p, + A}

o

Pj 1/H
215292y >] :I
< sup Zakj
k j=1

(2105 -1%)
<\ M\ o
A=Al p, + Al p

\/H

21,29 > Zp 1

)]

[oe]
+ sup Z“kj
k j=

1



AS, (/\x; - ij)
[Af = Al p, + Al Pt1 ,

)]

o

Z1,2,, ..

1/H

. ’anl

< |/\t -Mp
A=A p + Al P}

s ¢ 1/H

m=j
—, 21,2552

con| Sou o

i

1 ‘
N M o/
[A* = Al + Al pf
@ A (x' - x;
X sup [Z“kj |:Mj ( M,
k j=1 Pt
piVH
215295032y 1 )] jl
(32)
From the previous inequality, it follows that
sup [Zakj
k j=1
A (Atxt. - /\x<)
M| |,
X[ f<|»—Au»wMﬁ &
p;q1/H
215255320 >} ] <1,

and consequently

ga (Atxt B /\x)
ms

_ At t A

= § AKX 212055 2
J=1

+ inf {(|)tt - /\| P+ 1Al ptl)Pk/H ip € A3,pt1 € A4}

Abstract and Applied Analysis

ms
< |At - )L| Z ”x;,zl,zz, e ,zn_1||
j=1
+ |)Lt - )L|pk/H inf{(pt)pk/H ip € A3}
ms
MY XX = Az 200 2 |
j=1

+ PH inf {(Ptl)Pk/H pl e A4}

< ma 1AL g ()

+ max {IAI , IMP"/H} 9a (xt - x) :
(34)

Note that g,(x) < ga(x) + ga(x' — x), for all t € N.
Hence, by our assumption, the right hand of (34) tends to 0
as t — 00, and the result follows. This completes the proof
of the theorem. O

Theorem 12. Let M = (M), M = (M}), and M" = (M}')
be the Musielak-Orlicz functions. Then, the following hold:

(@ WIA, M A A pll - o - G c
WIA, MM A, A - ... - ], provided p = (py)
such that G, = inf p; > 0,

(b) WIA, ', A5, A p, |l - .. - 1y < WIA ML +
%”) Asrn)A) p) " BEER ”](I)'

Proof. (a) Lete > 0 such
that supk(Z;?zl ) max{e’, sfo} < &. Using the continuity of
the Orlicz function M, choose 0 < 6 < 1 suchthat 0 < ¢t <
d implies that M(t) < ¢;.

Let x = (x;) be any element in W[A, M, NN
I1; and put

0 be given. Choose ¢, >

(35)

Then, by the definition of ideal convergent, we have the
set Ay € I.If n ¢ As, then we have
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o0 S . p]
Zakj[M;( M’Zl’zz’--wzn_l )]
j=1 P1
N Pj
P1

<6GZM;<

,zl,zz,...,zn_llb < 4.

(36)

P1

Using the continuity of the Orlicz function M; for
all j and the relation (36), we have

A%, (A ; (x))

M; [M;( 521529500521 )] <g. (37)
P1
Consequently, we get
p.
S A, (A ) j
Zakj |:MJM; < p—J) Z1>Z2, ey Zn_l
j=1 1
<up( S s <
K\
P.
\ A, (A (x) j
- z%[MjM;< S(e) )}
j=t P1
<e.
(38)
This shows that
{k eN:
Zakj |:MJMJI< ( J )’
j=1 P1
, @)
Z]) zz; ’anl >:|

ZS}QA(;EI.

This proves the assertion.

(b) Let x = (x;) be any element in W[A, A, pll-...
II](I,. Then, by the following inequality, the results follow:

iakj[(M;-+Mjl.’)< A, (4, 0) >]P;

215255 2y
=1 P1 !
oo A (A (x) bi
< DZakj|:MJ'. < M,zl,zz,...,zn_1
= P1
p.
© A (A (x) !
+D2akj|:M]'.'( M,zl,zb...,zn_1 )] .
j=1 pl
(40)
O
Theorem 13. The inclusions Z[A, M, AZI,A, l-...-01] ¢
ZIA, MN, M - ...- |l] are strict for s,m > 1 in general
where Z = W, WOI, and Wéo
Proof. We will give the proof for W[A, ./, ASV;I, A ... II]é c
WIA, MN, A - II](I) only. The others can be proved by
similar arguments. Let x = (x;) € W[A, 4, Ai;l, A .. .-II](I).

