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The authors consider the generalized commutator of fractional Hardy operator with a rough kernel as follows: H𝑚

Ω,𝐴,𝛽
𝑓(𝑥) =

1/(|𝑥|𝑛−𝛽) ∫
|𝑦|<|𝑥|

(Ω(𝑥 − 𝑦)/|𝑥 − 𝑦|𝑚−1)𝑅
𝑚
(𝐴; 𝑥, 𝑦)𝑓(𝑦)𝑑𝑦, where Ω ∈ 𝐿𝑟(S𝑛−1), 0 ≤ 𝛽 < 𝑛, and 𝑅

𝑚
(𝐴; 𝑥, 𝑦) = 𝐴(𝑥) −

∑
|𝛾|<𝑚

(1/𝛾!)𝐷𝛾𝐴(𝑦)(𝑥 − 𝑦)𝛾 with 𝑚 ∈ 𝑍+. The authors prove that H𝑚

Ω,𝐴,𝛽
is bounded on Herz type space and 𝜆-Central Morrey

space with𝑚 ≥ 1, which is an open problem for𝑚 > 2.

1. Introduction

It is well known that the C-Z singular integrals and their com-
mutators have been studied a lot by many mathematicians;
please see [1] or [2] for more details. For the generalizations
of the commutators of singular integrals, Cohen [3] studied
the following generalized commutator𝑇2

𝐴
which is defined by

𝑇2
𝐴
𝑓 (𝑥) = ∫

R𝑛

Ω(𝑥 − 𝑦)
𝑥 − 𝑦


𝑛+1
(𝐴 (𝑥) − 𝐴 (𝑦)

−∇𝐴 (𝑦) (𝑥 − 𝑦)) 𝑓 (𝑦) 𝑑𝑦,

(1)

where Ω ∈ 𝐿1(S𝑛−1) is homogeneous of degree zero and
satisfies the moment condition

∫
S𝑛−1
Ω (𝑥) 𝑥

𝛾𝑑𝜎 (𝑥) = 0 (2)

with |𝛾| = 1. Cohen [3] proved that if Ω ∈ Lip
1
(S𝑛−1) and

∇𝐴 ∈ BMO, then 𝑇2
𝐴
is bounded on 𝐿𝑝(R𝑛) with 1 < 𝑝 <

∞. Later, Cohen and Gosselin [4] considered another type of
generalized commutator as follows:

𝑇𝑚
𝐴
𝑓 (𝑥) = ∫

R𝑛

Ω(𝑥 − 𝑦)
𝑥 − 𝑦


𝑛+𝑚−1

𝑅
𝑚
(𝐴; 𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦, (3)

where 𝑅
𝑚
(𝐴; 𝑥, 𝑦)(𝑚 ∈ 𝑍+) is defined by 𝑅

𝑚
(𝐴; 𝑥, 𝑦) =

𝐴(𝑥) − ∑
|𝛾|<𝑚

(1/𝛾!)𝐷𝛾𝐴(𝑦)(𝑥 − 𝑦)𝛾, the mth remainder of
Taylor series of the function 𝐴 at 𝑦 about 𝑥, and Ω satisfies
the following moment condition:

∫
S𝑛−1
Ω (𝑥) 𝑥

𝛾𝑑𝜎 (𝑥) = 0, (4)

with |𝛾| = 𝑚 − 1. Obviously, if we choose 𝑚 = 1, 𝑇𝑚
𝐴

becomes [𝐴, 𝑇], the commutator of 𝑇 generalized by 𝐴 and
𝑇. Furthermore, 𝑇𝑚

𝐴
becomes 𝑇2

𝐴
if we choose𝑚 = 2.

Cohen andGosselin proved that if𝑚 ≥ 2,Ω ∈ Lip
1
(S𝑛−1),

and the function𝐴has derivatives of order𝑚−1 in BMO(R𝑛),
then the operator 𝑇𝑚

𝐴
is bounded on 𝐿𝑝(R𝑛) for 1 < 𝑝 < ∞.

Later, 𝑇𝑚
𝐴

was studied by many mathematicians; please see
[5, 6] or [7] for more details. Recently, Wang and Zhang
[8] gave a new proof of Wu’s theorem in [9] by using the
𝑊1,𝑝 estimate for the elliptic equation of divergence form
with partially BMO coefficients and the 𝐿𝑝 boundedness of
the Cohen-Gosselin type generalized commutators proved
by Yan in [6]. Furthermore, the method used in [8] is much
simpler than that in [9]. Recently, Yu and Tao [7] proved that
𝑇𝑚
𝐴
is bounded on 𝜆-Central Morrey space.
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Let 𝑓 be a nonnegative integral on R+: then the Hardy
operator is defined by

𝐻𝑓 (𝑥) =
1

𝑥
∫
𝑥

0

𝑓 (𝑡) 𝑑𝑡, 𝑥 ̸= 0. (5)

In 1920, Hardy [10] proved the following inequality:

𝐻𝑓
𝐿𝑝(R+) ≤

𝑝

𝑝 − 1

𝑓
𝐿𝑝(R+), (6)

where 1 < 𝑝 < ∞ and the constant 𝑝/(𝑝 − 1) is the best
possible.

In 2007, Fu et al. [11] introduced the 𝑛-dimensional
fractional type Hardy operatorH

𝛽
as follows:

H
𝛽
𝑓 (𝑥) =

1

|𝑥|𝑛−𝛽
∫
|𝑡|<|𝑥|

𝑓 (𝑡) 𝑑𝑡, 𝑥 ∈ R𝑛 \ {0} , (7)

where −𝑛 < 𝛽 < 𝑛 and 𝑓 is a locally integrable function on
R𝑛.

Obviously, when 𝛽 = 0, H
0
is just the 𝑛-dimensional

Hardy operator H which was proposed by Christ and
Grafakos in [12].

In [11], the authors gave the characterization of the
CḂMO𝑞(R𝑛) by the boundedness of the commutator of the
fractional type Hardy operator [H

𝛽
, 𝑏] on Herz type spaces.

