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We study a family of singularly perturbed 𝑞-difference-differential equations in the complex domain. We provide sectorial
holomorphic solutions in the perturbation parameter 𝜖. Moreover, we achieve the existence of a common formal power series
in 𝜖 which represents each actual solution and establish 𝑞-Gevrey estimates involved in this representation. The proof of the main
result rests on a new version of the so-called Malgrange-Sibuya theorem regarding 𝑞-Gevrey asymptotics. A particular Dirichlet
like series is studied on the way.

1. Introduction

We study a family of 𝑞-difference-differential equations of the
form

𝜖𝜕
𝑡
𝜕
𝑆

𝑧
𝑋 (𝜖, 𝑡, 𝑧) + 𝑎𝜕

𝑆

𝑧
𝑋 (𝜖, 𝑡, 𝑧)

= ∑

𝜅=(𝜅0,𝜅1)∈N

𝑏
𝜅
(𝜖, 𝑧) (𝜕

𝜅0

𝑡
𝜕
𝜅1

𝑧
𝑋) (𝜖, 𝑞

𝑚𝜅,1𝑡, 𝑞
𝑚𝜅,2𝑧)

(1)

under appropriate initial conditions

(𝜕
𝑗

𝑧
𝑋) (𝜖, 𝑡, 0) = 𝜙

𝑗
(𝜖, 𝑡) , 0 ≤ 𝑗 ≤ 𝑆 − 1. (2)

Here, 𝑆 is an integer with 𝑆 ≥ 1 and 𝑎 ∈ C⋆ := C \ {0}.
N stands for a finite subset of N2, where N := {0, 1, 2, . . .}

is the set of nonnegative integers. For every (𝜅
0
, 𝜅
1
) ∈ N,

𝑏
𝜅
(𝜖, 𝑧) turns out to be a polynomial in the variable 𝑧 with

holomorphic and bounded coefficients in a neighborhood of
the origin in the parameter and𝑚

𝜅,1
, 𝑚

𝜅,2
∈ N.

From now on, 𝑞 stands for a fixed real number with 0 <

𝑞 < 1.
We construct actual holomorphic solutions 𝑋(𝜖, 𝑡, 𝑧) for

the previous Cauchy problem in E × T × C, where E is
a bounded open sector in the complex plane with vertex

at the origin and T is an unbounded well-chosen open
set. The procedure is based on the use of the map 𝑡 󳨃→

𝑡/𝜖 which was firstly considered by Canalis-Durand et al.
in [1] to transform a singularly perturbed equation into
an auxiliary regularly perturbed equation, easier to handle.
This celebrated technique has also been used in the study
of singularly perturbed partial differential equations (see
[2, 3], e.g.), 𝑞-difference-differential equations (like in [4] or
[5]), and more recently to the study of difference-differential
equations (see [6]).

Indeed, the present work is motivated by a previous work
[6], where the second author studies a singularly perturbed
difference-differential equation with small delay. This work
can be seen as a continuation of that one. The dynamics
appearing in that previous work involve a small shift in
variable 𝑡with respect to 𝜖, meaning that they are of the form
(𝜖, 𝑡, 𝑧) 󳨃→ (𝜖, 𝑡 + 𝜅

2
𝜖, 𝑧), whereas the actual work deals with a

shrinking behaviour in both 𝑡 and 𝑧 variables.
In [6], a Gevrey 1+ phenomenon, with estimates associ-

ated to the sequence ((𝑛/ log 𝑛)𝑛)
𝑛≥0

, is observed for the series
solution of the problem. This sequence naturally appears
when working with difference equations (see [7, 8], e.g.).
Now, a 𝑞-Gevrey-like behaviour, related to the sequence of
estimates (𝑞

−𝑛
2

)
𝑛≥0

, appears. This behaviour comes up in
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the context of 𝑞-difference equations (see [9, 10]). One can
observe that 1+ sequence is asymptotically upper bounded
by Gevrey sequence (𝑛!)

𝑛≥0
, and this one is upper bounded

by 𝑞-Gevrey sequence (𝑞−𝑛
2

)
𝑛≥0

.
The main aim of this work is to construct actual holo-

morphic solutions 𝑋(𝜖, 𝑡, 𝑧) of (1)+(2) and obtain sufficient
conditions for the existence and unicity of a formal power
series in the parameter 𝜖, 𝑋(𝜖, 𝑡, 𝑧) = ∑

𝛽≥0
𝑋
𝛽
(𝑡, 𝑧)(𝜖

𝛽
/𝛽!),

owing its coefficients in an adequate functional space and
such that 𝑋 is represented by 𝑋 in a sense to precise (see
Theorem 27). This representation is measured in terms of
𝑞-Gevrey bounds due to the appearance of 𝑞-difference
operators on the right-hand side in (1).

The Cauchy problem (1)+(2) we consider in this paper
comes also within the framework of the asymptotic analysis
of linear differential and partial differential equations with
multiplicative delays.

In the context of differential equations most of the
statements in the literature are dedicated to linear problems
of the form

𝑥
󸀠
(𝑡) = 𝐹 (𝑡, 𝑥 (𝜆

1
𝑡) , . . . , 𝑥 (𝜆

𝑛
𝑡) , 𝑥

󸀠
(𝜆
1
𝑡) , . . . , 𝑥

󸀠
(𝜆
𝑛
𝑡)) ,

(3)

where 𝐹 are vector valued polynomial functions in 𝑡 and
linear in its other arguments, where 0 < 𝜆

𝑗
< 1, for 1 ≤

𝑗 ≤ 𝑛 are real numbers and concern the study of asymptotic
behaviour of some of their solutions 𝑥(𝑡) as 𝑡 tends to infinity
for given initial data𝑥(0).When𝐹 is real ormatrix valued and
with constant coefficients, we quote [11–14]. For polynomial𝐹
in 𝑡, we notice [15, 16]. For studies in a complex variable 𝑡, we
refer to [17, 18]. For more general delay functional equations,
we indicate [19].

In the framework of linear partial differential equations,
wemention a series of papers devoted to general results on the
existence and unicity of holomorphic solutions to generalized
Cauchy-Kowalevski type problems with shrinkings of the
form

𝜕
𝑚

𝑡
𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥) , (𝜕

𝑙

𝑥
𝑢 (𝑡, 𝑥) , 𝜕

𝑝

𝑥
𝑢 (𝛼 (𝑡) 𝑡, 𝑥) ,

𝜕
𝑞

𝑥
𝑢 (𝑡, 𝛽 (𝑡, 𝑥) 𝑥) )

(𝑙,𝑝,𝑞)∈𝐼
)

(4)

for some integer𝑚 ≥ 1, a finite set 𝐼, and where 𝑓 is analytic
or of Gevrey type function and such that the functions 𝛼(𝑡)
and 𝛽(𝑡, 𝑥) satisfy the shrinking constraints |𝛼(𝑡)| < 1 and
|𝛽(𝑡, 𝑥)| < 1 for given initial data (𝜕𝑗

𝑡
𝑢)(0, 𝑥), 0 ≤ 𝑗 ≤ 𝑚 − 1

that belong to some functional space.We refer to [20–22]. For
partial differential problems with contractions dealing with
less regular solution spaces like Sobolev spaces, we quote [23],
for instance.

Let us briefly reproduce the strategy followed. We con-
sider a finite family of sectors with vertex at the origin
(E

𝑖
)
0≤𝑖≤] which provides a good covering at 0 in the variable 𝜖

(see Definition 19). Let 𝑖 ∈ {0, 1, . . . , ] − 1}. One can consider
an auxiliary Cauchy problem as follows:

𝜕
𝑆

𝑧
𝑊(𝜖, 𝜏, 𝑧) = ∑

𝜅=(𝜅0 ,𝜅1)∈N

𝑏
𝜅
(𝜖, 𝑧)

(𝑎 − 𝜏) 𝑞
𝑚𝜅,1(𝜅0+1)

(−
𝜏

𝜖
)

𝜅0

× (𝜕
𝜅1

𝑧
𝑊) (𝜖, 𝑞

−𝑚𝜅,1𝜏, 𝑞
𝑚𝜅,2𝑧)

(5)

with initial conditions (𝜕𝑗
𝑧
𝑊)(𝜖, 𝜏, 0) = 𝑊

𝑗
(𝜖, 𝜏), 0 ≤ 𝑗 ≤

𝑆 − 1. We assume𝑊
𝑗
is a holomorphic function in (𝐷(0, 𝑟

0
) \

{0}) × 𝐷(0, 𝑅̂
0
) for some 𝑟

0
, 𝑅̂

0
> 0, for every 0 ≤ 𝑗 ≤

𝑆 − 1, which is upper bounded in terms of 𝑞-Gevrey bounds
(see (61)). Moreover, we assume each 𝑊

𝑗
can be extended

to E
𝑖
× S, where S is a sector with vertex at the origin

and verifying 𝑞-Gevrey bounds in E
𝑖
× 𝑆

0
with 𝑆

0
:= {𝑧 ∈

S : |𝑧| ≥ 𝑅
0
} (see (31)). Under these hypotheses, one can

construct a formal solution to the auxiliary Cauchy problem,
𝑊(𝜖, 𝜏, 𝑧) = ∑

𝛽≥0
𝑊
𝛽
(𝜖, 𝜏)(𝑧

𝛽
/𝛽!), where 𝑊

𝛽
(𝜖, 𝜏) turns out

to be a holomorphic function in (𝐷(0, 𝑟
0
) \ {0}) × (𝐷

𝛽
\ {0}).

Here,𝐷
𝛽
is a disc centered at the originwith radius decreasing

to 0 whenever 𝛽 tends to infinity and reproducing 𝑞-Gevrey
bounds given by the initial conditions (see (62)). Moreover,
each 𝑊

𝛽
(𝜖, 𝜏) can be extended to E

𝑖
× 𝑆

𝛽
under 𝑞-Gevrey

bounds (see (32)), where 𝑆
𝛽
:= {𝑧 ∈ S : |𝑧| > 𝑅

𝛽
}, with

(𝑅
𝛽
)
𝛽≥0

being a sequence of positive numbers that decrease
to 0.We assume 𝑆

𝛽
∩𝐷

𝛽
̸= 0 for every 𝛽 ≥ 0.The decrease rate

of both 𝑅
𝛽
and the radius of𝐷

𝛽
has to be chosen adequately,

in accordance to the elements of a 𝑞-Gevrey sequence such as
(𝑞
𝛼𝛽
2

)
𝛽≥0

for some 𝛼 > 0.
The main difficulty in this work is the occurrence of

propagation of singularities in the coefficients of the auxiliary
problem which leads to a small divisor phenomenon. The
singular points form a sequence of complex numbers tending
to 0. As a result, one can only obtain a formal solution for
the auxiliary problem. In [24], a small divisor phenomenon
comes from the Fuchsian operator studied in the main
Cauchy problem. There, 𝑞 ∈ C is chosen to have |𝑞| > 1,
whilst in the present work 𝑞 ∈ R with 0 < 𝑞 < 1. A suchlike
phenomenon also appears in [2], where the asymptotics in the
parameter suffers the effect of a small divisor, and it is solved
studying a Dirichlet-like series.

General Dirichlet series of the form

∑

𝑛≥0

𝑎
𝑛
𝑒
−𝜆𝑛𝑧

(6)

have been throughly studied in the case when (𝜆
𝑛
)
𝑛≥0

is
an increasing sequence of real numbers to ∞ (see [25–27])
or a sequence of complex numbers with |𝜆

𝑛
| → ∞ (see

[28]). This theory has also been developed when working
with almost periodic functions, introduced by Bohr (see
[29–31]), which are the uniform limits in R of exponential
polynomials ∑𝑛

𝑘=1
𝑎
𝑘
𝑒
𝑖𝑠𝑘𝑥, where the values 𝑠

𝑘
belong to the

so-called spectrum Λ ⊆ R. However, we are more interested
in the behaviour of the sum when 𝑥 tends to ∞ in the
positive imaginary axis. Our technique rests on the Euler-
Mac-Laurin formula, Watson’s lemma, and the equivalence
between null 𝑞-Gevrey asymptotics. The characterization of
𝑞—exponentially at functions is also considered on the way.
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In [2], we solve the problem by means of a Dirichlet
serieswith a spectrumbeing of the form (1/(𝑘 + 1)

𝛼
)
𝑘≥0

. Now,
the spectrum which helps us to achieve our purpose is of
geometric nature (see Lemma 22).

The growth properties of𝑊
𝛽
for 𝛽 ≥ 0 allow us to apply

a Laplace like transform on each of them with respect to
the variable 𝜏 in order to provide a holomorphic solution
𝑋
𝑖
(𝜖, 𝜏, 𝑧) of the main problem, defined in E

𝑖
× T × C, for

some appropriate unbounded open setT. In addition to this,
one has null 𝑞-Gevrey asymptotic bounds for the difference
of𝑋

𝑖
and𝑋

𝑖+1
when the domain of the variable 𝑧 is restricted

to a bounded set, meaning that for every 𝜌 > 0, there exist
𝐿
1
, 𝐿

2
> 0 such that

sup
𝑡∈𝜏

𝑧∈𝐷(0,𝜌)

󵄨󵄨󵄨󵄨𝑋𝑖+1
(𝜖, 𝑡, 𝑧) − 𝑋

𝑖
(𝜖, 𝑡, 𝑧)

󵄨󵄨󵄨󵄨

≤ 𝐿
1
𝑒
−𝐿2(1/(− log(𝑞))2)log2|𝜖|,

(7)

for every 𝜖 ∈ E
𝑖
∩E

𝑖+1
.

Finally, a novel version regarding 𝑞-Gevrey asymptotics
of Malgrange-Sibuya theorem (Theorem 25) leads us to the
main result in the present work (Theorem 27), where we
guarantee the existence of a formal power series in 𝜖 as
follows:

𝑋(𝜖, 𝑡, 𝑧) = ∑

𝛽≥0

𝑋
𝛽
(𝑡, 𝑧)

𝛽!
𝜖
𝛽
∈ HT,𝜌 [[𝜖]] , (8)

with coefficients in the Banach space of bounded holomor-
phic functions defined inT × 𝐷(0, 𝜌), which is common for
every 0 ≤ 𝑖 ≤ ] − 1 and such that𝑋

𝑖
admits𝑋 as its 𝑞-Gevrey

asymptotic expansion of some positive type in the variable 𝜖
(see (135)).

It is worth pointing out that a 𝑞-Gevrey version of
Malgrange-Sibuya theoremwas already obtained in [5], when
dealing with 𝑞 ∈ C, |𝑞| > 1.The type in the asymptotic expan-
sion suffers some increasement in that previous work. This is
so due to the need of extension results in ultradifferentiable
classes of functions (see [32, 33]) to be applied along the proof.
Here, the geometry of the problem changes so that we are able
tomaintain the type 𝑞-Gevrey.The proof rests on the classical
Malgrange-Sibuya theorem (see [34]).

The paper is organized as follows.
In Sections 2 and 3, we introduce Banach spaces of for-

mal power series in order to solve auxiliary Cauchy problems
with the help of fixed point results involving complete metric
spaces. In Section 2, this result is achieved when dealing
with formal power series with holomorphic coefficients in a
product of a finite sector with vertex at the origin times an
infinite sector, while in Section 3 the result is obtained when
dealing with a product of two punctured discs at 0.

In Section 4, we first recall the definition and main
properties of a Laplace-like transform and 𝑞-Gevrey asymp-
totic expansions (Section 4.1). Next, we construct analytic
solutions for the main problem and determine flat 𝑞-Gevrey
bounds for the difference of two solutions when the inter-
section of the domains in the perturbation parameter is not
empty (Section 4.2). In the proof, a Dirichlet type series is

studied. The section is concluded proving the existence of
a formal power series in the perturbation parameter which
represents every solution in some sense which is specified
(Section 4.3).

2. A Cauchy Problem in Weighted Banach
Spaces of Taylor Power Series

𝑀, 𝐴
1
, 𝐶, and 𝛿

1
> 0 are fixed positive real numbers

throughout the present work. Let 𝑞 ∈ R with 0 < 𝑞 < 1

and let (𝑅
𝛽
)
𝛽≥0

be a sequence of positive real numbers.
We consider an open and bounded sectorEwith vertex at

the origin and we fix an open and unbounded sector S with
vertex at the origin having positive distance to a fixed complex
number 𝑎 ∈ C⋆, it is to say, there exists 𝑀

1
> 0 such that

|𝜏 − 𝑎| > 𝑀
1
for every 𝜏 ∈ S. We write 𝑆

𝛽
for the subset of S

defined by

𝑆
𝛽
:= {𝑧 ∈ S : |𝑧| > 𝑅

𝛽
} . (9)

The incoming definition of Banach spaces of functions
and formal power series turns out to be an adaptation of
the corresponding one in [5]. Here, the symmetry of these
norms at 0 and the point of infinity in the 𝜏 variable has to be
removed, so that a Laplace-like transform of the elements in
these Banach spaces makes sense.

