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We study a family of singularly perturbed g-difference-differential equations in the complex domain. We provide sectorial
holomorphic solutions in the perturbation parameter e. Moreover, we achieve the existence of a common formal power series
in € which represents each actual solution and establish g-Gevrey estimates involved in this representation. The proof of the main
result rests on a new version of the so-called Malgrange-Sibuya theorem regarding g-Gevrey asymptotics. A particular Dirichlet

like series is studied on the way.

1. Introduction

We study a family of g-difference-differential equations of the
form

eatan (e,t,z) + aan (e,t,2)

- 3

EZ(KO,KI)G./V

b (€2) (P X) (e.q" tq"z)

under appropriate initial conditions
(3/X)(et,0)=¢;(et), 0<j<S—1 ()

Here, S is an integer with § > 1 anda € C* := C\ {0}.
W stands for a finite subset of N%, where N := {0,1,2,...}
is the set of nonnegative integers. For every (x,,x;) € A,
b (e, z) turns out to be a polynomial in the variable z with
holomorphic and bounded coefficients in a neighborhood of
the origin in the parameter and m, ;,m, , € N.

From now on, g stands for a fixed real number with 0 <
g<l

We construct actual holomorphic solutions X(e, t, z) for
the previous Cauchy problem in & x I x C, where & is
a bounded open sector in the complex plane with vertex

at the origin and J is an unbounded well-chosen open
set. The procedure is based on the use of the map t +—
t/e which was firstly considered by Canalis-Durand et al.
in [1] to transform a singularly perturbed equation into
an auxiliary regularly perturbed equation, easier to handle.
This celebrated technique has also been used in the study
of singularly perturbed partial differential equations (see
(2, 3], e.g.), g-difference-differential equations (like in [4] or
[5]), and more recently to the study of difference-differential
equations (see [6]).

Indeed, the present work is motivated by a previous work
[6], where the second author studies a singularly perturbed
difference-differential equation with small delay. This work
can be seen as a continuation of that one. The dynamics
appearing in that previous work involve a small shift in
variable t with respect to €, meaning that they are of the form
(6,t,z) — (€&t +K,€, z), whereas the actual work deals with a
shrinking behaviour in both ¢ and z variables.

In [6], a Gevrey 1+ phenomenon, with estimates associ-
ated to the sequence ((n/ log n)”)nzo, is observed for the series
solution of the problem. This sequence naturally appears
when working with difference equations (see [7, 8], e.g.).
Now, a g-Gevrey-like behaviour, related to the sequence of

— 2 . . .
estimates (q " ),»> appears. This behaviour comes up in



the context of g-difference equations (see [9, 10]). One can
observe that 1+ sequence is asymptotically upper bounded
by Gevrey sequence (n!),,., and this one is upper bounded

by q-Gevrey sequence (q_”2 )0

The main aim of this work is to construct actual holo-
morphic solutions X(e,t,z) of (1)+(2) and obtain sufficient
conditions for the existence and unicity of a formal power
series in the parameter e, X(e,t,z) = Zﬁzo Xﬁ(t, z)(eﬁ/ﬁ!),
owing its coeflicients in an adequate functional space and
such that X is represented by X in a sense to precise (see
Theorem 27). This representation is measured in terms of
q-Gevrey bounds due to the appearance of g-difference
operators on the right-hand side in (1).

The Cauchy problem (1)+(2) we consider in this paper
comes also within the framework of the asymptotic analysis
of linear differential and partial differential equations with
multiplicative delays.

In the context of differential equations most of the
statements in the literature are dedicated to linear problems
of the form

X () =F(tx(Mt),..,x(4,0), 5" (L1),....x" (A1),
3)

where F are vector valued polynomial functions in ¢ and
linear in its other arguments, where 0 < A; < 1,for 1 <
j < nare real numbers and concern the study of asymptotic
behaviour of some of their solutions x(t) as t tends to infinity
for given initial data x(0). When F is real or matrix valued and
with constant coefficients, we quote [11-14]. For polynomial F
in t, we notice [15, 16]. For studies in a complex variable t, we
refer to [17, 18]. For more general delay functional equations,
we indicate [19].

In the framework of linear partial differential equations,
we mention a series of papers devoted to general results on the
existence and unicity of holomorphic solutions to generalized
Cauchy-Kowalevski type problems with shrinkings of the
form

0"u (t,x) = f(t, xu(t, x), (aiu (t,x),0Pu (a(t)t, x),

azu (t) ,8 (t’ X) x) )(l,p,q)el)

(4)

for some integer m > 1, a finite set I, and where f is analytic
or of Gevrey type function and such that the functions «(t)
and f(t, x) satisfy the shrinking constraints |«(t)| < 1 and
IB(t, x)| < 1 for given initial data (3/u)(0,x),0 < j <m -1
that belong to some functional space. We refer to [20-22]. For
partial differential problems with contractions dealing with
less regular solution spaces like Sobolev spaces, we quote [23],
for instance.

Let us briefly reproduce the strategy followed. We con-
sider a finite family of sectors with vertex at the origin
(&)<i<y Which provides a good covering at 0 in the variable
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(see Definition 19). Leti € {0, 1,...,v — 1}. One can consider
an auxiliary Cauchy problem as follows:

b& (e,2) T \ko
mﬁ’l(xo+1) <_Z>

ajw (6,7,2) =
Kk=(Kq,%1)EN (a - T) q

(5)
< @W) (e.q " rq"2)

with initial conditions (8£W)(e, 7,0) = Wi(e,1),0 < j <
§—1. We assume W isa holomorphic function in (D(0, ) \
{0}) x D(0,R,) for some ry, R, > 0, for every 0 < j <
S — 1, which is upper bounded in terms of g-Gevrey bounds
(see (61)). Moreover, we assume each W; can be extended
to &; x &, where & is a sector with vertex at the origin
and verifying g-Gevrey bounds in &; x Sy with §; = {z €
S8 : |zl = Ry} (see (31)). Under these hypotheses, one can
construct a formal solution to the auxiliary Cauchy problem,
Wie, 1,2) = Zﬁzo Wﬁ(e, T)(zﬁ/ﬁ!), where Wﬁ(e, T) turns out
to be a holomorphic function in (D(0, 1) \ {0}) x (Dﬁ \ {O}).
Here, Dy isa disc centered at the origin with radius decreasing
to 0 whenever f3 tends to infinity and reproducing g-Gevrey
bounds given by the initial conditions (see (62)). Moreover,
each Wg(e, 7) can be extended to &; x Sy under g-Gevrey
bounds (see (32)), where Sp = {z e §: |z > Rﬁ}, with
(Rg) s being a sequence of positive numbers that decrease
to 0. We assume SgN Dy # 0 for every 3 > 0. The decrease rate
of both Rg and the radius of Dy has to be chosen adequately,
in accordance to the elements of a g-Gevrey sequence such as

(q"‘ﬁz) p=0 for some a > 0.

The main difficulty in this work is the occurrence of
propagation of singularities in the coefficients of the auxiliary
problem which leads to a small divisor phenomenon. The
singular points form a sequence of complex numbers tending
to 0. As a result, one can only obtain a formal solution for
the auxiliary problem. In [24], a small divisor phenomenon
comes from the Fuchsian operator studied in the main
Cauchy problem. There, g € C is chosen to have |g| > 1,
whilst in the present work g € R with 0 < g < 1. A suchlike
phenomenon also appears in [2], where the asymptotics in the
parameter suffers the effect of a small divisor, and it is solved
studying a Dirichlet-like series.

General Dirichlet series of the form

Zane_)\”z (6)

n=0

have been throughly studied in the case when (A,),., is
an increasing sequence of real numbers to co (see [25-27])
or a sequence of complex numbers with [A,|] — ©o (see
[28]). This theory has also been developed when working
with almost periodic functions, introduced by Bohr (see
[29-31]), which are the uniform limits in R of exponential
polynomials };_, ae”**, where the values s, belong to the
so-called spectrum A € R. However, we are more interested
in the behaviour of the sum when x tends to co in the
positive imaginary axis. Our technique rests on the Euler-
Mac-Laurin formula, Watson’s lemma, and the equivalence
between null g-Gevrey asymptotics. The characterization of
q—exponentially at functions is also considered on the way.
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In [2], we solve the problem by means of a Dirichlet
series with a spectrum being of the form (1/(k + 1)*);,- Now,
the spectrum which helps us to achieve our purpose is of
geometric nature (see Lemma 22).

The growth properties of Wj for 8 > 0 allow us to apply
a Laplace like transform on each of them with respect to
the variable 7 in order to provide a holomorphic solution
X;(e,1,z) of the main problem, defined in &; x I x C, for
some appropriate unbounded open set 7. In addition to this,
one has null g-Gevrey asymptotic bounds for the difference
of X; and X;,, when the domain of the variable z is restricted
to a bounded set, meaning that for every p > 0, there exist
L,,L, > 0such that

sup | X, (6:1,2) = X; (6,1, 2)]

ZED(O,p) (7)

< Llesz(l/(f log(q))Z)logZIeI,

foreverye € & N &,,.