Here the CḂMO𝑞(R𝑛) space is defined by the following.

Definition 1 (see [13]). Let 1 ≤ 𝑞 < ∞. A function 𝑓 ∈
𝐿
𝑞

loc(R
𝑛) is said to belong to the homogeneous Central BMO

space CḂMO𝑞(R𝑛) if

‖𝑏‖CḂMO𝑞(R𝑛)

:= sup
𝑟>0

(
1

|𝐵(0, 𝑟)|
∫
𝐵(0,𝑟)

|𝑓(𝑥) − 𝑓
𝐵
|𝑞𝑑𝑥)

1/𝑞

< ∞,
(8)

where 𝑓
𝐵
= (1/|𝐵(0, 𝑟)|) ∫

𝐵(0,𝑟)

𝑓(𝑥)𝑑𝑥.
From [14], we know that BMO(R𝑛) ⊂ CḂMO𝑞(R𝑛) for

1 ≤ 𝑞 < ∞.

The CḂMO𝑞(R𝑛) space can be regarded as the space of
bounded mean oscillation, a local version of BMO(R𝑛) at the
origin. But the famous John-Nirenberg inequality no longer
holds in CḂMO𝑞(R𝑛).

Now we are interested in the following generalized com-
mutator of Hardy operator:

H
𝑚

𝐴
𝑓 (𝑥) =

1

|𝑥|𝑛
∫
|𝑦|<|𝑥|

1
𝑥 − 𝑦


𝑚−1
𝑓 (𝑦) 𝑅

𝑚
(𝐴; 𝑥, 𝑦) 𝑑𝑦,

(9)

where 𝑅
𝑚
(𝐴; 𝑥, 𝑦) = 𝐴(𝑥) −∑

|𝛾|<𝑚
(1/𝛾!)𝐷𝛾𝐴(𝑦)(𝑥 −𝑦)𝛾 and

𝑚 ∈ 𝑍+.
In 2010, Lu and Zhao [15] proved that when𝑚 = 2,H2

𝐴
is

bounded on Herz type space and Morrey-Herz type space.
Later, Gao and Yu [16] proved that H2

𝐴
is bounded on 𝜆-

Central Morrey spaces. However, we would like to point out

that themethod used in [15, 16] cannot apply to the case when
𝑚 > 2. An interesting question is whether the boundedness of
H𝑚

𝐴
on Herz type space or 𝜆-Central Morrey space still holds

with 𝑚 > 2. In this paper, we will use a different method
to answer this question. Furthermore, we will consider the
generalized commutator of fractional Hardy operator with a
rough kernel as follows:

H
𝑚

Ω,𝐴,𝛽
𝑓 (𝑥)

=
1

|𝑥|𝑛−𝛽
∫
|𝑦|<|𝑥|

Ω(𝑥 − 𝑦)
𝑥 − 𝑦


𝑚−1
𝑓 (𝑦) 𝑅

𝑚
(𝐴; 𝑥, 𝑦) 𝑑𝑦,

(10)

where𝑚 ∈ 𝑍+, 0 ≤ 𝛽 < 𝑛, andΩ ∈ 𝐿𝑟(S𝑛−1).
In [17], we prove that H𝑚

Ω,𝐴,𝛽
is bounded from 𝐿𝑝 to 𝐿𝑞

with 1/𝑝 − 1/𝑞 = 𝛽/𝑛. Furthermore, we study the endpoint
estimates ofH𝑚

Ω,𝐴,𝛽
on𝐻1 spaces withΩ ∈ Lip

1
(S𝑛−1) in [17].

In this paper, we will prove that H𝑚

Ω,𝐴,𝛽
is bounded on Herz

type space and 𝜆-Central Morrey space whenΩ ∈ 𝐿𝑟(S𝑛−1).

2. Boundedness of H𝑚

Ω,𝐴,𝛽
on Herz Type Spaces

In this section, we will give the boundedness of H𝑚

Ω,𝐴,𝛽
on

Herz type spaces. First we introduce some notations that will
be used throughout this paper.

Let 𝐵
𝑘
= {𝑥 ∈ R𝑛 : |𝑥| ≤ 2𝑘},𝐶

𝑘
= 𝐵

𝑘
\𝐵

𝑘−1
, and 𝜒

𝑘
= 𝜒

𝐶
𝑘

for 𝑘 ∈ 𝑍: here 𝜒
𝐶
𝑘

is the characteristic function of the set𝐶
𝑘
.

Definition 2 (see [18]). Let 𝛼 ∈ 𝑅, 0 < 𝑝, 𝑞 ≤ ∞. Then the
homogeneous Herz type space �̇�𝛼,𝑝

𝑞
(R𝑛) is defined by

�̇�𝛼,𝑝

𝑞
(R𝑛) = {𝑓 ∈ 𝐿

𝑞

loc (R
𝑛 \ {0}) :

𝑓
�̇�𝛼,𝑝
𝑞

(R𝑛)
< ∞} , (11)

where ‖ 𝑓‖
�̇�
𝛼,𝑝

𝑞
(R𝑛) is defined as

𝑓
�̇�𝛼,𝑝
𝑞

(R𝑛)
= {

∞

∑
𝑘=−∞

2𝑘𝛼𝑝
𝑓𝜒𝑘


𝑝

𝐿
𝑞
(R𝑛)
}

1/𝑝

(12)

with the usual modifications made when 𝑝 = ∞ or 𝑞 = ∞.
Now we show our main results in this section.

