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A singularly perturbed time dependent convection diffusion problem is solved on a rectangular domain, using the moving mesh
method which uses the equidistribution principle. The problem has a boundary at the steady state. It is shown that the numerical
approximations generated by the moving mesh method converge uniformly with respect to the singular perturbation parameter.
Theoretical results are obtained which are verified using numerical results.

1. Introduction

The use of adapted meshes [1–3] in the numerical solution
of differential equations has become a popular technique
for improving existing approximation schemes. When con-
sidering an adaptive mesh algorithm for the solution of
time dependent differential equations [4–6], the techniques
which underpin the grid movement are often found in the
literature [4, 6, 7] for the generation of adapted grids for the
numerical solution of steady problems. One such technique
is equidistribution, first introduced by de Boor [8], involving
locating mesh points such that some measure of the solution
geometry or error is equalized over each subinterval; a typical
example is redistributing the arc length of the solution. To
approximate the solution accurately in these regions, it is
necessary to generate a mesh that is dense where the solution
is changing rapidly and to remove unneeded points from
regions where the solution is becoming smoother. Thus the
mesh must have a dynamic behaviour in much the same way
as the solution. This problem has been addressed by Huang
et al. [9], who proposed a general adaptive mesh method
known as the moving mesh method.

For the moving mesh methods, the number of grid
points is fixed. The mesh points move continuously in the
space time domain and concentrate in regions where the
solution is steep. The movement of the mesh is governed
by a mesh equation which moves the mesh around in an

orderly fashion. Huang et al. [9] developed several forms
of the mesh equations known as the moving mesh partial
differential equations (MMPDEs). Here a simple equidis-
tribution relation in one spatial dimension is differentiated
with respect to time in order to derive equations prescribing
the correct velocities of nodes in order to preserve the
equidistribution principle as the solution and grid evolve.
The mesh equation and the original differential equation can
be solved simultaneously or decoupled to get the physical
solution and mesh. How the MMPDEs are formulated and
solved [10, 11] is crucial to the efficiency and robustness of
the method. Zhou et al. [12] applied a difference scheme to a
singularly perturbed problem.The study used two algorithms
onmovingmeshmethods by using Richardson extrapolation
which can improve the accuracy of numerical solution.
Yang [13] considered a kind of nonconservative singularly
perturbed two-point value problems in fluid dynamics. Cen
[14] examined a class of delay differential equations with
a perturbation parameter 𝜀. More recently, Gowrisankar
and Natesan [5] numerically studied singularly perturbed
parabolic convection-diffusion problems exhibiting regular
boundary layers.

In order to obtain a robust moving mesh method which
can solve a wide range of problems, we are going to adopt the
equidistribution principle moving mesh strategy with the arc
length as the monitor function.
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Consider the following time dependent convection-diffu-
sion problem:

𝑃
𝜀
:
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{
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{
{
{
{
{
{

{

−𝜀

𝜕
2

𝜕𝑥
2
𝑢
𝜀
(𝑥, 𝑡) +

𝜕

𝜕𝑥

(𝑏 (𝑥, 𝑡) 𝑢
𝜀
(𝑥, 𝑡))

+

𝜕

𝜕𝑡

𝑢
𝜀
(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω,

𝑢
𝜀
(0, 𝑡) = 𝑢

𝜀
(1, 𝑡) = 0,

𝑢
𝜀
(𝑥, 0) = 𝑔 (𝑥) ,

(1)

with 0 < 𝜀 < 1, 𝜆 ≥ 𝑏
𝑥
≥ 𝜆 > 0 and 𝛽 ≥ 𝑏 ≥ 𝛽 > 0 for all

(𝑥, 𝑡) ∈ Ω = Ω ∪ Γ
𝐵
∪ Γ
𝐿
∪ Γ
𝑅
where 𝜆, 𝜆, 𝛽, 𝛽 are constants,

Ω = (0, 1) × (0,T] ,

Γ
𝐿
= {(0, 𝑡) | 0 ≤ 𝑡 ≤ T} ,

Γ
𝐵
= {(𝑥, 0) | 0 ≤ 𝑥 ≤ 1} ,

Γ
𝑅
= {(1, 𝑡) | 0 ≤ 𝑡 ≤ T} ,

Γ = Γ
𝐿
∪ Γ
𝑅
∪ Γ
𝐵
.

(2)

The functions 𝑓 and 𝑏 are assumed to be sufficiently smooth.
In general the solution 𝑢

𝜀
will be smooth onΩ for all values of

𝑡. Boundary and interior layers [15–17] are normally present
in the solutions of problems involving such equations. These
layers are thin regions in the domain where the gradient of
the solution steepens as the singular perturbation parameter
𝜀 tends to zero. In problems, inwhich large solution variations
are common, the choice of a nonuniform mesh cannot only
retain the accuracy but also improve the efficiency of an
existing method by concentrating mesh points in regions of
interest. If the regions of high spatial activity are moving in
time, then techniques that also adapt the grid in time are
needed. The moving mesh method [6] will be used to solve
𝑃
𝜀
.The drawback of this strategy is that, with the introduction

of the mesh equations which govern mesh movement, the
system becomes nonlinear for any linear problem; hence very
little theoretical analysis [1, 7, 18, 19] has been carried out
to explain the convergence behaviour of the method. The
following assumptions will be made: for all (𝑥, 𝑡) ∈ Ω,
‖𝑑𝑥(𝑡)/𝑑𝑡‖ ≤ 𝐶, for some constant 𝐶 and at 𝑡 = T,
‖𝜕𝑢
𝜀
(𝑥, 𝑡)/𝜕𝑡‖ ∼ 𝑂(𝜀) and ‖𝑑𝑥(𝑡)/𝑑𝑡‖ ∼ 𝑂(𝜀).

2. The Continuous Problem

The differential operator 𝐿
𝜀
for 𝑃
𝜀
satisfies the following

maximum principle.

Theorem 1 (maximum principle). Let 𝜓(𝑥, 𝑡) be any function
in the domain of 𝐿

𝜀
and assume that 𝜓(𝑥, 𝑡) ≥ 0, for all

(𝑥, 𝑡) ∈ Γ. Then 𝐿
𝜀
𝜓(𝑥, 𝑡) ≥ 0 for all (𝑥, 𝑡) ∈ Ω, this implies

that 𝜓(𝑥, 𝑡) ≥ 0 for all (𝑥, 𝑡) ∈ Ω.

Proof. Assume that there exists r = (𝑥
𝑟
, 𝑡
𝑟
) ∈ Ω such that

𝜓(r) = min
Ω
𝜓 < 0; then r ∉ Γ since 𝜓(𝑥, 𝑡) ≥ 0 for all

(𝑥, 𝑡) ∈ Γ; hence r ∈ Ω. Let

𝜓
∗

(𝑥, 𝑡) = 𝜓 (𝑥, 𝑡) 𝑒
(𝛽/𝜀)(1−𝑥) (3)

for all (𝑥, 𝑡) ∈ Ω. Then 𝜓
∗

(𝑥, 𝑡) ≥ 0 for all (𝑥, 𝑡) ∈ Γ, and
𝜓(r) < 0; thus the minimum of 𝜓∗ must be also negative. Let
q = (𝑥

𝑞
, 𝑡
𝑞
) ∈ Ω such that

𝜓
∗

(q) = min
Ω

𝜓
∗

< 0. (4)

Applying the differential operator 𝐿
𝜀
to 𝜓 gives

𝐿
𝜀
𝜓 (𝑥, 𝑡) = 𝐿

𝜀
(𝜓
∗

𝑒
−(𝛽/𝜀)(1−𝑥)

)

= − 𝜀

𝜕
2

𝜕𝑥
2
(𝜓
∗

𝑒
−(𝛽/𝜀)(1−𝑥)

) +

𝜕

𝜕𝑥

(𝑏𝜓
∗

𝑒
−(𝛽/𝜀)(1−𝑥)

)

+

𝜕

𝜕𝑡

(𝜓
∗

𝑒
−(𝛽/𝜀)(1−𝑥)

)

= (−𝜀𝜓
∗

𝑥𝑥
+ 𝑏
𝑥
𝜓
∗

+ 𝑏𝜓
∗

𝑥
+ 𝜓
∗

𝑡
) 𝑒
−(𝛽/𝜀)(1−𝑥)

− 2𝛽𝜓
∗

𝑥
𝑒
−(𝛽/𝜀)(1−𝑥)

+ (−

𝛽
2

𝜀

+

𝑏𝛽

𝜀

)𝜓
∗

𝑒
−(𝛽/𝜀)(1−𝑥)

(5)

which can be written as

𝐿
𝜀
𝜓 (𝑥, 𝑡) = (𝜂

1
+ 𝜂
2
+ 𝜂
3
) 𝑒
−(𝛽/𝜀)(1−𝑥)

, (6)

where
𝜂
1
= −𝜀𝜓

∗

𝑥𝑥
+ 𝑏
𝑥
𝜓
∗

+ 𝑏𝜓
∗

𝑥
+ 𝜓
∗

𝑡
,

𝜂
2
= (−

𝛽
2

𝜀

+

𝑏𝛽

𝜀

)𝜓
∗

,

𝜂
3
= −2𝛽𝜓

∗

𝑥
.

