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We introduce the concept of quasicontractions on cone metric spaces with Banach algebras, and by a newmethod of proof, we will
prove the existence and uniqueness of fixed points of such mappings. The main result generalizes the well-known theorem of Ćirić
(Ćirić 1974).

1. Introduction

Let (𝑋, 𝑑) be a complete metric space. Recall that a map-
ping 𝑇 : 𝑋 → 𝑋 is called a quasicontraction if, for some 𝑘 ∈

(0, 1) and for all 𝑥, 𝑦 ∈ 𝑋, one has

𝑑 (𝑇𝑥, 𝑇𝑦)

⩽ 𝑘max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥)} .

(1)

Ćirić [1] introduced and studied quasicontractions as
one of the most general classes of contractive-type map-
pings. He proved the well-known theorem that any quasi-
contraction 𝑇 has a unique fixed point. Recently, scholars
obtained various similar results on cone metric spaces. See,
for instance, [2–5].

In this paper, we study the quasicontractions on metric
spaces with Banach algebras, which are introduced in [6]
and turn out to be an interesting generalization of classic
metric spaces. By a new method of proof, we generalize Ćirić
theorem.

Let 𝐴 always be a real Banach algebra with a multipli-
cation unit 𝑒; that is, 𝑒𝑥 = 𝑥𝑒 = 𝑥 for all 𝑥 ∈ 𝐴. An
element 𝑥 ∈ 𝐴 is said to be invertible if there is an inverse

element 𝑦 ∈ 𝐴 such that 𝑥𝑦 = 𝑦𝑥 = 𝑒. The inverse of 𝑥 is
denoted by 𝑥

−1. For more details, we refer to [7].
The following proposition is well known (see [7]).

Proposition 1 (see [7]). Let 𝐴 be a Banach algebra with a
unit 𝑒, and let 𝑥 ∈ 𝐴. If the spectral radius 𝜌(𝑥) of 𝑥 is less
than 1, that is,

𝜌 (𝑥) = lim
𝑛→∞

𝑥
𝑛

1/𝑛

= inf
𝑛⩾1

𝑥
𝑛

1/𝑛

< 1, (2)

then 𝑒 − 𝑥 is invertible. Actually,

(𝑒 − 𝑥)
−1

=

∞

∑
𝑖=0

𝑥
𝑖

. (3)

A subset 𝑃 of 𝐴 is called a cone if

(1) 𝑃 is nonempty closed and {0, 𝑒} ⊂ 𝑃;
(2) 𝛼𝑃 + 𝛽𝑃 ⊂ 𝑃 for all nonnegative real numbers 𝛼, 𝛽;
(3) 𝑃2 = 𝑃𝑃 ⊂ 𝑃;
(4) 𝑃 ∩ (−𝑃) = {0}.

For a given cone𝑃 ⊂ 𝐴, we can define a partial ordering ⩽

with respect to 𝑃 by 𝑥 ⩽ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. And
𝑥 ≨ 𝑦 will stand for 𝑥 ⩽ 𝑦 and 𝑥 ̸= 𝑦, while 𝑥 < 𝑦 will stand
for 𝑦 − 𝑥 ∈ int𝑃, where int𝑃 denotes the interior of 𝑃.
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Remark 2. In the literature on cone metric spaces, authors
use 𝑥 < 𝑦 tomean 𝑥 ⩽ 𝑦 and 𝑥 ̸= 𝑦 and 𝑥 ≪ 𝑦 tomean 𝑦 −

𝑥 ∈ int𝑃. To our knowledge, and from a topological point of
view, the order relation 𝑦−𝑥 ∈ int𝑃 plays a very similar role
in cone metric spaces as 𝑥 < 𝑦 does inR.

The cone 𝑃 is called normal if there is a number 𝑀 >

0 such that for all 𝑥, 𝑦 ∈ 𝐴,

0 ⩽ 𝑥 ⩽ 𝑦 ⇒ ‖𝑥‖ ⩽ 𝑀
𝑦

 . (4)

The least positive number satisfying above is called the
normal constant of 𝑃 (see [8]).

In the following, we always assume that 𝑃 is a cone
in 𝐴 with int𝑃 ̸= 0 and ⩽ is partial ordering with respect
to 𝑃.