Theorem 3. Suppose 𝑚 ≥ 2, Ω ∈ 𝐿𝑟(S𝑛−1) with 1 < 𝑟 < ∞,
and 𝐴 has derivatives of order 𝑚 − 1 in CḂMO𝑝

2 with 𝑛 <
𝑝
2
< ∞. Let 0 < 𝑠 ≤ 𝑝 < ∞, 1 < 𝑞, 𝑝

1
< ∞, 1/𝑞 = 1/𝑝

1
+

1/𝑝
2
− 𝛽/𝑛 with 0 ≤ 𝛽 < 𝑛. If 1/𝑟 − 1/𝑞 − 𝛽/𝑛 > 0, 𝑟 > 𝑝

1
,

𝛼
2
= 𝛼

1
+ 𝑛/𝑝

2
and 𝛼

2
satisfies the following condition:

𝛼
2
+ 𝑛/𝑞 − 𝑛/𝑟 − 1/𝑟 − 𝑛/𝑝

2
+ 𝛽 < 0, (13)

then there exists a constant 𝐶, such that
H

𝑚

Ω,𝐴,𝛽
𝑓
�̇�𝛼1,𝑠
𝑞

≤ 𝐶 ∑
|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2

𝑓
�̇�𝛼2,𝑝
𝑝
1

. (14)

For 𝑚 = 1, H1

Ω,𝐴,𝛽
is just the commutator of Hardy

operator; that is, H1

Ω,𝐴,𝛽
= H𝐴

Ω,𝛽
𝑓(𝑥) = 𝐴(𝑥)H

Ω,𝛽
𝑓(𝑥) −

H
Ω,𝛽
(𝐴𝑓)(𝑥). We have the following theorem of H𝐴

Ω,𝛽
on

Herz type space.
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Theorem 4. Suppose Ω ∈ 𝐿𝑟(S𝑛−1) with 1 < 𝑟 < ∞ and
𝐴 ∈ CḂMO𝑝

2 . Let 0 < 𝑠 ≤ 𝑝 < ∞, 1 < 𝑞, 𝑝
1
, 𝑝

2
< ∞, 1/𝑞 =

1/𝑝
1
+1/𝑝

2
−𝛽/𝑛with 0 ≤ 𝛽 < 𝑛. If 1/𝑟−1/𝑞−𝛽/𝑛 > 0, 𝑟 > 𝑝

1
,

𝛼
2
= 𝛼

1
+𝑛/𝑝

2
, and 𝛼

2
satisfies (13), then there exists a constant

𝐶, such that

H
𝐴

Ω,𝛽
𝑓
�̇�𝛼1,𝑠
𝑞

≤ 𝐶‖𝐴‖CḂMO𝑝2
𝑓
�̇�𝛼2,𝑝
𝑝
1

. (15)

Remark 5. Comparing Theorems 3 and 4, we find that the
restrictions on 𝛼

1
and 𝛼

2
are more rigid in Theorem 4 than

in Theorem 3, which indicates that H𝑚

Ω,𝐴,𝛽
with 𝑚 ≥ 2 has

better properties than the commutators.

In order to proveTheorems 3 and 4, we need the following
lemmas.

Lemma 6 (see [19]). Let 1 < 𝑝
1
, 𝑝

2
< ∞, 0 ≤ 𝛽 < 𝑛, and

𝛽/𝑛 = 1/𝑝
1
− 1/𝑝

2
. If Ω ∈ 𝐿𝑟(S𝑛−1) with 𝑟 > 𝑝

1
, then there

exists a constant 𝐶 independent of 𝑓, such that

HΩ,𝛽
𝑓
𝐿𝑝2 ≤ 𝐶

𝑓
𝐿𝑝1 , (16)

whereH
Ω,𝛽

is defined by

H
Ω,𝛽
𝑓 (𝑥) =

1

|𝑥|𝑛−𝛽
∫
|𝑦|<|𝑥|

Ω(𝑥 − 𝑦)𝑓 (𝑦) 𝑑𝑦. (17)

By checking [19] carefully, one can draw the conclusion that if
one replacesH

Ω,𝛽
𝑓(𝑥) byH

|Ω|,𝛽
|𝑓|(𝑥), then (16) still holds.

Lemma 7. Let 𝑚 ≥ 1, 1 < 𝑝
1
< 𝑝

2
< ∞ and 0 ≤ 𝛽 < 𝑛. If 𝐴

has derivatives of order 𝑚 − 1 in 𝐿𝑟(R𝑛) with 1/𝑝
2
= 1/𝑝

1
+

1/𝑟 − 𝛽/𝑛 and 𝑟 > 𝑝
1
, then one has

H
𝑚

Ω,𝐴,𝛽
𝑓
𝐿𝑝2

≤ 𝐶 ∑
|𝛾|=𝑚−1

𝐷
𝛾𝐴
𝐿𝑟
𝑓
𝐿𝑝1 , (18)

where the constant 𝐶 is independent of 𝑓 and 𝐴.

Proof. From [20, p. 241], we have the following estimates:

𝑅
𝑚
(𝐴; 𝑥, 𝑦)

𝑥 − 𝑦

𝑚−1

≤
𝑅
𝑚−1
(𝐴; 𝑥, 𝑦)

𝑥 − 𝑦

𝑚−1

+ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴 (𝑦)



≤ 𝐶 ∑

|𝛾|=𝑚−1
((𝐷𝛾𝐴)

∗

(𝑥) + (𝐷
𝛾𝐴)

∗

(𝑦)) ,

(19)

where 𝑚 ≥ 1 and (𝑓)∗ is the Hardy-Littlewood maximal
function of 𝑓.

Thus we obtain

H
𝑚

Ω,𝐴,𝛽
𝑓 (𝑥)



=



1

|𝑥|𝑛−𝛽
∫
|𝑦|<|𝑥|

Ω(𝑥 − 𝑦)𝑓 (𝑦)
𝑥 − 𝑦


𝑚−1

𝑅
𝑚
(𝐴; 𝑥, 𝑦) 𝑑𝑦



≤ 𝐶
1

|𝑥|𝑛−𝛽
∫
|𝑦|<|𝑥|

𝑓 (𝑦)

Ω (𝑥 − 𝑦)



× ∑

|𝛾|=𝑚−1
((𝐷𝛾𝐴)

∗

(𝑥) + (𝐷
𝛾𝐴)

∗

(𝑦)) 𝑑𝑦

≤ 𝐶 ∑

|𝛾|=𝑚−1
[(𝐷𝛾𝐴)

∗

(𝑥)H
|Ω|,𝛽

𝑓
 (𝑥)

+H
|Ω|,𝛽

((𝐷𝛾𝐴)
∗ 𝑓
) (𝑥)] .