(7)

The argument now divides into two cases depending on the
position of q, q ∈ Γ

𝑡
= {(𝑥,T) | 0 < 𝑥 < 1} or q ∉ Γ

𝑡
. If q ∉ Γ

𝑡
,

we have that

𝜓
∗

𝑥𝑥
(q) > 0, 𝜓

∗

𝑥
(q) = 𝜓

∗

𝑡
(q) = 0. (8)

It can be seen that 𝜂
1
< 0, 𝜂

2
< 0 and 𝜂

3
= 0 for all 𝑥 ∈ (0, 1).

This leads to the following inequality: 𝐿
𝜀
𝜓(q) < 0. If q ∈ Γ

𝑡
,

we have that

𝜓
∗

𝑥𝑥
(q) > 0, 𝜓

∗

𝑥
(q) = 0, 𝜓

∗

𝑡
(q) ≤ 0. (9)

It also follows that 𝜂
1
< 0, 𝜂

2
< 0, and 𝜂

3
= 0 for all (𝑥, 𝑡) ∈ Ω

and also leads to the following inequality: 𝐿
𝜀
𝜓(q) < 0. This

is a contradiction, and thus our original assumption is false
and we can conclude that the minimum of 𝜓∗(𝑥, 𝑡) is non-
negative.

An immediate consequence of this is the following bound
on the solution of any problem from 𝑃

𝜀
.

Lemma 2. Let 𝑢
𝜀
(𝑥, 𝑡) be the solution of 𝑃

𝜀
; then

󵄩
󵄩
󵄩
󵄩
𝑢
𝜀

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝛽

, (10)

for all (𝑥, 𝑡) ∈ Ω.
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Proof. Consider the barrier functions

𝜓
±

(𝑥, 𝑡) =
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
+ 𝑥

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝛽

± 𝑢
𝜀
(𝑥, 𝑡) ,

𝜓
±

(0, 𝑡) =
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
± 𝑢
𝜀
(0, 𝑡) =

󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
≥ 0,

𝜓
±

(1, 𝑡) =
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝛽

± 𝑢
𝜀
(1, 𝑡) =

󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝛽

≥ 0,

𝜓
±

(𝑥, 0) =
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
+ 𝑥

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝛽

± 𝑢
𝜀
(𝑥, 0) ≥ 0.

(11)

For (𝑥, 𝑡) ∈ Ω,

𝐿
𝜀
𝜓
±

(𝑥, 𝑡) = − 𝜀

𝜕
2

𝜕𝑥
2
(
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
+ 𝑥

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝛽

± 𝑢
𝜀
(𝑥, 𝑡))

+

𝜕

𝜕𝑥

(𝑏(
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
+ 𝑥

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝛽

± 𝑢
𝜀
(𝑥, 𝑡)))

+

𝜕

𝜕𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
+ 𝑥

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝛽

± 𝑢
𝜀
(𝑥, 𝑡))

= 𝑏
𝑥
(
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩
+ 𝑥

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝛽

) + 𝑏

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

𝛽

± 𝑓 (𝑥, 𝑡) ≥ 0.

(12)

The maximum principle now applies, and we have 𝜓±(𝑥, 𝑡) ≥
0 for all (𝑥, 𝑡) ∈ Ω from which we have the required result.

Lemma 3. Let 𝑢
𝜀
(𝑥, 𝑡) be the solution of 𝑃

𝜀
; then the spatial

derivatives 𝜕𝑘𝑢
𝜀
(𝑥, 𝑡)/𝜕𝑥

𝑘 satisfy the bounds

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
𝑘

𝑢
𝜀
(𝑥, 𝑡)

𝜕𝑥
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶𝜀
−𝑘max {󵄩󵄩󵄩

󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
𝑢
𝜀

󵄩
󵄩
󵄩
󵄩
} , for 𝑘 = 1, 2,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
3

𝑢
𝜀
(𝑥, 𝑡)

𝜕𝑥
3

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶𝜀
−3max {󵄩󵄩󵄩

󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
𝑢
𝜀

󵄩
󵄩
󵄩
󵄩
} .

(13)

Proof. Note that

∫

1

𝑥

𝜕

𝜕𝑠

(𝑏 (𝑠, 𝑡) 𝑢
𝜀
(𝑠, 𝑡)) 𝑑𝑠 = 𝑏(𝑠, 𝑡)𝑢

𝜀
(𝑠, 𝑡)

󵄨
󵄨
󵄨
󵄨

1

𝑠=𝑥

(14)

which gives
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

𝑥

(𝑓 (𝑠, 𝑡) −

𝜕

𝜕𝑠

(𝑏 (𝑠, 𝑡) 𝑢
𝜀
(𝑠, 𝑡))) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
+ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑢
𝜀

󵄩
󵄩
󵄩
󵄩
(15)

for all (𝑥, 𝑡) ∈ Ω where 𝐶 depends on ‖𝑏‖. From the mean-
value theorem, there exists a point 𝑧 ∈ (1 − 𝜀, 1) such that

𝜕𝑢
𝜀
(𝑧, 𝑡)

𝜕𝑥

=

𝑢
𝜀
(1, 𝑡) − 𝑢

𝜀
(1 − 𝜀, 𝑡)

𝜀

; (16)

hence
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜀

𝜕𝑢
𝜀
(𝑧, 𝑡)

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝜀

󵄩
󵄩
󵄩
󵄩
. (17)

Integrating 𝑃
𝜀
with respect to 𝑥, we obtain

− 𝜀(

𝜕𝑢
𝜀
(1, 𝑡)

𝜕𝑥

−

𝜕𝑢
𝜀
(𝑥, 𝑡)

𝜕𝑥

)

= ∫

1

𝑥

(𝑓 (𝑠, 𝑡) −

𝜕

𝜕𝑠

(𝑏 (𝑠, 𝑡) 𝑢
𝜀
(𝑠, 𝑡)) −

𝜕𝑢
𝜀
(𝑠, 𝑡)

𝜕𝑡

) 𝑑𝑠.

(18)

Using (18) with 𝑥 = 𝑧 and combining with (15), it follows that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜀

𝜕𝑢
𝜀
(1, 𝑡)

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
+ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑢
𝜀

󵄩
󵄩
󵄩
󵄩
. (19)

Equation (15) can also be used to give the following bound:
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜀

𝜕𝑢
𝜀
(𝑥, 𝑡)

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
+ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑢
𝜀

󵄩
󵄩
󵄩
󵄩
, (20)

for all (𝑥, 𝑡) ∈ Ω. This proves the result for 𝑘 = 1. To obtain
bounds for the higher derivatives, rewriting (10)

−𝜀

𝜕
2

𝑢
𝜀
(𝑥, 𝑡)

𝜕𝑥
2

= 𝑓 (𝑥, 𝑡) −

𝜕

𝜕𝑥

(𝑏 (𝑥, 𝑡) 𝑢
𝜀
(𝑥, 𝑡)) −

𝜕𝑢
𝜀
(𝑥, 𝑡)

𝜕𝑡

,

(21)

this gives the second derivative bound where 𝐶 depends on
‖𝑔‖, ‖𝑏‖, and ‖𝑏

𝑥
‖. Differentiating 𝑃

𝜀
with respect to 𝑥

−𝜀

𝜕
3

𝑢
𝜀
(𝑥, 𝑡)

𝜕𝑥
3

=

𝜕

𝜕𝑥

(𝑓 (𝑥, 𝑡) −

𝜕

𝜕𝑥

(𝑏 (𝑥, 𝑡) 𝑢
𝜀
(𝑥, 𝑡))

−

𝜕𝑢
𝜀
(𝑥, 𝑡)

𝜕𝑡

)

(22)

and using the idea from (16), this gives the bound for the third
derivative.