Definition 1. Let 𝜖 ∈ E and 𝛽 ∈ N. 𝐸
𝛽,𝜖,𝑆𝛽

denotes the vector
space of functions V ∈ O(𝑆

𝛽
) such that

‖V (𝜏)‖
𝛽,𝜖,𝑆𝛽

:= sup
𝜏∈𝑆𝛽

{
|V (𝜏)|

𝑒𝑀 log2(|𝜏|/|𝜖|+𝛿1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝐶𝛽

} 𝑞
−𝐴1𝛽

2

(10)

is finite.
Let 𝛿 > 0. 𝐻(𝜖, 𝛿,S) denotes the complex vector space

of all formal power series V(𝜏, 𝑧) = ∑
𝛽≥0

V
𝛽
(𝜏)(𝑧

𝛽
/𝛽!) with

V
𝛽
∈ O(𝑆

𝛽
) for every 𝛽 ≥ 0 and such that

‖V(𝜏, 𝑧)‖
(𝜖,𝛿,S) := ∑

𝛽≥0

󵄩󵄩󵄩󵄩󵄩
V
𝛽
(𝜏)

󵄩󵄩󵄩󵄩󵄩𝛽,𝜖,𝑆𝛽

𝛿
𝛽

𝛽!
< ∞. (11)

It is straightforward to check that the pair
(𝐻(𝜖, 𝛿,S), ‖ ⋅ ‖

(𝜖,𝛿,S)) is a Banach space.

For our purposes, the elements in the sequence (𝑅
𝛽
)
𝛽≥0

are chosen to be related to the ones in a 𝑞-Gevrey sequence.
This choice would provide that 𝑆

𝛽
tends to S when 𝛽 → ∞.

Let (E
𝛽
)
𝛽≥0

be a family of complex functional
Banach spaces. For every V(𝜏, 𝑧) = ∑

𝛽≥0
V
𝛽
(𝜏)(𝜏

𝛽
/𝛽!) ∈

(∪
𝛽≥0

E
𝛽
)[[𝑧]], we consider the formal integration operator

𝜕
−1

𝑧
defined on (∪

𝛽≥0
E
𝛽
)[[𝑧]] by

𝜕
−1

𝑧
(V (𝜏, 𝑧)) := ∑

𝛽≥1

V
𝛽−1

(𝜏)
𝑧
𝛽

𝛽!
. (12)
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Lemma 2. Let 𝑠, ℓ
0
, ℓ
1
, 𝑚

1
, and𝑚

2
∈ N, 𝛿 > 0, and 𝜖 ∈ E.

We assume that

𝐶 (ℓ
1
+ 𝑠) − ℓ

0
− 2𝑚

1
𝑀(− log (𝑞)) ≥ 0. (13)

In addition to this, we consider the elements in (𝑅
𝛽
)
𝛽≥0

are
such that

𝑅
𝛽
≥ 𝑞

𝑚1𝑅
𝛽−ℓ1−𝑠

, (14)

for every 𝛽 ≥ ℓ
1
+ 𝑠. Moreover, we assume there exist constants

𝑑
1
, 𝑑
2
> 0 such that

𝑅
𝛽
≥ 𝑑

1
𝑞
𝑑2𝛽, (15)

for every 𝛽 ≥ 0. In addition to this, we assume

𝑚
2
− 2𝐴

1
(ℓ
1
+ 𝑠) − 𝑚

1
𝐶 + 𝑑

2

× [ℓ
0
− 2𝑚

1
𝑀 log (𝑞) − 𝐶 (ℓ

1
+ 𝑠)] > 0.

(16)

Under the previous assumptions, there exists a positive
constant 𝐶

11
, which does not depend on 𝜖 nor 𝛿 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑧
𝑠
(−

𝜏

𝜖
)

ℓ0 1

𝑞𝑚1(ℓ0+1)
(𝜕
−ℓ1

𝑧
V) (𝜏𝑞−𝑚1 , 𝑧𝑞𝑚2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)

≤ 𝐶
11
𝛿
ℓ1+𝑠‖V(𝜏, 𝑧)‖

(𝜖,𝛿,S),

(17)

for every V ∈ 𝐻(𝜖, 𝛿,S).

Proof. Let V(𝜏, 𝑧) = ∑
𝛽≥0

V
𝛽
(𝜏)(𝑧

𝛽
/𝛽!) ∈ 𝐻(𝜖, 𝛿,S). We have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑧
𝑠
(−

𝜏

𝜖
)

ℓ0 1

𝑞𝑚1(ℓ0+1)
(𝜕
−ℓ1

𝑧
V) (𝜏𝑞−𝑚1 , 𝑧𝑞𝑚2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

𝛽≥ℓ1+𝑠

V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1) 𝑞

𝑚2(𝛽−𝑠)−𝑚1(ℓ0+1)

×
𝛽!

(𝛽 − 𝑠)!
(−

𝜏

𝜖
)

ℓ0 𝑧
𝛽

𝛽!

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)

.

(18)

From (14), one derives that for every 𝜏 ∈ 𝑆
𝛽
,

V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1) is well defined and the function 𝜏 󳨃→

V
𝛽−ℓ1−𝑠

(𝑞
−𝑚1𝜏) is holomorphic in 𝑆

𝛽
for every 𝛽 ≥ ℓ

1
+ 𝑠. The

expression in (18) equals

∑

𝛽≥ℓ1+𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1) 𝑞

𝑚2(𝛽−𝑠)−𝑚1(ℓ0+1)

×
𝛽!

(𝛽 − 𝑠)!
(−

𝜏

𝜖
)

ℓ0
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛽,𝜖,𝑆𝛽

𝛿
𝛽

𝛽!
.

(19)

Let 𝛽 ≥ ℓ
1
+ 𝑠. From the definition of the norm ‖ ⋅ ‖

𝛽,𝜖,𝑆𝛽
,

we get

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1) 𝑞

𝑚2(𝛽−𝑠)−𝑚1(ℓ0+1)
𝛽!

(𝛽 − 𝑠)!
(−

𝜏

𝜖
)

ℓ0
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛽,𝜖,𝑆𝛽

= sup
𝜏∈𝑆𝛽

{
󵄨󵄨󵄨󵄨󵄨
V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1)

󵄨󵄨󵄨󵄨󵄨
(
|𝜏| 𝑞

−𝑚1

|𝜖|
)

−𝐶(𝛽−ℓ1−𝑠)

× 𝑒
−𝑀 log2((|𝜏|/|𝜖|)𝑞−𝑚1+𝛿1)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℓ0

(
|𝜏| 𝑞

−𝑚1

|𝜖|
)

𝐶(𝛽−ℓ1−𝑠)

× 𝑒
𝑀 log2(|𝜏|𝑞−𝑚1 /|𝜖|+𝛿1)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝐶𝛽

𝑒
−𝑀 log2(|𝜏|/|𝜖|+𝛿1)}

×
𝛽!

(𝛽 − 𝑠)!
𝑞
𝑚2(𝛽−𝑠)−𝑚1(ℓ0+1)𝑞

−𝐴1𝛽
2

× 𝑞
𝐴1(𝛽−ℓ1−𝑠)

2

𝑞
−𝐴1(𝛽−ℓ1−𝑠)

2

.

(20)

Direct calculations allow us to obtain the following
estimates

𝑒
−𝑀 log2((|𝜏|/|𝜖|)+𝛿1)+𝑀 log2((|𝜏|𝑞−𝑚1 /|𝜖|)+𝛿1)

≤ 𝐶
01
𝑒
−𝑀 log2(|𝜏|/|𝜖|)+𝑀log2(|𝜏|𝑞−𝑚1 /|𝜖|)

≤ 𝐶
02
(
|𝜏|

|𝜖|
)

−2𝑚1𝑀 log(𝑞)
,

(21)

for some positive constants 𝐶
01

and 𝐶
02

only depending on
𝑞, 𝑚

1
, and𝑀. Moreover,

(|𝜏| 𝑞
−𝑚1)

𝐶(𝛽−ℓ1−𝑠)

= 𝐶
03
𝑞
−𝑚1𝐶𝛽|𝜏|

𝐶(𝛽−ℓ1−𝑠), (22)

for some constant 𝐶
03

> 0 depending on 𝑞, 𝑚
1
, ℓ
1
, and 𝑠.

This last equality and (13) yield

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℓ0

(
|𝜏|𝑞

−𝑚1

|𝜖|
)

𝐶(𝛽−ℓ1−𝑠)󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝐶𝛽

(
|𝜏|

|𝜖|
)

−2𝑚1𝑀 log(𝑞)

= 𝐶
04
(
|𝜖|

|𝜏|

−ℓ0+𝐶(ℓ1+𝑠)+2𝑚1𝑀 log(𝑞)
)

≤ 𝐶
05
|𝜏|

ℓ0−2𝑚1𝑀 log(𝑞)−𝐶(ℓ1+𝑠)𝑞−𝑚1𝐶𝛽,

(23)

for some positive constants 𝐶
04

and 𝐶
05

depending on
𝑞, 𝑚, ℓ

0
, ℓ
1
, 𝑠, 𝐶, andE. From the hypothesis (15) on 𝑅

𝛽
, the

last expression is upper bounded by

𝐶
05
𝑞
(−𝑚1𝐶+𝑑2(ℓ0−2𝑚1𝑀 log(𝑞)−𝐶(ℓ1+𝑠)))𝛽, (24)

for somepositive constant𝐶
05
only depending on 𝑞,𝑚

1
, ℓ
0
, ℓ
1
,

𝑠,E,𝐶, and 𝑑
1
. Now, from (16) one gets that 𝛽!/(𝛽−𝑠)!𝑞𝑝1(𝛽) is
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upper bounded by a constant𝐶
06
> 0which does not depend

on 𝛽, where

𝑝
1
(𝛽) = 𝑚

2
(𝛽 − 𝑠) − 𝑚

1
(ℓ
0
+ 1) − 𝐴

1
𝛽
2

+ 𝐴
1
(𝛽 − ℓ

1
− 𝑠)

2

− 𝑚
1
𝐶𝛽

+ 𝑑
2
[ℓ
0
− 2𝑚

1
𝑀 log (𝑞) − 𝐶 (ℓ

1
+ 𝑠)] .

(25)

Taking into account all these computations, one achieves
that (20) can be upper bounded by

𝐶
05
sup
𝜏∈𝑆𝛽

{
󵄨󵄨󵄨󵄨󵄨
V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1)

󵄨󵄨󵄨󵄨󵄨
(
|𝜏| 𝑞

−𝑚1

|𝜖|
)

−𝐶(𝛽−ℓ1−𝑠)

×𝑒
−𝑀 log2(|𝜏|𝑞−𝑚1 /|𝜖|+𝛿1)}𝑞

−𝐴1(𝛽−ℓ1−𝑠).

(26)

The lemma follows bearing in mind (14) and the defini-
tion of the norms in 𝐸

𝛽−(ℓ1+𝑠),𝜖,𝑆𝛽−(ℓ1+𝑠)
and of𝐻(𝜖, 𝛿,S).

Remark 3. The hypotheses made in (14), (15), and (16) are
verified if one departs from 𝑅

𝛽
= 𝑑

1
𝑞
𝑑2𝛽 for small enough

positive 𝑑
2
and any 𝑑

1
> 0 provided (13) is satisfied and

𝑚
2
− 2𝐴

1
(ℓ
1
+ 𝑠) − 𝑚

1
𝐶 > 0.

Lemma4. Let𝐹(𝜖, 𝜏) be a holomorphic and bounded function
defined on E × S. Then, there exists a constant 𝐶

12
=

𝐶
12
(𝐹,E,S) > 0 such that

󵄩󵄩󵄩󵄩𝐹(𝜖, 𝜏)V𝜖(𝜏, 𝑧)
󵄩󵄩󵄩󵄩(𝜖,𝛿,S) ≤ 𝐶

12

󵄩󵄩󵄩󵄩V𝜖(𝜏, 𝑧)
󵄩󵄩󵄩󵄩(𝜖,𝛿,S) (27)

for every 𝜖 ∈ E, every 𝛿 > 0 and all V
𝜖
∈ 𝐻(𝜖, 𝛿,S).

Proof. Direct calculations on the definition of the norms in
the space𝐻(𝜖, 𝛿,S) allow us to conclude when taking 𝐶

12
:=

max{|𝐹(𝜖, 𝜏)| : 𝜖 ∈ E, 𝜏 ∈ S}.

Let 𝑆 ≥ 1 and let N be a finite subset of N2. We also fix
𝑎 ∈ C \ R

+
, where R

+
stands for the set {𝑧 ∈ C : Re (𝑧) ≥

0, Im (𝑧) = 0}.
For every 𝜅 = (𝜅

0
, 𝜅
1
) ∈ N, let 𝑚

𝜅,1
, 𝑚

𝜅,2
be nonnegative

integers and 𝑏
𝜅
(𝜖, 𝑧) ∈ O(𝐷(0, 𝑟

0
))[𝑧], where 𝑟

0
> 0 is such

that E ⊆ 𝐷(0, 𝑟
0
). We write 𝑏

𝜅
(𝜖, 𝑧) = ∑

𝑠∈𝐼𝜅
𝑏
𝜅,𝑠
(𝜖)𝑧

𝑠, where
𝐼
𝜅
is a finite subset of N for every 𝜅 ∈ N. We assume that

1 ≤ 𝜅
1
< 𝑆 for every 𝜅 = (𝜅

0
, 𝜅
1
) ∈ N.

We consider the functional equation

𝜕
𝑆

𝑧
𝑊(𝜖, 𝜏, 𝑧) = ∑

𝜅=(𝜅0 ,𝜅1)∈N

𝑏
𝜅
(𝜖, 𝑧)

(𝑎 − 𝜏) 𝑞
𝑚𝜅,1(𝜅0+1)

(−
𝜏

𝜖
)

𝜅0

× (𝜕
𝜅1

𝑧
𝑊) (𝜖, 𝑞

−𝑚𝜅,1𝜏, 𝑞
𝑚𝜅,2𝑧)

(28)

with initial conditions

(𝜕
𝑗

𝑧
𝑊) (𝜖, 𝜏, 0) = 𝑊

𝑗
(𝜖, 𝜏) , 0 ≤ 𝑗 ≤ 𝑆 − 1, (29)

where the function (𝜖, 𝜏) 󳨃→ 𝑊
𝑗
(𝜖, 𝜏) is an element inO(E×S)

for every 0 ≤ 𝑗 ≤ 𝑆 − 1.

We make the following assumptions.

Assumption A. For every 𝜅 = (𝜅
0
, 𝜅
1
) ∈ N and every 𝑠 ∈ 𝐼

𝜅
,

we assume
𝐶 (𝑆 − 𝜅

1
+ 𝑠) − 𝜅

0
− 2𝑚

𝜅,1
𝑀(− log (𝑞)) ≥ 0,

[𝐶 (𝑆 − 𝜅
1
+ 𝑠) − 𝜅

0
− 2𝑚

𝜅,1
𝑀(− log (𝑞))] 𝑑

2

< 𝑚
𝜅,2

− 2𝐴
1
(𝑆 − 𝜅

1
+ 𝑠) − 𝑚

𝜅,1
𝐶.

(30)

Assumption B. 𝑅
𝛽
≥ 𝑞

𝑚𝜅,1𝑅
𝛽−𝜅1−𝑠

and there exist 𝑑
1
, 𝑑

2
> 0

with𝑅
𝛽
≥ 𝑑

1
𝑞
𝑑2𝛽, for every 𝜅 = (𝜅

0
, 𝜅
1
) ∈ N and every 𝑠 ∈ 𝐼

𝜅
.

Theorem 5. Let Assumption A and Assumption B be fulfilled.
We assume that the initial conditions in (29) verify there exist
Δ > 0 and 0 < 𝑀̃ < 𝑀 such that for every 0 ≤ 𝑗 ≤ 𝑆 − 1

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑗
(𝜖, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ Δ𝑒

𝑀̃ log2(|𝜏|/|𝜖|+𝛿1)|𝜖|
𝐾0 , (31)

for every 𝜏 ∈ 𝑆
0
, 𝜖 ∈ E, where 𝐾

0
= max{𝜅

0
: (𝜅

0
, 𝜅
1
) ∈ N}.

Then, there exists 𝑊(𝜖, 𝜏, 𝑧) = ∑
𝛽≥0

𝑊
𝛽
(𝜖, 𝜏)(𝑧

𝛽
/𝛽!), formal

solution of (28)+(29), where𝑊
𝛽
∈ O(E × 𝑆

𝛽
).

Then, there exist positive constants 𝐶
13

and 𝐶
14

(only
depending on 𝑞, 𝑑

1
, 𝑑

2
, 𝐶, 𝑆, 𝛿

1
, and 𝐴

1
) and 𝛿 > 0 such that

󵄨󵄨󵄨󵄨󵄨
𝑊
𝛽
(𝜖, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

13
𝛽!(

𝐶
14

𝛿
)

𝛽

𝑒
𝑀 log2(|𝜏|/|𝜖|+𝛿1)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐶𝛽

𝑞
𝐴1𝛽
2

,

(32)

for every 𝛽 ≥ 0, all 𝜖 ∈ E and every 𝜏 ∈ 𝑆
𝛽
.