Finally, a novel version regarding g-Gevrey asymptotics
of Malgrange-Sibuya theorem (Theorem 25) leads us to the
main result in the present work (Theorem 27), where we
guarantee the existence of a formal power series in € as
follows:

X >
X(etz)=Y g ()

=0

ety llel, (@

with coefficients in the Banach space of bounded holomor-
phic functions defined in 7 x D(0, p), which is common for
every 0 < i < v—1and such that X; admits X as its g-Gevrey
asymptotic expansion of some positive type in the variable e
(see (135)).

It is worth pointing out that a g-Gevrey version of
Malgrange-Sibuya theorem was already obtained in [5], when
dealing with g € C, |g| > 1. The type in the asymptotic expan-
sion suffers some increasement in that previous work. This is
so due to the need of extension results in ultradifferentiable
classes of functions (see [32, 33]) to be applied along the proof.
Here, the geometry of the problem changes so that we are able
to maintain the type g-Gevrey. The proof rests on the classical
Malgrange-Sibuya theorem (see [34]).

The paper is organized as follows.

In Sections 2 and 3, we introduce Banach spaces of for-
mal power series in order to solve auxiliary Cauchy problems
with the help of fixed point results involving complete metric
spaces. In Section 2, this result is achieved when dealing
with formal power series with holomorphic coefficients in a
product of a finite sector with vertex at the origin times an
infinite sector, while in Section 3 the result is obtained when
dealing with a product of two punctured discs at 0.

In Section 4, we first recall the definition and main
properties of a Laplace-like transform and g-Gevrey asymp-
totic expansions (Section 4.1). Next, we construct analytic
solutions for the main problem and determine flat g-Gevrey
bounds for the difference of two solutions when the inter-
section of the domains in the perturbation parameter is not
empty (Section 4.2). In the proof, a Dirichlet type series is

studied. The section is concluded proving the existence of
a formal power series in the perturbation parameter which
represents every solution in some sense which is specified
(Section 4.3).

2. A Cauchy Problem in Weighted Banach
Spaces of Taylor Power Series

M, A, C,andS;, > 0 are fixed positive real numbers
throughout the present work. Let g € Rwith 0 < g < 1
and let (Rp) g be a sequence of positive real numbers.

We consider an open and bounded sector & with vertex at
the origin and we fix an open and unbounded sector & with
vertex at the origin having positive distance to a fixed complex
number a € C%, it is to say, there exists M; > 0 such that
|t —al > M, for every 7 € &. We write Sﬁ for the subset of &
defined by

Sp={z €S|zl > Rg}. )

The incoming definition of Banach spaces of functions
and formal power series turns out to be an adaptation of
the corresponding one in [5]. Here, the symmetry of these
norms at 0 and the point of infinity in the 7 variable has to be
removed, so that a Laplace-like transform of the elements in
these Banach spaces makes sense.

Definition 1. Lete € & and 3 € N. Eges, denotes the vector
space of functions v € @(Sﬁ) such that

v (D)

Iv (@)l !
VT = su eeee——
BiesSg Tespﬁ eMlog*(Izl/le|+5,)

-CB) =
}quﬁ (10)

€

is finite.

Let § > 0. H(e, 6, &) denotes the complex vector space
of all formal power series v(7,z) = ) 50 Vﬁ(T)(Zﬁ /BY) with
vg € O(Sp) for every B > 0 and such that

SoF
5 sy = 2 Ol s, g <o an

It is straightforward to check that the pair
(H(e, 8, 8), || - llep.5)) is a Banach space.

For our purposes, the elements in the sequence (Rg)gso
are chosen to be related to the ones in a g-Gevrey sequence.
This choice would provide that Sy tends to & when . — co.

Let (Eg)gso be a family of complex functional

Banach spaces. For every v(7,2) = Y4 Vﬁ(T)(Tﬁ/ﬁ!) €
(U 20 E ﬁ)[[z]], we consider the formal integration operator
a;l defined on (Ug,Ep)l[2]] by

B
o (v (12) = Y v, (1) = (12)

=1 ﬁ!'



Lemma 2. Lets, £, €, m;, andm, € N, § > 0, and e € &.
We assume that

C(b, +s)—¢€,—2mM(-log(q)) = 0. (13)

In addition to this, we consider the elements in (Rﬁ) p=o are
such that

Rg=q"Rgq (14)

for every B > €, + 5. Moreovet, we assume there exist constants
d,,d, > 0 such that

Ry > dq™, (15)
for every 3 > 0. In addition to this, we assume

my —2A, (&, +s)-mC+d,
(16)
x [€y —2m;Mlog(q) - C (& +s)] > 0.

Under the previous assumptions, there exists a positive
constant Cy,, which does not depend on € nor 8 such that

of TN 1 b ( -my _ m,
(D) ot () ™2

€88 (17)

4
< C116 1+5"V(T, z)||(€,§,§)’

foreveryv € H(g, S, §).

Proof. Let v(1,z) = Zﬁzo vﬁ(‘r)(zﬂ/ﬁ!) € H(e, 8, §8). We have

s _I eo_ 1 (a_el )( —m mz)
z € qml(eo‘*'l) = V)19 24

(£6,8)
—my\ _m,(B—s)-m; (€
= Y vpg (g ™) gD (18)
Bzl +s
1 & B
« P <_z> z
B-=-9)\ €/ B!

(,6,85)

From (14), one derives that for every 7 € Sg,
vﬁ_el_s(‘rq_ml) is well defined and the function 7
Vﬁ_el_s(q_ml 7) is holomorphic in Sg for every B > £, +s. The
expression in (18) equals

)

B2y +s

m, (B—s)—my (€y+1)

Vpe,—s (14 ™) q

8 (;fs)! (_9%

(19)
8P

Be:Sp ﬁ' .
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Let 5 > ¢, + s. From the definition of the norm | - ”ﬁ,e,s,;’
we get

my(B-s)-my (6y+1) P! (_1)5"
(B-9)!

€

Vp_e,—s (19 ™) q
ﬁ,e,Sﬁ

“my \ ~C(B—€,-s)
| (1714 )
=sup q|Vgp_s (19 )| ———
Tesﬁ{'“ (va )'< ]

x e—M10g2((|TI/IEI)q’”11 +6,)

T

g (™ q" >C(’”“”

lel

€ (20)

% eMlogz(I‘rIq_ml /lel+8,)

7| CP
X p—

e—Mlogz(ITI/IeI+51) }
€

/3! M, (B—s)—m, (6y+1) _—A, B
X 2 1\*%0 1
B-sn 1

2 2
x qu(ﬁ—fl—s) q—A1(/3—€1—5) )

Direct calculations allow us to obtain the following
estimates

e*M10g2((ITI/|€I)+51)JrMIOgZ((Ifltfm1 /le)+6,)

_ 2 2 —my
< Cy e Mlog”(Il/leD)+Mlog"(Irlg ™™ /lel)

—2m; M log(q)
|T| 1 8!
<l 11 ,

(21)

for some positive constants C,; and C;, only depending on
q, m,, and M. Moreover,

(Ielg ™) = Copq ™ P, 22)

for some constant Cy; > 0 depending on g, m,, £;, and s.
This last equality and (13) yield

- €0< I,l_lq—m1 >C(/3515) T 7Cﬁ< 7] >2m1M10g(q)
€ lel € lel
_c ( |€| —€0+C(€1+s)+2m1M10g(q)) (23)
— o4\ o
|7l

< C05|T|€0—2m1Mlog(q)—C(€1+s)q—m1C,8’

for some positive constants C,, and C,; depending on
g m, €, £y, s, C,and &. From the hypothesis (15) on R, the
last expression is upper bounded by
Cosq(—mlC—*—dz(&,—ZmlM10g(q)—C(€1 +s)))ﬁ’ (24)
for some positive constant C; only depending on g, my, €, €;,
s, &,C, and d,. Now, from (16) one gets that ﬁ!/(ﬁ—s)!qpl(ﬁ) is



Abstract and Applied Analysis

upper bounded by a constant Cys > 0 which does not depend
on f3, where

pr(B) =my (B—s)—my (& +1) _A1/32
+ Al(ﬁ - el - 5)2 - mlcﬁ (25)

+d, [6,—2mMlog(q) - C (¢ +5s)].

Taking into account all these computations, one achieves
that (20) can be upper bounded by

—m, \ —~C(B—€,—s)
N
I o

TE/3

(26)

xe‘MlOgZ(Iflqm‘/|€|+5l)} q_Al(lHl—S).

The lemma follows bearing in mind (14) and the defini-
tion of the norms in Eg_(,, 49640 andof H(e,6,8). O
Remark 3. The hypotheses made in (14), (15), and (16) are
verified if one departs from Rg = d,g** for small enough
positive d, and any d, > 0 provided (13) is satisfied and
my —2A,(&; +s) —m,C > 0.

Lemma4. Let F(e, T) be a holomorphic and bounded function
defined on & x &. Then, there exists a constant C, =
C,(F, &, 8) > 0 such that

|E e, )ve(r, Z)”(e,é,é’) < Cpp|ve(, z)"(e,a,& (27)
foreverye € &, every§ > 0andallv, € H(e, 5, S).