Consider the following decomposition of the solution
into the smooth and singular components:

𝑢
𝜀
(𝑥, 𝑡) = V

𝜀
(𝑥, 𝑡) + 𝑤

𝜀
(𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω, (23)

where V
𝜀
(𝑥, 𝑡) is the solution to problem

𝐿
𝜀
V
𝜀
(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω, (24a)

V
𝜀
(𝑥, 𝑡) = 𝑢

𝜀
(𝑥, 𝑡) , (𝑥, 𝑡) ∈ Γ

𝐵
∪ Γ
𝐿
, (24b)

and the singular component 𝑤
𝜀
(𝑥, 𝑡) is the solution of the

homogenous problem

𝐿
𝜀
𝑤
𝜀
(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Ω, (25a)

𝑤
𝜀
(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Γ

𝐵
∪ Γ
𝐿
, (25b)

𝑤
𝜀
(𝑥, 𝑡) = 𝑢

𝜀
(𝑥, 𝑡) − V

𝜀
(𝑥, 𝑡) , (𝑥, 𝑡) ∈ Γ

𝑅
. (25c)

Theorem4. The solution 𝑢
𝜀
(𝑥, 𝑡) of the continuous problem𝑃

𝜀

can be decomposed as a sum of the smooth and layer functions

𝑢
𝜀
(𝑥, 𝑡) = V

𝜀
(𝑥, 𝑡) + 𝑤

𝜀
(𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω, (26)
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where for all 𝑘, 0 ≤ 𝑘 ≤ 3, the smooth component V
𝜀
(𝑥, 𝑡)

satisfies
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
𝑘V
𝜀
(𝑥, 𝑡)

𝜕𝑥
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶 (1 + 𝜀
−(𝑘−2)

) ; (27)

the singular component 𝑤
𝜀
(𝑥, 𝑡) satisfies

󵄨
󵄨
󵄨
󵄨
𝑤
𝜀
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑒
−(𝛽/𝜀)(1−𝑥)

, ∀𝑥 ∈ Ω, (28)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
𝑘

𝑤
𝜀
(𝑥, 𝑡)

𝜕𝑥
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶𝜀
−𝑘

𝑒
−(𝛽/𝜀)(1−𝑥)

, 𝑘 = 1, 2, 3 (29)

for some constant 𝐶 independent of 𝜀.

Proof. To find these bounds, we rewrite the smooth compo-
nent as

V
𝜀
(𝑥, 𝑡) = (V

0
+ 𝜀V
1
+ 𝜀
2V
2
) (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω, (30)

where V
0
(𝑥, 𝑡) is the solution to the reduced problem 𝑃

0
,

V
1
(𝑥, 𝑡) satisfies

𝜕

𝜕𝑥

(𝑏 (𝑥, 𝑡) V
1
(𝑥, 𝑡)) +

𝜕V
1
(𝑥, 𝑡)

𝜕𝑡

=

𝜕
2V
0
(𝑥, 𝑡)

𝜕𝑥
2

, (𝑥, 𝑡) ∈ Ω,

V
1
(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Γ

𝐵
∪ Γ
𝐿
,

(31)

and V
2
(𝑥, 𝑡) satisfies

𝐿
𝜀
V
2
(𝑥, 𝑡) =

𝜕
2V
1
(𝑥, 𝑡)

𝜕𝑥
2

, (𝑥, 𝑡) ∈ Ω,

V
2
(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Γ.

(32)

We clearly have 𝐿
𝜀
V
𝜀
(𝑥, 𝑡) = 𝑓(𝑥) in Ω with V

𝜀
(𝑥, 𝑡) =

V
0
(𝑥, 𝑡) + 𝜀V

1
(𝑥, 𝑡) on Γ

𝑅
. It can be easily seen that V

0
(𝑥, 𝑡) and

V
1
(𝑥, 𝑡) are all bounded by a constant independent of 𝜀 and

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
𝑖+𝑗V
1
(𝑥, 𝑡)

𝜕𝑥
𝑖
𝜕𝑡
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶, (𝑥, 𝑡) ∈ Ω (33)

for 0 ≤ 𝑖 + 2𝑗 ≤ 4. Therefore V
2
(𝑥, 𝑡) is the solution of a

problem similar to 𝑃
𝜀
; hence from Lemma 2, we obtain that

󵄩
󵄩
󵄩
󵄩
V
2

󵄩
󵄩
󵄩
󵄩
≤ 𝐶 󳨐⇒

󵄩
󵄩
󵄩
󵄩
V
𝜀

󵄩
󵄩
󵄩
󵄩
≤ 𝐶 (1 + 𝜀 + 𝜀

2

) . (34)

To get the bounds for the spatial derivatives, we only consider
V
2
(𝑥, 𝑡) since V

0
(𝑥, 𝑡) and V

1
(𝑥, 𝑡) are independent of 𝜀. As

previously stated that the problem for V
2
is similar to the

problem for 𝑢
𝜀
(𝑥, 𝑡), we can use Lemma 3 from which we

obtain for 0 ≤ 𝑘 ≤ 3

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
𝑘V
𝜀
(𝑥, 𝑡)

𝜕𝑥
𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶 (1 + 𝜀
−(𝑘−2)

) . (35)

To find bounds for the singular component, we consider
the following mesh functions:

𝜓
±

(𝑥, 𝑡) = 𝐶𝑒
−(𝛽/𝜀)(1−𝑥)

± 𝑤
𝜀
(𝑥, 𝑡) , (36)

where 𝐶 = ‖V
0
‖ + ‖V

1
‖.

𝜓
±

(0, 𝑡) = 𝐶𝑒
−(𝛽/𝜀)

± 𝑤
𝜀
(0, 𝑡) = 𝐶𝑒

−(𝛽/𝜀)

≥ 0,

𝜓
±

(1, 𝑡) = 𝐶 ± 𝑤
𝜀
(1, 𝑡) ≥ 0,

𝜓
±

(𝑥, 0) = 𝐶𝑒
−(𝛽/𝜀)(1−𝑥)

± 𝑤
𝜀
(𝑥, 0)

= 𝐶𝑒
−(𝛽/𝜀)(1−𝑥)

≥ 0.

(37)

Applying the differential operator 𝐿
𝜀
, we obtain that

𝐿
𝜀
𝜓
±

(𝑥, 𝑡) = 𝐶(

𝑏𝛽

𝜀

−

𝛽
2

𝜀

+ 𝑏
𝑥
) 𝑒
−(𝛽/𝜀)(1−𝑥)

≥ 0. (38)

Thus from themaximum principle, we can say that𝜓±(𝑥, 𝑡) ≥
0; hence

󵄨
󵄨
󵄨
󵄨
𝑤
𝜀
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑒
−(𝛽/𝜀)(1−𝑥)

. (39)

To establish the bounds for the derivatives of𝑤
𝜀
(𝑥, 𝑡), we start

by noting that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

𝑥

𝜕

𝜕𝑠

(𝑏 (𝑠, 𝑡) 𝑤
𝜀
(𝑠, 𝑡)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
𝑤
𝜀
(𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩
≤ 𝐶𝑒
−(𝛽/𝜀)(1−𝑥)

,

(40)

where𝐶 depends on ‖𝑏‖. From themean value theorem, there
exists a point 𝑧 ∈ (1 − 𝜀, 1) such that

𝜕

𝜕𝑥

(𝑏 (𝑧, 𝑡) 𝑤
𝜀
(𝑧, 𝑡))

=

𝑏 (1, 𝑡) 𝑤
𝜀
(1, 𝑡) − 𝑏 (1 − 𝜀, 𝑡) 𝑤

𝜀
(1 − 𝜀, 𝑡)

𝜀

.

(41)

Using the triangle inequality, it can easily be seen that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑤
𝜀
(𝑧, 𝑡)

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

|𝑏 (𝑧, 𝑡)|

× (

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑏 (𝑧, 𝑡)

𝜕𝑥

𝑤
𝜀
(𝑧, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑏 (1, 𝑡) 𝑤
𝜀
(1, 𝑡) − 𝑏 (1 − 𝜀, 𝑡) 𝑤

𝜀
(1 − 𝜀, 𝑡)

𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) .