Proof. Let 𝜖 ∈ E. We put E := {O(𝑆
𝛽
) : 𝛽 ≥ 0} and define the

mapA
𝜖
from E[[𝑧]] into itself by

A
𝜖
(𝑊̃ (𝜏, 𝑧)) := ∑

𝜅=(𝜅0 ,𝜅1)∈N

𝑏
𝜅
(𝜖, 𝑧)

(𝑎 − 𝜏) 𝑞
𝑚𝜅,1(𝜅0+1)

(−
𝜏

𝜖
)

𝜅0

× [(𝜕
𝜅1−𝑆

𝑧
𝑊̃) (𝑞

−𝑚𝜅,1𝜏, 𝑞
𝑚𝜅,2𝑧)

+𝜕
𝜅1

𝑧
𝑤
𝜖
(𝑞
−𝑚𝜅,1𝜏, 𝑞

𝑚𝜅,2𝑧) ] ,

(33)

where 𝑤
𝜖
(𝜏, 𝑧) = ∑

𝑆−1

𝑗=0
𝑊
𝑗
(𝜖, 𝜏)(𝑧

𝑗
/𝑗!). For an appropriate

choice of 𝛿, Δ > 0, the map A
𝜖
turns out to be a Lipschitz

shrinking map.

Lemma 6. There exist 𝑅, 𝛿, Δ > 0 (not depending on 𝜖) such
that

(1) ‖A
𝜖
(𝑊̃(𝜏, 𝑧))‖

(𝜖,𝛿,S) ≤ 𝑅 for every 𝑊̃(𝜏, 𝑧) ∈ 𝐵(0, 𝑅).
𝐵(0, 𝑅) denotes the closed ball centered at 0 with radius
𝑅 in𝐻(𝜖, 𝛿,S).

(2)
󵄩󵄩󵄩󵄩󵄩
A
𝜖
(𝑊̃

1
(𝜏, 𝑧)) −A

𝜖
(𝑊̃

2
(𝜏, 𝑧))

󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)

≤
1

2

󵄩󵄩󵄩󵄩󵄩
𝑊̃
1
(𝜏, 𝑧) − 𝑊̃

1
(𝜏, 𝑧)

󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)
,

(34)

for every 𝑊̃
1
, 𝑊̃

2
∈ 𝐵(0, 𝑅).
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Proof. Let 𝑅 > 0 and 𝛿 > 0. In order to prove the first
enunciate, we take 𝑊̃(𝜏, 𝑧) ∈ 𝐵(0, 𝑅) ⊆ 𝐻(𝜖, 𝛿,S). From
Lemmas 2 and 4 we deduce that
󵄩󵄩󵄩󵄩󵄩
A
𝜖
(𝑊̃(𝜏, 𝑧)

󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)

≤ ∑

𝜅=(𝜅0 ,𝜅1)∈N

∑

𝑠∈𝐼𝜅

𝑀
𝜅𝑠

𝑀
1

[𝐶
01
𝛿
𝑆−𝜅1+𝑠

󵄩󵄩󵄩󵄩󵄩
𝑊̃(𝜏, 𝑧)

󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑧
𝑠

𝑞
𝑚𝜅,1(𝜅0+1)

(−
𝜏

𝜖
)

𝜅0

𝜕
𝜅1𝑤

𝜖

× (𝑞
−𝑚𝜅,1𝜏, 𝑞

𝑚𝜅,2𝑧)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)

] ,

(35)

with𝑀
𝜅𝑠
= sup

𝜖∈E|𝑏𝜅𝑠(𝜖)| < ∞ for every 𝜅 ∈ N and 𝑠 ∈ 𝐼
𝜅
.

Let us fix 𝜅 = (𝜅
0
, 𝜅
1
) ∈ N and 𝑠 ∈ 𝐼

𝜅
. Taking into account

the definition of𝐻(𝜖, 𝛿,S), we derive
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑧
𝑠

𝑞
𝑚𝜅,1(𝜅0+1)

(−
𝜏

𝜖
)

𝜅0

𝜕
𝜅1𝑤

𝜖
(𝑞
−𝑚𝜅,1𝜏, 𝑞

𝑚𝜅,2𝑧)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)

=

𝑆−1−𝜅1−𝑠

∑

𝑗=𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑊
𝑗+𝜅1−𝑠

(𝜖, 𝑞
−𝑚𝜅,1𝜏) (−

𝜏

𝜖
)

𝜅0󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑗,𝜖,𝑆𝑗

× 𝑞
𝑚𝜅,2(𝑗−𝑠)−𝑚𝜅,1(𝜅0+1)

𝑗!

(𝑗 − 𝑠)!

𝛿
𝑗

𝑗!

≤ 𝐶
14

𝑆−1−𝜅1−𝑠

∑

𝑗=𝑠

sup
𝜏∈𝑆𝑗

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑗+𝜅1−𝑠

(𝜖, 𝑞
−𝑚𝜅,1𝜏)

󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜅0 󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝐶𝑗

𝑒
−𝑀 log2(|𝜏|/|𝜖|+𝛿1)𝛿𝑗,

(36)

for some 𝐶
14

> 0 which only depends on the parameters
defining (28). The terms of the form |𝜖|

𝐶𝑗 in the previous
expression can be upper bounded by an adequate constant.
Taking into account (31), usual estimates in (36) derive
󵄩󵄩󵄩󵄩󵄩
A
𝜖
(𝑊̃ (𝜏, 𝑧))

󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)

≤ ∑

𝜅=(𝜅0,𝜅1)∈N

∑

𝑠∈𝐼𝜅

𝑀
𝜅𝑠

𝑀
1

[𝐶
01
𝛿
𝑆−𝜅1+𝑠

󵄩󵄩󵄩󵄩󵄩
𝑊̃(𝜏, 𝑧)

󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)
+ 𝐶

15
] ,

(37)

for some 𝐶
15

depending on the parameters defining the
equation and such that it tends to 0 whenever both Δ and 𝛿

tend to 0. An appropriate choice for these constants allows us
to conclude the first part of the proof.

The second part of the lemma follows similar arguments
as before. Let 𝑊̃

1
, 𝑊̃

2
∈ 𝐵(0, 𝑅) ⊆ 𝐻(𝜖, 𝛿,S). One has

󵄩󵄩󵄩󵄩󵄩
A
𝜖
(𝑊̃

1
) −A

𝜖
(𝑊̃

2
)
󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)

≤ ∑

𝜅=(𝜅0 ,𝜅1)∈N

∑

𝑠∈𝐼𝜅

𝑀
𝜅𝑠

𝑀
1

𝐶
01
𝛿
𝑆−𝜅1+𝑠

󵄩󵄩󵄩󵄩󵄩
𝑊̃
1
− 𝑊̃

2

󵄩󵄩󵄩󵄩󵄩(𝜖,𝛿,S)
.

(38)

The result is achieved with an adequate choice of 𝛿 > 0.

Let𝑅,Δ, and let 𝛿 be as in the previous lemma. Bearing in
mind Lemma 6 one can apply the shrinking map theorem on
complete metric spaces to guarantee the existence of a fixed
point for A

𝜖
in 𝐵(0, 𝑅) ⊆ 𝐻(𝜖, 𝛿,S), say 𝑊̃

𝜖
, which verifies

‖𝑊̃
𝜖
(𝜏, 𝑧)‖

(𝜖,𝛿,S) ≤ 𝑅, and A
𝜖
(𝑊̃

𝜖
(𝜏, 𝑧)) = 𝑊̃

𝜖
(𝜏, 𝑧). Let us

define

𝑊
𝜖
(𝜏, 𝑧) = 𝜕

−𝑆

𝑧
𝑊̃
𝜖
(𝜏, 𝑧) + 𝑤

𝜖
(𝜏, 𝑧) . (39)

We put 𝑊̃(𝜖, 𝜏, 𝑧) := 𝑊̃
𝜖
(𝜏, 𝑧), and 𝑊(𝜖, 𝜏, 𝑧) :=

𝜕
−𝑆

𝑧
𝑊̃(𝜖, 𝜏, 𝑧) + 𝑤

𝜖
(𝜏, 𝑧). Then, 𝑊(𝜖, 𝜏, 𝑧) can be written as a

formal power series in 𝑧 as

𝑊(𝜖, 𝜏, 𝑧) = ∑

𝛽≥0

𝑊
𝛽
(𝜖, 𝜏)

𝑧
𝛽

𝛽!
, (40)

where𝑊
𝛽+𝑆

(𝜖, 𝜏) = 𝑊̃
𝛽,𝜖
(𝜏) for every 𝛽 ≥ 0.

From the construction of𝑊(𝜖, 𝜏, 𝑧), we have𝑊(𝜖, 𝜏, 𝑧) =

∑
𝛽≥0

𝑊
𝛽
(𝜖, 𝜏)(𝑧

𝛽
/𝛽!) is a formal solution of (28)+(29).More-

over, from the domain of holomorphy of the initial conditions
in (29) and the recursion formula satisfied by the coefficients
in𝑊(𝜖, 𝜏, 𝑧), we get

𝑊
ℎ+𝑆

(𝜖, 𝜏)

ℎ!

= ∑

𝜅=(𝜅0,𝜅1)∈N

∑

ℎ1+ℎ2=ℎ,ℎ1∈𝐼𝜅

𝑏
𝜅,ℎ1

(𝜖) (−
𝜏

𝜖
)

𝜅0

×
𝑞
𝑚𝜅,2ℎ2

(𝑎 − 𝜏) ℎ
2
!𝑞
𝑚𝜅,1(𝜅0+1)

×𝑊
ℎ2+𝜅1

(𝜖, 𝑞
−𝑚𝜅,1𝜏) .

(41)

We can conclude the function (𝜖, 𝜏) 󳨃→ 𝑊
𝛽
∈ O(E × S) for

every 𝛽 ≥ 0.
Finally, the estimates in (32) are obtained for every 𝛽 ≥ 0

from the fact that 𝑊̃
𝜖
∈ 𝐵(0, 𝑅) ⊆ 𝐻(𝜖, 𝛿,S). The definition

of the elements in𝐻(𝜖, 𝛿,S) lead us to

󵄩󵄩󵄩󵄩󵄩
𝑊̃
𝛽,𝜖

󵄩󵄩󵄩󵄩󵄩𝛽,𝜖,𝑆𝛽
≤ 𝑅𝛽!(

1

𝛿
)

𝛽

, (42)

so that

󵄨󵄨󵄨󵄨󵄨
𝑊
𝛽
(𝜖, 𝜏)

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨
𝑊̃
𝛽−𝑆,𝜖

(𝜏)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑅 (𝛽 − 𝑆)!(

1

𝛿
)

𝛽−𝑆

× 𝑒
𝑀 log2(|𝜏|/|𝜖|+𝛿1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐶(𝛽−𝑆)

𝑞
𝐴1(𝛽−𝑆)

2

,

(43)

for every 𝛽 ≥ 𝑆. In addition to this, Assumption B and usual
estimates allow us to refine the previous estimates leading to

󵄨󵄨󵄨󵄨󵄨
𝑊
𝛽
(𝜖, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

13
𝛽!(

𝐶
14

𝛿
)

𝛽

𝑒
𝑀 log2((|𝜏|/|𝜖|)+𝛿1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐶𝛽

𝑞
𝐴1𝛽
2

,

(44)

for some constants 𝐶
13

> 0 and 𝐶
14

> 0 which only depend
on 𝑞, 𝑑

1
, 𝑑

2
, 𝐶, 𝑆, 𝛿

1
, and 𝐴

1
. This is valid for every 𝜖 ∈ E

and 𝜏 ∈ 𝑆
𝛽
. The hypothesis (31) in the enunciate allows us to

affirm that (32) is also valid for 0 ≤ 𝛽 ≤ 𝑆 − 1.
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Remark 7. One derives holomorphy of𝑊
𝛽
in the variable 𝜏 in

the whole sector S and not only in 𝑆
𝛽
for every 𝛽 ≥ 𝑆 whilst

the estimates are only given for 𝜏 ∈ 𝑆
𝛽
. It is also worth saying

that 𝑅 > 0 can be arbitrarily chosen whenever 𝑠 > 0 for every
𝑠 ∈ 𝐼

𝜅
, 𝜅 ∈ N.

3. Second Cauchy Problem in a Weighted
Banach Space of Taylor Series

We provide the solution of a Cauchy problem with analo-
gous equation as the one studied in the previous section,
written as a formal power series in 𝑧 with coefficients in an
appropriate Banach space of functions in the variable 𝜏 and
the perturbation parameter 𝜖. In Section 2, the domain of
holomorphy of the coefficients remains invariant from the
domain of holomorphy of the initial conditions.This happens
because the dilation operator 𝜏 󳨃→ 𝑞

−1
𝜏 sends points in

any infinite sector in the complex plane with vertex at the
origin into itself. Now, the domain of holomorphy of the
coefficients for the formal solution of the Cauchy problem
under study depends on the index considered.More precisely,
if the initial conditions present a singularity at some point
𝑎 ∈ C in the variable 𝜏, the coefficients of the formal solution
of the Cauchy problem have singularities in 𝜏 that tend to 0,
providing a small divisor phenomenon.

For every 𝜌 > 0, 𝐷̇
𝜌
stands for the set 𝐷(0, 𝜌) \ {0}. We

preserve the value of the positive constants𝑀,𝐴
1
, 𝐶, and 𝛿

1

from the previous section. Let 𝑟
0
> 0 with E ⊆ 𝐷(0, 𝑟

0
) and

let (𝑅̂
𝛽
)
𝛽≥0

be a sequence of positive real numbers.

Definition 8. Let 𝛽 ∈ N. For 𝑟
0
> 0 and 𝜖 ∈ 𝐷(0, 𝑟

0
) \ {0};

𝐸
2

𝛽,𝜖,𝐷̇
𝑅̂
𝛽

stands for the vector space of functions V ∈ O(𝐷̇
𝑅̂𝛽
)

such that

|V (𝜏)|
𝛽,𝜖,𝐷̇
𝑅̂
𝛽

:= sup
𝜏∈𝐷̇
𝑅̂
𝛽

{|V (𝜏)|
|𝜖|
𝐶𝛽

𝑒𝑀 log2(|𝜏|+𝛿1)
}𝑞

−𝐴1𝛽
2

(45)

is finite. Let 𝛿 > 0. We write 𝐻
2
(𝜖, 𝛿) for the vector space of

all formal power V(𝜏, 𝑧) = ∑
𝛽≥0

V
𝛽
(𝜏)𝑧

𝛽
/𝛽! such that V

𝛽
∈

𝐸
2

𝛽,𝜖,𝐷̇
𝑅̂
𝛽

with

|V (𝜏, 𝑧)|
(𝜖,𝛿)

:= ∑

𝛽≥0

󵄨󵄨󵄨󵄨󵄨
V
𝛽
(𝜏)

󵄨󵄨󵄨󵄨󵄨𝛽,𝜖,𝐷̇
𝑅̂
𝛽

𝛿
𝛽

𝛽!
< ∞. (46)

The pair (𝐻
2
(𝜖, 𝛿), | ⋅ |

(𝜖,𝛿)
) is a Banach space.

Lemma 9. Let 𝑠, ℓ
0
, ℓ
1
, 𝑚

1
, and 𝑚

2
∈ N, 𝛿 > 0, and 𝜖 ∈

𝐷(0, 𝑟
0
) \ {0}. We assume that

𝐶 (ℓ
1
+ 𝑠) − ℓ

0
≥ 0, 𝑚

2
− 2𝐴

1
(ℓ
1
+ 𝑠) > 0. (47)

Moreover, we assume that the elements of the sequence
(𝑅̂
𝛽
)
𝛽≥0

are such that

𝑅̂
𝛽
≤ 𝑞

𝑚1 𝑅̂
𝛽−ℓ1−𝑠

, (48)

for every 𝛽 ≥ ℓ
1
+ 𝑠.

Under the previous assumptions, there exists a positive con-
stant 𝐶

21
which depends on 𝐶, 𝑞,𝑚

1
, 𝑚

2
, 𝑠, ℓ

0
, ℓ
1
, 𝑀, 𝐴

1
,

𝛿
1
, and 𝑟

0
(not depending on 𝜖 nor 𝛿) such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
𝑠
(−

𝜏

𝜖
)

ℓ0 1

𝑞𝑚1(ℓ0+1)
(𝜕
−ℓ1

𝑧
V) (𝜏𝑞−𝑚1 , 𝑧𝑞𝑚2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝜖,𝛿)

≤ 𝐶
21
𝛿
ℓ1+𝑠|V(𝜏, 𝑧)|

(𝜖,𝛿)
,

(49)

for every V ∈ 𝐻
2
(𝜖, 𝛿).

Proof. Let V(𝜏, 𝑧) = ∑
𝛽≥0

V
𝛽
(𝜏)(𝑧

𝛽
/𝛽!) be an element of

𝐻
2
(𝜖, 𝛿). We have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
𝑠
(−

𝜏

𝜖
)

ℓ0 1

𝑞𝑚1(ℓ0+1)
(𝜕
−ℓ1

𝑧
V) (𝜏𝑞−𝑚1 , 𝑧𝑞𝑚2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝜖,𝛿)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝛽≥ℓ1+𝑠

V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1) 𝑞

𝑚2(𝛽−𝑠)−𝑚1(ℓ0+1)

×
𝛽!

(𝛽 − 𝑠)!
(−

𝜏

𝜖
)

ℓ0 𝑧
𝛽

𝛽!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝜖,𝛿)

.

(50)

From (48), one derives that for every 𝜏 ∈ 𝐷̇
𝑅̂𝛽−ℓ1−𝑠

,
V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1) is well defined. In addition to this, the function

𝜏 󳨃→ V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1) is holomorphic in 𝐷̇

𝑅̂𝛽
for every𝛽 ≥ ℓ

1
+𝑠.