Definition 3 (see [8]). Let 𝑋 be a nonempty set. Suppose the
mapping 𝑑 : 𝑋 × 𝑋 → 𝐴 satisfies

(1) 0 ⩽ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 if and
only if 𝑥 = 𝑦;

(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑥, 𝑦) ⩽ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑥) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, 𝑑 is called a cone metric on 𝑋, and (𝑋, 𝑑) is called a
cone metric space (with Banach algebra 𝐴).

For more details about cone metric spaces with Banach
algebras, we refer the readers to [6].

Definition 4 (see [8]). Let (𝑋, 𝑑) be a cone metric space, and
let 𝑥 ∈ 𝑋 and {𝑥

𝑛

} be a sequence in 𝑋. Then,
(1) {𝑥
𝑛

} converges to 𝑥 whenever for each 𝑐 ∈ 𝐴 with
0 < 𝑐 there is a natural number 𝑁 such that
𝑑(𝑥
𝑛

, 𝑥) < 𝑐 for all 𝑛 ⩾ 𝑁. We denote this by
lim
𝑛→∞

𝑥
𝑛

= 𝑥 or 𝑥
𝑛

→ 𝑥;
(2) {𝑥

𝑛

} is a Cauchy sequence whenever for each 𝑐 ∈ 𝐴

with 0 < 𝑐 there is a natural number 𝑁 such that
𝑑(𝑥
𝑛

, 𝑥
𝑚

) < 𝑐 for all 𝑛,𝑚 ⩾ 𝑁;
(3) (𝑋, 𝑑) is a complete conemetric space if everyCauchy

sequence is convergent.

The following facts are often used.

Proposition 5 (see [8]). Let (𝑋, 𝑑) be a cone metric space,
let 𝑃 be a normal cone with normal constant 𝑀, and
let {𝑥
𝑛

} be a sequence in 𝑋. Then, {𝑥
𝑛

} converges to 𝑥 if and
only if 𝑑(𝑥

𝑛

, 𝑥) → 0 (𝑛 → ∞).

Proposition 6 (see [8]). Let (𝑋, 𝑑) be a cone metric space, let
𝑃 be a normal cone with normal constant 𝑀, and let {𝑥

𝑛

} be
a sequence in 𝑋. Then, {𝑥

𝑛

} is a Cauchy sequence if and only
if 𝑑(𝑥
𝑛

, 𝑥
𝑚

) → 0 (𝑛, 𝑚 → ∞).

2. Main Results

In this section we will define quasicontractions in the setting
of cone metric spaces with Banach algebras and prove the
fixed point theorem of such mappings.

Definition 7. Let (𝑋, 𝑑) be a cone metric space with Banach
algebra 𝐴. A mapping 𝑇 : 𝑋 → 𝑋 is called a quasicontrac-
tion if for some 𝑘 ∈ 𝑃 with 𝜌(𝑘) < 1 and for all 𝑥, 𝑦 ∈ 𝑋,
one has

𝑑 (𝑇𝑥, 𝑇𝑦) ⩽ 𝑘𝑢, (5)

where

𝑢 ∈ {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) , 𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥)} .

(6)

Remark 8. In Definition 7, we only suppose the spectral
radius of 𝑘 is less than 1, while neither 𝑘 < 𝑒 nor ‖ 𝑘 ‖< 1 is
assumed. In fact, the condition 𝜌(𝑘) < 1 is weaker than
that ‖ 𝑘 ‖< 1. See the example in [6].

Theorem 9. Let (𝑋, 𝑑) be a complete cone metric space with
a Banach algebra 𝐴, and let 𝑃 be a normal cone with normal
constant 𝑀. If the mapping 𝑇 : 𝑋 → 𝑋 is a quasicon-
traction, then 𝑇 has a unique fixed point in 𝑋. And for
any 𝑥 ∈ 𝑋, iterative sequence {𝑇

𝑛𝑥} converges to the fixed
point.

In the rest of the paper, we choose 𝑥
0

∈ 𝑋 and
denote 𝑥

𝑛

= 𝑇𝑛𝑥
0

. For the sake of clarity, we divide the proof
into several steps.