(42)

Using (39) at the point 𝑥 = 1 − 𝜀, 1 and 𝑥 = 𝑧, we obtain that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑤
𝜀
(𝑧, 𝑡)

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶𝜀
−1

𝑒
−(𝛽/𝜀)(1−𝑧)

. (43)

Integrating (25a), (25b), and (25c)with respect to𝑥, we obtain
that

𝜀

𝜕𝑤
𝜀
(1, 𝑡)

𝜕𝑥

= 𝜀

𝜕𝑤
𝜀
(𝑥, 𝑡)

𝜕𝑥

+ ∫

1

𝑥

(

𝜕

𝜕𝑠

(𝑏 (𝑠, 𝑡) 𝑤
𝜀
(𝑠, 𝑡)) +

𝜕𝑤
𝜀
(𝑠, 𝑡)

𝜕𝑡

) 𝑑𝑠

(44)
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at the point 𝑥 = 𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜀

𝜕𝑤
𝜀
(1, 𝑡)

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜀

𝜕𝑤
𝜀
(𝑧, 𝑡)

𝜕𝑥

+ ∫

1

𝑧

(

𝜕

𝜕𝑠

(𝑏 (𝑠, 𝑡) 𝑤
𝜀
(𝑠, 𝑡)) +

𝜕𝑤
𝜀
(𝑠, 𝑡)

𝜕𝑡

) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(45)

Hence
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜀

𝜕𝑤
𝜀
(1, 𝑡)

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶𝑒
−(𝛽/𝜀)(1−𝑧)

. (46)

From (44) and (46), we obtain that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜀

𝜕𝑤
𝜀
(𝑥, 𝑡)

𝜕𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶𝑒
−(𝛽/𝜀)(1−𝑥)

, ∀ (𝑥, 𝑡) ∈ Ω (47)

which is the required bound for the first derivative. From
(25a), (25b), and (25c), it can be seen that

𝜀

𝜕
2

𝑤
𝜀
(𝑥, 𝑡)

𝜕𝑥
2

=

𝜕

𝜕𝑥

(𝑏 (𝑥, 𝑡) 𝑤
𝜀
(𝑥, 𝑡)) +

𝜕𝑤
𝜀
(𝑥, 𝑡)

𝜕𝑡

,

𝜀

𝜕
3

𝑤
𝜀
(𝑥, 𝑡)

𝜕𝑥
3

=

𝜕

𝜕𝑥

(

𝜕

𝜕𝑥

(𝑏 (𝑥, 𝑡) 𝑤
𝜀
(𝑥, 𝑡)) +

𝜕𝑤
𝜀
(𝑧, 𝑡)

𝜕𝑡

) ,

(48)

which yields the required estimates for the second and third
derivatives for the singular component 𝑤

𝜀
.

3. The Discretized Problem

In this section the discretization process for 𝑃
𝜀
is considered.

By changing the time derivative into the Lagrangian form,
this enables the introduction of node velocities into the
system. SettingA𝑢 = 𝜀(𝜕𝑢/𝜕𝑥) − 𝑏𝑢, 𝑃

𝜀
can be written as

𝑑𝑢

𝑑𝑡

=

𝑑𝑥

𝑑𝑡

𝜕𝑢

𝜕𝑥

+

𝜕

𝜕𝑥

(A𝑢) + 𝑓. (49)

Discretizing (49) using an implicit scheme,

𝑢
𝑖,𝑗
+ 𝛿𝑡 (𝑥̇

𝑖,𝑗−1
𝐷
−

𝑥
+ 𝐷
−

𝑥
A) 𝑢
𝑖,𝑗
= 𝑢
𝑖,𝑗−1

+ 𝛿𝑡𝑓 (𝑥
𝑖,𝑗
) (50)

which can be written as a system

𝑇𝑢 = Ψ. (51)

𝑢
𝑖,𝑗
represents the solution at the point (𝑥

𝑖
, 𝑡
𝑗
),

𝐷
−

𝑥
𝑢
𝑖,𝑗
=

𝑢
𝑖,𝑗
− 𝑢
𝑖−1,𝑗

ℎ
𝑖,𝑗

, 𝐷
+

𝑥
𝑢
𝑖,𝑗
=

𝑢
𝑖+1,𝑗

− 𝑢
𝑖,𝑗

ℎ
𝑖+1,𝑗

. (52)

ℎ
𝑖,𝑗

= 𝑥
𝑖,𝑗
− 𝑥
𝑖−1,𝑗

, 𝑢
𝑖,𝑗−1

is the interpolated value of 𝑢 on the
new grid obtained at time 𝑡 = 𝑡

𝑗
, and 𝑥̇ is the node velocity

obtained from the moving mesh partial differential equation
(MMPDE) (53) derived by Huang et al. [6]

(𝑀
𝑖+1,𝑗

+𝑀
𝑖,𝑗
) (𝑥̇
𝑖+1,𝑗

− 𝑥̇
𝑖,𝑗
)

− (𝑀
𝑖,𝑗
+𝑀
𝑖−1,𝑗

) (𝑥̇
𝑖,𝑗
− 𝑥̇
𝑖−1,𝑗

) = −

𝐸
𝑖,𝑗−1

𝜏

,

(53)

where

𝐸
𝑖,𝑗−1

= (𝑀
𝑖+1,𝑗−1

+𝑀
𝑖,𝑗−1

) (𝑥
𝑖+1,𝑗−1

− 𝑥
𝑖,𝑗−1

)

− (𝑀
𝑖,𝑗−1

+𝑀
𝑖−1,𝑗−1

) (𝑥
𝑖,𝑗−1

− 𝑥
𝑖−1,𝑗−1

) .

(54)

𝜏 is a user defined parameter, which determines how fast the
grid moves towards the equidistributed grid, and𝑀 is the arc
length monitor function

𝑀 = √1 + (

𝜕𝑢

𝜕𝑥

)

2

. (55)

First it will be shown that the solution from (50) is
bounded. An inductive proof is used to show that such
constants exist and are indeed finite. At 𝑡 = 𝑡

0
= 0, we have

a uniform mesh. The initial condition 𝑢
𝑖,0

is assumed not to
be identically zero over the whole domain and to be bounded
max
𝑖
|𝑢
𝑖,0
| ≤ 𝐶 by some constant 0 < 𝐶 < ∞. The system

for the MMPDE can be written in such a way that we get an
𝑀-matrix on the left hand side.Thismeans that a solution for
the system exists, and we can assume that max

𝑖,𝑗
|𝑥̇
𝑖,𝑗
| < 𝐶

1
,

since

Ψ
𝑖,0
= 𝑢
𝑖,0
+ 𝛿𝑡𝑓 (𝑥

𝑖,1
) 󳨐⇒

󵄨
󵄨
󵄨
󵄨
Ψ
𝑖,0

󵄨
󵄨
󵄨
󵄨
≤ 𝐶 + 𝛿𝑡

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
= 𝐶
2
< ∞.

(56)

Assume that this result is true for some time 𝑡 = 𝑡
𝑛−1

; hence
|Ψ
𝑖,𝑛−1

| ≤ 𝐶
2
< ∞. Since the matrix 𝑇 is invertible at 𝑡 = 𝑡

𝑛
=

T, it follows that 𝑢
𝑖,𝑛

exists for all 𝑖 and is bounded by some
constant 𝐶, max

𝑖,𝑛
|𝑢
𝑖,𝑛
| ≤ 𝐶.

Define the discrete operator 𝐿𝑁
𝜀
as

𝐿
𝑁

𝜀
𝑢
𝑖,𝑗
≡ (−𝜀𝛿

2

𝑥
+ 𝐷
−

𝑥
𝑏
𝑖,𝑗
+ 𝐷
−

𝑡
− 𝑥̇
𝑖,𝑗
𝐷
−

𝑥
) 𝑢
𝑖,𝑗
, (57)

where

𝛿
2

𝑥
𝑢
𝑖,𝑗
=

2

ℎ
𝑖+1,𝑗

+ ℎ
𝑖,𝑗

(𝐷
+

𝑥
𝑢
𝑖,𝑗
− 𝐷
−

𝑥
𝑢
𝑖,𝑗
) (58)

for all 1 ≤ 𝑖 ≤ 𝑁 − 1. The discrete differential operator 𝐿𝑁
𝜀
in

(57) satisfies the following discrete maximum principle.

Theorem 5 (discrete maximum principle). Let 𝜓
𝑖,𝑗

be any
mesh function defined on Ω

𝑁. If 𝜓
𝑖,𝑗

≥ 0 for all (𝑥
𝑖
, 𝑡
𝑗
) ∈ Γ
𝑁

and 𝐿
𝑁

𝜀
𝜓
𝑖,𝑗

≥ 0 for all (𝑥
𝑖
, 𝑡
𝑗
) ∈ Ω

𝑁, then 𝜓
𝑖,𝑗

≥ 0 for all
(𝑥
𝑖
, 𝑡
𝑗
) ∈ Ω

𝑁.

Proof. Assume that there exists r = (𝑥
𝑖
, 𝑡
𝑗
) ∈ Ω

𝑁 such that

𝜓
𝑖,𝑗
= 𝜓 (r) = min

Ω

𝑁

𝜓 < 0; (59)
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then r ∉ Γ
𝑁, which implies that r ∈ Ω

𝑁, and we also know
that

𝛿
2

𝑥
𝜓
𝑖,𝑗
≥ 0, 𝐷

−

𝑥
𝜓
𝑖,𝑗
≤ 0, 𝐷

−

𝑡
𝜓
𝑖,𝑗
≤ 0. (60)

We have to show that 𝐷−
𝑥
(𝑏
𝑖,𝑗
𝜓
𝑖,𝑗
) ≤ 0, and we proceed by

contradiction, suppose that

𝐷
−

𝑥
(𝑏
𝑖,𝑗
𝜓
𝑖,𝑗
) > 0 󳨐⇒ 𝑏

𝑖,𝑗
𝜓
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

𝜓
𝑖−1,𝑗

> 0

󳨐⇒ 𝑏
𝑖,𝑗
𝜓
𝑖,𝑗
> 𝑏
𝑖−1,𝑗

𝜓
𝑖−1,𝑗

.