The expression in (50) equals

∑

𝛽≥ℓ1+𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1) 𝑞

𝑚2(𝛽−𝑠)−𝑚1(ℓ0+1)

×
𝛽!

(𝛽 − 𝑠)!
(−

𝜏

𝜖
)

ℓ0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽,𝜖,𝐷̇

𝑅̂
𝛽

𝛿
𝛽

𝛽!
.

(51)

Let 𝛽 ≥ ℓ
1
+ 𝑠. From the definition of the norm | ⋅ |

𝛽,𝜖,𝐷̇
𝑅̂
𝛽

,
we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1) 𝑞

𝑚2(𝛽−𝑠)−𝑚1(ℓ0+1)

×
𝛽!

(𝛽 − 𝑠)!
(−

𝜏

𝜖
)

ℓ0
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽,𝜖,𝐷̇

𝑅̂
𝛽

= sup
𝜏∈𝐷̇
𝑅̂
𝛽

{
󵄨󵄨󵄨󵄨󵄨
V
𝛽−ℓ1−𝑠

(𝜏𝑞
−𝑚1)

󵄨󵄨󵄨󵄨󵄨

×
|𝜖|
𝐶(𝛽−ℓ1−𝑠)

𝑒𝑀log2(|𝜏|/𝑞𝑚1+𝛿1)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℓ0

|𝜖|
𝐶(ℓ1+𝑠)

× 𝑒
𝑀(log2(|𝜏|/𝑞𝑚1+𝛿1)−log2(|𝜏|+𝛿1))}

× 𝑞
𝑝1(𝛽)

𝛽!

(𝛽 − 𝑠)!
𝑞
−𝐴1(𝛽−ℓ1−𝑠)

2

,

(52)

with 𝑝
1
(𝛽) = 𝑚

2
(𝛽 − 𝑠) −𝑚

1
(ℓ
0
+ 1) −𝐴

1
𝛽
2
+𝐴

1
(𝛽 − ℓ

1
− 𝑠)

2.
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The result follows provided that one is able to estimate the
expression

𝑞
𝑝1(𝛽)

𝛽!

(𝛽 − 𝑠)!
|𝜏|

ℓ0 |𝜖|
𝐶(ℓ1+𝑠)−ℓ0

× 𝑒
𝑀(log2((|𝜏|/𝑞𝑚1 )+𝛿1)−log2(|𝜏|+𝛿1)).

(53)

From the first of the hypotheses made in (47), |𝜖|𝐶(ℓ1+𝑠)−ℓ0
is upper bounded by a constant. Also, taking into account
(48), there exists 𝑅̂ > 0 such that |𝜏| ≤ 𝑅̂ for every 𝜏 ∈

∪
𝛽≥0

𝐷̇
𝑅̂𝛽
, so that

|𝜏|
ℓ0 exp (𝑀(log2 (|𝜏| 𝑞−𝑚1 + 𝛿

1
) − log2 (|𝜏| + 𝛿

1
)))

≤ 𝐷
21
(𝑞,𝑚

1
, 𝛿
1
,𝑀, ℓ

0
) ,

(54)

for some positive constant 𝐷
21
. The result immediately

follows from (47) that guarantees that 𝛽!/(𝛽 − 𝑠)!𝑞
𝑝1(𝛽) is

bounded from above.

Let 𝑅̂ > 0 be as in the proof of the previous lemma, that
is, 𝑅̂ ≥ 𝑅̂

𝛽
for every 𝛽 ≥ 0.

Lemma 10. Let 𝐹(𝜖, 𝜏) be a holomorphic and bounded func-
tion defined on𝐷(0, 𝑟

0
) × 𝐷(0, 𝑅̂).

Then, there exists a constant 𝐶
22
= 𝐶

22
(𝐹) > 0 such that

󵄨󵄨󵄨󵄨𝐹 (𝜖, 𝜏) V𝜖 (𝜏, 𝑧)
󵄨󵄨󵄨󵄨(𝜖,𝛿) ≤ 𝐶

22

󵄨󵄨󵄨󵄨V𝜖 (𝜏, 𝑧)
󵄨󵄨󵄨󵄨(𝜖,𝛿), (55)

for every 𝜖 ∈ 𝐷(0, 𝑟
0
) \ {0}, every 𝛿 > 0 and all V

𝜖
∈ 𝐻

2
(𝜖, 𝛿).

Proof. Direct calculations on the definition of the norms in
the space 𝐻

2
(𝜖, 𝛿) allow us to conclude when taking 𝐶

22
:=

max{|𝐹(𝜖, 𝜏)| : 𝜖 ∈ 𝐷(0, 𝑟
0
), 𝜏 ∈ 𝐷(0, 𝑅̂)}.

Let 𝑆 ≥ 1 and let N be a finite subset of N2. We also fix
𝑎 ∈ C \R

+
such that |𝑎| ≥ 𝑅̂, with 𝑅̂ as before.

Let 𝑚
𝜅,1
, 𝑚

𝜅,2
, and let 𝑏

𝜅
be as in Section 2, for every 𝜅 =

(𝜅
0
, 𝜅
1
).

We consider the functional equation

𝜕
𝑆

𝑧
𝑊(𝜖, 𝜏, 𝑧) = ∑

𝜅=(𝜅0 ,𝜅1)∈N

𝑏
𝜅
(𝜖, 𝑧)

(𝑎 − 𝜏) 𝑞
𝑚𝜅,1(𝜅0+1)

(−
𝜏

𝜖
)

𝜅0

× (𝜕
𝜅1

𝑧
𝑊) (𝜖, 𝑞

−𝑚𝜅,1𝜏, 𝑞
𝑚𝜅,2𝑧)

(56)

with initial conditions

(𝜕
𝑗

𝑧
𝑊) (𝜖, 𝜏, 0) = 𝑊

𝑗
(𝜖, 𝜏) , 0 ≤ 𝑗 ≤ 𝑆 − 1, (57)

where the function (𝜖, 𝜏) 󳨃→ 𝑊
𝑗
(𝜖, 𝜏) is an element in

O((𝐷(0, 𝑟
0
) \ {0}) × 𝐷̇

𝑅̂0
) for every 0 ≤ 𝑗 ≤ 𝑆 − 1.

We make the following assumptions.

Assumption 𝐴󸀠. For every 𝜅 = (𝜅
0
, 𝜅
1
) ∈ N and every 𝑠 ∈ 𝐼

𝜅
,

we assume

𝐶 (𝑆 − 𝜅
1
+ 𝑠) − 𝜅

0
≥ 0, 𝑚

𝜅,2
− 2𝐴

1
(𝑆 − 𝜅

1
+ 𝑠) > 0.

(58)

Remark 11. Observe that Assumption A implies Assumption
A󸀠.

Assumption 𝐵
󸀠. We assume 𝑅̂

𝛽
≤ 𝑞

𝑚𝜅,1 𝑅̂
𝛽−𝜅1−𝑠

for every 𝜅 =

(𝜅
0
, 𝜅
1
) ∈ N, every 𝑠 ∈ 𝐼

𝜅
, and every 𝛽 ≥ 𝜅

1
+ 𝑠.

We first state a result which provides a concrete value for
the elements in (𝑅̂

𝛽
)
𝛽≥0

under Assumption B󸀠. The choice is
made in two respects: first, to clarify how the singularities
suffer propagation in the formal solution of (56)+(57), with
respect to the variable 𝜏, and second, to provide acceptable
domains of holomorphy for such coefficients when regarding
this phenomenon of propagation of singularities. Any other
appropriate choice for the elements in (𝑅̂

𝛽
)
𝛽≥0

regarding these
issues would also be fairish for our purpose.

Lemma 12. Let 𝑑
1
, 𝑑
2
> 0, and 𝜖 ∈ 𝐷(0, 𝑟

0
) \ {0}.

We put 𝑅̂
𝛽
:= 𝑅̂

0
for𝛽 = 0, 1, . . . , 𝑆−1, and 𝑅̂

𝛽
= 𝑑

1
𝑞
𝑑2𝛽 for

every𝛽 ≥ 𝑆. Let us assume that (56)+(57) has a formal solution
in 𝑧,𝑊(𝜖, 𝜏, 𝑧) = ∑

𝛽≥0
𝑊
𝛽
(𝜖, 𝜏)(𝑧

𝛽
/𝛽!). Then, there exists 𝑑

20

such that for every 𝑑
2
≥ 𝑑

20
, the function 𝜏 󳨃→ 𝑊

𝛽
(𝜖, 𝜏) belongs

to O(𝐷̇
𝑅̂𝛽
) for every 𝛽 ≥ 𝑆 and all 𝜖 ∈ 𝐷(0, 𝑟

0
) \ {0}.

Proof. Let 𝑊(𝜖, 𝜏, 𝑧) be a formal power series in 𝑧 of the
form ∑

𝛽≥0
𝑊
𝛽
(𝜖, 𝜏)(𝑧

𝛽
/𝛽!). One can plug the formal power

series into (56) to obtain the recursion formula in (41) for the
coefficients (𝑊

𝛽
)
𝛽≥𝑆

. From this recurrence, one derives that
the domain of holomorphy for𝑊

ℎ+𝑆
in the variable 𝜏 depends

on the domain of holomorphy on 𝜏 of 𝑊
ℎ2+𝜅1

and also on
𝑞
−𝑚𝜅,1 for every 𝜅 = (𝜅

0
, 𝜅
1
) ∈ N and every 0 ≤ ℎ

2
≤ ℎ

such that ℎ − ℎ
2
∈ 𝐼

𝜅
.

The initial conditions 𝑊
0
, . . . ,𝑊

𝑆−1
are holomorphic

functions in 𝐷̇
𝑅̂0
.

Lemma 13. For every𝑁 ≥ 1 the coefficients𝑊
𝑁𝑆−(𝑁−1)𝜅10

, . . .,
𝑊
(𝑁+1)𝑆−𝑁𝜅10

turn out to be holomorphic functions in 𝐷̇
𝑞
𝑁𝑚𝜅,1

𝑅̂0

,
for 𝜅

10
:= max{𝜅

1
: (𝜅

0
, 𝜅
1
) ∈ N} and 𝑚

𝜅,1
:= max{𝑚

𝜅,1
: 𝜅 ∈

N}.

Proof. We prove it by recurrence on 𝑁 and regarding the
recursion formula (41).

Let𝑁 = 1. One has ℎ
2
+𝜅

1
≤ 𝑆−1 for any ℎ

2
, 𝜅
1
as in (41)

if and only if ℎ
2
≤ 𝑆−1−𝜅

1
for every (𝜅

0
, 𝜅
1
) ∈ N, it is to say,

if and only if ℎ
2
≤ 𝑆 − 1 − 𝜅

10
. In this case,𝑊

ℎ+𝑆
only depends

on the initial conditions (𝑊
𝑗
)
0≤𝑗≤𝑆−1

. Moreover,

ℎ + 𝑆 ∈ {𝑆, 𝑆 + 1, . . . , 2𝑆 − 𝜅
10
− 1} , (59)

and the dilation on the variable 𝜏 allows us to obtain that
𝑊
𝑆
,. . .,𝑊

2𝑆−𝜅10−1
are holomorphic functions in 𝐷̇

𝑞
𝑚𝜅,1

𝑅̂0

.
The proof can be followed recursively for every𝑁 ≥ 2 by

considering analogous blocks of indices as before.

Regarding Lemma 13, the proof of Lemma 12 is concluded
if one can check that for every 𝑁 ≥ 1, 𝑅̂

𝛽
≤ 𝑅̂

0
𝑞
𝑁𝑚𝜅,1
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whenever

𝛽 ∈ {𝑁𝑆 − (𝑁 − 1) 𝜅
10
, . . . , (𝑁 + 1) 𝑆 − 𝑁𝜅

10
− 1}

= {𝑁 (𝑆 − 𝜅
10
) + 𝜅

10
, . . . , 𝑁 (𝑆 − 𝜅

10
) + 𝑆 − 1} .

(60)

Let𝑁 ≥ 1 and 𝛽 = 𝑁(𝑆 − 𝜅
10
) + 𝐿, with 𝜅

10
≤ 𝐿 ≤ 𝑆 − 1.

Let 𝑑
1
≤ 𝑅̂

0
. We have 𝑅̂

𝛽
= 𝑑

1
𝑞
𝑑2[𝑁(𝑆−𝜅10)+𝐿] ≤ 𝑅̂

0
𝑞
𝑁𝑚𝜅,1 if and

only if𝑁𝑚
𝜅,1

≤ 𝑑
2
[𝑁(𝑆 − 𝜅

10
) + 𝐿]. The result follows for any

𝑑
2
≥ 𝑚

𝜅,1
/(𝑆 − 𝜅

10
).

Lemma 14. Let 𝑅̂
𝛽
be defined as in Lemma 12. Then, (𝑅̂

𝛽
)
𝛽≥0

satisfies Assumption B󸀠.

Proof. From the definition of 𝑅̂
𝛽
, the lemma follows when

taking 𝑑
2
≥ 𝑚

𝜅,1
/(𝜅

1
+ 𝑠) for every 𝜅 = (𝜅

0
, 𝜅
1
) ∈ N and

every 𝑠 ∈ 𝐼
𝜅
.

Assumption 𝐵
󸀠󸀠. We assume 𝑅̂

𝛽
= 𝑅̂

0
for 0 ≤ 𝛽 ≤ 𝑆 − 1 and

𝑅̂
𝛽
:= 𝑑

1
𝑞
𝑑2𝛽 for any 𝑑

2
≥ 𝑑

20
, with 𝑑

20
> 0 as in Lemma 12.

As it has been pointed out before, the Assumption B󸀠
is substituted in the present work by Assumption B󸀠󸀠 with
the cost of losing some generality but giving concrete values
for 𝑅̂

𝛽
, for every 𝛽 ≥ 0. The incoming theorem is valid

when considering any other choice of the elements in (𝑅̂
𝛽
)
𝛽≥0

satisfying Assumption B󸀠.

Theorem 15. Let Assumption A󸀠 and Assumption B󸀠󸀠 be
fulfilled. We also make the next assumption on the initial
conditions (57); there exist Δ > 0 and 0 < 𝑀̃ < 𝑀 such that

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑗
(𝜖, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ Δ𝑒

𝑀̃ log2(|𝜏|+𝛿1)|𝜖|
𝐾0 , (61)

for every 𝜏 ∈ 𝐷(0, 𝑅̂
0
), 𝜖 ∈ 𝐷(0, 𝑟

0
) \ {0} and 0 ≤ 𝑗 ≤ 𝑆 −

1, where 𝐾
0
= max{𝜅

0
: (𝜅

0
, 𝜅
1
) ∈ N}. Then, there exists a

formal power series 𝑊(𝜖, 𝜏, 𝑧) = ∑
𝛽≥0

𝑊
𝛽
(𝜖, 𝜏)(𝑧

𝛽
/𝛽!), with

𝑊
𝛽
(𝜖, 𝜏) ∈ O((𝐷(0, 𝑟

0
) \ {0}) × 𝐷̇

𝑅̂𝛽
), which provides a formal

solution of (56)+(57). Moreover, there exist positive constants
𝐶
23
and 𝐶

24
(only depending on 𝑟

0
, 𝑅̂

0
, 𝑞, 𝐶, 𝑆,𝐴

1
, 𝛿
1
, and𝑀)

and 0 < 𝛿 < 1 such that

󵄨󵄨󵄨󵄨󵄨
𝑊
𝛽
(𝜖, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

23
𝛽!(

𝐶
24

𝛿
)

𝛽

|𝜖|
−𝐶𝛽

× 𝑒
𝑀 log2(|𝜏|+𝛿1)𝑞𝐴1𝛽

2

,

(62)

for every 𝜖 ∈ 𝐷(0, 𝑟
0
) \ {0}, 𝜏 ∈ 𝐷̇

𝑅̂𝛽
and for every 𝛽 ∈ N.

Proof. The proof follows analogous steps as the one of
Theorem 5, so we do not enter into details as to not to repeat
arguments.

Let 𝜖 ∈ 𝐷(0, 𝑟
0
) \ {0} and 0 < 𝛿 < 1. The set E is taken

to be {O(𝐷̇
𝑅̂𝛽
) : 𝛽 ≥ 0}. We consider the mapA

𝜖
from E[[𝑧]]

into itself defined in the same way as in (33).
From Lemma 12 and Assumption B󸀠󸀠, the unique for-

mal solution of (56)+(57) determined by the recursion

formula (41), 𝑊(𝜖, 𝜏, 𝑧) = ∑
𝛽≥0

𝑊
𝛽
(𝜖, 𝜏)(𝑧

𝛽
/𝛽!), is such that

𝑊
𝛽
(𝜖, 𝜏) ∈ O(𝐷̇(0, 𝑅̂

𝛽
)) for every 𝛽 ≥ 0.

Regarding the initial conditions of the Cauchy problem,
one can reduce 𝑑

1
, if necessary, so that 𝑅̂

𝑗+𝑠
𝑞
−𝑚𝜅,1 ≤ 𝑅̂

0
and

so the map 𝜏 󳨃→ 𝑊
𝑗+𝜅1

(𝜖, 𝑞
−𝑚𝜅,1𝜏) is well defined, for every

𝜅 = (𝜅
0
, 𝜅
1
) ∈ N, every 𝑠 ∈ 𝐼

𝜅
, and 𝑗 = 0, 1, . . . , 𝑆 − 1 − 𝜅

1
.