Proof. Direct calculations on the definition of the norms in
the space H(e, 8, &) allow us to conclude when taking C,, :=
max{|F(e,7)| : € € &, 7 € S}

Let S > 1 and let ./ be a finite subset of N?. We also fix
a € C\R,, where R, stands for the set {z € C : Re (z) >
0,Im (z) = 0}.

For every k = (ko,%,) € /N, let m, |, m, , be nonnegative
integers and b, (e,z) € O(D(0,r,))[z], where r, > 0 is such
that & < D(0,r,). We write b,(e, z) = Yser, bes(€)2°, where
I, is a finite subset of N for every x € 4. We assume that
1 <, < Sforeveryx = (ky,x,) € N.

We consider the functional equation

bg(e)z) T\
m&I(KO+1) <_E>

8§W (e,7,2) =
Kk=(Kq,%1)EN (a-1) q

(28)
X W) (e.a " "22)
with initial conditions

(W) (61,00 =W;(e1), 0<j<S-1, (29)

where the function (¢, 7) +— Wj(e, T)isanelementin O(&XS)
forevery0 < j<S-1.

We make the following assumptions.

Assumption A. For every k = (k,,x,) € N and every s € I,
we assume

C(S—x,+5s)—xy— 2m M (-log(q)) =0,

[C (S—x, +5) =1y —2m ;M (~log (q))] d, (30)

<myg, =24, (S—x +s) —my,C.

Assumption B. Rg > q™'Rg_, _; and there exist d;, d, > 0
with Rg > d,q™P, for every k = (xy,%,) € N and everys € L.

Theorem 5. Let Assumption A and Assumption B be fulfilled.
We assume that the initial conditions in (29) verify there exist
A>0and0 < M < M such that for every0 < j < S—1

|Wj (e T)| < AeMlog2<|r|/|e|+6l)|6|Ko, (31)

for every T € S, € € &, where K, = max{x, : (r;,x,) € N}
Then, there exists W(e, 7,z) = Zﬁzo Wﬁ(e, T)(zﬁ/ﬁ!), formal
solution of (28)+(29), where Wg € O(& x Sﬁ).

Then, there exist positive constants C,5 and C,, (only
dependingongq, d,, d,, C, S, §,, and A,)and § > 0 such that

Cia VP Miog(el/ielso
|Wﬁ (e, T)| < CBB!(TM) Mlog’ (17l/lel+8)

T|CP
X p—
€

(32)
A, p?

q
forevery B >0, alle € & and every T € Sp.

Proof. Lete € & We put E := {@(Sﬁ) : B > 0} and define the
map o/, from E[[z]] into itself by

_ b (€,2) Ko

o, (W(T,z)): g K0+1)< T)

Kx=(kg,%, )€

@S o)

105w, (q ™. q"™2) |
(33)

€

where w,(1,2) = ZS 1W (e,7)(2'/ j!). For an appropriate
choice of §,A > 0, the map &/, turns out to be a Lipschitz
shrinking map. 0

Lemma 6. There exist R,8,A > 0 (not depending on €) such
that
1) ||ﬂ€(W(T, z))ll(s)(w) < R for every W(z,z) € B(0,R).
B(0, R) denotes the closed ball centered at 0 with radius
Rin H(e, 6, ).
(2)

st (W, (2.2)) - . (W, (7.2))] s
(34)

<2 w2 - W @ o)

for every W,, W, € B(0, R).



Proof. Let R > 0 and § > 0. In order to prove the first
enunciate, we take W(r,z) € B(0,R) < H(e, S, ). From
Lemmas 2 and 4 we deduce that

"‘Q{ (W, Z)“(s,s,os’)
M _
s Z Z MES [COI‘SS_K1+S|'W(T’ Z)“(e,s,§)

E:(KO,KI)E./Vsslg 1
S K,
z T\
t|———(--) w,
e (15 +1) €

q
(€6,5) ]

with M., = sup,«|b(€)| < co foreveryx € # ands € I,.

Letusfixx = (ky,&,) € / and s € I,.. Taking into account
the definition of H(e, 8, &), we derive

S K,
< T 0 L3 My, Mo
o () Tl )

(35)

x(q7"'1,q4"z)

(6,6,8)

S—1-K,—s

-2

J=s

m T\
VVqu—S (6’ q 5JT) <_Z)

J56:S;

m&z(j—s)—mﬁyl(xo+l) J—' 81 (36)

4 G-t

S—1-x,-s
—m,
<Cy ) sup|Wy (e.q "'7)

j=s TS

Ko -Cj

T

€

T _ 2 .
v e Mlog (|T|/|€|+51)8]’

€

for some C,, > 0 which only depends on the parameters
defining (28). The terms of the form le|]“ in the previous
expression can be upper bounded by an adequate constant.
Taking into account (31), usual estimates in (36) derive

A

M —
= Z Z MES [C018S_K1+S"W(T’ Z)“(e,a,os’) + C15] >

Ez(K():Kl )e‘/V SGIK 1

(37)

for some C,; depending on the parameters defining the
equation and such that it tends to 0 whenever both A and &
tend to 0. An appropriate choice for these constants allows us
to conclude the first part of the proof.

The second part of the lemma follows similar arguments
as before. Let Wl, W2 € B(0,R) € H(e, 0, §). One has

“.Qfe(wl) - de (Wz)"(e,&é’)

< Z Z %Cmasfxﬁrs
1

K=(tcg .1 ) €N sEI,

(38)

W, - WZ"(E,B,S)'

The result is achieved with an adequate choice of § > 0. [
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Let R, A, and let & be as in the previous lemma. Bearing in
mind Lemma 6 one can apply the shrinking map theorem on
complete metric spaces to guarantee the existence of a fixed

point for &/, in B(0,R) € H(e, 3, §), say W,, which verifies
W (z, z)II(E,&&) < R, and o/ . (W.(1,2)) = W,(1,2). Let us
define

W, (1,2) = 3,°W. (1,2) + w, (1, 2) . (39)

We put Wie, 1,2) = WE(T, z), and W(e, 1,2) =
8;SW(6, T,2) + w,(7, 2). Then, W(e, 7, z) can be written as a
formal power series in z as

’
W(er2)= Y Welen) oo,
= P

where Wg,¢(€, 7) = Wﬁ,e(‘[) for every 3 > 0.

From the construction of W (e, 7, z), we have W (e, 7, 2) =
Y 520 Ws(e, 7)(2"/B!) is a formal solution of (28)+(29). More-
over, from the domain of holomorphy of the initial conditions
in (29) and the recursion formula satisfied by the coefficients
in W(e, 1, 2), we get

Wh+S (6’ T)
h!

- Y Y me(l)

E:(Ko,Kl)E/V hy+hy=hh €I,

(40)

(41)
qmﬁ h,

(a— 1) hylgms: (5ot D)

X Wi, (€,97'7).

We can conclude the function (e, 1) +— Wg € O(8 x S) for
every 3 > 0.

Finally, the estimates in (32) are obtained for every 3 > 0
from the fact that We € B(0,R) € H(e, 6, ). The definition
of the elements in H(e, §, &) lead us to

_ 1\#
”Wﬁ»e BeSs <Rp '<5> ’ (42
so that
_ 1\FS
W @] = [Wpoe 0] < R B-5)(3)

(43)

% eMlog2(|r|/|e|+61) T =9 Al(ﬁ—s)z’

€

for every 8 > S. In addition to this, Assumption B and usual
estimates allow us to refine the previous estimates leading to
C ﬁ 2 T 2

|Wﬁ A T)' < C13B!(Tl4> Mlog ((|r|/|e|)+61)|_ 7F

CB
‘

(44)
for some constants C;5 > 0 and C,, > 0 which only depend
ongq, d, d,, C, S, §;, and A,. This is valid for every e € &

andt € S 3 The hypothesis (31) in the enunciate allows us to
affirm that (32) is also valid for 0 < § < S - 1.
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Remark 7. One derives holomorphy of Wy in the variable 7 in
the whole sector & and not only in Sg for every 8 > S whilst
the estimates are only given for T € S;. It is also worth saying
that R > 0 can be arbitrarily chosen whenever s > 0 for every
sel, kel

3. Second Cauchy Problem in a Weighted
Banach Space of Taylor Series

We provide the solution of a Cauchy problem with analo-
gous equation as the one studied in the previous section,
written as a formal power series in z with coefficients in an
appropriate Banach space of functions in the variable 7 and
the perturbation parameter €. In Section 2, the domain of
holomorphy of the coefficients remains invariant from the
domain of holomorphy of the initial conditions. This happens
because the dilation operator T — g 'T sends points in
any infinite sector in the complex plane with vertex at the
origin into itself. Now, the domain of holomorphy of the
coefficients for the formal solution of the Cauchy problem
under study depends on the index considered. More precisely,
if the initial conditions present a singularity at some point
a € C in the variable 7, the coefficients of the formal solution
of the Cauchy problem have singularities in 7 that tend to 0,
providing a small divisor phenomenon.

For every p > 0, DP stands for the set D(0, p) \ {0}. We
preserve the value of the positive constants M, A, C, and &,
from the previous section. Let , > 0 with & < D(0,,) and
let (ﬁﬁ) p=0 be a sequence of positive real numbers.