Lemma 10. Assume that the hypotheses in Theorem 9 are
satisfied. Then, for each 𝑛 ⩾ 1, and for all 𝑖, 𝑗 such that 1 ⩽

𝑖, 𝑗 ⩽ 𝑛, one has

𝑑 (𝑥
𝑖

, 𝑥
𝑗

) ⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) . (7)

Proof. We present the proof by induction.
When 𝑛 = 1, which implies 𝑖 = 𝑗 = 1, the conclusion is

trivial.
Assume that the statement is true for 𝑛 = 𝑚; that is,

𝑑 (𝑥
𝑖

, 𝑥
𝑗

) ⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) , for 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚. (8)

Now, we will prove that the statement is true for 𝑛 = 𝑚 + 1.
Note that in this case, if 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚, then the statement is
just (8). Thus, without loss of generality, we suppose that 𝑗 =
𝑚 + 1 and 1 ⩽ 𝑖 ⩽ 𝑚 and denote 𝑖 = 𝑖

0

.
By the definition of quasicontraction, we have

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑢, (9)

where

𝑢 ∈ {𝑑 (𝑥
𝑖0−1

, 𝑥
𝑚

) , 𝑑 (𝑥
𝑖0−1

, 𝑥
𝑖0
) , 𝑑 (𝑥

𝑚

, 𝑥
𝑚+1

) ,

𝑑 (𝑥
𝑖0−1

, 𝑥
𝑚+1

) , 𝑑 (𝑥
𝑖0
, 𝑥
𝑚

)} .

(10)

Firstly, we consider the case that 𝑖
0

= 1; that is,

𝑢 ∈ {𝑑 (𝑥
0

, 𝑥m) , 𝑑 (𝑥
0

, 𝑥
1

) , 𝑑 (𝑥
𝑚

, 𝑥
𝑚+1

) ,

𝑑 (𝑥
0

, 𝑥
𝑚+1

) , 𝑑 (𝑥
1

, 𝑥
𝑚

)} .
(11)
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If 𝑢 = 𝑑(𝑥
0

, 𝑥
𝑚

), then

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
0

, 𝑥
𝑚

)

⩽ 𝑘 (𝑑 (𝑥
0

, 𝑥
1

) + 𝑑 (𝑥
1

, 𝑥
𝑚

))

⩽ 𝑘 (𝑑 (𝑥
0

, 𝑥
1

) + 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

))

= 𝑘 (𝑒 + 𝑘(𝑒 − 𝑘)
−1

) 𝑑 (𝑥
0

, 𝑥
1

)

= 𝑘(𝑒 +

∞

∑
𝑡=1

𝑘
𝑡

)𝑑 (𝑥
0

, 𝑥
1

)

= 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) ,

(12)

and the statement follows.
If 𝑢 = 𝑑(𝑥

0

, 𝑥
1

), then

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
0

, 𝑥
1

)

⩽ (

∞

∑
𝑡=1

𝑘
𝑡

)𝑑 (𝑥
0

, 𝑥
1

)

= 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) ,

(13)

and the statement also follows.
If 𝑢 = 𝑑(𝑥

𝑚

, 𝑥
𝑚+1

), then we set 𝑖
1

= 𝑚 and we have

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
𝑖1
, 𝑥
𝑚+1

) . (14)

If 𝑢 = 𝑑(𝑥
0

, 𝑥
𝑚+1

), then

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
0

, 𝑥
𝑚+1

)

⩽ 𝑘 (𝑑 (𝑥
0

, 𝑥
1

) + 𝑑 (𝑥
1

, 𝑥
𝑚+1

))

= 𝑘 (𝑑 (𝑥
0

, 𝑥
1

) + 𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

)) ,

(15)

which implies

(𝑒 − 𝑘) 𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
0

, 𝑥
1

) . (16)

Note that (𝑒 − 𝑘)
−1

= ∑
∞

𝑡=0

𝑘𝑡 ⩾ 0 and that 𝑘 and (𝑒 −

𝑘)
−1 commute. Multiplying both sides by (𝑒 − 𝑘)

−1, we have

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) , (17)

and the statement also follows.
If 𝑢 = 𝑑(𝑥

𝑖0
, 𝑥
𝑚

), then

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
𝑖0
, 𝑥
𝑚

)

⩽ 𝑘
2

(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

)

= (

∞

∑
𝑡=2

𝑘
𝑡

)𝑑 (𝑥
0

, 𝑥
1

)

⩽ (

∞

∑
𝑡=1

𝑘
𝑡

)𝑑 (𝑥
0

, 𝑥
1

)

= 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) ,

(18)

and the statement also follows.