Moreover, from (61), the expression
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
𝑠

𝑞
𝑚𝜅,1 (𝜅

0
+ 1)

(−
𝜏

𝜖
)

𝜅0

𝜕
𝜅1

𝑧
𝑤
𝜖
(𝑞
−𝑚𝜅,1𝜏, 𝑞

𝑚𝜅,2𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝜖,𝛿)

(63)

can be estimated in an analogous manner as in the corre-
sponding step of the proof of Theorem 5, for every 𝜅 =

(𝜅
0
, 𝜅
1
) ∈ N and all 𝑠 ∈ 𝐼

𝜅
.

4. Analytic Solutions in a Parameter of
Singularly Perturbed Cauchy Problem

4.1. Laplace Transform and 𝑞-Gevrey Asymptotic Expansion.
In this subsection, we recall some identities for the Laplace
transform and state some definitions and first results on
𝑞-Gevrey asymptotic expansions. The next lemma can be
found in [6].

Lemma 16. Let 𝑚 ∈ N and let 𝑤
1
(𝜏) be a holomorphic

function in an unbounded sector𝑈 such that there exist𝐶,𝐾 >

0 with

|𝑤 (𝜏)| ≤ 𝐶 exp (𝐾 |𝜏|) , (64)

for every 𝜏 ∈ 𝑈. LetD be an unbounded sector with vertex at
0 which verifies that

𝑑 + arg (𝑡) ∈ (−𝜋
2
,
𝜋

2
) , cos (𝑑 + arg (𝑡)) ≥ 𝛿

2
, (65)

for some 𝑑 ∈ R and 𝛿
2
> 0. Then,

𝑡 󳨃󳨀→ ∫
𝐿𝑑

𝑤 (𝜏) 𝑒
−𝑡𝜏
𝑑𝜏 (66)

is a holomorphic and bounded function defined for 𝑡 ∈ D ∩

{|𝑡| > 𝐾/𝛿
2
}. Moreover, the following identities hold:

∫
𝐿𝑑

𝜏
𝑚
𝑒
−𝑡𝜏
𝑑𝜏 =

𝑚!

𝑡𝑚+1
,

𝜕
𝑡
(∫

𝐿𝑑

𝑤 (𝜏) 𝑒
−𝑡𝜏
𝑑𝜏) = ∫

𝐿𝑑

(−𝜏)𝑤 (𝜏) 𝑒
−𝑡𝜏
𝑑𝜏,

(67)

where 𝐿
𝑑
= R

+
𝑒
𝑖𝑑
⊆ 𝑈 ∪ {0}, for all 𝑡 ∈ D ∩ {|𝑡| > 𝐾/𝛿

2
}.

In the sequel, we work with functions which satisfy more
restrictive bounds that the ones in (64). Indeed, we deal with
bounds of the form 𝐶 exp(𝐾 log2|𝜏|), for some 𝐶,𝐾 > 0.
This alters the asymptotic behaviour of the Laplace transform
and cause the appearance of 𝑞-Gevrey asymptotic expansions
associated with estimates related to the sequence (𝑞−𝑛

2

)
𝑛≥0

.
For any open sector 𝑆 = {𝑧 ∈ C : 𝑎 < arg(𝑧) < 𝑏, |𝑧| < 𝜌}

in the complex plane with vertex at 0 with 𝜌 finite or infinite



10 Abstract and Applied Analysis

and 0 ≤ 𝑎 < 𝑏 ≤ 2𝜋, we say the finite sector 𝑆 with vertex
at the origin is a proper subsector of 𝑆, and we denote it as
𝑆 ≺ 𝑆, if 𝑆 = {𝜏 ∈ C⋆ : 𝑎

1
< arg(𝜏) < 𝑏

1
, |𝑧| < 𝜌} for some

0 ≤ 𝑎 < 𝑎
1
< 𝑏

1
< 𝑏 ≤ 2𝜋 and some 𝜌 ∈ R, 0 < 𝜌 < 𝜌.

H stands for a complex Banach space.
We preserve the Definition of 𝑞-Gevrey asymptotic

expansion established in [5], in order to be coherent with the
definitions in that work.

Definition 17. Let 𝑆 be a sector inC⋆ with vertex at the origin,
and 𝐴 > 0. We say a holomorphic function 𝑓 : 𝑆 → H

admits the formal power series 𝑓 = ∑
𝑛≥0

𝑓
𝑛
𝜖
𝑛
∈ H[[𝜖]] as

its 𝑞-Gevrey asymptotic expansion of type 𝐴 in 𝑆 if for every
𝑆 ≺ 𝑆 there exist 𝐶

1
, 𝐻 > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓(𝜖) −

𝑁

∑

𝑛=0

𝑓
𝑛
𝜖
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩H

≤ 𝐶
1
𝐻
𝑁
𝑞
−𝐴(𝑁

2
/2) |𝜖|

𝑁+1

(𝑁 + 1)!
, 𝑁 ≥ 0,

(68)

for every 𝜖 ∈ 𝑆.

The next proposition, detailed in [5] in the more general
geometry of 𝑞-spirals, characterises null 𝑞-Gevrey asymptotic
expansion.

Proposition 18. Let 𝐴 > 0 and 𝑓 : 𝑆 → H a holomorphic
function in a sector 𝑆 with vertex at the origin. The following
holds.

(i) If𝑓 admits the power series with null coefficients, which
is denoted by 0̂, as its 𝑞-Gevrey asymptotic expansion of
type 𝐴, then for every 𝑆 ≺ 𝑆 there exists 𝐶

1
> 0 with

󵄩󵄩󵄩󵄩𝑓(𝜖)
󵄩󵄩󵄩󵄩H ≤ 𝐶

1
𝑒
−(1/𝑎)(1/2(− log(𝑞)))log2|𝜖|

, (69)

for every 𝜖 ∈ 𝑆 and every 𝑎 > 𝐴.
(ii) If for every 𝑆 ≺ 𝑆 there exists 𝐶

1
> 0 with

󵄩󵄩󵄩󵄩𝑓(𝜖)
󵄩󵄩󵄩󵄩H ≤ 𝐶

1
𝑒
−(1/𝐴)(1/2(− log(𝑞)))log2|𝜖|

, (70)

for every 𝜖 ∈ 𝑆, then 𝑓 admits 0̂ as its 𝑞-Gevrey
asymptotic expansion of type 𝑎 in 𝑆, for every 𝑎 > 𝐴.

4.2. Analytic Solutions in a Parameter of Singularly Perturbed
Cauchy Problem. We recall the definition of a good covering.

Definition 19. Let {E
𝑖
}
0≤𝑖≤]−1 be a finite family of open sectors

with vertex at the origin and finite radius 𝜖
0
. We assume that

E
𝑖
∩ E

𝑖+1
̸= 0 for 0 ≤ 𝑖 ≤ ] − 1 (we put E] := E

0
) and also

that𝐷(0, ]
0
) \ {0} ⊆ ∪

]−1
𝑖=0

E
𝑖
for some ]

0
> 0. Then, the family

{E
𝑖
}
1≤𝑖≤]−1 is known as a good covering in C⋆.

Definition 20. Let {E
𝑖
}
0≤𝑖≤]−1 be a good covering in C⋆. We

consider a family {{𝑆
𝑖
}
0≤𝑖≤]−1,T} such that the following

holds.
(1) There exist 𝑑

𝑖
∈ [0, 2𝜋), 0 < 𝜃

𝑖
< 𝜋/2 such that

𝑆
𝑖
= 𝑆

𝑖
(𝑑
𝑖
, 𝜃
𝑖
) := {𝑡 ∈ C

⋆
:
󵄨󵄨󵄨󵄨arg (𝑡) − 𝑑

𝑖

󵄨󵄨󵄨󵄨 <
𝜃
𝑖

2
} , (71)

for every 0 ≤ 𝑖 ≤ ] − 1.

(2) T is an unbounded subset of an open sector with
vertex at the origin. We assume |𝑡| ≥ 𝑟T for every
𝑡 ∈ T.

(3) For every 0 ≤ 𝑖 ≤ ] − 1 and 𝜏 ∈ 𝑆
𝑖
, there exists 𝛿

3
> 0

such that |𝑎 − 𝜏| > 𝛿
3
.

(4) For every 0 ≤ 𝑖 ≤ ] − 1, 𝑡 ∈ T, and 𝜖 ∈ E
𝑖
, one has

𝑡/𝜖 ∈ 𝑆
𝑖
.

Under the previous settings, we say the family {{𝑆
𝑖
}
0≤𝑖≤]−1,T}

is associated to the good covering {E
𝑖
}
0≤𝑖≤]−1.

Let us consider a good covering in C⋆, {E
𝑖
}
0≤𝑖≤]−1.

Let 𝑆 ≥ 1 and 𝑎 ∈ C \ R
+
. We consider a finite subset

of N2, N. For every 𝜅 = (𝜅
0
, 𝜅
1
) ∈ N, let 𝑚

𝜅,1
, 𝑚

𝜅,2
∈ N

and let 𝑏
𝜅
(𝜖, 𝑧) be a holomorphic and bounded function on

𝐷(0, 𝑟
0
) × C, for some 𝑟

0
> 0. For each 0 ≤ 𝑖 ≤ ] − 1, we

consider the following main Cauchy problem in the present
work:

𝜖𝜕
𝑡
𝜕
𝑆

𝑧
𝑋
𝑖
(𝜖, 𝑡, 𝑧) + 𝑎𝜕

𝑆

𝑧
𝑋
𝑖
(𝜖, 𝑡, 𝑧)

= ∑

𝜅=(𝜅0 ,𝜅1)∈N

𝑏
𝜅
(𝜖, 𝑧) (𝜕

𝜅0

𝑡
𝜕
𝜅1

𝑧
𝑋
𝑖
)

× (𝜖, 𝑞
𝑚𝜅,1𝑡, 𝑞

𝑚𝜅,2𝑧)

(72)

with initial conditions

(𝜕
𝑗

𝑧
𝑋
𝑖
) (𝜖, 𝑡, 0) = 𝜙

𝑖,𝑗
(𝜖, 𝑡) 0 ≤ 𝑗 ≤ 𝑆 − 1, (73)

where the functions 𝜙
𝑖,𝑗
(𝜖, 𝑡) are constructed as follows. Let

{{𝑆
𝑖
}
0≤𝑖≤]−1,T} be a family of open sets associated with the

good covering {E
𝑖
}
0≤𝑖≤]−1.

From now on, we assume the values of (𝑅
𝛽
)
𝛽≥0

and
(𝑅̂
𝛽
)
𝛽≥0

are those in the preceeding sections. If necessary, one
can adjust the values of 𝑑

1
, 𝑑

2
, 𝑑

1
, and 𝑑

2
so that 𝑅

𝛽
< 𝑅̂

𝛽
for

every 𝛽 ≥ 0, so that 𝐷̇
𝑅̂𝛽

∩ 𝑆
𝑖,𝛽

̸= 0 for every 𝛽 ≥ 0 and every
0 ≤ 𝑖 ≤ ] − 1. Here, we have put

𝑆
𝑖,𝛽

:= {𝜏 ∈ C
⋆
: 𝜏 ∈ 𝑆

𝑖
, |𝜏| > 𝑅

𝛽
} ,

𝛽 ≥ 0, 0 ≤ 𝑖 ≤ ] − 1.

(74)

For every 0 ≤ 𝑗 ≤ ]−1, we assume that (𝜖, 𝜏) 󳨃→ 𝑊
𝑗
(𝜖, 𝜏) is

a bounded and holomorphic function on (𝐷(0, 𝑟
0
)\{0})×𝐷̇

𝑅̂𝑗

verifying

󵄨󵄨󵄨󵄨󵄨
𝑊
𝑗
(𝜖, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ Δ𝑒

𝑀̃ log2((|𝜏|/|𝜖|)+𝛿1)|𝜖|
𝐾0 , (75)

for every (𝜖, 𝜏) ∈ (𝐷(0, 𝑟
0
)\{0})×𝐷̇

𝑅̂𝑗
. Here 𝑀̃, 𝐾

0
, Δ, and 𝛿

1

are the constants provided in Theorem 5. Assume that
𝑊
𝑗
(𝜖, 𝜏) can be extended to an analytic function (𝜖, 𝜏) 󳨃→

𝑊E𝑖 ,𝑆𝑗 ,𝑗
(𝜖, 𝜏) defined on E

𝑖
× 𝑆

𝑖,𝑗
and

󵄨󵄨󵄨󵄨󵄨󵄨
𝑊E𝑖 ,𝑆𝑖,𝑗 ,𝑗

(𝜖, 𝜏)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ Δ𝑒

𝑀̃ log2(|𝜏|+𝛿1)|𝜖|
𝐾0 , (76)

for every (𝜖, 𝜏) ∈ E
𝑖
× 𝑆

𝑖,𝑗
.
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Take 𝛾
𝑖
such that R

+
𝑒
𝛾𝑖
√−1

⊆ 𝐷
𝑅̂𝑗
∪ 𝑆

𝑖,𝑗
. We put

𝜙
𝑖,𝑗
(𝑡, 𝜖) := ∫

𝐿𝛾𝑖

𝑊E𝑖 ,𝑆𝑗 ,𝑗
(𝜖, 𝜏) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏, (77)

for every (𝜖, 𝑡) ∈ E
𝑖
×T. One can check that𝜙

𝑖,𝑗
is well defined

and holomorphic inT ×E
𝑖
. Indeed, there exists 𝛿

2
> 0 such

that cos(𝛾
𝑗
−arg(𝑡/𝜖)) > 𝛿

2
for every (𝑡, 𝜖) ∈ E

𝑖
×T.Moreover,

from the growth properties of𝑊E𝑖 ,𝑆𝑖,𝑗 ,𝑗
(𝜖, 𝜏), one deduces

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐿𝛾𝑖

𝑊E𝑖 ,𝑆𝑗 ,𝑗
(𝜖, 𝜏) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

∞

0

󵄨󵄨󵄨󵄨󵄨󵄨
𝑊E𝑖 ,𝑆𝑗 ,𝑗

(𝜖, 𝑠𝑒
√−1𝛾𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
−|𝑡|𝛿2𝑠/|𝜖|𝑑𝑠

≤ Δ|𝜖|
𝐾0 ∫

∞

0

𝑒
𝑀̃ log2(𝑠/|𝜖|+𝛿1)𝑒−𝑠𝛿2𝑟T/|𝜖|𝑑𝑠,

(78)

which is convergent for every (𝜖, 𝑡) ∈ E
𝑖
×T.

Theorem 21. Let Assumptions A, B, and B󸀠󸀠 be fulfilled. For
every 0 ≤ 𝑖 ≤ ] − 1, we consider the problem (72)+(73)
with initial conditions constructed as above.Then, the problem
(72)+(73) admits a solution 𝑋

𝑖
(𝜖, 𝑡, 𝑧) which is holomorphic

and bounded in E
𝑖
×T × C.

Moreover, for every 0 ≤ 𝑖 ≤ ] − 1 and for every Δ > 1 there
exists 𝐸

1
> 0 (not depending on 𝜖) such that

sup
𝑡∈T

𝑧∈𝐷(0,𝜌)

󵄨󵄨󵄨󵄨𝑋𝑖+1
(𝜖, 𝑡, 𝑧) − 𝑋

𝑖
(𝜖, 𝑡, 𝑧)

󵄨󵄨󵄨󵄨

≤ 𝐸
1
𝑒
−((𝐴1/(2𝑑

2

2
Δ))(1/(− log(𝑞))))log2|𝜖|

,

(79)

for every 𝜖 ∈ E
𝑖
∩E

𝑖+1
(where, by convention,𝑋] := 𝑋

0
).

Proof. Let 0 ≤ 𝑖 ≤ ] − 1 and 𝜖 ∈ E
𝑖
. We consider the Cauchy

problem (28) with initial conditions given by

(𝜕
𝑗

𝑧
𝑊) (𝜖, 𝜏, 0) = 𝑊E𝑖 ,𝑆𝑖,𝑗,𝑗

(𝜖, 𝜏) , 0 ≤ 𝑗 ≤ 𝑆 − 1. (80)

Theorem 5 shows that the problem (31)+(80) has a formal
solution𝑊(𝜖, 𝜏, 𝑧) = ∑

𝛽≥0
𝑊
𝛽
(𝜖, 𝜏)(𝑧

𝛽
/𝛽!), with𝑊

𝛽
∈ O(E

𝑖
×

𝑆
𝑖,𝛽
) for every 𝛽 ≥ 0. Moreover, for every 𝛽 ≥ 0 one has

󵄨󵄨󵄨󵄨󵄨
𝑊
𝛽
(𝜖, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

13
𝛽!(

𝐶
14

𝛿
)

𝛽

× 𝑒
𝑀 log2(|𝜏|/|𝜖|+𝛿1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏

𝜖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐶𝛽

𝑞
𝐴1𝛽
2

,

(81)

for every (𝜖, 𝜏) ∈ E
𝑖
× 𝑆

𝑖,𝛽
, where 𝐶

13
, 𝐶

14
, and 𝛿 are positive

constants provided in the proof of Theorem 5. In a parallel
direction, one can consider the same Cauchy problem with
initial conditions given by

(𝜕
𝑗

𝑧
𝑊) (𝜖, 𝜏, 0) = 𝑊

𝑗
(𝜖, 𝜏) , 0 ≤ 𝑗 ≤ 𝑆 − 1, (82)

where𝑊
𝑗
∈ O((𝐷(0, 𝑟

0
) \ {0})× 𝐷̇

𝑅̂𝑗
) are as previously shown.