Definition 8. Let $ € N. Forr, > 0 and € € D(0,7,) \ {0};
2

E Beby, stands for the vector space of functions v € @(Dﬁﬁ)
such that
i e’ ] ap
|V(T)|5,E,D§ﬁ = sup 1|V(T)| MIogel3,) q (45)

reDﬁﬁ

is finite. Let & > 0. We write H, (e, §) for the vector space of
all formal power v(1,2) = szo vﬁ(r)zﬁ /B! such that vg €

E} . with
ﬁ,e,Dﬁﬂ wit!

&P

V(0 2l = |V (D) o5, Bl < 0. (46)
B=0 B

The pair (H, (€, 8), | - |5)) is a Banach space.

Lemma 9. Let s, €y, ¢,,m, and m, € N, § > 0, and e €
D(0,7,) \ {0}. We assume that
C(b+s)-¢, 20, my, —2A,(6,+s)>0.  (47)

Moreover, we assume that the elements of the sequence
(Rp)pso are such that

Rﬁ < qmlﬁﬁ,gl,y (48)

forevery B> €, +s.

Under the previous assumptions, there exists a positive con-
stant C,; which depends on C, q,m,, m,, s, €y, €1, M, Aj,
0y, andr, (not depending on € nor §) such that

zs<—z>€o—1 (a‘fw) (tg™,zq™)
¢) gm@m \% 1 %

(€0) (49)
< Cp 89 (T, 2)l )0
for every v € H,(e,0).

Proof. Let v(1,z) = Z[;ZO vﬁ(r)(zﬁ/ﬁ!) be an element of
H, (e, §). We have

s T & 1 a_el —m, -
“(-¢) o (0:77) (g™ 2™)

(e.0)
—-my\ _m,(B—s)—m; (€,+1)
= 5; Vg_e,—s (19 ") q"™ ’ (50)
>€,+s
! & P
<P (-5)'%
B-9\"c) p

(e,0)

From (48), one derives that for every 7 € Dﬁﬁ o
o

Vg_g,—s(tq ™) is well defined. In addition to this, the function

T = vg_,_(rq ™) is holomorphicin Dﬁﬁ forevery B > €, +s.

The expression in (50) equals

)

Bzl +s

m, (B—s)—m; (€y+1)

Vg (14 ™) q

B! T\b
(B- s)!(_2>

Let f > €, +s. From the definition of the norm | - |5 5.
e Dg,

5 (51)

X —' .
ﬁ,e,Dﬁﬁ B!

we get

my (B—s)—m, (£y+1)

Vge—s (14 ™) q

8 (/fs)!<_£)€0

= sup {|vges (g ™)]

TEDﬁﬁ

,e,.Dp
Bee Rg

|€|C(B_el -s) (52)

eMIOgZ(ITI/q'"l +6)

¢
T|%
«|E |€|C(el+s)

€

% eM(logz(Irl/q'”‘+51)710g2(lfl+51))}

np Bl a9
SN ESTE !

with p,(B) = my(B—s) —m, (6 +1)— A, B+ A, (B— €, —s)".



The result follows provided that one is able to estimate the
expression

n®__PB | cero-a
|

q
(/3 - S) (53)

o MUog ((el/g"™ )+8,)-log’ (Ir+8,)

From the first of the hypotheses made in (47), |e|CEt9=4

is upper bounded by a constant. Also, taking into account
(48), 'there exists R > 0 such that [7| < R for every 7 €
UpsoDg,» so that

207" Ry

|71 exp (M (log2 (l7lg™™ +8,) - log’ (7] + 81)))

< Dy (9.my, 8, M, &),

54)

for some positive constant D,;. The result immediately
follows from (47) that guarantees that B!/(8 — s)g” 1B) s
bounded from above. O

Let R > 0 be as in the proof of the previous lemma, that
is, R > ﬁﬁ for every 5 > 0.

Lemma 10. Let F(e, ) be a holomorphic and bounded func-
tion defined on D(0, ) x D(0, R).
Then, there exists a constant C,, = C,,(F) > 0 such that

|F (6, 7) ve (7, Z)l(e,(s) < C22|Ve (T, Z)l(e,d)’ (55)

for every € € D(0,1,) \ {0}, every 8 > 0 and all v, € H, (¢, 0).

Proof. Direct calculations on the definition of the norms in
the space H,(e,d) allow us to conclude when taking C,, :=
max{|F(e, 7)| : € € D(0,7,), T € D(0, R)}. O

Let S > 1 and let /" be a finite subset of N2, We also fix
a € C\ R, such that |a| > R, with R as before.
Letm, ;, m, ,, and let b, be as in Section 2, for every k =

(Ko K1)-
We consider the functional equation
b, (e,2) 7\%0
W (e7,2) = = (-3)
re=(icg.1c, ) €N (a-1)q™ €

x (07'W) (e,q ™'1,q™*z)
(56)

with initial conditions
(W) (67,00 =W;(e,7), 0<j<S-1, (57)

where the function (e,7) — W'j(e, T) is an element in
O((D(0,7,) \ {0}) x Dﬁo) forevery0 < j<S-1.
We make the following assumptions.

Assumption A'. For every k = (k,,%,) € / and every s € L

we assume
C(S—x,+s)—x,2>0, My, =24, (S—1; +5) > 0.

(58)
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Remark 11. Observe that Assumption A implies Assumption
Al

Assumption B'. We assume Rﬁ < qmﬁxlﬁﬁ_xl _; for every x =
(g, ;) € N, everys € I, and every § >k, +s.

We first state a result which provides a concrete value for
the elements in (IA{[;) p=0 under Assumption B'. The choice is
made in two respects: first, to clarify how the singularities
suffer propagation in the formal solution of (56)+(57), with
respect to the variable 7, and second, to provide acceptable
domains of holomorphy for such coefficients when regarding
this phenomenon of propagation of singularities. Any other
appropriate choice for the elements in (R p)p=o regarding these
issues would also be fairish for our purpose.

Lemma12. Let cfl, c?z > 0, and e € D(0,1,) \ {0}

Weputﬁﬁ =Ry forf=0,1,...,5-1, andﬁﬁ = qu‘;“gfor
every 3 > S. Let us assume that (56)+(57) has a formal solution
inz, W(e, 1,2) = Zﬁzo Wﬁ(e, T)(Zﬁ/ﬁ!). Then, there exists Jzo
such that for every d, > dy, the function T — Wi(e, T) belongs
to @(Dﬁﬁ)for every B > Sand all e € D(0,1,) \ {0}.

Proof. Let W(e, 7,2) be a formal power series in z of the
form ) 50 Wﬁ(e, 7)(zP) BY). One can plug the formal power
series into (56) to obtain the recursion formula in (41) for the
coeflicients (Wp)gss- From this recurrence, one derives that
the domain of holomorphy for W, ¢ in the variable 7 depends
on the domain of holomorphy on 7 of W, ., and also on
q ™ for every k = (x5,k,) € N and every 0 < h, < h
such thath - h, € I,.

The initial conditions W,,...,Ws_, are holomorphic
functions in Dﬁo' O

Lemma 13. For every N > 1 the coefficients Wyg_(n-1y,> - - »

WiN+1)s-Nx,, turn out to be holomorphic functions in D g g
forxyy = max{x, : (x5, ;) € N} andm, | == max{m, | : K €
N} B -

Proof. We prove it by recurrence on N and regarding the
recursion formula (41).

Let N = 1.One has h, +x;, < S—1 forany h,, x; asin (41)
ifand only ifth, < S—1-x; for every (x,,x,) € J, itis to say,
ifand only if h, < S -1 —x,,. In this case, W, s only depends
on the initial conditions (W), j<s_;- Moreover,

h+Se{SS+1,...,25— x5 - 1}, (59)

and the dilation on the variable 7 allows us to obtain that
Wss.. s Was_ 1 are holomorphic functions in Dq@,l Ry’

The proof can be followed recursively for every N > 2 by
considering analogous blocks of indices as before. O

Regarding Lemma 13, the proof of Lemma 12 is concluded
if one can check that for every N > 1, ﬁﬁ < ﬁOqu
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whenever

Be {NS—(N-1xyp...,(N+1)S— Nk, — 1}
(60)

= {N(S—xy) + K100 N(S—5;9) +S—1}.

Let N> 1land = N(S—xy) + L, withx;p <L <S-1
Letd, < R,. We have ﬁﬁ = d g NS0 < R gN ™t if and
onlyif Nm, , < 672 [N(S — ;o) + L]. The result follows for any

K1 =

dy >, /(S - Kyp).

Lemma 14. Let IAZﬁ be defined as in Lemma 12. Then, (Rﬁ)ﬁzo
satisfies Assumption B'.

Proof. From the definition of }Alﬁ, the lemma follows when

taking d, > m, 1 /(x; + s) for every k = (x5, %) € N and
everyse€l. O

Assumption B". We assume ﬁﬁ = ﬁo for0 < B <S-1and
ﬁﬁ = c?lquﬁ for any dA2 > 320, with 320 > 0 as in Lemma 12.