Secondly, we consider the case that 2 ⩽ 𝑖
0

⩽ 𝑚.
If 𝑢 = 𝑑(𝑥

𝑖0−1
, 𝑥
𝑚

) or 𝑢 = 𝑑(𝑥
𝑖0−1

, 𝑥
𝑖0
) or 𝑢 = 𝑑(𝑥

𝑖0
, 𝑥
𝑚

),
then, by (8), we have

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑢

⩽ 𝑘
2

(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

)

= (

∞

∑
𝑡=2

𝑘
𝑡

)𝑑 (𝑥
0

, 𝑥
1

)

⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) ,

(19)

and the statement follows.
If 𝑢 = 𝑑(𝑥

𝑚

, 𝑥
𝑚+1

) or 𝑢 = 𝑑(𝑥
𝑖0−1

, 𝑥
𝑚+1

), then we set 𝑖
1

=

𝑚 or 𝑖
1

= 𝑖
0

− 1 ⩾ 1, respectively. And we have

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑢

= 𝑘𝑑 (𝑥
𝑖1
, 𝑥
𝑚+1

) .

(20)

In conclusion from discussions of both cases, it results
that either the proof is complete, that is,

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) , (21)

or there exists an integer 𝑖
1

such that

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
𝑖1
, 𝑥
𝑚+1

) , 1 ⩽ 𝑖
1

⩽ 𝑚. (22)

As for the latter situation, we continue in a similar way,
and come to the result that either

𝑑 (𝑥
𝑖𝑖
, 𝑥
𝑚+1

) ⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) , (23)

which implies that

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
𝑖1
, 𝑥
𝑚+1

)

⩽ 𝑘
2

(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

)

⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) ,

(24)

and the proof is complete, or there exists an integer 𝑖
2

such
that

𝑑 (𝑥
𝑖1
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
𝑖2
, 𝑥
𝑚+1

) , 1 ⩽ 𝑖
2

⩽ 𝑚, (25)

which implies that

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘
2

𝑑 (𝑥
𝑖2
, 𝑥
𝑚+1

) , 1 ⩽ 𝑖
2

⩽ 𝑚. (26)

Generally, if the procedure ends by the ℓ-th step with ℓ ⩽

𝑚 − 1, that is, there exist ℓ + 1 integers

𝑖
0

, 𝑖
1

, . . . , 𝑖
ℓ

∈ {1, . . . , 𝑚} , (27)

such that

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
𝑖1
, 𝑥
𝑚+1

)

⩽ ⋅ ⋅ ⋅ ⩽ 𝑘
ℓ

𝑑 (𝑥
𝑖𝑙
, 𝑥
𝑚+1

) ,

(28)
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and such that

𝑑 (𝑥
𝑖𝑙
, 𝑥
𝑚+1

) ⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) , (29)

then

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘
ℓ+1

(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

)

= (

∞

∑
𝑡=ℓ+1

𝑘
𝑡

)𝑑 (𝑥
0

, 𝑥
1

)

⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) .

(30)

Hence, the proof is complete.
Finally, if the procedure continues more than 𝑚 steps,

then there exist 𝑚 + 1 integers

𝑖
0

, 𝑖
1

, . . . , 𝑖
𝑚

∈ {1, . . . , 𝑚} , (31)

such that

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘𝑑 (𝑥
𝑖1
, 𝑥
𝑚+1

)

⩽ ⋅ ⋅ ⋅ ⩽ 𝑘
𝑚

𝑑 (𝑥
𝑖𝑚
, 𝑥
𝑚+1

) .