(20)

By the above estimates, we can get

(∫
R𝑛

H
𝑚

Ω,𝐴,𝛽
𝑓 (𝑥)


𝑞

𝑑𝑥)
1/𝑞

≤ 𝐶 ∑

|𝛾|=𝑚−1
((∫

R𝑛

(𝐷
𝛾𝐴)

∗

(𝑥)H
|Ω|,𝛽

𝑓
 (𝑥)


𝑞

𝑑𝑥)
1/𝑞

+(∫
R𝑛

H|Ω|,𝛽
((𝐷𝛾𝐴)

∗ 𝑓
) (𝑥)


𝑞

)
1/𝑞

)

≤ 𝐶 ∑

|𝛾|=𝑚−1
(𝐼 + 𝐼𝐼) .

(21)

For the term 𝐼, let 1/𝑞 = 1/𝑟 + 1/𝑙 = 1/𝑟 + 1/𝑝−𝛽/𝑛; then
by the Hölder inequality, Lemma 6, and the boundedness of
Hardy-Littlewood maximal function on 𝐿𝑝 spaces, we obtain

𝐼 ≤ (∫
R𝑛
(𝐷𝛾𝐴)

∗

(𝑥)
𝑟𝑑𝑥)

1/𝑟

(∫
R𝑛

H|Ω|,𝛽

𝑓
 (𝑥)


𝑙

𝑑𝑥)
1/𝑙

≤ 𝐶
(𝐷

𝛾𝐴)
∗𝐿𝑟
𝑓
𝐿𝑝

≤ 𝐶
𝐷

𝛾𝐴
𝐿𝑟
𝑓
𝐿𝑝 .

(22)

For the term 𝐼𝐼, let 1/𝑞 = 1/𝑡 − 𝛽/𝑛 = 1/𝑟 + 1/𝑝 − 𝛽/𝑛;
then by the Hölder inequality and Lemma 6, we have

𝐼𝐼 ≤ 𝐶(∫
R𝑛

(𝐷
𝛾𝐴)

∗

(𝑥) 𝑓 (𝑥)

𝑡

𝑑𝑥)
1/𝑡

≤ 𝐶
(𝐷

𝛾𝐴)
∗𝐿𝑟
𝑓
𝐿𝑝

≤ 𝐶
𝐷

𝛾𝐴
𝐿𝑟
𝑓
𝐿𝑝 .

(23)

Combining the estimates of 𝐼 and 𝐼𝐼, we finish the proof of
Lemma 7.
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Lemma 8 (see [4]). Let 𝑏 be a function on R𝑛 with𝑚th order
derivatives in 𝐿𝑞loc(R

𝑛) for some 𝑞 > 𝑛. Then

𝑅𝑚 (𝑏; 𝑥, 𝑦)
 ≤ 𝐶𝑚,𝑛

𝑥 − 𝑦

𝑚

× ∑
|𝛾|=𝑚

(
1

𝑄 (𝑥, 𝑦)


∫
̃
𝑄(𝑥,𝑦)

𝐷
𝛾𝑏 (𝑧)


𝑞

𝑑𝑧)

1/𝑞

,

(24)

where 𝑄(𝑥, 𝑦) is the cube centered at 𝑥 having diameter
5√𝑛|𝑥 − 𝑦|.

Lemma 9 (see [5]). Suppose that 𝑓 ∈ CḂMO𝑞(R𝑛), 1 ≤ 𝑞 <
∞, and 𝑟

1
, 𝑟
2
> 0; then

(
1

𝐵 (0, 𝑟1)

∫
𝐵(0,𝑟
1
)

𝑓 (𝑥) − 𝑓𝐵(0,𝑟2)

𝑞

𝑑𝑥)

1/𝑞

≤ 𝐶(1 +

log(𝑟1

𝑟
2

)

)
𝑓
CḂMO𝑞 .

(25)

Proof of Theorem 3. To proveTheorem 3, first we split each 𝑓
as

𝑓 (𝑥) =
+∞

∑
𝑖=−∞

𝑓 (𝑥) 𝜒
𝑖
(𝑥) =

+∞

∑
𝑖=−∞

𝑓
𝑖
(𝑥) ; (26)

then we have
H

𝑚

Ω,𝐴,𝛽
𝑓𝜒

𝑘


𝑞

𝐿
𝑞

= ∫
𝐶
𝑘

(∫
𝐵(0,|𝑥|)

𝑓 (𝑦)

Ω (𝑥 − 𝑦)


𝑥 − 𝑦


𝑚−1

𝑅
𝑚
(𝐴; 𝑥, 𝑦) 𝑑𝑦)

𝑞

× |𝑥|
(𝛽−𝑛)𝑞𝑑𝑥

≤ ∫
𝐶
𝑘

(
𝑘

∑
𝑖=−∞

∫
𝐶
𝑖

Ω (𝑥 − 𝑦)𝑓 (𝑦)


𝑥 − 𝑦

𝑚−1

𝑅
𝑚
(𝐴; 𝑥, 𝑦) 𝑑𝑦)

𝑞

× |𝑥|
(𝛽−𝑛)𝑞𝑑𝑥

≤ 𝐶∫
𝐶
𝑘

(
𝑘−3

∑
𝑖=−∞

∫
𝐶
𝑖

Ω (𝑥 − 𝑦)𝑓 (𝑦)


𝑥 − 𝑦

𝑚−1

𝑅
𝑚
(𝐴; 𝑥, 𝑦) 𝑑𝑦)

𝑞

× |𝑥|
(𝛽−𝑛)𝑞𝑑𝑥

+ 𝐶∫
𝐶
𝑘

(
𝑘

∑
𝑖=𝑘−2

∫
𝐶
𝑖

Ω (𝑥 − 𝑦)𝑓 (𝑦)


𝑥 − 𝑦

𝑚−1

𝑅
𝑚
(𝐴; 𝑥, 𝑦) 𝑑𝑦)

𝑞

× |𝑥|
(𝛽−𝑛)𝑞𝑑𝑥

= 𝐶 (𝐼
1
+ 𝐼

2
) .