Then let € > 0 be given; there exist p > 0 such that

0 s—1 )
{kEN:Z%Mj( 85! (8, ()

j=1
} el

Since M; for all j € N is non-decreasing and convex, it
follows that

(o]
2 M, (
=1

3215295+ o> Zp_)

)

>

N |,

(41)

A, (A ; (x))

2 1215295 - -

> Zp-1

M8

= akj

><Mj<

1

~.
Il

N G () = A5 (A ()
2p ’

)

A (A ()
p

21,2932y 1

V215295 > %y

1 o0
<3 > M, (

j=1

)
)

(42)

AH(A ()

1215295+ rZpy

1 [ee]
+ Ez‘iak]M] (
j=
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and then we have

1k€NZ§ﬂkj

=

m
(e

s—1
e Am xj+1
X aijj >
= p
&
Z1Zp 52|l | 2 5

U<|k€N:l
2

[ee]
j=1

A (A )
p

(43)

Let My (x) = M(x) = x forall x € [0,00[, k € N and
A = kforall k € N. Consider a sequence x = (x;) = (k%).

Then, x € W[A, M, N, A | -...- II](I) but does not belong to
WIA, 4, AZI,A, l-...- II]é, for s = m = 1. This shows that
the inclusion is strict. O

Theorem 14. Let 0 < p; < gy for all k € N; then

WIA, M, N, A ps |- Il
(44)
SWIA M N, A .. ll] -
Proof. Let x = (x;) € W[A, 4, AN D .- [ then
there exists some p > 0 such that
% A (A (x) bi
supZakj[Mj( M,zl,zz,...,zn_1 < 00.
k j=1
(45)
This implies that
AL (A (x)
Mj< (TJ),ZI,ZZ,...,zn1 <1, (46)
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for a sufficiently large value of j. Since M; for all j € N is
non-decreasing, we get
) :| qj

X A (A
k j=1 P

3215295+ > %y

s pj
o AN (A (x)
< supZakj[M]( M,zl,zz,...,zn_1 )] < 00.
k j=1
(47)
Thus, x € W[A, M, A, A, q, | - ... - ll]s- This completes
the proof of the theorem. O
Theorem 15. (i) If 0 < inf p, < p, < 1, then
W[A, M, Asmx A, p» " ce "]oo
(48)
SWIA M N, A -] -
(i) If 1 < py. < supypy < 0o, then WA, M, N, , A, || -...-
oo SWIA, AN, A Dl - .. oo
Proof. (i) Let x = (x;) € W[A, 4, A A Dyl ] since

0 < infy pp < pi < 1, then we have

< A (A
m;ngkj [Mj < M’ZDZZ’“"Zn—l
j=1

)

00 S X Pj
SsupZakj[Mj< M,zl,zz,...,zn,l ):| < 00,
k j=1 p
(49)
and hence x € WA, M, N, A | - ... - ] -
(i) Let 1 < p < supgpe < oo and x = (x;) €
WIA, M, N, A\ |l - ... - o Then for each 0 < & < 1 there

exists a positive integer j, such that
© A, (A ()
m\"tj
supZakj [MJ( _
k j=1

P
<e<l,

3215295+ > %y

) o

forall j > j,. This implies that

supZakj [Mj <
k j=1

A, (A ()
p

2215295 Zp 1

|

) A (A (x)
< supZakj [M]< M,zl,zz,...,zn_l )] < 0o.
k j=1 1%
(51)
Thus x € WA, M, A, A, p, | - ...+ o and this completes
the proof. O

Theorem 16. For any sequence of the Orlicz functions
M = (M;) which satisfies the A,-condition, we have

WIA A Ao WIA A, A p, - 1T
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Proof. Let x = (x;) € W[A, A5, A, p,||-...- 1" and & > 0 be
given. Then, there exist p > 0 such that the set

{kEN:

© A, (A () -1
;% P (52)

€ I, for some [.

By taking y; = (A%, (A; (x)) =D)/p, 21,25, -, 2,4l let
€ > 0 and choose § wit 0 < 0 < 1 such that Mj(t) < g forall
j e N;for0 <t <8, consider that

- 3 ) 3

since M; is continuous forall n € N.

Zjezk,ngs[Mj()’j)]Pj < ¢ and for yi > 8, we use the fact
that y; < y;/8 < 1+y,/8.Since M = (M) is non-decreasing
and convex, it follows that

M () < My (1+2) < S 0 + %MJ-(%). (54)

Since # = (M j) satisfies the A ,-condition, then
Vi Vi Y
M; (y;) < T tM; @)+ S5LM; () = FLM; (). (55)

Hence

(o)

> [M;(5)]”

j=Ly;>8

< max <|1, sup(L(S_le (2))P1} (56)
j

(%’)PJ?

j=1,y;>6

and then we have

ZI[M;' ()"
=
- (57)
< £+ max {1, sup(L(?*le (2))p’} Z
j .