From Theorem 15, one concludes that the formal power
series 𝑊(𝜖, 𝜏, 𝑧) is such that 𝑊

𝛽
can be extended to a

holomorphic function defined in (𝐷(0, 𝑟
0
) \ {0}) × 𝐷̇

𝑅̂𝛽
, for

every 𝛽 ≥ 0. We preserve notation for these extensions.
Moreover, for every 𝛽 ≥ 0 one has

󵄨󵄨󵄨󵄨󵄨
𝑊
𝛽
(𝜖, 𝜏)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

23
𝛽!(

𝐶
24

𝛿
)

𝛽

|𝜖|
−𝐶𝛽

𝑒
𝑀log2(|𝜏|+𝛿1)𝑞𝐴1𝛽

2

, (83)

for every (𝜖, 𝜏) ∈ (𝐷(0, 𝑟
0
) \ {0}) × 𝐷̇

𝑅̂𝛽
, and some positive

constants𝐶
23
and𝐶

24
determined in the proof ofTheorem 15.

We put𝑋
𝑖
(𝜖, 𝜏, 𝑧) = ∑

𝛽≥0
𝑋
𝑖,𝛽
(𝑡, 𝜖)(𝑧

𝛽
/𝛽!), where

𝑋
𝑖,𝛽
(𝜖, 𝑡) := ∫

𝐿𝛾𝑖

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝜏𝑡/𝜖
𝑑𝜏. (84)

We fist check that 𝑋
𝑖
is, at least formally, a solution of

(72)+(73). From (67), one can check by inserting the formal
power series𝑋

𝑖
in (72), that it turns out to be a formal solution

in the variable 𝑧 of (72)+(73) if and only if 𝑊(𝜖, 𝜏, 𝑧) is a
formal solution of (28)+(29) and (56)+(57).

Bearing inmind that𝑊
𝛽
verifies (82) and (83), one derives

𝑋
𝑖,𝛽

is well defined in E
𝑖
× T, for every 𝛽 ≥ 0. We now

state a proof for the fact that (𝜖, 𝜏, 𝑧) 󳨃→ 𝑋
𝑖
(𝜖, 𝜏, 𝑧) is indeed a

holomorphic solution of (72)+(73) inE
𝑖
×T×C. Let 𝜖 ∈ E

𝑖
,

𝑡 ∈ T, and 𝛽 ∈ N. One has
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐿𝛾𝑖

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐿𝛾𝑖 ,1

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐿𝛾𝑖 ,2

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐿𝛾𝑖 ,3

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(85)

where 𝐿
𝛾𝑖,1

:= 𝐿
𝛾𝑖
∩ 𝐷

𝑅̂𝛽
, 𝐿

𝛾𝑖 ,2
:= 𝐿

𝛾𝑖
∩ 𝑆

𝑖,𝛽
, and 𝐿

𝛾𝑖,3
:= 𝐿

𝛾𝑖
∩

𝐷̇
𝑅̂𝛽
∩𝑆

𝑖,𝛽
.We only give details on the first and second integrals

appearing on the right-hand side of the previous inequality.
The first integral on the right-hand side of (85) can be upper
bounded by means of (83) and the choice of direction 𝛾

𝑖
.

Consider
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐿𝛾𝑖 ,1

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝜏/𝜖𝑡
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑅̂𝛽

0

󵄨󵄨󵄨󵄨󵄨󵄨
𝑊
𝛽
(𝑠𝑒

√−1𝛾𝑖 , 𝜖)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑠|𝑡|/|𝜖|) cos(𝛾𝑖−arg(𝑡/𝜖))𝑑𝑠

≤ 𝐶
23
𝛽!(

𝐶
24

𝛿
)

𝛽

𝑞
𝐴1𝛽
2

× ∫

𝑅̂𝛽

0

|𝜖|
−𝐶𝛽

𝑒
𝑀 log2(𝑠/|𝜖|+𝛿1)𝑒−𝑠𝛿2𝑟T/|𝜖|𝑑𝑠.

(86)

One has

|𝜖|
−𝐶𝛽

𝑒
𝑀 log2(𝑠/|𝜖|+𝛿1)𝑒−𝑠𝛿2𝑟T/|𝜖| ≤ 𝐶

23
|𝜖|
−𝐶𝛽

𝑒
−𝑠𝛿2𝑟T/2|𝜖|, (87)
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for some 𝐶
23

> 0. Now, the function 𝑥 󳨃→ 𝑥
−𝐶𝛽

𝑒
−𝑠𝛿2𝑟T/|𝜖|

attains its maximum at 𝑥 = 𝐶𝛽2/𝑠𝛿
2
𝑟T . One can reduce 𝑟

0
,

if necessary, to conclude that this function is increasing for
𝑥 ∈ [0, 𝜖

0
]. The expression in (86) is upper bounded by

𝐶
23
𝛽!(

𝐶
24

𝛿𝑟
𝐶

0

)

𝛽

𝑞
𝐴1𝛽
2

∫

∞

0

𝑒
−𝑠𝛿2𝑟T/2𝑟0𝑑𝑠. (88)

This yields
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐿𝛾𝑖 ,1

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
31
𝛽!𝐶

𝛽

32
𝑞
𝐴1𝛽
2

, (89)

for some constants 𝐶
31
, 𝐶

32
> 0 only depending on 𝛿, 𝑟

0
, 𝑅

0
,

𝑞, 𝑆, 𝐴
1
, 𝐶, 𝛿

1
, 𝑀, 𝑟T, and 𝛿

2
. We now consider the second

integral appearing on the right-hand side of (85). From (81)
and similar estimates as before we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐿𝛾𝑖 ,2

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
13
𝛽!(

𝐶
14

𝛿
)

𝛽

𝑞
𝐴1𝛽
2

× ∫

∞

𝑅𝛽

𝑒
𝑀 log2((𝑠/|𝜖|)+𝛿1)(

𝑠

|𝜖|
)

𝐶𝛽

𝑒
−(𝑠𝛿2𝑟T)/|𝜖|𝑑𝑠.

(90)

The function 𝑥 󳨃→ 𝑔
1
(𝑥) = 𝑒

𝑀 log2(𝑥+𝛿1)𝑥𝐶𝛽, 𝑥 ≥

0 is such that 𝑔
1
(𝑥) ≤ 𝑔

2
(𝑥) for all 𝑥 ≥ 0, where

𝑔
2
(𝑥) = 𝐶

13
𝑒
𝑀 log2(𝑥)

𝑥
𝐶𝛽, for some positive constant 𝐶

13
,

not depending on 𝛽. 𝑔
2
attains its maximum value at 𝑥

0
=

exp(−𝐶𝛽/2𝑀) so that 𝑔(𝑥) ≤ 𝑔(𝑥
0
) = exp(−𝐶2𝛽2/4𝑀), for

every 𝑥 > 0. This implies

𝑒
𝑀 log2(𝑠/|𝜖|+𝛿1)(

𝑠

|𝜖|
)

𝐶𝛽

𝑒
−𝑠𝛿2𝑟T/|𝜖|

≤ 𝑒
−(𝐶
2
/4𝑀)𝛽

2

𝑒
−𝑠𝛿2𝑟T/|𝜖|.

(91)

From (90) we derive
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐿𝛾𝑖 ,2

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
13
∫

∞

0

𝑒
−𝑠𝛿2𝑟T/2𝑟0𝑑𝑠𝛽!𝑞

𝐴1𝛽
2

𝑒
−(𝐶
2
/4𝑀)𝛽

2

𝑒
−𝑅𝛽𝛿2𝑟T

/2𝑟0

= 𝐶
14
𝛽!𝑞

(𝐴1−𝐶
2
/4𝑀 log(𝑞))𝛽2

,

(92)

for some 𝐶
13
> 0.

From (89) and (92), we lead to the existence of positive
constants 𝐶

41
, 𝐶

42
, not depending on 𝛽, such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

𝛽≥0

𝑋
𝑖,𝛽
(𝑡, 𝜖)

𝑧
𝛽

𝛽!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
41
∑

𝛽≥0

𝐶
𝛽

42
𝑞
𝐴1𝛽
2

|𝑧|
𝛽
, (93)

for every 𝑧 ∈ C. This allows us to conclude the first part of
the proof.

Let 0 ≤ 𝑖 ≤ ] − 1 and 𝜌 > 0. For every (𝜖, 𝑡, 𝑧) ∈ (E
𝑖
∩

E
𝑖+1
) ×T × 𝐷(0, 𝜌) we have

󵄨󵄨󵄨󵄨𝑋𝑖+1
(𝜖, 𝑡, 𝑧) − 𝑋

𝑖
(𝜖, 𝑡, 𝑧)

󵄨󵄨󵄨󵄨

≤ ∑

𝛽≥0

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑖+1,𝛽

(𝜖, 𝑡) − 𝑋
𝑖,𝛽
(𝜖, 𝑡)

󵄨󵄨󵄨󵄨󵄨

𝜌
𝛽

𝛽!
.

(94)

We can write

𝑋
𝑖+1,𝛽

(𝜖, 𝑡) − 𝑋
𝑖,𝛽
(𝜖, 𝑡) = ∫

𝐿𝛾𝑖+1,2

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

− ∫
𝐿𝛾𝑖 ,2

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

+ ∫
𝐿𝛾𝑖+1,4

−𝐿𝛾𝑖 ,4

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏,

(95)

where 𝐿
𝛾𝑖+1,4

−𝐿
𝛾𝑖,4

stands for the path consisting of two parts:
the first one going from 𝑅

𝛽
𝑒
√−1𝛾𝑖+1 to 0 along the segment

[0, 𝑅
𝛽
𝑒
√−1𝛾𝑖+1] and the path going from0 to𝑅

𝛽
𝑒
√−1𝛾𝑖 following

direction 𝛾
𝑖
.

This integral has already been estimated in (92), for the
first part of the proof, so we omit the details. We also omit
the details on the integral concerning the path 𝐿

𝛾𝑖+1,2
which is

analogous.
In order to estimate the integral along the path 𝐿

𝛾𝑖+1,4
−

𝐿
𝛾𝑖 ,4

, one can observe that the function involved in the
integrand does not depend on the index 𝑖 considered, for this
function is well defined for (𝜖, 𝜏) ∈ (𝐷(0, 𝑟

0
) \ {0})× 𝐷̇

𝑅̂𝛽
. One

can apply CauchyTheorem to derive

∫
𝐿

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏 = 0, (96)

where 𝐿 = 𝐿
𝛾𝑖+1,4

− 𝐿
𝛾𝑖 ,4

− 𝐿
1
is the closed path with 𝑠 ∈

[𝛾
𝑖
, 𝛾
𝑖+1
] → 𝐿

1
(𝑠) = 𝑅

𝛽
𝑒
√−1𝑠. Moreover, | ∫

𝐿𝛾𝑖+1,4
−𝐿𝛾𝑖 ,4

𝑊
𝛽
(𝜏,

𝜖)𝑒
−𝑡𝜏/𝜖

𝑑𝜏| equals

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐿1

𝑊
𝛽
(𝜏, 𝜖) 𝑒

−𝑡𝜏/𝜖
𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
23
𝛽!(

𝐶
24

𝛿
)

𝛽

|𝜖|
−𝐶𝛽

𝑒
𝑀 log2(𝑅𝛽+𝛿1)𝑞𝐴1𝛽

2

𝑅
𝛽

× ∫

𝛾𝑖+1

𝛾𝑖

𝑒
−𝑅𝛽|𝑡| cos(𝜃−arg(𝑡/𝜖))/|𝜖|𝑑𝜃

≤ 𝐶
23
𝛽!(

𝐶
24

𝛿
)

𝛽

|𝜖|
−𝐶𝛽

𝑞
𝐴1𝛽
2

𝑅
𝛽

× ∫

𝛾𝑖+1

𝛾𝑖

𝑒
−𝑅𝛽𝑟T𝛿2/2|𝜖|𝑑𝑠
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≤ 𝐶̆
23
𝛽!(

𝐶
24

𝛿
)

𝛽

𝑞
𝐴1𝛽
2

|𝜖|
−𝐶𝛽

× 𝑒
−𝑅𝛽𝑟T𝛿2

/2|𝜖|
𝑒
−𝑅𝛽𝑟T𝛿2

/2|𝜖|
,

(97)

for some 𝐶
23
, 𝐶̆

23
> 0. It only rests to take into account that

the function 𝑥 ∈ (0, 𝑟
0
) 󳨃→ 𝑥

−𝐶𝛽
𝑒
−𝑅𝛽𝑟T𝛿2/2𝑥 is monotonely

increasing in (0, 𝑟
0
), so that |𝜖|−𝐶𝛽𝑒−𝑅𝛽𝑟T𝛿2/2|𝜖| can be included

in the constants 𝐶̆
23
and 𝐶

24
.

From (92) and (97) one gets the existence of positive
constants 𝐶

6
and𝐶

7
such that

󵄨󵄨󵄨󵄨󵄨
𝑋
𝑖+1,𝛽

(𝜖, 𝑡) − 𝑋
𝑖,𝛽
(𝜖, 𝑡)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
6
𝛽!𝐶

𝛽

7
𝑞
𝐴1𝛽
2

𝑒
−(𝑑1𝛿2𝑟T/2)(𝑞

𝑑2𝛽/|𝜖|)
,

(98)

for every (𝜖, 𝑡) ∈ (E
𝑖
∩ E

𝑖+1
) × T. Taking this last estimate

into the expression of𝑋
𝑖+1

− 𝑋
𝑖
one can conclude that

󵄨󵄨󵄨󵄨𝑋𝑖+1
(𝜖, 𝑡, 𝑧) − 𝑋

𝑖
(𝜖, 𝑡, 𝑧)

󵄨󵄨󵄨󵄨

≤ 𝐶
6
∑

𝛽≥0

(𝐶
7
𝜌)
𝛽

𝑞
𝐴1𝛽
2

𝑒
−(𝑑1𝛿2𝑟T/2)(𝑞

𝑑2𝛽/|𝜖|)
,

(99)

for every (𝜖, 𝑡, 𝑧) ∈ (E
𝑖
∩ E

𝑖+1
) × T × 𝐷(0, 𝜌). The proof of

the second statement in the theorem leans on the incoming
lemmawhose proof is left until the end of the current section.
It provides information on the estimates for a Dirichlet type
series. A similar argument concerning a Dirichlet series of
different nature can be found in [2], Lemma 16, when dealing
with Gevrey asymptotic expansions.

Lemma 22. Let 𝐴
1
, 𝐷

1
, 𝐷

2
, and let𝑑

2
be positive constants,

with 𝐷
2
> 1. Then, for every Δ > 1 there exist 𝐸

1
> 0 and

𝛿 > 0 such that

∑

𝛽≥0

𝐷
𝛽

1
𝑞
𝐴1𝛽
2

𝑒
−𝐷2(𝑞

𝑑2𝛽/𝜖)

≤ 𝐸
1
𝑒
−(𝐴1/𝑑

2

2
Δ)(1/(− log(𝑞))2)log2𝜖

,

(100)

for every 𝜖 ∈ (0, 𝛿].

The proof of Lemma 22 heavily rests on the 𝑞-Gevrey
version of some preliminary results which are classical in
Gevrey case (see [2] and the references therein).Their proofs
do not differ from the classical ones, so we omit them.

Lemma 23. Let 𝑏 > 0 and 𝑓 : [0, 𝑏] → C a continuous
function having the formal expansion ∑

𝑛≥0
𝑎
𝑛
𝑡
𝑛
∈ C[[𝑡]] as

its q-asymptotic expansion of type 𝐴
1
> 0 at 0, meaning there

exist 𝐶,𝐻 > 0 such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑡) −

𝑁−1

∑

𝑛=0

𝑎
𝑛
𝑡
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝐻
𝑁
𝑞
−𝐴1𝑁

2
/2 |𝑡|

𝑁

𝑁!
, (101)

for every𝑁 ≥ 1 and 𝑡 ∈ [0, 𝛿], for some 0 < 𝛿 < 𝑏.

Then, the function

𝐼 (𝑥) = ∫

𝑏

0

𝑓 (𝑠) 𝑒
−𝑠/𝑥

𝑑𝑠 (102)

admits the formal power series ∑
𝑛≥0

𝑎
𝑛
𝑛!𝜖

𝑛+1
∈ C[[𝜖]] as its

𝑞-Gevrey asymptotic expansion of type𝐴
1
at 0. It is to say, there

exist 𝐶, 𝐻̃ > 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐼 (𝑥) −

𝑁−1

∑

𝑛=0

𝑎
𝑛
𝑛!𝑥

𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝐻̃
𝑁+1

𝑞
−𝐴1(𝑁+1)

2
/2 |𝑥|

𝑁+1

(𝑁 + 1)!
,

(103)

for every𝑁 ≥ 0 and 𝑥 ∈ [0, 𝛿
󸀠
] for some 0 < 𝛿

󸀠
< 𝑏.

One can adapt the proof of Proposition 4 in [5] in our
framework.

Lemma 24. Let 𝐴
1
, 𝛿 > 0, and let 𝜓 : [0, 𝛿] → C be a

continuous function. The following holds.