(27)

For the term 𝐼
1
, we denote 𝐴

𝑘
(𝑥) = 𝐴(𝑥) −

∑
|𝛾|=𝑚−1

(1/𝛾!)𝑚
𝐵
𝑘

(𝐷𝛾𝐴)𝑥𝛾; then it is easy to check
𝑅
𝑚
(𝐴; 𝑥, 𝑦) = 𝑅

𝑚
(𝐴

𝑘
; 𝑥, 𝑦). By the fact that 𝑥 ∈ 𝐶

𝑘
,

𝑦 ∈ 𝐶
𝑖
with 𝑖 ≤ 𝑘 − 3, we have |𝑥 − 𝑦| ∼ |𝑥| ∼ 2𝑘. As 𝑝

2
> 𝑛,

then by Lemmas 8 and 9, we obtain

𝑅𝑚 (𝐴𝑘
; 𝑥, 𝑦)



≤
𝑅𝑚−1 (𝐴𝑘

; 𝑥, 𝑦)
 + ∑

|𝛾|=𝑚−1

1

𝛾!

𝐷
𝛾𝐴

𝑘
(𝑥)

𝑥 − 𝑦


𝑚−1

≤ 𝐶
𝑥 − 𝑦


𝑚−1

∑

|𝛾|=𝑚−1
{(

1
𝑄 (𝑥, 𝑦)



× ∫
̃
𝑄(𝑥,𝑦)

𝐷
𝛾𝐴

𝑘
(𝑧)

𝑝
2𝑑𝑧)

1/𝑝
2

+
𝐷

𝛾𝐴
𝑘
(𝑦)
 }

≤ 𝐶
𝑥 − 𝑦


𝑚−1

∑

|𝛾|=𝑚−1
(
𝐷

𝛾𝐴
CḂMO𝑝2 +

𝐷
𝛾𝐴

𝑘
(𝑦)
) .

(28)

As |𝑥 − 𝑦| ∼ |𝑥| ∼ 2𝑘 and 1 − 1/𝑝
1
− 1/𝑝

2
− 1/𝑟 = 1/𝑟 − 1/𝑞 −

𝛽/𝑛 > 0, then by the Hölder inequality, we have

𝐼
1
≤ 𝐶∫

𝐶
𝑘

(
𝑘−3

∑
𝑖=−∞

∫
𝐶
𝑖

Ω (𝑥 − 𝑦)𝑓 (𝑦)


× ∑

|𝛾|=𝑚−1
(
𝐷

𝛾𝐴
CḂMO𝑝2 +

𝐷
𝛾𝐴

𝑘
(𝑦)
) 𝑑𝑦)

𝑞

× |𝑥|
(𝛽−𝑛)𝑞𝑑𝑥

≤ 𝐶2−𝑘(𝑛−𝛽)𝑞 ∫
𝐶
𝑘

(
𝑘−3

∑
𝑖=−∞

∫
𝐶
𝑖

𝑓 (𝑦)

Ω (𝑥 − 𝑦)



× ∑

|𝛾|=𝑚−1
(
𝐷

𝛾𝐴
CḂMO𝑝2

+
𝐷

𝛾𝐴
𝑘
(𝑦)
 ) 𝑑𝑦)

𝑞

𝑑𝑥

≤ 𝐶2−𝑘(𝑛−𝛽)𝑞 ∫
𝐶
𝑘

𝑘−3

∑
𝑖=−∞

(∫
𝐶
𝑖

𝑓 (𝑦)

𝑝
1𝑑𝑦)

𝑞/𝑝
1

× (∫
𝐶
𝑖

Ω (𝑥 − 𝑦)

𝑟

𝑑𝑦)
𝑞/𝑟

× ( ∑

|𝛾|=𝑚−1
∫
𝐶
𝑖

(
𝐷

𝛾𝐴
CḂMO𝑝2 +

𝐷
𝛾𝐴

𝑘
(𝑦)
)
𝑝
2𝑑𝑦)

𝑞/𝑝
2

×
𝐶𝑖

𝑞(1−1/𝑝

1
−1/𝑝
2
−1/𝑟)

𝑑𝑥.

(29)
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As

(∫
𝐶
𝑖

(
𝐷

𝛾𝐴
CḂMO𝑝2 +

𝐷
𝛾𝐴

𝑘
(𝑦)
)
𝑝
2𝑑𝑦)

1/𝑝
2

≤ (∫
𝐶
𝑖

(
𝐷

𝛾𝐴
CḂMO𝑝2

+
𝐷

𝛾𝐴
𝑘
(𝑦) − 𝑚

𝐵
𝑘

(𝐷𝛾𝐴) (𝑦)
)
𝑝
2

𝑑𝑦)
1/𝑝
2

≤ 𝐶
𝐷

𝛾𝐴
CḂMO𝑝2

𝐶𝑖
 |𝑘 − 𝑖| ,

∫
𝐶
𝑖

Ω (𝑥 − 𝑦)

𝑟

𝑑𝑦

≤ ∫
|𝑥|+2
𝑖

|𝑥|−2
𝑖

∫
S𝑛−1

Ω (𝑦
)

𝑟

𝑑𝜎 (𝑦) 𝑟𝑛−1𝑑𝑟 ≤ 𝐶2𝑘𝑛−𝑘+𝑖,

(30)

we obtain the following estimates:

𝐼
1
≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑞

CḂMO𝑝2 |𝑘 − 𝑖|
𝑞2−𝑘𝑛𝑞+𝑘𝛽𝑞

× 2𝑖𝑛(1−1/𝑝1 −1/𝑝2 −1/𝑟)𝑞

× 2((𝑘(𝑛−1)+𝑖)/𝑟)𝑞+(𝑖𝑛/𝑝2) 𝑞

× ∫
𝐶
𝑘

𝑘−3

∑
𝑖=−∞

𝑓𝑖

𝑞

𝐿
𝑝
1
𝑑𝑥

≤ 𝐶
𝑘−3

∑
𝑖=−∞

( |𝑘 − 𝑖| 2
𝑖𝑛(1−1/𝑝

1
−1/𝑝
2
−1/𝑟)

× 2−𝑘𝑛+𝑘𝛽+(𝑘(𝑛−1)+𝑖)/𝑟+𝑖𝑛/𝑝2 +𝑘𝑛/𝑞

×
𝑓𝑖
𝐿𝑝1 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2)

𝑞

.