(61)

Since r is an arbitrary point, we have that 𝑏
0,𝑗
𝜓
0,𝑗

< 0, but
𝑏
0,𝑗
𝜓
0,𝑗

≥ 0 which is a contradiction. Our supposition that
𝐷
−

𝑥
(𝑏
𝑖,𝑗
𝜓
𝑖,𝑗
) > 0 is false, so we have that 𝐷−

𝑥
(𝑏
𝑖,𝑗
𝜓
𝑖,𝑗
) ≤ 0. All

the arguments given above imply that 𝐿𝑁
𝜀
𝜓
𝑖,𝑗

≤ 0. Therefore
we must have 𝐿𝑁

𝜀
𝜓
𝑖,𝑗

= 0, but we have that −𝜀𝛿2
𝑥
𝜓
𝑖,𝑗

≤ 0 and
𝐷
−

𝑥
(𝑏
𝑖,𝑗
𝜓
𝑖,𝑗
) ≤ 0; hence

𝜓
𝑖+1,𝑗

= 𝜓
𝑖,𝑗
= 𝜓
𝑖−1,𝑗

< 0. (62)

Using the same argument as before, this implies that 𝜓
0,𝑗

< 0,
but 𝜓
0,𝑗

≥ 0 which is a contradiction. So 𝐿𝑁
𝜀
𝜓
𝑖,𝑗
< 0, which is

a contradiction. Thus our original assumption must be false,
andwe conclude that theminimumof𝜓

𝑖,𝑗
is nonnegative.

4. Decomposition of Numerical
Solution and Error Estimates

Let 𝑈
𝜀
denote the discrete solution, and assume that the

discrete solution can be decomposed into the sum

𝑈
𝜀
(𝑥
𝑖
, 𝑡
𝑗
) = 𝑉
𝜀
(𝑥
𝑖
, 𝑡
𝑗
) +𝑊

𝜀
(𝑥
𝑖
, 𝑡
𝑗
) , (𝑥

𝑖
, 𝑡
𝑗
) ∈ Ω

𝑁

,

(63)

where 𝑉
𝜀
(𝑥
𝑖
, 𝑡
𝑗
) and𝑊

𝜀
(𝑥
𝑖
, 𝑡
𝑗
) are solutions of the respective

equations

𝐿
𝑁

𝜀
𝑉
𝜀
(𝑥
𝑖
, 𝑡
𝑗
) = 𝑓 (𝑥

𝑖
, 𝑡
𝑗
) , (𝑥

𝑖
, 𝑡
𝑗
) ∈ Ω

𝑁

, (64a)

𝑉
𝜀
(𝑥
𝑖
, 𝑡
𝑗
) = V
𝜀
(𝑥
𝑖
, 𝑡
𝑗
) , (𝑥

𝑖
, 𝑡
𝑗
) ∈ Γ
𝑁

, (64b)

𝐿
𝑁

𝜀
𝑊
𝜀
(𝑥
𝑖
, 𝑡
𝑗
) = 0, (𝑥

𝑖
, 𝑡
𝑗
) ∈ Ω

𝑁

, (65a)

𝑊
𝜀
(𝑥
𝑖
, 𝑡
𝑗
) = 𝑤

𝜀
(𝑥
𝑖
, 𝑡
𝑗
) , (𝑥

𝑖
, 𝑡
𝑗
) ∈ Γ
𝑁

, (65b)

where 𝑊
𝜀
is the singular component and 𝑉

𝜀
is the smooth

component. The error for the numerical solution will be
decomposed as

(𝑈
𝜀
− 𝑢
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

= ((𝑉
𝜀
− V
𝜀
) + (𝑊

𝜀
− 𝑤
𝜀
)) (𝑥
𝑖
, 𝑡
𝑗
) , (𝑥

𝑖
, 𝑡
𝑗
) ∈ Ω

𝑁

.

(66)

The error (𝑈
𝜀
− 𝑢
𝜀
)(𝑥
𝑖
, 𝑡
𝑗
) can now be estimated using the

error estimates for the singular and smooth components of
the solution.

Lemma 6. Let (𝑥
𝑖
, 𝑡
𝑗
) ∈ Ω
𝑁; then for any 𝜓(𝑥, 𝑡) ∈ 𝐶

2

(Ω),
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐷
−

𝑥
−

𝜕

𝜕𝑥

) (𝑏 (𝑥
𝑖
, 𝑡
𝑗
) 𝜓 (𝑥

𝑖
, 𝑡
𝑗
))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

ℎ
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2

𝜕𝑥
2
(𝑏 (𝑥, 𝑡) 𝜓 (𝑥, 𝑡))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(67)

Proof. Using integration by parts to reduce the order of
differentiation in the integral, (𝐷−

𝑥
− 𝜕/𝜕𝑥)(𝑏(𝑥

𝑖
, 𝑡
𝑗
)𝜓(𝑥
𝑖
, 𝑡
𝑗
))

can be expressed as

(𝐷
−

𝑥
−

𝜕

𝜕𝑥

) (𝑏 (𝑥
𝑖
, 𝑡
𝑗
) 𝜓 (𝑥

𝑖
, 𝑡
𝑗
))

=

1

ℎ
𝑖,𝑗

∫

𝑥𝑖,𝑗

𝑥𝑖−1,𝑗

(𝑥
𝑖−1,𝑗

− 𝑠)

𝜕
2

𝜕𝑠
2
(𝑏 (𝑠, 𝑡) 𝜓 (𝑠, 𝑡)) 𝑑𝑠.

(68)

It follows that
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐷
−

𝑥
−

𝜕

𝜕𝑥

) (𝑏𝜓) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

ℎ
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2

𝜕𝑥
2
(𝑏 (𝑥, 𝑡) 𝜓 (𝑥, 𝑡))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑥𝑖,𝑗

𝑥𝑖−1,𝑗

(𝑠 − 𝑥
𝑖−1,𝑗

) 𝑑𝑠

≤

1

2

ℎ
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2

𝜕𝑥
2
(𝑏 (𝑥, 𝑡) 𝜓 (𝑥, 𝑡))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(69)

Lemma 7. Assuming the bound (27), the error in the smooth
component of the numerical solution satisfies the following
error bound:

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑉
𝜀
− V
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 (ℎmax,𝑗 + 𝛿𝑡) , (70)

where ℎmax,𝑗 = max
𝑖
{ℎ
𝑖,𝑗

| 1 ≤ 𝑖 ≤ 𝑁} for some constant 𝐶
independent of 𝜀 and𝑁.

Proof. We start by considering the local truncation error for
the smooth component

𝐿
𝑁

𝜀
(𝑉
𝜀
− V
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

= (𝐿
𝜀
− 𝐿
𝑁

𝜀
) V
𝜀
(𝑥
𝑖
, 𝑡
𝑗
)

= (−𝜀(

𝜕
2

𝜕𝑥
2
− 𝛿
2

𝑥
) + (

𝜕

𝜕𝑥

− 𝐷
−

𝑥
) 𝑏 (𝑥

𝑖
, 𝑡
𝑗
)

+(

𝜕

𝜕𝑡

− (𝐷
−

𝑡
− 𝐷
−

𝑡
𝑥
𝑖,𝑗
𝐷
−

𝑥
))) V

𝜀
(𝑥
𝑖
, 𝑡
𝑗
) .

(71)

It can be easily shown that

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
−

𝑥
V
𝜀
(𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑥
𝑖,𝑗
− 𝑥
𝑖−1,𝑗

∫

𝑥𝑖,𝑗

𝑥𝑖−1,𝑗

𝜕V
𝜀
(𝑠, 𝑡)

𝜕𝑠

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕V
𝜀
(𝑥, 𝑡)

𝜕𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶 (1 + 𝜀) ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
−

𝑡
𝑥 (𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

𝑡
𝑗
− 𝑡
𝑗−1

∫

𝑡𝑗

𝑡𝑗−1

𝑑𝑥 (𝑠)

𝑑𝑠

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑑𝑥 (𝑡)

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶.

(72)
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Using the local truncation error estimates from [16], (69) (72),
it follows that

󵄨
󵄨
󵄨
󵄨
󵄨
𝐿
𝑁

𝜀
(𝑉
𝜀
− V
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝜀

3

(ℎ
𝑖+1,𝑗

+ ℎ
𝑖−1,𝑗

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
3V
𝜀
(𝑥, 𝑡)

𝜕𝑥
3

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

1

2

ℎ
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2

𝜕𝑥
2
(𝑏V
𝜀
) (𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

1

2

(𝑡
𝑗
− 𝑡
𝑗−1

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2V
𝜀
(𝑥, 𝑡)

𝜕𝑡
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕V
𝜀
(𝑥, 𝑡)

𝜕𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑑𝑥 (𝑡)

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶 (ℎmax,𝑗 + 𝛿𝑡) .