(1) If there exist 𝐶,𝐻 > 0 such that |𝜓(𝑥)| ≤

𝐶𝐻
𝑛
𝑞
−𝐴1𝑛

2
/2
|𝑥|

𝑛
/𝑛!, for every 𝑛 ∈ N, 𝑛 ≥ 0 and

𝑥 ∈ [0, 𝛿], then for every 𝐴
1
> 𝐴

1
there exists 𝐶 > 0

such that

󵄨󵄨󵄨󵄨𝜓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝑒

−((1/𝐴1)(1/(− log(𝑞))2))log2|𝑥|, (104)

for every 𝑥 ∈ (0, 𝛿].

(2) If there exists 𝐶 > 0 such that |𝜓(𝑥)| ≤

𝐶𝑒
−((1/𝐴1)(1/(− log(𝑞))2))log2|𝑥|, for every 𝑛 ∈ N, and 𝑥 ∈

[0, 𝛿], then for every 𝐴
1
> 𝐴

1
there exists 𝐶, 𝐻̃ > 0

such that

󵄨󵄨󵄨󵄨𝜓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝐻̃

𝑛
𝑞
−𝐴1𝑛

2
/2 |𝑥|

𝑛

𝑛!
, (105)

for every 𝑛 ∈ N and for every 𝑥 ∈ (0, 𝛿].

Proof of Lemma 22. Let 𝑓 : [0, +∞) → R be a C1 function.
For every 𝑛 ∈ N, one can apply the Euler-Mac-Laurin formula

𝑛

∑

𝜅=0

𝑓 (𝜅) =
1

2
(𝑓 (0) + 𝑓 (𝑛)) + ∫

𝑛

0

𝑓 (𝑡) 𝑑𝑡

+ ∫

𝑛

0

𝐵
1
(𝑡 − ⌊𝑡⌋) 𝑓

󸀠
(𝑡) 𝑑𝑡,

(106)
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where 𝐵
1
(𝑠) = 𝑠 − 1/2 is the Bernoulli polynomial and ⌊⋅⌋

stands for the floor function to𝑓(𝑠) = 𝐷
𝑠

1
𝑞
𝐴1𝑠
2

𝑒
−𝐷2(𝑞

𝑑2𝑠/𝜖). One
has

𝑛

∑

𝜅=0

𝐷
𝜅

1
𝑞
𝐴1𝜅
2

𝑒
−𝐷2(𝑞

𝑑2𝜅/𝜖)

=
1

2
(𝑒
−𝐷2/𝜖 + 𝐷

𝑛

1
𝑞
𝐴1𝑛
2

𝑒
−𝐷2(𝑞

𝑑2𝑛/𝜖)
)

+ ∫

𝑛

0

𝐷
𝑡

1
𝑞
𝐴1𝑡
2

𝑒
−𝐷2(𝑞

𝑑2𝑡/𝜖)
𝑑𝑡

+ ∫

𝑛

0

𝐵
1
(𝑡 − ⌊𝑡⌋)𝐷

𝑡

1
𝑞
𝐴1𝑡
2

𝑒
−𝐷2(𝑞

𝑑2𝑡/𝜖)

× (log (𝐷
1
) + log (𝑞)𝐴

1
2𝑡 − 𝐷

2

log (𝑞) 𝑑
2

𝜖
) 𝑑𝑡.

(107)

Taking the limit when 𝑛 tends to infinity in the previous
expressionwe arrive at the following equality for a convergent
series:

∞

∑

𝜅=0

𝐷
𝜅

1
𝑞
𝐴1𝜅
2

𝑒
−𝐷2(𝑞

𝑑2𝜅/𝜖)

=
1

2
𝑒
−𝐷2/𝜖 + ∫

∞

0

𝐷
𝑡

1
𝑞
𝐴1𝑡
2

𝑒
−𝐷2(𝑞

𝑑2𝑡/𝜖)
𝑑𝑡

+ ∫

∞

0

𝐵
1
(𝑡 − ⌊𝑡⌋)𝐷

𝑡

1
𝑞
𝐴1𝑡
2

𝑒
−𝐷2(𝑞

𝑑2𝑡/𝜖)

× ( log (𝐷
1
)

+ log (𝑞)𝐴
1
2𝑡 − 𝐷

2

log (𝑞) 𝑑
2

𝜖
) 𝑑𝑡.

(108)

Let 𝐼
1
:= ∫

∞

0
𝑓(𝑡)𝑑𝑡 and 𝐼

2
:= ∫

∞

0
𝐵
1
(𝑡 − ⌊𝑡⌋)(log(𝐷

1
) +

log(𝑞)𝐴
1
2𝑡 − 𝐷

2
(log(𝑞)𝑑

2
/𝜖)𝑞

𝐷2𝑡/𝜖)𝑓(𝑡)𝑑𝑡.
From the fact that 𝐵

1
(𝑡 − ⌊𝑡⌋) ≤ 1/2 for every 𝑡 ≥ 0 and

the change of variable𝐷
2
𝑞
𝑑2𝑡 = 𝑢, one gets

𝐼
1
= ∫

𝐷2

0

𝑓
1
(𝑢) 𝑒

−𝑢/𝜖
𝑑𝑢, where

𝑓
1
(𝑢) := 𝐷

log(𝑢/𝐷2)/ log(𝑞)𝑑2
1

𝑞
𝐴1log2(𝑢/𝐷2)/log2(𝑞)𝑑22

×
1

𝑑
2
(− log (𝑞)) 𝑢

,

𝐼
2
≤
1

2
∫

𝐷2

0

(𝑓
2
(𝑢) + 𝑓

3
(𝑢) + 𝑓

4
(𝑢)) 𝑒

−𝑢/𝜖
𝑑𝑢,

(109)

with 𝑓
2
(𝑢) := log(𝐷

1
)𝑓
1
(𝑢), 𝑓

3
(𝑢) :=

(2𝐴
1
/𝑑
2
) log(𝑢/𝐷

2
)𝑓
1
(𝑢), and 𝑓

4
:=

((− log(𝑞))𝑑
2
/𝜖)𝑒

𝐷2 log(𝑢/𝐷2)/𝑑2𝜖𝑓
1
(𝑢), for every 𝑢 ∈ (0, 𝐷

2
].

Bearing in mind that 𝑓
3
(𝑢) < 0 for 𝑢 ∈ (0, 𝐷

2
] and from

usual estimates we derive 𝐼
2
≤ 𝐶

1
(1 + 1/𝜖) ∫

𝐷2

0
𝑓
1
(𝑢)𝑒

−𝑢/𝜖
𝑑𝑢

for some 𝐶
1
> 0. The proof is complete if one can estimate

𝑒
−𝐷2/𝜖, 𝐼

1
, and 1/𝜖𝐼

1
appropriately. The first expression is

clearly upper bounded according to (100).
From usual estimates we arrive at

𝐼
1
≤ 𝐶

3
∫

𝐷2

0

𝑒
−(𝐴1/(− log(𝑞))𝑑22)log

2
(𝑢/𝐷2)𝑒

−𝑢/𝜖
𝑑𝑢

= 𝐶
3
∫

𝐷3

0

𝑓 (𝑢) 𝑒
−𝑢/𝜖

,

(110)

for some 𝐶
3
> 0. From Lemma 24, the function 𝑔 defined by

𝑢 ∈ [0, 1] 󳨃→ 𝑓(𝐷
2
𝑢) (extended by continuity to 𝑢 = 0) is

such that for every Δ̃ > 1 there exist 𝐶, 𝐻̃ > 0 with

󵄨󵄨󵄨󵄨𝑔 (𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝐶𝐻̃

𝑛
𝑞
−((𝑑
2

2
Δ̃2)/𝐴1)𝑛

2 |𝑢|
𝑛

𝑛!
, (111)

for every 𝑢 ∈ [0, 𝐷
2
] and for every 𝑛 ≥ 0. From Lemma 23,

the functions 𝐼
1
(𝜖) and (1/𝜖)𝐼

1
(𝜖) admit the series with null

coefficients as 𝑞-asymptotic expansion of type (𝑑
2

2
Δ̃)/𝐴

1
.

Again, from Lemma 24, one can conclude that for every Δ >

Δ̃ there exists 𝐶
4

> 0 such that both 𝐼
1
and (1/𝜖)𝐼

1
are

upper bounded by𝐶
4
𝑒
−((𝐴1/𝑑

2

2
Δ)(1/(− log(𝑞))2))log2(𝜖), for every 𝜖 ∈

(0, 𝜖
1
], for some 𝜖

1
> 0.

4.3. Existence of Formal Series Solutions in the Complex
Parameter. In this last subsection we obtain a 𝑞-Gevrey
version of a Malgrange-Sibuya type theorem. A result in
this direction has already been obtained by the authors in
[5] when dealing with 𝑞 ∈ C, |𝑞| > 1. In that work, the
geometry of the problem differs from the one in the present
work. Indeed, the result is settled in terms of discrete 𝑞-spirals
tending to the origin and with 𝑞 ∈ C.

Given 𝑞 ∈ Cwith 0 < |𝑞| < 1 and a nonempty open subset
𝑈 ⊂ C⋆, the discrete 𝑞-spiral associated with𝑈 and 𝑞 consists
of the products of an element in 𝑈 and 𝑞𝑚, for some 𝑚 ∈ N.
For our purpose, 𝑞 is a real number and 𝑈 is chosen in such
a way that the discrete 𝑞-spiral turns out to be a sector with
vertex at the origin.

The proof of the 𝑞-Gevrey version of Malgrange-Sibuya
theorem in [5] is based on the use of extension results
on ultradifferential spaces of weighted functions which pre-
serve the information of 𝑞-Gevrey bounds but causes the
𝑞-Gevrey type involved in the 𝑞-Gevrey asymptotic to suffer
an increasement. Here, one can follow similar steps as for the
classical proof Malgrange-Sibuya theorem based on Cauchy-
Heine transform, so that the 𝑞-Gevrey type is preserved. In
[6], an analogous demonstration for theGevrey version of the
result can be found. We have decided to include the whole
proof of the result in order to facilitate comprehension and
clarity of the result.

Theorem 25 (𝑞-MS). Let (E, ‖ ⋅ ‖E) be a Banach space over C
and let {E

𝑖
}
0≤𝑖≤]−1 be a good covering in C∗. For all 0 ≤ 𝑖 ≤

]−1, let𝐺
𝑖
be a holomorphic function fromE

𝑖
into the Banach

space (E, ‖ ⋅ ‖E) and let the cocycle Δ
𝑖
(𝜖) = 𝐺

𝑖+1
(𝜖) − 𝐺

𝑖
(𝜖) be

a holomorphic function from the sector 𝑍
𝑖
= E

𝑖+1
∩ E

𝑖
into E
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(with the convention that E] = E
0
and 𝐺] = 𝐺

0
). We make

the following assumptions.

(1) The functions 𝐺
𝑖
(𝜖) are bounded as 𝜖 ∈ E

𝑖
tends to the

origin in C, for all 0 ≤ 𝑖 ≤ ] − 1.
(2) Δ

𝑖
has a 𝑞-exponential decreasing of some type 𝐿 > 0,

for every 0 ≤ 𝑖 ≤ ] − 1, meaning there exists 𝐶
𝑖
> 0

such that

󵄩󵄩󵄩󵄩Δ 𝑖
(𝜖)

󵄩󵄩󵄩󵄩E ≤ 𝐶
𝑖
𝑒
−((1/𝐿)(1/(− log(𝑞))2))log2|𝜖|

, (112)

for every 𝜖 ∈ E
𝑖
∩E

𝑖+1
and 0 ≤ 𝑖 ≤ ] − 1.

Then, there exists a formal power series 𝐺(𝜖) ∈ E[[𝜖]] such
that𝐺

𝑖
(𝜖) admits𝐺(𝜖) as its 𝑞-Gevrey asymptotic expansion of

type 𝐿 on E
𝑖
, for every 0 ≤ 𝑖 ≤ ] − 1.

Proof. We first state an auxiliary result.

Lemma 26. For all 0 ≤ 𝑖 ≤ ] − 1, there exist bounded
holomorphic functions Ψ

𝑖
: E

𝑖
→ C such that

Δ
𝑖
(𝜖) = Ψ

𝑖+1
(𝜖) − Ψ

𝑖
(𝜖) , (113)

for all 𝜖 ∈ 𝑍
𝑖
, where by convention Ψ](𝜖) = Ψ

0
(𝜖). Moreover,

there exist 𝜑
𝑚
∈ E,𝑚 ≥ 0, such that for each 0 ≤ 𝑙 ≤ ] − 1 any

𝐿̂ > 𝐿 and everyW ≺ E
𝑙
, there exist 𝐾̂

𝑙
, 𝑀̂

𝑙
> 0 with

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Ψ
𝑙
(𝜖) −

𝑀−1

∑

𝑚=0

𝜑
𝑚
𝜖
𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩E

≤ 𝐾̂
𝑙
(𝑀̂

𝑙
)
𝑀

𝑞
−𝐿̂((𝑀−1)

2
/2) |𝜖|

𝑀

𝑀!
(114)

for all 𝜖 ∈ W and all𝑀 ≥ 2.

Proof. We follow analogous arguments as in Lemma XI-2-6
from [34] with appropriate modifications in the asymptotic
expansions of the functions constructed with the help of the
Cauchy-Heine transform.

For all 0 ≤ 𝑙 ≤ ] − 1, we choose a segment

C
𝑙
= {𝑡𝑒

√−1𝜃𝑙 , 𝑡 ∈ [0, 𝑟]} ⊂ E
𝑙
∩E

𝑙+1
. (115)

These ] segments divide the open punctured disc𝐷(0, 𝑟)\
{0} into ] open sectors Ẽ

0
, . . . , Ẽ]−1, where

Ẽ
𝑙
= {𝜖 ∈

C∗

𝜃
𝑙−1

< arg (𝜖) < 𝜃
𝑙
, |𝜖| < 𝑟} ,

0 ≤ 𝑙 ≤ ] − 1,

(116)

where by convention 𝜃
−1

= 𝜃]−1. Let

Ψ
𝑙
(𝜖) =

−1

2𝜋√−1

]−1

∑

ℎ=0

∫
𝐶ℎ

Δ
ℎ
(𝜉)

𝜉 − 𝜖
𝑑𝜉 (117)

for all 𝜖 ∈ Ẽ
𝑙
, for 0 ≤ 𝑙 ≤ ]−1, be defined as a sum of Cauchy-

Heine transforms of the functions Δ
ℎ
(𝜖). By deformation of

the paths 𝐶
𝑙−1

and 𝐶
𝑙
without moving their endpoints and

letting the other paths𝐶
ℎ
, ℎ ̸= 𝑙−1, and 𝑙 untouched (with the

convention that 𝐶
−1

= 𝐶]−1), one can continue analytically

the function Ψ
𝑙
onto E

𝑙
. Therefore, Ψ

𝑙
defines a holomorphic

function on E
𝑙
, for all 0 ≤ 𝑙 ≤ ] − 1.

Now, take 𝜖 ∈ E
𝑙
∩ E

𝑙+1
. In order to compute Ψ

𝑙+1
(𝜖) −

Ψ
𝑙
(𝜖), we write

Ψ
𝑙
(𝜖) =

−1

2𝜋√−1
∫
𝐶̂𝑙

Δ
𝑙
(𝜉)

𝜉 − 𝜖
𝑑𝜉 +

−1

2𝜋√−1

×

]−1

∑

ℎ=0,ℎ ̸= 𝑙

∫
𝐶ℎ

Δ
ℎ
(𝜉)

𝜉 − 𝜖
𝑑𝜉,

Ψ
𝑙+1

(𝜖) =
−1

2𝜋√−1
∫
𝐶̆𝑙

Δ
𝑙
(𝜉)

𝜉 − 𝜖
𝑑𝜉 +

−1

2𝜋√−1

×

]−1

∑

ℎ=0,ℎ ̸= 𝑙

∫
𝐶ℎ

Δ
ℎ
(𝜉)

𝜉 − 𝜖
𝑑𝜉,

(118)

where the paths𝐶
𝑙
and 𝐶̆

𝑙
are obtained by deforming the same

path 𝐶
𝑙
without moving its endpoints in such a way that

(a) 𝐶
𝑙
⊂ E

𝑙
∩E

𝑙+1
and 𝐶̆

𝑙
⊂ E

𝑙
∩E

𝑙+1
,

(b) Γ
𝑙,𝑙+1

:= −𝐶̆
𝑙
+𝐶

𝑙
is a simple closed curve with positive

orientation whose interior contains 𝜖.

Therefore, due to the residue formula, we can write

Ψ
𝑙+1

(𝜖) − Ψ
𝑙
(𝜖)

=
1

2𝜋√−1
∫
Γ𝑙,𝑙+1

Δ
𝑙
(𝜉)

𝜉 − 𝜖
𝑑𝜉 = Δ

𝑙
(𝜖) ,

(119)

for all 𝜖 ∈ E
𝑙
∩ E

𝑙+1
and for all 0 ≤ 𝑙 ≤ ] − 1 (with the

convention that Ψ] = Ψ
0
).

In a second step, we derive asymptotic properties of Ψ
𝑙
.