As it has been pointed out before, the Assumption B’
is substituted in the present work by Assumption B with
the cost of losing some generality but giving concrete values
for ﬁﬁ, for every B > 0. The incoming theorem is valid
when considering any other choice of the elements in (R )20
satisfying Assumption B’.

Theorem 15. Let Assumption A' and Assumption B be
fulfilled. We also make the next assumption on the initial
conditions (57); there exist A > 0 and 0 < M < M such that

V3 2
W (e,7)| < AeMoB T, (61)

for every T € D(0, ﬁo), € € D(0,r)) \ {0} and 0 < j < S -
1, where K, = max{x, : (ky, k) € N'}. Then, there exists a
formal power series W (e, 1,2) = szo Wi(e, 7)(zP/ BY), with
Wl;(e, T) € O((D(0,7,) \ {0}) x Dﬁﬁ)’ which provides a formal
solution of (56)+(57). Moreover, there exist positive constants
C,; and C,, (only depending onry, Ry, g, C, S, A}, 8,, and M)
and 0 < § < 1 such that

Cu\P
W (e,7)| < 023/31(%> le|F

Mlog*(I7|+8,) A,
Mlog (Il l)q lﬁ’

(62)

X
for everye € D(0,1,) \ {0}, T € Dﬁﬁ and for every 3 € N.

Proof. The proof follows analogous steps as the one of
Theorem 5, so we do not enter into details as to not to repeat
arguments.

Lete € D(0,7) \ {0} and 0 < & < 1. The set E is taken
to be {@(Dﬁﬁ) : B > 0}. We consider the map &, from E[[z]]
into itself defined in the same way as in (33).

From Lemma 12 and Assumption B”, the unique for-
mal solution of (56)+(57) determined by the recursion

formula (41), W(e, 7,2) = Zﬁzo Wﬁ(e, T)(Zﬁ/ﬂ!), is such that
Wp(e, 1) € O(D(0, IA{ﬁ)) for every 3 > 0.

Regarding the initial conditions of the Cauchy problem,
one can reduce d,, if necessary, so that R jsq < R, and
so the map 7 = W, (€,q "'7) is well defined, for every
Kk = (xp, %) € N,everys € I,and j = 0,1,...,5S -1 — k.
Moreover, from (61), the expre;sion

S

SR
qmﬁvl (KO + 1) € z e ’ =)

can be estimated in an analogous manner as in the corre-
sponding step of the proof of Theorem 5, for every k =
(Kg> ;) € A and all s € I,.. O

4. Analytic Solutions in a Parameter of
Singularly Perturbed Cauchy Problem

4.1. Laplace Transform and q-Gevrey Asymptotic Expansion.
In this subsection, we recall some identities for the Laplace
transform and state some definitions and first results on
q-Gevrey asymptotic expansions. The next lemma can be
found in [6].

Lemma 16. Let m € N and let w,(t) be a holomorphic
function in an unbounded sector U such that there exist C, K >
0 with

[w (7)] < Cexp (K1), (64)

for every T € U. Let D be an unbounded sector with vertex at
0 which verifies that

- m<(-33)
+arg(t) € )

for some d € R and §, > 0. Then,

cos (d +arg(t)) = 8,, (65)

t—> J w(r)e Tdr (66)
Ly

is a holomorphic and bounded function defined fort € 2 n
{lt] > K/68,}. Moreover, the following identities hold:

_ m!
J e dr = —
Ld tm+
(67)

o, (JL w (1) e_"dr> = J (-1)w(r)e "dr,

Ly
where Ly = R, cU U {0}, forallt € @ n{|t| > K/d,}.

In the sequel, we work with functions which satisfy more
restrictive bounds that the ones in (64). Indeed, we deal with
bounds of the form Cexp(K logZITI), for some C,K > 0.
This alters the asymptotic behaviour of the Laplace transform
and cause the appearance of g-Gevrey asymptotic expansions

2
associated with estimates related to the sequence (g™ ),.50-
For any open sector S = {z € C : a < arg(z) < b, |z| < p}
in the complex plane with vertex at 0 with p finite or infinite
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and 0 < a < b < 27, we say the finite sector S with vertex
at the origin is a proper subsector of S, and we denote it as
§$<S,ifS={reC":a <argr) < b,l|z| < p} for some
0<a<a <b <b<2mandsomepeR,0<p<p.

H stands for a complex Banach space.

We preserve the Definition of g-Gevrey asymptotic
expansion established in [5], in order to be coherent with the
definitions in that work.

Definition 17. Let S be a sector in C* with vertex at the origin,
and A > 0. We say a holomorphic function f : § — H

admits the formal power series f = Y, f,€" € H[[e]] as
its g-Gevrey asymptotic expansion of type A in S if for every
S < S there exist C;, H > 0 such that

for every e € S.

N+1
N2y el

N —A(
sCHq N+

H

>

N

f© =Y fie"
n=0

(68)

The next proposition, detailed in [5] in the more general
geometry of g-spirals, characterises null g-Gevrey asymptotic
expansion.

Proposition 18. Let A > O and f : S — H a holomorphic
function in a sector S with vertex at the origin. The following
holds.

(i) If f admits the power series with null coefficients, which
is denoted by 0, as its g-Gevrey asymptotic expansion of
type A, then for every S < S there exists C; > 0 with

”f(e)”[H] < Cle—(l/ﬁ)(l/l(—10g(q)))10g2|6|, (69)

for everye € S and every @ > A.
(ii) If for every S < S there exists C, > 0 with

||f((—:) “H < Cle_(l/A)(l/z(_ log()))log’le] , (70)

for every € € S, then f admits 0 as its q-Gevrey
asymptotic expansion of type a in S, for every a > A.

4.2. Analytic Solutions in a Parameter of Singularly Perturbed
Cauchy Problem. We recall the definition of a good covering.

Definition 19. Let {&},<,<,_, be a finite family of open sectors
with vertex at the origin and finite radius €,. We assume that
&N& #0for0<i<v-1(weput&, := &) and also
that D(0, v,) \ {0} Ul’.:()l &, for some v, > 0. Then, the family
{&}1<icy—1 is known as a good covering in C*.

Definition 20. Let {&,;},;,_, be a good covering in C*. We

consider a family {{S;}o.;c,_;» 7} such that the following
holds.

(1) There exist d; € [0,2m), 0 < 0; < /2 such that
_ X 0,
S;=S,(d6,) = {t €C”: larg(t) - dy] < E’}, (71)

forevery0 <i<v-1.
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(2) 7 is an unbounded subset of an open sector with
vertex at the origin. We assume |t| > rg for every
teJ.

(3) Forevery0 <i<v—1andt €S, there exists §; > 0
such that [a — 7] > ;.

(4) Forevery0 <i <v-1,t € F,and € € &;, one has
t/e €§,.

Under the previous settings, we say the family {{S;},<;<,_1» 7}
is associated to the good covering {&;};<,1-

Let us consider a good covering in C*, {&}(<i<,1-
Let S > 1anda € C\ R,. We consider a finite subset

of N, . For every k = (kp,k;) € A, let me,me, € N

and let b, (e, z) be a holomorphic and bounded function on
D(0,7,) x C, for some r, > 0. Foreach 0 < i < v -1, we
consider the following main Cauchy problem in the present
work:

eatani (e,t,2) + aanl- (e,t,2)

- >

K=(Ko,k )EN

b (e,2) (970" X;) (72)

X (6, qm&,lt’ qmmz)
with initial conditions
(0/X)(et,0)=¢,;(c,t) 0<j<S-1,  (73)

where the functions ¢; j(e, t) are constructed as follows. Let

{{Si}o<i<y—1> 7} be a family of open sets associated with the
good covering {&;} i<,
From now on, we assume the values of (Rg)gso and

(ﬁﬁ) p=o are those in the preceeding sections. If necessary, one
can adjust the values of d, d,, 071, and Jz so that Ry < IA{,B for
every 3 > 0, so that Dﬁﬁ N §i’ﬁ #0 for every 3 > 0 and every
0 <i < v - 1. Here, we have put
Sip={reC i1 eS8, || > Rgf,
pmlecirehman

B=>0, 0<i<yv-1

Forevery0 < j < v—1, weassume that (¢, 7) — Wj(e, T)is
abounded and holomorphic function on (D(0, r,) \ {0}) x Dﬁj
verifying

kv 2
|Wj (e, T)| < AeMiog ((|r|/|e|)+61)|€|K0’ (75)

for every (e, 7) € (D(0, ro)\{O})xDﬁj.Here M, Ky, A, and 6,
are the constants provided in Theorem 5. Assume that
W;(e, 7) can be extended to an analytic function (e,7) ~

Wy, s, (€, 7) defined on &; x §i’j and
T 2
Wg_ S (6,7)| < AeMIOg (|T|+51)|€|Ko’ (76)
4,55 ]

for every (e,7) € &; x §i)j.
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Take y, such that R e*V~! ¢ Dy, U S, ;- We put

¢ ; (t,€) = L W‘éf,-,Sj,j (e,7) e ""dr, (77)

Yi

forevery (e,1) € &;xJ . One can check that ¢ ; is well defined
and holomorphic in I x &;. Indeed, there exists §, > 0 such
that cos(yj—arg(t/e)) > §, forevery (t,€) € &;xJ . Moreover,
from the growth properties of ngxgi,j’ i(€;7), one deduces

J Wy s i (1) eedr
L S

Yi

o0
SL |ng)sj’j (e,seﬁy">| o ltsllel 5 (78)

0 . 5
< A|€|K0J Mg s/1el+0,) =szrs lel g

0

which is convergent for every (¢,t) € &; X I

Theorem 21. Let Assumptions A, B, and B" be fulfilled. For
every 0 < i < v — 1, we consider the problem (72)+(73)
with initial conditions constructed as above. Then, the problem
(72)+(73) admits a solution X,(e,t,z) which is holomorphic
and bounded in &; x T x C.