(32)

Thus, there must exist two integers, 𝑝 and 𝑞, say, such that

0 ⩽ 𝑝 < 𝑞 ⩽ 𝑚, 𝑖
𝑝

= 𝑖
𝑞

. (33)

From (32), one sees that

𝑑 (𝑥
𝑖𝑝
, 𝑥
𝑖𝑚+1

) ⩽ 𝑘
𝑞−𝑝

𝑑 (𝑥
𝑖𝑞
, 𝑥
𝑚+1

)

= 𝑘
𝑞−𝑝

𝑑 (𝑥
𝑖𝑝
, 𝑥
𝑚+1

) ,

(34)

and therefore

(𝑒 − 𝑘
𝑞−𝑝

) 𝑑 (𝑥
𝑖𝑝
, 𝑥
𝑚+1

) ⩽ 0. (35)

Note that

𝜌 (𝑘
𝑞−𝑝

) ⩽ 𝜌(𝑘)
𝑞−𝑝

< 1, (36)

which implies 𝑒 − 𝑘𝑞−𝑝 is invertible. And since that

(𝑒 − 𝑘
𝑞−𝑝

)
−1

=

∞

∑
𝑡=0

𝑘
(𝑞−𝑝)𝑡

⩾ 0, (37)

we have

𝑑 (𝑥
𝑖𝑝
, 𝑥
𝑚+1

) ⩽ 0. (38)

So,

𝑑 (𝑥
𝑖𝑝
, 𝑥
𝑚+1

) = 0, (39)

𝑑 (𝑥
𝑖0
, 𝑥
𝑚+1

) ⩽ 𝑘
𝑝

𝑑 (𝑥
𝑖𝑝
, 𝑥
𝑚+1

)

= 0

⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

)

(40)

Therefore, by induction, the statement is proved.

Remark 11. Lemma 10 simply says that

𝑑 (𝑥
𝑖

, 𝑥
𝑗

) ⩽ 𝑘(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) , ∀𝑖, 𝑗 ⩾ 1. (41)

Lemma 12. Assume that the hypotheses in Theorem 9 are
satisfied. Then, {𝑥

𝑛

} is a Cauchy sequence.

Proof. For 1 < 𝑚 < 𝑛, denote that

𝐶 (𝑚, 𝑛) = {𝑑 (𝑥
𝑖

, 𝑥
𝑗

) | 𝑚 ⩽ 𝑖, 𝑗 ⩽ 𝑛} . (42)

By the definition of quasicontraction, it follows that, for
each 𝑢 ∈ 𝐶(𝑚, 𝑛), there exists V ∈ 𝐶(𝑚 − 1, 𝑛), such that

𝑢 ⩽ 𝑘V. (43)

Consequently,

𝑑 (𝑥
𝑚

, 𝑥
𝑛

) ⩽ 𝑘𝑢
1

⩽ 𝑘
2

𝑢
2

⩽ ⋅ ⋅ ⋅ ⩽ 𝑘
𝑚−1

𝑢
𝑚−1

⩽ 𝑘
𝑚

(𝑒 − 𝑘)
−1

𝑑 (𝑥
0

, 𝑥
1

) ,

(44)

where

𝑢
1

∈ 𝐶 (𝑚 − 1, 𝑛) , (45)

𝑢
2

∈ 𝐶 (𝑚 − 2, 𝑛) , . . . , 𝑢
𝑚−1

∈ 𝐶 (1, 𝑛) , (46)

and the last inequality comes from Lemma 10.
By the normality of 𝑃, andnoting that ‖ 𝑘𝑚 ‖→ 0 (𝑚 →

∞), we have
𝑑 (𝑥
𝑚

, 𝑥
𝑛

)
 ⩽ 𝑀

𝑘
𝑚


(𝑒 − 𝑘)

−1



×
𝑑 (𝑥
0

, 𝑥
1

)
 → 0 (𝑛 > 𝑚 → ∞) .

(47)

The proof is complete.

Now, we finish the remaining part of the proof of
Theorem 9.