1
This proves that W[A,AS, A, p,ll - ... - ' ¢
WA, M85, A p, - =

Theorem 17. Let 0 < p, < q, < 1 and (q,/p,) be bounded;
then

WA, A, A%, A g -]
; (58)
CWIA M, N, A p, ... ] -

Proof. Let x = (xj) e WIA, M, N\, gl - ... |l and we put

K (A (0) -

yi= M|l |—————— 2% % ;

P
(59)
B = Pj VjeN.
qj

Then 0 < B; < 1, forall j € N. Let it be such that 0 <

B < ﬁj for all j € N. Define the sequences (aj) and (bj) as

follows: for y; > 1,let a; = y; and b; = O;for y; < L,let a; =

0 and b; = y;. Then clearly, for all j € N we have y; = a; +
Bj

b;, yjj = afj + bfj, a;’ <a; < yjand bfj < b}g. Therefore, we

have

9, w 1°
Zlakjyjf < .Zlakjyf < Zlakfyf . (60)
J= Jj= j=

Hence x € W[A, M, N, , A, p, | -...-I] O

0"

Theorem 18. For any two sequences p = (p) and q =
(qi) of positive real numbers and for any two n-

norms || -...-|l; and || -...- |, on X, the following holds:
Z[A M, N, A -l ]
) (61)
NZ[AMN,, N ... ] #¢

where Z = W', W,, WL, and W,

Proof. The proof of the theorem is obvious, because the zero
element belongs to each of the sequence spaces involved in
the intersection. O

Theorem 19. The sequence spaces W[A, M, N, A, p, | - ... -

N WA, M8, A pol - g WA, A Aol -
oo and WA, M, A, A, p, |l - ... II]I00 are neither solid nor

symmetric nor sequence algebras for s,m > 1 in general.

Proof. The proof is obtained by using the same techniques of
Et [23] and Theorems 15, 17, and 18. O

Note 1. Tt is clear from definitions that

WA, M, A, A -,
CWIA M, A p, -] (62)

C WA M, A Dl
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Theorem 20. The spaces Z[A, M, N, A, p,|l - ... - |] and
ZIA, M, p,|l-...-|] are equivalent as topological spaces, where
Z=wW\ W, WL, andw_,.

Proof. Consider the mapping

T:Z[AMN, A p-...II]| — Z[A M p,-... ],
(63)

defined by T(x) = (A,(A %) for each x €

ZIA, M, N, A p, |l - ... - |l]. Then, clearly T is a linear
homeomorphism and the proof follows. O

Remark 21. If we replace the difference operator A%, by A%,
then for each € > 0 we get the following sequence spaces:

WA, 4, 05), A, p, |- ..-II]I

=<‘xew(n—X):

{kEN:

AWx. 1
-1 m”j
M Z [Mj< ’
j€k P
Pj
215295 > %y )]

for some p >0, [ € X and each

21529552y ] GX},

WA, A9, A, p,-... ]
> B >P>”~--”O
= {wa(n—X):

{kEN:

A(S)X~
-1 mXj
Ay [Mj( ,
jelk P
Pj

Abstract and Applied Analysis

Zs}el,

for some p > 0 and each z,,z,,...

2yl GX},

W[A;%:A(;l)yA’pr ””]00
= <|xew(n—X):
AWx, b
supA;Z[M]( m ],zl,zz,..-,zn_l ):|
k J€lk
< 00,

for some p > 0 and each z;,2,,...,2,_; € X} R

WA, 85, A, .-l

= <|x€w(n—X):EIK>0,

A(S)x»
stAkeN: 'Y [M]( L
JEI P
Pj
21,25 >Zp 1 )]

ZK}EL

for some p > 0 and each zy,2,,...,2,_; € X} .

(64)

Corollary 22. The sequence spaces Z[A, M, N, A, p,| -
.+ |, where Zz = WI,WOI,W(;, and W, are para-
normed spaces (not totally paranormed) with respect to the
paranorm h, defined by

ms

hy (x) = Z "xj,zl,zz,...,zn_lu
Jj=1
+inf pp"/H :
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(o)
sup Z“kj
k j=1

A (A (x)
o ([0,
P1
p;VH
Z15Z9 > %y >]
<1, forsome p >0,

and each z,,2z,,...,2,_, € X ¢,

(65)

where H = max{1, sup, p} and Z = W, W, WL, and W,
Also it is clear that the paranorms g, and h, are equivalent.

We state the following theorem in view of Lemma 9.

Theorem 23. Let X be a standard n-normed space and

{er ey, ..., e,} an orthogonal set in X. Then, the following hold:
@) WA, A A |-l ) = WIA, 4, A%, A,
p) || Teeet ”n—]]I)
() WIA MDD A po - )b = WA, M09, A,
p) ” et ”n—]](l))
© WIA AL A P - Dloloo = WIA, AT, A,
ool loiloo
(d) WIA AN D, -l = WIA, 2,09, A,
P) ” et ”nfl]éo)
where || -...- |l is the derived (n — 1)-norm defined with
respect to the set {e,e,....,e,}and ||-...-|,_, is the

standard (n — 1)-norm on X.
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