Moreover, for every 0 < i < v — 1 and for every A > 1 there
exists E, > 0 (not depending on €) such that

sup | X1 (6:1,2) = X (6,1, 2)|

zeD(0,p) (79)

< B¢ (4 /CEMNA/log@)log’lel

foreverye € & N &,;,, (where, by convention, X, := X,).

Proof. Let 0 <i <v—1ande € &,. We consider the Cauchy
problem (28) with initial conditions given by

(W) (e,7,0) = Wes, (@1, 0<j<S—1  (80)

Theorem 5 shows that the problem (31)+(80) has a formal
solution W(e, 7,2) = ¥ .0 Wy(e, 7)(2F / 1), with W € O(&,;x
§i>l3) for every 8 > 0. Moreover, for every 3 > 0 one has

’
W (60| < Cop(S22)
(81)

e
Mlog(|7l/lel+8,)| T s

A2
% e B

€

for every (e,7) € &; x §i,ﬁ, where C;5,C,,, and § are positive
constants provided in the proof of Theorem 5. In a parallel
direction, one can consider the same Cauchy problem with
initial conditions given by

(W) (61,00 =W;(e,7), 0<j<S-1, (82)

where W; e O((D(0,1y) \ {0}) x Dﬁj) are as previously shown.

1

From Theorem 15, one concludes that the formal power
series W(e, 1,z) is such that Wg can be extended to a

holomorphic function defined in (D(0,,) \ {0}) x Dﬁﬁ’ for

every f > 0. We preserve notation for these extensions.
Moreover, for every 3 > 0 one has

B ) 2
'Wﬁ (e)T)'SCB/),!(%> e[ Mg (10D A (83)

for every (e,7) € (D(0,7,) \ {0}) x Dﬁp’ and some positive
constants C,; and C,, determined in the proof of Theorem 15.
We put X;(€,7,2) = Zﬁzo Xi’ﬁ(t, €)(Z/3/ﬁ!), where

Xip(et) = JL Wp (7,¢€) e "edr. (84)

Yi

We fist check that X; is, at least formally, a solution of
(72)+(73). From (67), one can check by inserting the formal
power series X; in (72), that it turns out to be a formal solution
in the variable z of (72)+(73) if and only if W(e, 7,2) is a
formal solution of (28)+(29) and (56)+(57).

Bearing in mind that W verifies (82) and (83), one derives
X, g is well defined in &; x 7, for every B > 0. We now
state a proof for the fact that (¢, 7, 2) — X;(e, 7, 2) is indeed a
holomorphic solution of (72)+(73) in &;x I xC. Lete € &,
t € 7,and f € N. One has

<

J W (7,€) e edr
L,

Yi

J W (7,€) e edr
L 1

Yi>

+ (85)

J Wg (7€) e edr
L 2

Vi

+

>

J Wg (z,€) e edr
L 3

Vi

where Ly, := Ly, N Dg,, Ly ;= Ly N Sypand L, 5 =L, N
Dy, NS; g. We only give details on the first and second integrals
appearing on the right-hand side of the previous inequality.
The first integral on the right-hand side of (85) can be upper

bounded by means of (83) and the choice of direction ;.
Consider

J W (7,€) e edr
L

Yis1

R
< I ’ lW,g (s e)l o (sl1/leD cosy—arg(t/e) g
’ (86)

Ca P ap
<Cop(3) 4"
R
« I " e OB MIog llelsd) ysdurs el g
0
One has

|€|—C/36Mlog2(s/|e|+61)e—sﬁzrg/|e| < 6’23 |€|—Cﬁe—552rg/2|€| , (87)
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for some C,; > 0. Now, the function x > x Pe 07/l

attains its maximum at x = Cf32/sd,r5 . One can reduce r,,
if necessary, to conclude that this function is increasing for
x € [0, €y]. The expression in (86) is upper bounded by

Cu\ g [
C23/3!(8—2é) g** J e 07120 g (88)
r§ 0

This yields

<C,BICE ., (89)

J Wg (,€) e edr
L

V-1

for some constants Cs;, C;, > 0 only depending on 6, , R,
9 S, A, C, 6, M, rg, and §,. We now consider the second
integral appearing on the right-hand side of (85). From (81)
and similar estimates as before we get

J W (7, €) e edr
L

Yir2
B
o
“ J * eMlog2<<s/|e|>+6l>< S ) P ol g
Ry lel
The function x — g,(x) = MIB(et00), CB s >
0 is such that g,(x) < g,(x) for all x > 0, where

gr(x) = 513eM1°g2(x>xcﬁ , for some positive constant C,;,
not depending on f8. g, attains its maximum value at x, =
exp(-CpB/2M) so that g(x) < g(x,) = exp(-C*B*/4M), for
every x > 0. This implies

CB
eM10g2(5/|e|+61)(i> e—sSng/|€|
lel (91)

< e—<c2/4M>ﬁ2 oS0t /lel.

From (90) we derive

J Wg (1,€) e edr
L.

Yi>

© 2 2 2
<Cyp J &50u17 /200 g 1A o~ (C M Ry 274
0

~ (A,-C*/4M log(q))f*
=C,Blq" /4Mlog(q 5’
(92)
for some C5 > 0.

From (89) and (92), we lead to the existence of positive
constants C,;, C,,, not depending on f3, such that

B
z
Y Xip(te) —
i
B>0 /3!

<Cy Y Cha™ |21, (93)
B=0

for every z € C. This allows us to conclude the first part of
the proof.
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Let0 <i <v-1andp > 0. For every (¢,t,2) € (&; N
&) X T x D(0, p) we have

|X1-+1 (e,t,2) = X; (e t, z)|

p (94)
< Z 'Xi+1,ﬁ (e,t) — Xi,,B (e, t)| P—|
B>0 !
We can write
Xinplet) =X (e 1) = L Wg (1,€) e dr
Yit+1-2
_ —tt/e
Wg(r,€)e "dr
LV;:Z
* J W (7€) e edx,
LwnA*LnA
(95)

whereL, ,-L, ,standsfor the path consisting of two parts:
the first one going from R ﬁeﬁ"’“ to 0 along the segment

[0, Rﬁeﬁ”’“ ] and the path going from 0 to Rge VI
direction ;.

This integral has already been estimated in (92), for the
first part of the proof, so we omit the details. We also omit
the details on the integral concerning the path L, , which is
analogous.

In order to estimate the integral along the path L, , -
L, 4 one can observe that the function involved in the
integrand does not depend on the index i considered, for this
function is well defined for (¢, ) € (D(0,r,) \ {0}) x Dﬁ,y One

can apply Cauchy Theorem to derive

following

J Wy (1,€) e edr = 0, (96)
L

where L = L, 4

= RpeV Tl
[V Vi1l — Li(s) = Rge™ . Moreover, | JLVMA‘LWA Wp(z,

— L, 4 — Ly is the closed path with s €
€)e "¢ dr| equals

U Wg (1,€) e "ledr
L,

Cu\P

x J%H o~ Reltl cos(O-arg(t/e))/lel 30
.

~ B 2
< C23ﬁ!<%> |e|_C'/3qA1ﬁ Rg

Yir1
% J o Rers82/2el 7o
"
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. C B 2
< Czsﬂ(%) quﬁ le|”#

—Rgrgs, [2]e] e—RBrgsz /2]el ,

xe
(97)

for some C,3,C,; > 0. It only rests to take into account that
the function x € (0,7,) — x PeR7%/%% i monotonely
increasing in (0, r;), so that le|"PeRem70:/21el can be included
in the constants C,; and C,,.

From (92) and (97) one gets the existence of positive
constants Cg and C, such that

|Xi+1,ﬁ (6’ t) - Xi’/; (6, t)|

2 drB (98)
< Céﬁlcqu‘ﬁ e—(d152”§7/2)(q /|€|),

for every (e,t) € (&; N &;,q) X
into the expression of X; 4

. Taking this last estimate
— X, one can conclude that

|Xi11 (6:,2) = X; (6,1, 2)]

A PP —~(d\8yrs 428 /e (99)
< C6Z(C7P)ﬁq B e ( 12"/ I),
B=0

for every (e,t,2z) € (&; N &;;) x T x D(0, p). The proof of
the second statement in the theorem leans on the incoming
lemma whose proof is left until the end of the current section.
It provides information on the estimates for a Dirichlet type
series. A similar argument concerning a Dirichlet series of
different nature can be found in [2], Lemma 16, when dealing
with Gevrey asymptotic expansions. O

Lemma 22. Let A,, D,, D,, and letd, be positive constants,
with D, > 1. Then, for every A > 1 there exist E; > 0 and
0 > 0 such that

3 Dl P

p=0 (100)

< By A0/ logl@nlog’e

for every e € (0,4].