Proof. By Lemma 12 and the completeness of (𝑋, 𝑑), there
is 𝑥∗ ∈ 𝑋 such that 𝑥

𝑛

→ 𝑥∗ (𝑛 → ∞). Then,

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ⩽ 𝑑 (𝑥
∗

, 𝑥
𝑛

) + 𝑑 (𝑥
𝑛

, 𝑇𝑥
∗

)

⩽ 𝑑 (𝑥
∗

, 𝑥
𝑛

) + 𝑘𝑢,
(48)

where

𝑢 ∈ {𝑑 (𝑥
𝑛−1

, 𝑥
∗

) , 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛

) , 𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ,

𝑑 (𝑥
𝑛−1

, 𝑇𝑥
∗

) , 𝑑 (𝑥
∗

, 𝑥
𝑛

)} .
(49)

If 𝑢 = 𝑑(𝑥
𝑛−1

, 𝑥∗) or 𝑢 = 𝑑(𝑥
𝑛−1

, 𝑥
𝑛

) or 𝑢 = 𝑑(𝑥∗, 𝑥
𝑛

),
then ‖ 𝑢 ‖→ 0 (𝑛 → ∞). Hence,

𝑑 (𝑥
∗

, 𝑇𝑥
∗

)
 ⩽ 𝑀

𝑑 (𝑥
∗

, 𝑥
𝑛

)
 + ‖𝑘‖ ‖𝑢‖ → 0

(𝑛 → ∞) .
(50)
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If 𝑢 = 𝑑(𝑥∗, 𝑇𝑥∗), then

(𝑒 − 𝑘) 𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ⩽ 𝑑 (𝑥
∗

, 𝑥
𝑛

) . (51)

Hence,
𝑑 (𝑥
∗

, 𝑇𝑥
∗

)
 ⩽ 𝑀


(𝑒 − 𝑘)

−1


𝑑 (𝑥
∗

, 𝑥
𝑛

)
 → 0

(𝑛 → ∞) .
(52)

If 𝑢 = 𝑑(𝑥
𝑛−1

, 𝑇𝑥∗), then

𝑑 (𝑥
∗

, 𝑇𝑥
∗

) ⩽ 𝑑 (𝑥
∗

, 𝑥
𝑛

) + 𝑘𝑑 (𝑥
𝑛−1

, 𝑇𝑥
∗

)

⩽ 𝑑 (𝑥
∗

, 𝑥
𝑛

) + 𝑘𝑑 (𝑥
𝑛−1

, 𝑥
∗

) + 𝑘𝑑 (𝑥
∗

, 𝑇𝑥
∗

) .

(53)

Hence,
𝑑 (𝑥
∗

, 𝑇𝑥
∗

)
 ⩽ 𝑀


(𝑒 − 𝑘)

−1



× (
𝑑 (𝑥∗, 𝑥

𝑛

)
 + ‖𝑘‖

𝑑 (𝑥
𝑛−1

, 𝑥∗)
) → 0,

(54)

as 𝑛 → ∞.
In each case, we have ‖ 𝑑(𝑥∗, 𝑇𝑥∗) ‖= 0. Thus, 𝑇𝑥∗ = 𝑥∗.
Now, if 𝑦∗ is another fixed point, then

𝑑 (𝑥
∗

, 𝑦
∗

) = 𝑑 (𝑇𝑥
∗

, 𝑇𝑦
∗

) ⩽ 𝑘𝑢, (55)

where

𝑢 ∈ {𝑑 (𝑥
∗

, 𝑦
∗

) , 𝑑 (𝑥
∗

, 𝑇𝑥
∗

) , 𝑑 (𝑦
∗

, 𝑇𝑦
∗

) ,

𝑑 (𝑥
∗

, 𝑇𝑦
∗

) , 𝑑 (𝑦
∗

, 𝑇𝑥
∗

)} .
(56)

If 𝑢 = 𝑑(𝑥∗, 𝑇𝑥∗) = 𝑑(𝑦∗, 𝑇𝑦∗) = 0, then 𝑑(𝑥∗, 𝑦∗) = 0.
If 𝑢 = 𝑑(𝑥∗, 𝑦∗) = 𝑑(𝑥∗, 𝑇𝑦∗) = 𝑑(𝑦∗, 𝑇𝑥∗), then

(𝑒 − 𝑘) 𝑑 (𝑥
∗

, 𝑦
∗

) ⩽ 0, (57)

which implies

𝑑 (𝑥
∗

, 𝑦
∗

) = 0. (58)

Thus, the fixed point is unique. Andwe obtainTheorem 9.
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