(31)

For the term 𝐼
2
, we choose 𝜙 ∈ 𝐶∞

0
(R𝑛) satisfying

supp𝜙 ⊂ 𝐵(0, 4) as well as 𝜙 ≡ 1 in 𝐵(0, 2) and we set
𝐿 = max{‖𝐷𝛾𝜙‖

𝐿
∞ , |𝛾| ≤ 𝑚 − 1}. Let 𝑦

0
∈ 𝐵

𝑘+4
and

𝐴
𝜙

𝑘
(𝑥) = 𝑅

𝑚−1
(𝐴

𝑘
; 𝑥, 𝑦

0
)𝜙(2−𝑘𝑥). Then it is easy to see that

𝑅
𝑚
(𝐴; 𝑥, 𝑦) = 𝑅

𝑚
(𝐴

𝜙

𝑘
; 𝑥, 𝑦) = 𝑅

𝑚
(𝐴

𝑘
; 𝑥, 𝑦) for 𝑥 ∈ 𝐵

𝑘
and

𝑦 ∈ 𝐵
𝑖
with 𝑘 − 2 ≤ 𝑖 ≤ 𝑘. Thus we get

H
𝑚

Ω,𝐴,𝛽
𝑓
𝑖
(𝑥) =H

𝑚

Ω,𝐴
𝜙

𝑘
,𝛽

𝑓
𝑖
(𝑥) =H

𝑚

Ω,𝐴
𝑘
,𝛽
𝑓
𝑖
(𝑥) . (32)

Thus by Lemma 7, we have

𝐼
2
≤ 𝐶

𝑘

∑
𝑖=𝑘−2

∫
𝐶
𝑘

(
1

|𝑥|𝑛−𝛽
∫
|𝑦|<|𝑥|

Ω (𝑥 − 𝑦)𝑓𝑖 (𝑦)


𝑥 − 𝑦

𝑚−1

×𝑅
𝑚
(𝐴

𝜙

𝑘
; 𝑥, 𝑦) 𝑑𝑦)

𝑞

𝑑𝑥

≤ 𝐶
𝑘

∑
𝑖=𝑘−2


H

𝑚

Ω,𝐴
𝜙

𝑘
,𝛽

𝑓
𝑖



𝑞

𝐿
𝑞

≤ 𝐶
𝑘

∑
𝑖=𝑘−2

𝑓𝑖

𝑞

𝐿
𝑝
1
∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝜙

𝑘


𝑞

𝐿
𝑝
2

.

(33)

From [5, p.80], we have the following estimates:

𝐷
𝛾𝐴

𝜙

𝑘

𝐿𝑝2 ≤ 𝐶2
𝑘𝑛/𝑝
2 ∑
|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2 , (34)

where 𝐶 is dependent on 𝐿. Thus we get

𝐼
2
≤ 𝐶

𝑘

∑
𝑖=𝑘−2

𝑓𝑖

𝑞

𝐿
𝑝
1
2𝑘𝑛𝑞/𝑝2 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑞

CḂMO𝑝2 . (35)

As 0 < 𝑠 ≤ 𝑝 < ∞, we obtain the following estimates:

{
+∞

∑
𝑘=−∞

2𝑘𝛼1𝑠 ‖H𝑚

Ω,𝐴,𝛽
𝑓𝜒

𝑘
‖𝑠
𝐿
𝑞}

1/𝑠

≤ {
+∞

∑
𝑘=−∞

2𝑘𝛼1𝑝
H

𝑚

Ω,𝐴,𝛽
𝑓𝜒

𝑘


𝑝

𝐿
𝑞
}

1/𝑝

≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2

× {
+∞

∑
𝑘=−∞

2𝑘𝛼1𝑝

×
𝑘−3

∑
𝑖=−∞

(|𝑘 − 𝑖| 2
𝑖𝑛(1−1/𝑝

1
−1/𝑝
2
−1/𝑟)𝑓𝑖

𝐿𝑝1

×2−𝑘𝑛+𝑘𝛽+(𝑘(𝑛−1)+𝑖)/𝑟+𝑖𝑛/𝑝2)+𝑘𝑛/𝑞)
𝑝

}

1/𝑝

+ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2

×{
+∞

∑
𝑘=−∞

2𝑘𝛼1𝑝
𝑘

∑
𝑖=𝑘−2

𝑓𝑖

𝑝

𝐿
𝑝
1
2(𝑘𝑛/𝑝2) 𝑝}

1/𝑝

= 𝐶 (𝐴 + 𝐵) .

(36)
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For the term 𝐴, we have

𝐴

= ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2

× {
+∞

∑
𝑘=−∞

2𝑘𝛼1𝑝

×
𝑘−3

∑
𝑖=−∞

(|𝑘 − 𝑖| 2
𝑖𝑛(1−1/𝑝

1
−1/𝑝
2
−1/𝑟)2−𝑘𝑛+𝑘𝛽

× 2(𝑘(𝑛−1)+𝑖)/𝑟+𝑖𝑛/𝑝2+𝑘𝑛/𝑞 ‖ 𝑓
𝑖
‖
𝐿
𝑝
1
)
𝑝

}

1/𝑝

≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2

× {
+∞

∑
𝑘=−∞

𝑘−3

∑
𝑖=−∞

(|𝑘 − 𝑖| 2
(𝑘−𝑖)(𝑛/𝑞−𝑛/𝑟



+𝛽−1/𝑟−𝑛/𝑝
2
)

× 2(𝑘−𝑖)(𝛼1+𝑛/𝑝2)

×2𝑖(𝛼1+𝑛/𝑝2)
𝑓𝑖
𝐿𝑝1 )

𝑝

}

1/𝑝

.