(73)

We introduce the two mesh functions

𝜓
±

𝑖,𝑗
= 𝐶𝛽
−1

(ℎmax,𝑗 + 𝛿𝑡) (𝛽 + 𝑥
𝑖,𝑗
) ± (𝑉

𝜀
− V
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

(74)

it can be seen from the mesh functions that

𝜓
±

0,𝑗
= 𝐶 (ℎmax,𝑗 + 𝛿𝑡) ≥ 0,

𝜓
±

𝑁,𝑗
= 𝐶𝛽
−1

(ℎmax,𝑗 + 𝛿𝑡) (𝛽 + 1) ≥ 0,

𝜓
±

𝑖,0
= 𝐶𝛽
−1

(𝑁
−1

+ 𝛿𝑡) (𝛽 + 𝑥
𝑖,0
) ≥ 0,

𝐿
𝑁

𝜀
𝜓
±

𝑖,𝑗
= 𝐶𝛽
−1

(ℎmax,𝑗 + 𝛿𝑡)

(𝛽

𝑏
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

ℎ
𝑖,𝑗

+

𝑏
𝑖,𝑗
𝑥
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

𝑥
𝑖−1,𝑗

ℎ
𝑖,𝑗

)

± 𝐿
𝑁

𝜀
(𝑉
𝜀
− V
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

≥ 𝐶 (ℎmax,𝑗 + 𝛿𝑡)(

𝑏
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

ℎ
𝑖,𝑗

+

𝑏
𝑖,𝑗

𝛽

)

± 𝐿
𝑁

(𝑉
𝜀
− V
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

≥ 0.

(75)

By the discrete maximum principle, we conclude that𝜓±
𝑖,𝑗
≥ 0

and so for all (𝑥
𝑖
, 𝑡
𝑗
) ∈ Ω

𝑁; hence

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑉
𝜀
− V
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 (ℎmax,𝑗 + 𝛿𝑡) . (76)

Lemma 8. For all 𝑁 ≥ 4 and at each (𝑥
𝑖
, 𝑡
𝑗
) ∈ Ω

𝑁, the
singular component of the error satisfies

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶 (𝑁

−1

(ln𝑁)
2

+ 𝛿𝑡) (77)

for some constant 𝐶 independent of 𝜀 and𝑁.

Proof. We need to consider two separate cases since the role
of the boundary layer is crucial. We start with the case when

𝜀
−1

≤ 2/𝛽 ln 1/𝜀 and 𝜀 ≥ 𝑁
−1; in this case 𝜀−1 ≤ 2/𝛽 ln𝑁, and

our mesh is quasiuniform ℎmin,𝑗 ∼ ℎmax,𝑗. Using the stand-
ard bound for the local truncation error, we can derive an
equivalent expression for the truncation error as for the
smooth component

󵄨
󵄨
󵄨
󵄨
󵄨
𝐿
𝑁

(𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝜀

3

(ℎ
𝑖+1,𝑗

+ ℎ
𝑖−1,𝑗

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
3

𝑤
𝜀
(𝑥, 𝑡)

𝜕𝑥
3

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

1

2

ℎ
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2

𝜕𝑥
2
(𝑏𝑤
𝜀
) (𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

1

2

(𝑡
𝑗
− 𝑡
𝑗−1

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2

𝑤
𝜀
(𝑥, 𝑡)

𝜕𝑡
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑤
𝜀
(𝑥, 𝑡)

𝜕𝑥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑑𝑥 (𝑡)

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶𝜀
−2

(ℎ
𝑖+1,𝑗

+ ℎ
𝑖,𝑗
) 𝑒
−(𝛽/𝜀)(1−𝑥)

+ 𝐶𝜀
−2

𝛽maxℎ𝑖,𝑗𝑒
−(𝛽/𝜀)(1−𝑥)

+ 𝐶 (𝑡
𝑗
− 𝑡
𝑗−1

) + 𝐶𝜀
−1

𝑒
−(𝛽/𝜀)(1−𝑥)

≤ 𝐶𝜀
−2

ℎmax,𝑗 (1 + 𝛽max) + 𝐶𝛿𝑡

≤ 𝐶 (𝑁
−1

(ln𝑁)
2

+ 𝛿𝑡) ,

(78)

where 𝛽max = max{‖𝑏‖, ‖𝑏
𝑥
‖, ‖𝑏
𝑥𝑥
‖}. Consider the following

barrier function:

𝜓
𝑖,𝑗
= 𝐶𝛽
−1

(𝑁
−1

(ln𝑁)
2

+ 𝛿𝑡) (𝛽 + 𝑥
𝑖,𝑗
) (79)

and the mesh functions

𝜙
±

𝑖,𝑗
= 𝜓
𝑖,𝑗
± (𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
) . (80)

It can be easily seen that

𝜙
±

0,𝑗
= 𝐶 (𝑁

−1

(ln𝑁)
2

+ 𝛿𝑡) ≥ 0,

𝜙
±

𝑁,𝑗
= 𝐶𝛽
−1

(𝑁
−1

(ln𝑁)
2

+ 𝛿𝑡) (𝛽 + 1) ≥ 0,

𝜙
±

𝑖,0
= 𝐶𝛽
−1

(𝑁
−1

(ln𝑁)
2

+ 𝛿𝑡) (𝛽 + 𝑥
𝑖,0
) ≥ 0.

(81)

Applying the difference operator 𝐿𝑁
𝜀
to the barrier function,

𝐿
𝑁

𝜀
𝜓
𝑖,𝑗
= 𝐶𝛽
−1

(𝑁
−1

(ln𝑁)
2

+ 𝛿𝑡)

× (𝛽

𝑏
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

ℎ
𝑖,𝑗

+

𝑏
𝑖,𝑗
𝑥
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

𝑥
𝑖−1,𝑗

ℎ
𝑖,𝑗

)

≥ 𝐶 (𝑁
−1

(ln𝑁)
2

+ 𝛿𝑡)(

𝑏
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

ℎ
𝑖,𝑗

+

𝑏
𝑖,𝑗

𝛽

)

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝐿
𝑁

𝜀
(𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
.

(82)

Hence it follows that 𝐿𝑁
𝜀
𝜙
±

𝑖,𝑗
≥ 0 for 1 ≤ 𝑖 ≤ 𝑁 − 1; by the

discrete maximum principle, it follows that 𝜙±
𝑖,𝑗
≥ 0; hence

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜓
𝑖,𝑗
≤ 𝐶 (𝑁

−1

(ln𝑁)
2

+ 𝛿𝑡) . (83)
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To consider the case when 𝜀
−1

> 2/𝛽 ln 1/𝜀 and 𝜀 < 𝑁
−1,

we will assume that ℎ
𝑖,𝑗

≤ ℎ
𝑖−1,𝑗

and that there exists a point
𝑥
𝛼
∈ [0, 1] such that 1−𝑥

𝛼
≥ 𝜀/𝛽 ln 1/𝜀.Thepoint𝑥

𝛼
splits the

interval into the coarse meshΩ𝑁
𝛼𝑙
and fine mesh Ω𝑁

𝛼𝑟
where

Ω
𝑁

𝛼𝑙
= {𝑥
𝑖
| 0 ≤ 𝑥

𝑖
≤ 𝑥
𝛼
, ℎ
𝑖,𝑗
≥

1

𝑁

} ,

Ω
𝑁

𝛼𝑟
= {𝑥
𝑖
| 𝑥
𝛼
< 𝑥
𝑖
≤ 1, ℎ

𝑖,𝑗
<

1

𝑁

} .

(84)

We give separate proofs in the coarse and fine mesh subinter-
vals. First suppose that𝑥

𝑖
∈ Ω
𝑁

𝛼𝑙
, in this subintervalmaximum

grid size ℎmin,𝑗 ≥ 1/𝑁 since there is no boundary layer, so
both 𝑊

𝜀
and 𝑤 are small. Using the triangle inequality, we

have
󵄨
󵄨
󵄨
󵄨
󵄨
(𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑊
𝜀
(𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑤
𝜀
(𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
. (85)

It suffices to bound𝑊
𝜀
and 𝑤

𝜀
separately. Using (28) for 𝑥

𝑖
∈

Ω
𝑁

𝛼𝑙
, we obtain that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑤
𝜀
(𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝑒
−(𝛽/𝜀)(1−𝑥𝑖)

≤ 𝐶𝑒
−(𝛽/𝜀)(1−𝑥𝛼)

≤ 𝐶𝑒
− ln 1/𝜀

= 𝐶𝜀 ≤ 𝐶𝑁
−1

.