The proof of Lemma 22 heavily rests on the g-Gevrey
version of some preliminary results which are classical in
Gevrey case (see [2] and the references therein). Their proofs
do not differ from the classical ones, so we omit them.

Lemma 23. Let b > 0 and f : [0,b] — C a continuous
function having the formal expansion ), a,t" € C[[t]] as
its g-asymptotic expansion of type A, > 0 at 0, meaning there
exist C, H > 0 such that

< CHNg™ N/thl : (101)

‘f(t)—Zat

forevery N > 1 andt € [0,08], for some 0 <& < b.
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Then, the function

b
H@=Lf@[wﬁ (102)

admits the formal power series ), ann'e"+1 € Clle]] as its
q-Gevrey asymptotic expansion of type A at 0. It is to say, there

exist C, H > 0 such that

N-1
I(x)- Z anlx""!

n=0

(103)

N+
< C‘ﬁNHq—AI(NH)Z/Z | x| ’
(N +1)!

for every N > 0 and x € [0,8'] for some 0 < &' < b.

One can adapt the proof of Proposition 4 in [5] in our
framework.

Lemma 24. Let A, > 0, and let ¢ — Cbea

continuous function. The following holds.

: [0,6]

(1) If there exist C,H > 0 such that |y(x)|] <
2
CH"q " 2|x|"/nl, for every n € N, n > 0 and
x € [0,8], then for every A, > A, there exists C > 0
such that

v (x)] < Ce (/AN /(= log(@)2))log? | (104)

for every x € (0, 6].

(2) If there exists C > 0 such that |y(x)| <
Ce (/AN log@DNE x| for overy 1y € N, and x €

[0,8], then for every A, > A, there exists C,H > 0
such that

|x|"

|1[/ (x)| < Ef‘jnqizlnz/zw, (105)

for every n € N and for every x € (0, 8].

Proof of Lemma 22. Let f : [0,+00) — R bea @' function.
Foreveryn € N, one can apply the Euler-Mac-Laurin formula

YF0 =5 (FO+ fo)+ | fwdr
k=0 0
(106)

+ J"Bl (t - Lt)) f (0 dt,
0
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where B,(s) = s — 1/2 is the Bernoulli polynomial and |-]

2 dys
stands for the floor function to f(s) = Diq™ e™>@"/9 One

has

Z Digh* 2o~ Da(q""e)

(e D2/e n Aln e—Dz( 2"/e))

NI'—‘

-+

J' D'q At =Dy e) gy

(=]

*J By (¢t - [t]) D™ e P19

o

X (log (D,) +log(q) A 2t - DZ% ) dt.
(107)

Taking the limit when 7 tends to infinity in the previous
expression we arrive at the following equality for a convergent
series:

ZDK A e—D2 (q**/e)
1 _ 0 2 dyt
_ L -Dye +j D! gt D™ 19) gy
0

o0 t A2 -Dy(q"'/e)
+ J B, (t-|t])Dig"" e ? (108)
0

x <log(D1)
1 d
+log(q) A2t - DZ%) dt.
€

Let I, := | f(t)dt and I, = [ B,(t - [t])(log(D,) +

log(q)A 2t — D, (log(q)d, /e)q™"'*) f (t)d.
From the fact that B, (¢t — [¢]) < 1/2 for every t > 0 and

the change of variable D,q™" = u, one gets

D,
I = J £ (w)e™edu, where
0

log u/Dz)/log(q)dqu log (u/Dz)/log (q)d2

fl (u) =
1 (109)

4, (Clog ()

1 D, —ufe
Izsijo (fy @)+ f3 ) + £, () e du,

with  f,(u) = log(Dy) fi(w),  f5(u)
(2A,/d,)log(u/D,) f,(u), and fa

((~log(q))d, /e)e: log(”/Dz)/dzefl(u), for every u € (0,D,].
Bearing in mind that f;(u) < 0 for u € (0,D,] and from

D _
usual estimates we derive I, < C,(1 + 1/¢) _[0 * £ (we ™ du
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for some C; > 0. The proof is complete if one can estimate
e /¢ 1, and 1/el, appropriately. The first expression is
clearly upper bounded according to (100).

From usual estimates we arrive at

D,
<G, I ? oA/ log@)d)log (u/Dy) -ue g,

0 (110)

D, _
= C, J fwye™,

for some C; > 0. From Lemma 24, the function g defined by
u € [0,1] — f (D,u) (extended by continuity to u = 0) is
such that for every A > 1 there exist C, H > 0 with

_ n
13 (w)] < C'H"q‘“dim”‘*””z%, (1)

for every u € [0, D,] and for every n > 0. From Lemma 23,
the functions I, (e) and (1/€)I,(e) admit the series with null
coefficients as g-asymptotic expansion of type (d5A)/A,.
Again, from Lemma 24, one can conclude that for every A >
A there exists C, > 0 such that both I, and (1/e)I, are

2 2
upper bounded by C,e~(A1/&:A1/Clog@)2Nlog™(@) g everye €
(0,€,], for some ¢; > 0. O

4.3. Existence of Formal Series Solutions in the Complex
Parameter. In this last subsection we obtain a g-Gevrey
version of a Malgrange-Sibuya type theorem. A result in
this direction has already been obtained by the authors in
[5] when dealing with g € C, |g| > 1. In that work, the
geometry of the problem differs from the one in the present
work. Indeed, the result is settled in terms of discrete g-spirals
tending to the origin and with g € C.

Given g € Cwith 0 < |g| < 1 and a nonempty open subset
U c C*, the discrete g-spiral associated with U and g consists
of the products of an element in U and g™, for some m € N.
For our purpose, g is a real number and U is chosen in such
a way that the discrete g-spiral turns out to be a sector with
vertex at the origin.

The proof of the g-Gevrey version of Malgrange-Sibuya
theorem in [5] is based on the use of extension results
on ultradifferential spaces of weighted functions which pre-
serve the information of g-Gevrey bounds but causes the
q-Gevrey type involved in the g-Gevrey asymptotic to suffer
an increasement. Here, one can follow similar steps as for the
classical proof Malgrange-Sibuya theorem based on Cauchy-
Heine transform, so that the g-Gevrey type is preserved. In
[6], an analogous demonstration for the Gevrey version of the
result can be found. We have decided to include the whole
proof of the result in order to facilitate comprehension and
clarity of the result.

Theorem 25 (g-MS). Let (E, || - |lg) be a Banach space over C
and let {&}o<ic,—1 be a good covering in C*. For all 0 < i <
v—1, let G, be a holomorphic function from &, into the Banach
space (E, || - lIg) and let the cocycle A;(€) = G;,,(€) — G,(€) be
a holomorphic function from the sector Z; = &;,, N &; into E
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(with the convention that &, = &, and G, = G,). We make
the following assumptions.

(1) The functions G;(€) are bounded as € € &; tends to the
origininC, forall0 <i<v-1.

(2) A; has a g-exponential decreasing of some type L > 0,
for every 0 < i < v — 1, meaning there exists C; > 0
such that

1A ;)] < Cie DU/ log@2log’tl (112)

foreverye e &N &, and0<i<v-1.

Then, there exists a formal power series Gle) € E[[€]] such
that G,(€) admits G(e) as its q-Gevrey asymptotic expansion of
type L on &, for every 0 <i<v—1.

Proof. We first state an auxiliary result. O

Lemma 26. For all 0 < i < v - 1, there exist bounded
holomorphic functions ¥, : &; — C such that
A;(e) = Y (e),

Y, (€)= (113)

for all e € Z;, where by convention Y, () = ¥,(e). Moreover,
there exist ¢, € E, m > 0, such that for each 0 <1 < v -1 any

L > Land every W < &), there exist K, M, > 0 with

S =M ey el
< Ry(M,)Mg )/)M'

E

(114)

M-1

Y (e) - Z ©€"
m=0

foralle € W and all M > 2.

Proof. We follow analogous arguments as in Lemma XI-2-6
from [34] with appropriate modifications in the asymptotic
expansions of the functions constructed with the help of the
Cauchy-Heine transform.

Forall 0 <1 < v -1, we choose a segment

6 =t te 0.} c B, (115)

These v segments divide the > open punctured disc D(0,7)\

{0} into v open sectors &, ..., &,_,, where

%lz {ee g: < arg(e) <0, el <r},

I-1 (116)

0<l<y-1,

where by convention0_; = 0,_,. Let

< A(E)
(o) = Zﬂ\/_ZJ

foralle € &, for 0 <1 < v—1, be defined as a sum of Cauchy-
Heine transforms of the functions A (¢). By deformation of
the paths C,_; and C; without moving their endpoints and
letting the other paths C;,, h #[—1, and [ untouched (with the
convention that C_; = C,_,), one can continue analytically

(117)
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the function ¥; onto &);. Therefore, ¥, defines a holomorphic
function on &), forall0 </ <v-1.