We fix an 0 ≤ 𝑙 ≤ ]−1 and a proper closed sectorW contained
in E

𝑙
. Let 𝐶

𝑙
(resp., 𝐶

𝑙−1
) be a path obtained by deforming

𝐶
𝑙
(resp., 𝐶

𝑙−1
) without moving the endpoints so that W is

contained in the interior of the simple closed curve 𝐶
𝑙−1

+

𝛾
𝑙
− 𝐶

𝑙
(which is itself contained in E

𝑙
), where 𝛾

𝑙
is a circular

arc joining the two points 𝑟𝑒√−1𝜃𝑙−1 and 𝑟𝑒
√−1𝜃𝑙 . We get the

representation

Ψ
𝑙
(𝜖) =

−1

2𝜋√−1
∫
𝐶̃𝑙

Δ
𝑙
(𝜉)

𝜉 − 𝜖
𝑑𝜉 +

−1

2𝜋√−1

× ∫
𝐶̃𝑙−1

Δ
𝑙−1

(𝜉)

𝜉 − 𝜖
𝑑𝜉

+
−1

2𝜋√−1

]−1

∑

ℎ=0,ℎ ̸= 𝑙,𝑙−1

∫
𝐶ℎ

Δ
ℎ
(𝜉)

𝜉 − 𝜖
𝑑𝜉,

(120)

for all 𝜖 ∈ W. One assumes that the path 𝐶
𝑙
is given as

the union of a segment 𝐿
𝑙
= {𝑡𝑒

√−1𝑤𝑙 : 𝑡 ∈ [0, 𝑟
1
]},

where 𝑟
1

< 𝑟 and 𝑤
𝑙
> 𝜃

𝑙
and a curve Γ

𝑙
= {𝜇

𝑙
(𝜏) :

𝜏 ∈ [0, 1]} such that 𝜇
𝑙
(0) = 𝑟

1
𝑒
√−1𝑤𝑙 , 𝜇

𝑙
(1) = 𝑟𝑒

√−1𝜃𝑙 ,
and 𝑟

1
≤ |𝜇

𝑙
(𝜏)| < 𝑟 for all 𝜏 ∈ [0, 1). We also

assume that there exists a positive number 𝜎 < 1 with
|𝜖| ≤ 𝜎𝑟

1
for all 𝜖 ∈ W. By construction of the path Γ

𝑙
,
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we get that the function 𝜖 󳨃→ (1/2𝜋)√−1 ∫
Γ𝑙

(Δ
𝑙
(𝜉)/(𝜉 − 𝜖))𝑑𝜉

defines an analytic function on the open disc𝐷(0, 𝑟
1
).

It remains to give estimates for the integral
(1/2𝜋√−1) ∫

𝐿 𝑙

(Δ
𝑙
(𝜉)/(𝜉 − 𝜖))𝑑𝜉. Let 𝑀 ≥ 0 be an integer.

From the usual geometric series expansion, one can write

1

2𝜋√−1
∫
𝐿 𝑙

Δ
𝑙
(𝜉)

𝜉 − 𝜖
𝑑𝜉 =

𝑀

∑

𝑚=0

𝛼
𝑙,𝑚
𝜖
𝑚

+ 𝜖
𝑀+1

𝐸
𝑙,𝑀+1

(𝜖) ,

(121)

where

𝛼
𝑙,𝑚

=
1

2𝜋√−1
∫
𝐿 𝑙

Δ
𝑙
(𝜉)

𝜉𝑚+1
𝑑𝜉,

𝐸
𝑙,𝑀+1

(𝜖) =
1

2𝜋√−1
∫
𝐿 𝑙

Δ
𝑙
(𝜉)

𝜉𝑀+1 (𝜉 − 𝜖)
𝑑𝜉,

(122)

for all 𝜖 ∈ W.
Gathering (112) and (122), we get

󵄩󵄩󵄩󵄩𝛼𝑙,𝑚
󵄩󵄩󵄩󵄩E

≤
𝐾
𝑙

2𝜋
∫

𝑟1

0

𝑒
−((1/𝐿)(1/(− log(𝑞))2))log2𝜏

𝜏𝑚+1
𝑑𝜏. (123)

The changes of variable log(𝜏) = 𝑠 first, and 𝑠 =

√2𝐿(− log(𝑞))𝑡 afterwards, transform the right-hand side of
(123) into

𝐾
𝑙

2𝜋
∫

log(𝑟1)

−∞

𝑒
−((1/𝐿)(1/(− log(𝑞))2))𝑠2

𝑒𝑠𝑚
𝑑𝑠

=

𝐾
𝑙
√2𝐿 (− log (𝑞))

2𝜋

× ∫

log(𝑟1)/√2𝐿(− log(𝑞))

−∞

exp ( − 𝑡
2

−𝑚√2𝐿 (− log (𝑞))𝑡) 𝑑𝑡

≤

𝐾
𝑙
√2𝐿 (− log (𝑞))

2𝜋

× ∫

∞

−∞

exp (−𝑡2 − 𝑚√2𝐿 (− log (𝑞))𝑡) 𝑑𝑡.

(124)

The application of

𝑒
𝑎
2
/4
√𝜋 = ∫

∞

−∞

𝑒
−𝑥
2
−𝑎𝑥

𝑑𝑥, (125)

for every 𝑎 ∈ R, which can be found in [35] (Chapter 10, page
498), leads us to

󵄩󵄩󵄩󵄩𝛼𝑙,𝑚
󵄩󵄩󵄩󵄩E

≤

√2𝐿 (− log (𝑞))𝐾
𝑙

2√𝜋
𝑞
−𝐿(𝑚

2
/2)
.

(126)

Moreover, as previously described, one can choose a
positive number 𝜂 > 0 (depending onW) such that |𝜉 − 𝜖| ≥

|𝜉| sin(𝜂) for all 𝜉 ∈ 𝐿
𝑙
and all 𝜖 ∈ W. Again by (112) and (122)

and following analogous calculations as before, we obtain

󵄩󵄩󵄩󵄩𝐸𝑙,𝑀+1 (𝜖)
󵄩󵄩󵄩󵄩E

≤
𝐾
𝑙

2𝜋 sin (𝜂)
∫

𝑟1

0

𝑒
−((1/𝐿)(1/2(− log(𝑞))))log2𝜏

𝜏𝑀+2
𝑑𝜏

≤

√2𝐿 (− log (𝑞))𝐾
𝑙

2 sin (]) √𝜋
𝑞
−𝐿((𝑀+1)

2
/2)
,

(127)

for all 𝜖 ∈ W. Using comparable arguments, one can give
analogous estimates when estimating the other integrals

−1

2𝜋√−1
∫
𝐶̃𝑙−1

Δ
𝑙−1

(𝜉)

𝜉 − 𝜖
𝑑𝜉,

−1

2𝜋√−1
∫
𝐶ℎ

Δ
ℎ
(𝜉)

𝜉 − 𝜖
𝑑𝜉, (128)

for all ℎ ̸= 𝑙, 𝑙 − 1.
As a consequence, for any 0 ≤ 𝑙 ≤ ] − 1, there exist 𝜑

𝑙,𝑚
∈

E, for all𝑚 ≥ 0 and a constant 𝐾̂
𝑙
> 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Ψ
𝑙
(𝜖) −

𝑀−1

∑

𝑚=0

𝜑
𝑙,𝑚
𝜖
𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩E

≤ 𝐾̂
𝑙
𝑞
−𝐿(𝑀

2
/2)
|𝜖|
𝑀
, (129)

for all𝑀 ≥ 2 and all 𝜖 ∈ W.
Taking into account Proposition 18, we deduce that for

every Ê
𝑖,𝑖+1

≺ E
𝑙
∩ E

𝑙+1
and for every 𝐿̂ > 𝐿, the

function Ψ
𝑙+1
(𝜖) − Ψ

𝑙
(𝜖) has the formal series 0̂ as 𝑞-Gevrey

asymptotic expansion of type 𝐿̂ in Ê
𝑖,𝑖+1

. From the unicity of
the asymptotic expansions on sectors, we deduce that all the
formal series ∑

𝑚≥0
𝜑
𝑙,𝑚
𝜖
𝑚, 0 ≤ 𝑙 ≤ ] − 1, are equal to some

formal series denoted 𝐺(𝜖) = ∑
𝑚≥0

𝜑
𝑚
𝜖
𝑚
∈ E[[𝜖]].

We consider now the bounded holomorphic functions

𝑎
𝑖
(𝜖) = 𝐺

𝑖
(𝜖) − Ψ

𝑖
(𝜖) , (130)

for all 0 ≤ 𝑖 ≤ ] − 1 and all 𝜖 ∈ E
𝑖
. By definition, for any

𝑖 ∈ {0, . . . , ] − 1}, we have that

𝑎
𝑖+1

(𝜖) − 𝑎
𝑖
(𝜖) = 𝐺

𝑖+1
(𝜖) − 𝐺

𝑖
(𝜖) − Δ

𝑖
(𝜖) = 0, (131)

for all 𝜖 ∈ 𝑍
𝑖
. Therefore, each 𝑎

𝑖
(𝜖) is the restriction on

E
𝑖
of a holomorphic function 𝑎(𝜖) on 𝐷(0, 𝑟) \ {0}. Since

𝑎(𝜖) is bounded on 𝐷(0, 𝑟) \ {0}, the origin turns out to be
a removable singularity for 𝑎(𝜖) which, as a consequence,
defines a convergent power series on𝐷(0, 𝑟).

Finally, one can write

𝐺
𝑖
(𝜖) = 𝑎 (𝜖) + Ψ

𝑖
(𝜖) , (132)

for all 𝜖 ∈ E
𝑖
, all 0 ≤ 𝑖 ≤ ] − 1. Moreover, 𝑎(𝜖) is a convergent

power series, and for every 𝐿̂ > 𝐿, Ψ
𝑖
(𝜖) has the series 𝐺(𝜖) =

∑
𝑚≥0

𝜑
𝑚
𝜖
𝑚 as 𝑞-Gevrey asymptotic expansion of type 𝐿̂ on

E
𝑖
, for all 0 ≤ 𝑖 ≤ ] − 1.
We are under conditions to enunciate the main result in

the present work.
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Theorem 27. Let 𝜌 > 0. Under the same hypotheses as in
Theorem 21, we denote HT,𝜌 the Banach space of holomorphic
and bounded functions in T × 𝐷(0, 𝜌) with the supremum
norm. Then, there exists a formal power series

𝑋 (𝜖, 𝑡, 𝑧) = ∑

𝑘≥0

𝑋
𝑘
(𝑡, 𝑧)

𝑘!
𝜖
𝑘
∈ HT,𝜌 [[𝜖]] , (133)

which is formal solution of

𝜖𝜕
𝑡
𝜕
𝑆

𝑧
𝑋(𝜖, 𝑡, 𝑧) + 𝑎𝜕

𝑆

𝑧
𝑋 (𝜖, 𝑡, 𝑧)

= ∑

𝜅=(𝜅0 ,𝜅1)∈N

𝑏
𝜅
(𝜖, 𝑧) (𝜕

𝜅0

𝑡
𝜕
𝜅1

𝑧
𝑋)

× (𝜖, 𝑞
𝑚𝜅,1𝑡, 𝑞

𝑚𝜅,2𝑧) .

(134)

Moreover, for every 0 ≤ 𝑖 ≤ ] − 1 and every 𝐿
2
> 𝑑

2

2
/𝐴

1
, the

function𝑋
𝑖
(𝜖, 𝑡, 𝑧) constructed inTheorem 21 admits𝑋(𝜖, 𝑡, 𝑧)

as its 𝑞-Gevrey asymptotic expansion of type 𝐿
2
inE

𝑖
, meaning

that for every 0 ≤ 𝑖 ≤ ] − 1 and Ẽ
𝑖
≺ E

𝑖
, there exist 𝐿

0
, 𝐿

1
> 0

such that

sup
𝑡∈T

𝑧∈𝐷(0,𝜌)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋 (𝜖, 𝑡, 𝑧) −

𝑁

∑

𝑘=0

𝑋
𝑘
(𝑡, 𝑧)

𝑘!
𝜖
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐿
0
𝐿
𝑁

1
𝑞
−𝐿2(𝑁

2
/2) |𝜖|

𝑁+1

(𝑁 + 1)!
,

(135)

for every𝑁 ≥ 0 and all 𝜖 ∈ Ẽ
𝑖
.

Proof. Let us consider the family (𝑋
𝑖
(𝜖, 𝑡, 𝑧))

0≤𝑖≤]−1 con-
structed inTheorem 21. For every 0 ≤ 𝑖 ≤ ]− 1, we define the
function 𝜖 ∈ E

𝑖
󳨃→ 𝐺

𝑖
(𝜖) := 𝑋

𝑖
(𝜖, 𝑡, 𝑧), which belongs to the

space ET,𝜌. From (79), we derive the cocycle Δ
𝑖
:= 𝐺

𝑖+1
(𝜖) −

𝐺
𝑖
(𝜖) verifies (112) in Theorem 25, with 1/𝐿 := 𝐴

1
/𝑑
2

2
Δ for

some fixed 0 < Δ < 1. Theorem 25 guarantees the existence
of a formal power series 𝑋(𝜖) ∈ HT,𝜌[[𝜖]], such that for
every 𝐿

2
> 𝐿, 𝐺

𝑖
(𝜖) admits 𝐺(𝜖) as its 𝑞-Gevrey asymptotic

expansion of type𝐿
2
onE

𝑖
.This is valid for every 0 ≤ 𝑖 ≤ ]−1.

This concludes the second part of the result.
It only rests to verify that 𝑋 is a formal solution of

(72)+(73).
If we write𝑋(𝜖, 𝑡, 𝑧) := ∑

𝑘≥0
(𝑋

𝑘
(𝑡, 𝑧)/𝑘!)𝜖

𝑘, we have

lim
𝜖→0

𝜖∈Ẽ𝑖

sup
(𝑡,𝑧)∈T×𝐷(0,𝜌)

󵄨󵄨󵄨󵄨󵄨
𝜕
ℓ

𝜖
𝑋
𝑖
(𝑡, 𝑧, 𝜖) − 𝑋

ℓ
(𝑡, 𝑧)

󵄨󵄨󵄨󵄨󵄨
= 0, (136)

for every 0 ≤ 𝑖 ≤ ] − 1 and all ℓ ≥ 0.
Let 0 ≤ 𝑖 ≤ ] − 1. By construction, 𝑋

𝑖
satisfies (72)+(73).

We differentiate in the equality (72) ℓ ≥ 1 times with respect
to 𝜖. By Leibniz’s rule, we deduce that 𝜕ℓ

𝜖
𝑋
𝑖
(𝜖, 𝑡, 𝑧) satisfies

𝜖𝜕
ℓ

𝜖
𝜕
𝑡
𝜕
𝑆

𝑧
𝑋
𝑖
(𝜖, 𝑡, 𝑧) + ℓ𝜕

ℓ−1

𝜖
𝜕
𝑡
𝜕
𝑆

𝑧
𝑋
𝑖
(𝜖, 𝑡, 𝑧)

+ 𝑎𝜕
𝑆

𝑧
𝑋
𝑖
(𝜖, 𝑡, 𝑧)

= ∑

𝜅=(𝜅0 ,𝜅1)∈N

∑

ℓ0+ℓ1=ℓ

ℓ!

ℓ
0
!ℓ
1
!
𝜕
ℓ1

𝜖
𝑏
𝜅
(𝜖, 𝑧)

× (𝜕
ℓ1

𝜖
𝜕
𝜅0

𝑡
𝜕
𝜅1

𝑧
𝑋
𝑖
) (𝜖, 𝑞

𝑚𝜅,1𝑡, 𝑞
𝑚𝜅,2𝑧) ,

(137)

for every (𝜖, 𝑡, 𝑧) ∈ E
𝑖
×T×𝐷(0, 𝜌). Let 𝜖 → 0 in the previous

expression. From (136) we obtain

𝜕
𝑡
𝜕
𝑆

𝑧
(
𝑋
ℓ−1

(𝑡, 𝑧)

(ℓ − 1)!
) + 𝑎𝜕

𝑆

𝑧
(
𝑋
ℓ
(𝑡, 𝑧)

ℓ!
)

= ∑

𝜅=(𝜅0 ,𝜅1)∈N

∑

ℓ0+ℓ1=ℓ

(
𝜕
ℓ0

𝜖
𝑏
𝜅
(0, 𝑧)

ℓ
0
!

)

× (
𝜕
𝜅0

𝑡
𝜕
𝜅1

𝑧
𝑋
ℓ1
(𝑞
𝑚𝜅,1𝑡, 𝑞

𝑚𝜅,2𝑧)

ℓ
1
!

) .

(138)

𝑏
𝜅
(𝑧, 𝜖) is holomorphic wih respect to 𝜖 for every 𝜅 ∈ N.

This entails 𝑏
𝜅
(𝜖, 𝑧) = ∑

ℎ≥0
(𝜕
ℎ

𝜖
𝑏
𝜅
(0, 𝑧)/ℎ!)𝜖

ℎ, for every (𝜖, 𝑧)
in a neighborhood of the origin in C2. From this and (138),
we deduce 𝑋(𝜖, 𝑡, 𝑧) = ∑

𝑘≥0
(𝑋

𝑘
(𝑡, 𝑧)/𝑘!)𝜖

𝑘
∈ HT,𝜌[[𝜖]] is a

formal solution of (72)+(73).
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