(86)

To derive a similar bound on 𝑊
𝜀
, we introduce the mesh

function 𝑌

𝑌 (𝑥
𝑖
, 𝑡
𝑗
) = 𝑌
𝑖,𝑗
=

𝐶

𝛽𝑁

(𝛽 + 𝑥
𝑖,𝑗
) . (87)

It can easily be seen that

𝑌
0,𝑗

=

𝐶

𝑁

≥ 0,

𝑌
𝑁,𝑗

=

𝐶

𝛽𝑁

(𝛽 + 1) ≥ 0,

𝑌
𝑖,0
=

𝐶

𝛽𝑁

(𝛽 + 𝑥
𝑖,0
) ≥ 0,

𝐷
−

𝑥
(𝑏𝑌) (𝑥

𝑖
, 𝑡
𝑗
)

=

𝐶

𝛽𝑁

(𝛽

𝑏
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

ℎ
𝑖,𝑗

+

𝑏
𝑖,𝑗
𝑥
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

𝑥
𝑖−1,𝑗

ℎ
𝑖,𝑗

) ≥ 0.

(88)

Also note that 𝛿2
𝑥
𝑌(𝑥
𝑖
, 𝑡
𝑗
) = 0 and 𝐷−

𝑡
𝑥
𝑖,𝑗
− 𝐷
−

𝑡
𝑥
𝑖,𝑗
𝐷
−

𝑥
𝑥
𝑖,𝑗
= 0.

Applying the operator 𝐿𝑁
𝜀
to 𝑌,

𝐿
𝑁

𝜀
𝑌 (𝑥
𝑖
, 𝑡
𝑗
)

= −𝜀𝛿
2

𝑥
𝑌
𝑖,𝑗
+ 𝐷
−

(𝑏𝑌)
𝑖,𝑗
+ 𝐷
−

𝑡
𝑌
𝑖,𝑗
− 𝐷
−

𝑡
𝑌
𝑖,𝑗
𝐷
−

𝑥
𝑌
𝑖,𝑗
≥ 0.

(89)

Now considering the mesh function 𝑌
𝜀
−𝑊
𝜀
, we have

𝐿
𝑁

𝜀
(𝑌 −𝑊

𝜀
) (𝑥
𝑖
, 𝑡
𝑗
) = 𝐿
𝑁

𝜀
𝑌
𝑖,𝑗
− 𝐿
𝑁

𝑊
𝑖,𝑗
= 𝐿
𝑁

𝜀
𝑌
𝑖,𝑗
≥ 0. (90)

From the maximum principle, this means that 𝑌 − 𝑊
𝜀
≥ 0;

hence

𝑊
𝑖,𝑗
≤ 𝑌
𝑖,𝑗
=

𝐶

𝛽

𝑥
𝑖

𝑁

≤ 𝐶𝑁
−1

. (91)

It only now remains to give a bound for (𝑊
𝜀
− 𝑤
𝜀
) in the

interval (𝑥
𝛼
, 1]. If 𝑥

𝑖
∈ Ω
𝑁

𝛼𝑟
, the expression for the truncation

error for the singular component (78) does not change since
in the boundary layer region ℎmax,𝑗 ≤ 1/𝑁. From (65a) and
(65b), we have that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑊
𝜀
(1, 𝑡
𝑗
) − 𝑤
𝜀
(1, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
= 0. (92)

From (86) and (91), it follows that
󵄨
󵄨
󵄨
󵄨
󵄨
𝑊
𝜀
(𝑥
𝛼
, 𝑡
𝑗
) − 𝑤
𝜀
(𝑥
𝛼
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑊
𝜀
(𝑥
𝛼
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑤
𝜀
(𝑥
𝛼
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶𝑁
−1

.

(93)

Consider the barrier functions

𝜓
𝑖,𝑗
= 𝐶 (𝑁

−1

(ln𝑁)
2

+ 𝛿𝑡) (

𝑥
𝑖,𝑗

𝛽

+ 1) (94)

and the mesh function

𝜙
±

𝑖,𝑗
= 𝜓
𝑖,𝑗
± (𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
) , (95)

for 𝑥
𝑖
= 𝑥
𝛼
and 𝑥

𝑖
= 1,

𝜙
±

(𝑥
𝛼
, 𝑡
𝑗
) = 𝐶 (𝑁

−1

(ln𝑁)
2

+ 𝛿𝑡) (

𝑥
𝛼

𝛽

+ 1)

± (𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝛼
, 𝑡
𝑗
) ≥ 0,

𝜙
±

𝑁,𝑗
= 𝐶 (𝑁

−1

(ln𝑁)
2

+ 𝛿𝑡) (

1

𝛽

+ 1) ≥ 0,

𝜙
±

𝑖,0
= 𝐶 (𝑁

−1

(ln𝑁)
2

+ 𝛿𝑡) (

𝑥
𝑖,0

𝛽

+ 1) ≥ 0.

(96)

Applying the discrete difference operator 𝐿
𝑁

𝜀
to 𝜓
𝑖,𝑗

and
noting that𝐷−

𝑡
𝑥
𝑖,𝑗
− 𝐷
−

𝑡
𝑥
𝑖,𝑗
𝐷
−

𝑥
𝑥
𝑖,𝑗
= 0,

𝐿
𝑁

𝜓
𝑖,𝑗
= 𝐶 (𝑁

−1

(ln𝑁)
2

+ 𝛿𝑡)

× (

𝑏
𝑖,𝑗
𝑥
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

𝑥
𝑖−1,𝑗

𝛽ℎ
𝑖,𝑗

+

𝑏
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

ℎ
𝑖,𝑗

)

≥ 𝐶 (𝑁
−1

(ln𝑁)
2

+ 𝛿𝑡)(

𝑏
𝑖

𝛽

+

𝑏
𝑖,𝑗
− 𝑏
𝑖−1,𝑗

ℎ
𝑖,𝑗

)

≥

󵄨
󵄨
󵄨
󵄨
󵄨
𝐿
𝑁

(𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
;

(97)

hence it follows that

𝐿
𝑁

𝜀
𝜙
±

𝑖,𝑗
≥ 0, 𝑥

𝑖
∈ Ω
𝑁

𝛼𝑟
. (98)

The discrete maximum principle on Ω𝑁
𝛼𝑟
then gives

𝜙
±

𝑖,𝑗
≥ 0, 𝑥

𝑖
∈ Ω
𝑁

𝛼𝑟
, (99)

and it follows that
󵄨
󵄨
󵄨
󵄨
󵄨
(𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜓
𝑖,𝑗
≤ 𝐶 (𝑁

−1

(ln𝑁)
2

+ 𝛿𝑡) . (100)
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Combining the separate estimates in the two subintervals
gives

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑊
𝜀
− 𝑤
𝜀
) (𝑥
𝑖
, 𝑡
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶𝑁
−1

((ln𝑁)
2

+ 𝛿𝑡) , (𝑥
𝑖
, 𝑡
𝑗
) ∈ Ω

𝑁

.

(101)

Theorem 9. If 𝑢
𝜀
(𝑥, 𝑡) is the solution of 𝑃

𝜀
and 𝑈

𝜀
(𝑥
𝑖
, 𝑡
𝑗
), the

corresponding numerical solution using the method outlined in
(50) satisfies

sup
0<𝜀<1

󵄩
󵄩
󵄩
󵄩
𝑈
𝜀
− 𝑢
𝜀

󵄩
󵄩
󵄩
󵄩
≤ 𝐶𝑁

−1

((ln𝑁)
2

+ 𝛿𝑡) (102)

for𝑁 ≥ 4 where 𝐶 is a constant independent of 𝜀 and𝑁.

Proof. We start by noting that
󵄩
󵄩
󵄩
󵄩
𝑈
𝜀
− 𝑢
𝜀

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑉
𝜀
− V
𝜀

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑊
𝜀
− 𝑤
𝜀

󵄩
󵄩
󵄩
󵄩
. (103)

We have already shown in the previous lemmas that
󵄩
󵄩
󵄩
󵄩
𝑉
𝜀
− V
𝜀

󵄩
󵄩
󵄩
󵄩
≤ 𝐶 (ℎmax + 𝛿𝑡) ,

󵄩
󵄩
󵄩
󵄩
𝑊
𝜀
− 𝑤
𝜀

󵄩
󵄩
󵄩
󵄩
≤ 𝐶𝑁

−1

((ln𝑁)
2

+ 𝛿𝑡) .

(104)

Hence the required result follows.

5. Numerical Experiments

Numerical results from this sectionwill show that themoving
mesh method produces numerical results which converge 𝜀-
uniformly at 𝑡 = T.The constant 𝜏will be set at 𝜏 = 0.05, and
no time step control mechanism or smoothing will be used.