Now, take € € &; N &},;. In order to compute ¥}, (€) -
W (e), we write

o= = e s
v—1
Ay (8)
dé,
h_(),zl::#Lh §—e )
_ 1 A (§) -1
Y@= = Jcl E—e F o
v—1
Ay (§)
dé,
h—OZJ1:¢lJCh §-e

where the paths C, and C; are obtained by deforming the same
path C; without moving its endpoints in such a way that

(a) él C %l n %l+1 andél C %lﬂ %l+l’

(b) T4, := —=C;+C, is a simple closed curve with positive
orientation whose interior contains €.

Therefore, due to the residue formula, we can write

\I’l+l (6) — ‘“Ijl (6)

L am, ()
C2mv-1 J'r,h1 E-¢ =40,

foralle € & N &, and forall0 < I < v — 1 (with the
convention that ¥, = ).

In a second step, we derive asymptotic properties of ;.
Wefixan 0 < [ < v—1and aproper closed sector 7" contained
in &,. Let C, (resp., C_,) be a path obtained by deforming
C; (resp., C,_;) without moving the endpoints so that 7" is
contained in the interior of the simple closed curve C,_; +
y; — C; (which is itself contained in &), where y is a circular

arc joining the two points reV"1%1 and reV"1%. We get the

representation
1 A8, -1
Hie=- \/_JCI E-e E+2m/—_1
Ay (§)
—d
XJ@,I Ee ® (120)

-1 -1

1 (€)
' 21V o 71 Lh §-e >

for all € € 9. One assumes that the path C, is given as
V-1w,

the union of a segment L, = {te t e [0,1]}
where r; < rand w; > 0; and a curve I} = {y(1)

T € [0,1]} such that y(0) = reV™™, (1) = re’1,
and r, < |y(r)] < r for all T € [0,1). We also

assume that there exists a positive number 0 < 1 with
le] < or, for all e € . By construction of the path I},
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we get that the function € — (1/27) V=1 ID(AZ(E)/(E —€)dé

defines an analytic function on the open disc D(0, ).
It remains to give estimates for the integral

(1/2mv-1) JLI(AI(E)/(ﬁ —€))dé. Let M > 0 be an integer.

From the usual geometric series expansion, one can write

1 A ®) &
JLI El_ds B mz—()oq‘me

2mV/-1 —€ - (121)
+ €M+1E1’M+1 (e),
where
1 J' A (§)
o, = dé,
b N1 L, &mtl :
: (122)
1 A (8)
E €)= J dé&,
l,M+1( ) 271\/_—1 L §M+1 (6—6) 5
foralle e 7.
Gathering (112) and (122), we get
K, (" —((1/L)(1/(-log(g))2))log’ T
“%msije dr.  (123)
SMIIE 2T 0 Tm+1

The changes of variable log(r) = s first, and s =

V2L(—log(g))t afterwards, transform the right-hand side of
(123) into

ds

Kl Jlog(n) e—((l/L)(l/(—10g(q))2))s2
27

K\2L (~log ())
B 2

J'log(rl )/ \2L(~log(q))
X

oo esm

exp< s

-m\/2L (- log (q))t) dt

—00

_ Ki\2L(~log(q))
B 2

X I: exp (—t2 —m2L (-log(q) t) dt.

(124)

The application of

a*/4 o0 —x*—ax
et = e dx,

—00

(125)

for every a € R, which can be found in [35] (Chapter 10, page

498), leads us to
\/ 2L (_ log (q))Kl —L(m2/2)
—q .

2\

ol < (126)
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Moreover, as previously described, one can choose a
positive number # > 0 (depending on %) such that [ — €| >
|| sin(y) forall& € L; and alle € 7. Again by (112) and (122)
and following analogous calculations as before, we obtain

l n o~((/D)1/2(- log@)logt
IE 1 @) ¢ < 27 sin () .[0 T "
< Mq_L((M+I)Z/2)a
2sin (v) vV
127)

for all e € . Using comparable arguments, one can give
analogous estimates when estimating the other integrals

-1 J Ay (§) -1 J' Ay (6)
2nv-1le, &-¢ 7 2nvV-1Jc, &€-¢€
forallh+1,1-1.

As a consequence, for any 0 < I < v — 1, there exist ¢y, €
E, for all 1 > 0 and a constant K, > 0 such that

d&, (128)

= —-L(M*/2), M
< Kig "M 2™,
E

M-1
Yi(e) = ) @y pe” (129)
m=0

forall M > 2andalle € 7.

Taking into account Proposition 18, we deduce that for
every %i)i 1 < & n &, and for every L > L, the
function ¥, (€) — ¥;(€) has the formal series 0 as g-Gevrey
asymptotic expansion of type L in /821 +1- From the unicity of
the asymptotic expansions on sectors, we deduce that all the
formal series ), .o ¢;,,€", 0 < 1 < v -1, are equal to some
formal series denoted G(e) = Ym0 Pme € E[[€]]. O

We consider now the bounded holomorphic functions

a; (€) = G;(e) - Y (e), (130)
forall0 < i < v-1andalle € &, By definition, for any
i €{0,...,v— 1}, we have that

i1 (€) — a;(€) = Gy (6) = G; (€) —A; (e) = 0, (131)

for all e € Z,. Therefore, each a;(€) is the restriction on
&; of a holomorphic function a(e) on D(0,r) \ {0}. Since
a(e) is bounded on D(0,r) \ {0}, the origin turns out to be
a removable singularity for a(e) which, as a consequence,
defines a convergent power series on D(0, r).

Finally, one can write

G;(e) =al(e)+Y(e), (132)

foralle € &;,all 0 < i < v— 1. Moreover, a(e) is a convergent
power series, and for every L>L, W;(e) has the series Gle) =
Zmzo @n.€" as g-Gevrey asymptotic expansion of type L on
&, forall0<i<v-1

We are under conditions to enunciate the main result in
the present work.
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Theorem 27. Let p > 0. Under the same hypotheses as in
Theorem 21, we denote Hg , the Banach space of holomorphic
and bounded functions in I x D(0, p) with the supremum
norm. Then, there exists a formal power series

X(et2) = é%e" €My, [lell,  (133)
which is formal solution of
eatan (e,t,2) + aaf)? (e,t,2)
= ) b2)(9raX) (134)

K=(xg,k,)EN

x (e,q4"™'t,q"*z).

Moreover, for every 0 < i < v— 1 and every L, > d5/A, , the
function X;(e, t, z) constructed in Theorem 21 admits X(e,t,z)
as its q-Gevrey asymptotic expansion of type L, in &, meaning
that for every 0 <i <v—1and &, < &, there exist Ly, L, > 0
such that

N
sup |X (e t,z) - Z

teg —
2eD(0,p) k=0

X (t:2) &
K ©
(135)

LN —L,(N?/2) |€|N+1
S Y
=19 (N+1)!

foreveryN > 0andalle € &,

Proof. Let us consider the family (X;(e,t,2))o<ic,—; con-
structed in Theorem 21. For every 0 < i < v — 1, we define the
function € € &; — G;(e) := X;(e, 1, z), which belongs to the
space Eg . From (79), we derive the cocycle A; := Gy, (e) -
G;(e) verifies (112) in Theorem 25, with 1/L := Al/dgA for
some fixed 0 < A < 1. Theorem 25 guarantees the existence
of a formal power series X(e) € I]-[Ig,P[[e]], such that for
every L, > L, G,(¢) admits G(e) as its g-Gevrey asymptotic
expansion of type L, on &;. Thisis valid for every 0 <i < v—1.
This concludes the second part of the result.

It only rests to verify that X is a formal solution of
(72)+(73).

If we write X(e, t,z) := Do (Xt 2)/kVe¥, we have

lim  sup
e—0 o
ceg, (t,2)€T xD(0,p)

e —_—
X, (t,2,€) - X, (£,2)| = 0, (136)

forevery0 <i<v-1landall¢>0.

Let 0 < i < v — 1. By construction, X; satisfies (72)+(73).
We differentiate in the equality (72) € > 1 times with respect
to €. By Leibniz’s rule, we deduce that anl-(e, t, z) satisfies

€d'9,0 X, (e,1,2) + £0°'9,0 X, (e, 1, 2)

+ aani (e,t,2)

17
e
= 22 e
K=(igk; ) €N Lot€y=€70""1
x (3513 a 1 X,) (e, g™t q"2),
(137)

forevery (,t,z) € &;xI xD(0, p).Lete — 0in the previous
expression. From (136) we obtain

3,08 (Xe—1 (t,2) > +add (Xe (t,2) )
€-1)! 2!

0%b, (0, 2) )

|
Kk=(KoK1)EN Lot1=C < eo :

(FEX (g g2)
¢! '
(138)

b.(z,€) is holomorphic wih respect to € for every x € .
This entails b, (e, z) = tho(ag b, (0, 2)/h)e", for every (€, z)
in a neighborhood of the origin in C2. From this and (138),

we deduce X(e,t,2) = Dm0 (Xt 2)/kDe" € I]-I]g’P[[e]] isa
formal solution of (72)+(73). O
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