(37)

When 0 < 𝑝 ≤ 1, by condition (13), we get

𝐴𝑝 ≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑝

CḂMO𝑝2

×
+∞

∑
𝑘=−∞

(
𝑘−3

∑
𝑖=−∞

2(𝑘−𝑖)(𝑛/𝑞−𝑛/𝑟


−1/𝑟−𝑛/𝑝
2
+𝛽)

× 2(𝑘−𝑖)(𝛼1+𝑛/𝑝2)

× |𝑘 − 𝑖| 2
𝑖(𝛼
1
+𝑛/𝑝
2
)𝑓𝑖
𝐿𝑝1)

𝑝

≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑝

CḂMO𝑝2

×
+∞

∑
𝑘=−∞

2𝑖𝛼2𝑝(
𝑘−3

∑
𝑖=−∞

|𝑘 − 𝑖|

× 2(𝑘−𝑖)(𝑛/𝑞−𝑛/𝑟


−1/𝑟−𝑛/𝑝
2
+𝛽+𝛼

2
)

×
𝑓𝑖
𝐿𝑝1)

𝑝

≤ 𝐶 ∑
|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑝

CḂMO𝑝2
𝑓

𝑝

�̇�
𝛼
2
,𝑝

𝑝
1

.

(38)

When 𝑝 ≥ 1, by the Hölder inequality and condition (13), we
have

𝐴𝑝

≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑝

CḂMO𝑝2

×
+∞

∑
𝑘=−∞

2𝑘𝛼1𝑝(
𝑘−3

∑
𝑖=−∞

|𝑘 − 𝑖|

× 2(𝑘−𝑖)(𝑛/𝑞−𝑛/𝑟


−1/𝑟−𝑛/𝑝
2
+𝛽)

×2𝑘𝑛/𝑝2
𝑓𝑖
𝐿𝑝1)

𝑝

≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑝

CḂMO𝑝2

×
+∞

∑
𝑘=−∞

(
𝑘−3

∑
𝑖=−∞

|𝑘 − 𝑖| 2
𝑘𝛼
12(𝑘−𝑖)(𝑛/𝑞−𝑛/𝑟



−1/𝑟−𝑛/𝑝
2
+𝛽)

×2𝑘𝑛/𝑝2
𝑓𝑖
𝐿𝑝1)

𝑝

≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑝

CḂMO𝑝2

×
+∞

∑
𝑘=−∞

(
𝑘−3

∑
𝑖=−∞

|𝑘 − 𝑖| 2
𝑖𝛼
22(𝑘−𝑖)(𝑛/𝑞−𝑛/𝑟



−1/𝑟−𝑛/𝑝
2
+𝛽+𝛼

2
)

×
𝑓𝑖
𝐿𝑝1)

𝑝

≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑝

CḂMO𝑝2

×
+∞

∑
𝑘=−∞

𝑘−3

∑
𝑖=−∞

2𝑖𝛼2𝑝
𝑓𝑖

𝑝

𝐿
𝑝
1
2𝑝(𝑘−𝑖)(𝑛/𝑞−𝑛/𝑟



−1/𝑟−𝑛/𝑝
2
+𝛽+𝛼

2
)/𝑝

× (
𝑘−3

∑
𝑖=−∞

|𝑘 − 𝑖|
𝑝


2((𝑘−𝑖)/𝑝


)(𝑛/𝑞−𝑛/𝑟


−1/𝑟−𝑛/𝑝
2
+𝛽+𝛼

2
)𝑝


)

𝑝/𝑝


≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑝

CḂMO𝑝2

×
+∞

∑
𝑖=−∞

∞

∑
𝑘=𝑖+3

2𝑖𝑝(𝛼1+𝑛/𝑝2)2(𝑘−𝑖)(𝑛/𝑞−𝑛/𝑟


−1/𝑟−𝑛/𝑝
2
+𝛽+𝛼

2
)𝑓𝑖
𝐿𝑝1

× (
𝑘−3

∑
𝑖=−∞

|𝑘 − 𝑖|
𝑝


2(𝑘−𝑖)(𝑛/𝑞−𝑛/𝑟


−1/𝑟−𝑛/𝑝
2
+𝛽+𝛼

2
))

𝑝/𝑝
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≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑝

CḂMO𝑝2

+∞

∑
𝑖=−∞

2𝑖𝛼2𝑝
𝑓𝑖

𝑝

𝐿
𝑝
1

≤ 𝐶 ∑
|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑝

CḂMO𝑝2
𝑓

𝑝

�̇�
𝛼
2
,𝑝

𝑝
1

.

(39)

For the term 𝐵, we have the following estimates:

𝐵 ≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2{

+∞

∑
𝑘=−∞

2𝑘𝛼1𝑝
𝑘

∑
𝑖=𝑘−2

2𝑘𝑛𝑝/𝑝2
𝑓𝑖

𝑝

𝐿
𝑝
1
}

1/𝑝

≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2(

+∞

∑
𝑖=−∞

2𝑖𝛼2𝑝
𝑓𝑖

𝑝

𝐿
𝑝
1
)

1/𝑝

≤ 𝐶 ∑
|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2

𝑓
�̇�𝛼2,𝑝
𝑝
1

.

(40)

Combining the estimates of 𝐴 and 𝐵, we finish the proof of
Theorem 3.

Proof of Theorem 4. The proof of Theorem 4 is quite similar
andmuch easier thanTheorem 3 andwe omit the details here.