Consider the following problem:

− 𝜀

𝛿
2

𝑢
𝜀
(𝑥, 𝑡)

𝛿𝑥
2

+

𝛿

𝛿𝑥

((1 + 𝑥 (1 − 𝑥)) 𝑢
𝜀
(𝑥, 𝑡))

+

𝛿𝑢
𝜀
(𝑥, 𝑡)

𝛿𝑡

= 𝑓, (𝑥, 𝑡) ∈ Ω,

(105a)

𝑢
𝜀
(0, 𝑡) = 𝑢

𝜀
(1, 𝑡) = 0, 𝑢

𝜀
(𝑥, 0) = 1 − 4(𝑥 −

1

2

)

2

,

(105b)

where 𝑓 is chosen such that

𝑢
𝜀
(𝑥, 𝑡) =

1 − 𝑒
−(1−𝑥)/𝜀

1 − 𝑒
−1/𝜀

− cos 𝜋𝑥
2

(106)

is the exact solution when 𝜕𝑢
𝜀
(𝑥, 𝑡)/𝜕𝑡 ∼ 𝑂(𝜀) at 𝑡 = T = 10.

The solutions for the mesh equation and the physical pde
will be obtained separately. This strategy is known as the
decoupled approach. Discretizing (105a) and (105b), we
obtain a system similar to (50) with 𝑏

𝑖,𝑗
= 1+𝑥

𝑖,𝑗
(1−𝑥
𝑖,𝑗
).The

discretization for the monitor function is given as follows:

𝑀
𝑖,𝑗
= √1 + (

𝑢
𝑖+1,𝑗

− 𝑢
𝑖−1,𝑗

𝑥
𝑖+1,𝑗

− 𝑥
𝑖−1,𝑗

)

2

. (107)
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Figure 1: Numerical solutions for 𝜀 = 2
−4 and𝑁 = 64.
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Figure 2: Numerical solutions for 𝜀 = 2
−14 and𝑁 = 64.

The tolerance is set at 10−6. Table 1 shows the maximum
point-wise errors (𝑢𝑁

𝜀
− 𝑢

exact
𝜀

) and the maximum error 𝐸𝑁max.
𝑢
𝑁

𝜀
is the numerical solution on Ω

𝑁. From Table 1, it can
be seen that for a fixed value of 𝜀, as 𝑁 increases, the error
reduces. Also as 𝜀 becomes smaller, the errors for any 𝑁

become larger but stabilize after a while. This reflects the 𝜀-
uniformity of the error estimates. The values of the rate of
convergence given in Table 1 are obtained using Table 2 and
(108)

𝑅
𝑁

= log
2
[

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑁

𝜀
− 𝑢

exact
𝜀

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑢
2𝑁

𝜀
− 𝑢

exact
𝜀

󵄩
󵄩
󵄩
󵄩

] . (108)

Table 2 also gives the uniform convergence rates in the last
row. These values are calculated using Table 1 and (109)

𝑅
𝑁

max = log
2
[

max
𝜀

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑁

𝜀
− 𝑢

exact
𝜀

󵄩
󵄩
󵄩
󵄩
󵄩

max
𝜀

󵄩
󵄩
󵄩
󵄩
𝑢
2𝑁

𝜀
− 𝑢

exact
𝜀

󵄩
󵄩
󵄩
󵄩

] . (109)

Table 2 shows that the method is almost of first order for a
sufficiently large values of𝑁.

Figures 3 and 5 show themesh trajectory for 𝜏 = 0.05with
different 𝑁 values. The ability of the method to capture the
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Table 1: Maximum pointwise errors.

𝜀

Number of intervals𝑁
16 32 64 128 256 512

2
−2

0.21𝐷 − 01 0.12𝐷 − 01 0.59𝐷 − 02 0.28𝐷 − 02 0.10𝐷 − 02 0.87𝐷 − 03

2
−3

0.49𝐷 − 01 0.28𝐷 − 01 0.15𝐷 − 01 0.76𝐷 − 02 0.35𝐷 − 02 0.11𝐷 − 02

2
−4

0.76𝐷 − 01 0.45𝐷 − 01 0.25𝐷 − 01 0.13𝐷 − 01 0.64𝐷 − 02 0.26𝐷 − 02

2
−5

0.94𝐷 − 01 0.58𝐷 − 01 0.33𝐷 − 01 0.18𝐷 − 01 0.91𝐷 − 02 0.42𝐷 − 02

2
−6

0.10𝐷 − 00 0.67𝐷 − 01 0.40𝐷 − 01 0.22𝐷 − 01 0.12𝐷 − 01 0.53𝐷 − 02

2
−7

0.11𝐷 − 00 0.71𝐷 − 01 0.43𝐷 − 01 0.25𝐷 − 01 0.14𝐷 − 01 0.73𝐷 − 02

2
−8

0.11𝐷 − 00 0.73𝐷 − 01 0.45𝐷 − 01 0.27𝐷 − 01 0.16𝐷 − 01 0.87𝐷 − 02

2
−9

0.12𝐷 − 00 0.73𝐷 − 01 0.47𝐷 − 01 0.28𝐷 − 01 0.17𝐷 − 01 0.94𝐷 − 02

2
−10

0.12𝐷 − 00 0.74𝐷 − 01 0.47𝐷 − 01 0.29𝐷 − 01 0.17𝐷 − 01 0.98𝐷 − 02

2
−11

0.12𝐷 − 00 0.74𝐷 − 01 0.47𝐷 − 01 0.29𝐷 − 01 0.17𝐷 − 01 0.10𝐷 − 01

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

2
−19

0.12𝐷 − 00 0.74𝐷 − 01 0.47𝐷 − 01 0.29𝐷 − 01 0.18𝐷 − 01 0.10𝐷 − 01

2
−20

0.12𝐷 − 00 0.74𝐷 − 01 0.47𝐷 − 01 0.29𝐷 − 01 0.18𝐷 − 01 0.10𝐷 − 01

𝐸
max
𝑁

0.12𝐷 − 00 0.74𝐷 − 01 0.47𝐷 − 01 0.29𝐷 − 01 0.18𝐷 − 01 0.10𝐷 − 01

Table 2: Convergence rates.

𝜀

Number of intervals𝑁
16 32 64 128 256

2
−2 0.85 0.96 1.06 1.47 0.25
2
−3 0.78 0.90 1.00 1.14 1.68
2
−4 0.74 0.87 0.94 1.03 1.29
2
−5 0.69 0.81 0.89 0.98 1.13
2
−6 0.64 0.76 0.84 0.93 1.12
2
−7 0.63 0.71 0.79 0.87 0.91
2
−8 0.64 0.68 0.74 0.80 0.85
2
−9 0.66 0.65 0.72 0.77 0.83
2
−10 0.67 0.64 0.71 0.75 0.80
2
−11 0.67 0.64 0.71 0.75 0.77
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

2
−19 0.68 0.64 0.70 0.73 0.75
2
−20 0.68 0.64 0.70 0.73 0.75
𝑅
max
𝑁

0.68 0.64 0.70 0.73 0.75

boundary layer can clearly be seen in these figures, the region
where the mesh points are concentrated shows the region of
high derivatives, and as 𝑡 increases, the mesh points become
concentrated in the neighbourhood of 𝑥 = 1 which is the
boundary layer region. It should also be noted that the regular
region is not starved of mesh points. The term 1 in the arc
length monitor function plays this role; if a smaller value is
used, more and more points will be packed in the boundary
layer region, thereby starving the other region of mesh points
which may lead to larger errors. Figure 4 shows the effect of
increasing the value of 𝜏, and an increase of this value will
lead to a quasiuniform mesh and less points being placed in
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Figure 3: Mesh trajectory with 𝜀 = 2
−6, 𝜏 = 0.05, and𝑁 = 32.

the boundary layer region.Thenumber ofmesh points placed
in the layer region might be insufficient, thereby the method
might fail to resolve the boundary layer. It is advisable to use
small values of 𝜏 to fully resolve the boundary layer. Figures
1 and 2 show the effect of reducing the value of 𝜀 on the
thickness and steepness on the boundary layer as can be seen
in the neighbourhood of 𝑥 = 1.

6. Conclusion

Theoretical analysis of the discrete problem was only done
when the problem reached its steady state; this is mainly due
to the absence of any theoretical analysis of the MMPDEs
leading to the derivation of bounds for the nodal veloci-
ties. There should be a limit to how the mesh points are



Abstract and Applied Analysis 11

0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

t

0

Figure 4: Mesh trajectory with 𝜀 = 2
−6, 𝜏 = 0.5, and𝑁 = 32.
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Figure 5: Mesh trajectory for 𝜀 = 2
−20, 𝜏 = 0.05, and𝑁 = 64.

redistributed at the next iteration or time step, but up to
date no bounds have been given explicitly. Apart from this
drawback, this method fully resolves the boundary layer and
is computationally efficient as can clearly be seen from the
numerical results.
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