3. Boundedness of H𝑚

Ω,𝐴,𝛽
on 𝜆-Central Morrey

Spaces

In [21], Wiener gave a way to describe the behavior of a
function at the infinity. Later, Beurling [22] extendedWeiner’s
idea and introduced a pair of dual Banach spaces,𝐴𝑞 and 𝐵𝑞



,
with 1/𝑞 + 1/𝑞 = 1. In [23], Feichtinger proved that 𝐵𝑞 can
be described as

𝑓
𝐵𝑞 = sup

𝑘≥0

(2−𝑘𝑛/𝑞
𝑓𝜒𝑘

𝐿𝑞) < ∞, (41)

where 𝜒
0
is the characterization of the unit ball {𝑥 ∈ R𝑛 :

|𝑥| ≤ 1} and 𝜒
𝑘
is defined as in Section 2.

Now by duality, the space𝐴𝑞, which is called the Beurling
algebra, can be described by

𝑓
𝐴𝑞 =

∞

∑
𝑘=0

2𝑘𝑛/𝑞
𝑓𝜒𝑘

𝐿𝑞 < ∞. (42)

Later, Chen and Lau [24] as well as Garćıa-Cuerva
[25] introduced atomic spaces 𝐻𝐴𝑞(R𝑛) associated with the
Buerling algebra 𝐴𝑞 and the dual space of 𝐻𝐴𝑞(R𝑛) can be
described by

𝑓
CBMO𝑞

:= sup
𝑅≥1

(
1

|𝐵 (0, 𝑅)|
∫
𝐵(0,𝑅)

𝑓 (𝑥) − 𝑓𝐵(0,𝑅)

𝑞

𝑑𝑥)
1/𝑞

< ∞;

(43)

here the CBMO𝑞 can be regarded as the inhomogeneous
central BMO spaces.

In 2000, Alvarez et al. [26] introduced the 𝜆-Central
boundedmean oscillation space and 𝜆-CentralMorrey space,
respectively.

Definition 10 (see [26]). Given 𝜆 < 1/𝑛, 1 < 𝑞 < ∞, then
a function 𝑓 ∈ 𝐿𝑞loc(R

𝑛) is said to belong to the 𝜆-Central
bounded mean oscillation space CḂMO𝑞,𝜆(R𝑛) if
𝑓
CḂMO𝑞,𝜆

:= sup
𝑅>0

(
1

|𝐵 (0, 𝑅)|1+𝜆𝑞
∫
𝐵(0,𝑅)

𝑓 (𝑥) − 𝑓𝐵(0,𝑅)

𝑞

𝑑𝑥)

1/𝑞

< ∞.

(44)

Definition 11 (see [26]). Let 𝜆 ∈ R and 1 < 𝑞 < ∞. Then the
𝜆-Central Morrey space �̇�𝑞,𝜆(R𝑛) is defined by

𝑓
�̇�𝑞,𝜆 = sup

𝑅>0

(
1

|𝐵 (0, 𝑅)|1+𝜆𝑞
∫
𝐵(0,𝑅)

𝑓 (𝑥)

𝑞

𝑑𝑥)

1/𝑞

< ∞.

(45)

From [27], we know that if 1 < 𝑞
1
< 𝑞

2
< ∞, we obtain

�̇�𝑞2 ,𝜆 ⊂ �̇�𝑞1 ,𝜆 for 𝜆 ∈ 𝑅 and CḂMO𝑞
2
,𝜆 ⊂ CḂMO𝑞

1
,𝜆 for 𝜆 <

1/𝑛. Furthermore, when 𝜆 < −1/𝑞, �̇�𝑞,𝜆 reduces to {0} and
CḂMO𝑞,𝜆 reduces to the space of constant functions. When
𝜆 = −1/𝑞, CḂMO𝑞,𝜆 coincides with 𝐿𝑞(R𝑛)modulo constant
and �̇�𝑞,𝜆 = 𝐿𝑞.

In 2011, Fu et al. [19] proved the boundedness of the
commutator of fractional Hardy operator with a rough kernel
on 𝜆-Central Morrey space. Later, Fu et al. [28] proved
the boundness of the weighted Hardy operator and its
commutator on𝜆-CentralMorrey space. In this paper, wewill
give the boundedness of H𝑚

Ω,𝐴,𝛽
on 𝜆-Central Morrey space

with𝑚 ≥ 1.
Our results can be stated as follows.

Theorem 12. Suppose 𝑚 ≥ 2, 𝑛 < 𝑝
2
< ∞, 1 < 𝑝

1
< ∞,

1/𝑞 = 1/𝑝
1
+1/𝑝

2
−𝛽/𝑛with 0 ≤ 𝛽 < 𝑛 and 𝜆 = 𝜆

1
+𝜆

2
+𝛽/𝑛.

LetΩ ∈ 𝐿𝑟(S𝑛−1)with 1/𝑟 > 𝛽/𝑛+1/𝑞, and𝐴 has derivatives
of order 𝑚 − 1 in CḂMO𝑝

2
,𝜆
2 . If 𝑟 > 𝑝

1
, 𝜆

1
> −1/𝑝

1
, and

𝑞𝜆 + 1 > 0, then one has
H

𝑚

Ω,𝐴,𝛽
𝑓
�̇�𝑞,𝜆

≤ 𝐶 ∑
|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2,𝜆2

𝑓
�̇�𝑝1,𝜆1 , (46)

where the constant 𝐶 is independent of 𝑓 and 𝐴.

For the case𝑚 = 1, we have the following theorem.

Theorem 13. Suppose 1 < 𝑝
1
, 𝑝

2
< ∞, 1/𝑞 = 1/𝑝

1
+ 1/𝑝

2
−

𝛽/𝑛 with 0 ≤ 𝛽 < 𝑛 and 𝜆 = 𝜆
1
+ 𝜆

2
+ 𝛽/𝑛. Let Ω ∈ 𝐿𝑟(S𝑛−1)

with 1/𝑟 > 𝛽/𝑛+1/𝑞 and𝐴 ∈ CḂMO𝑝
2
,𝜆
2 . If 𝜆

1
> −1/𝑝

1
, 𝑟 >

𝑝
1
, and 𝑞𝜆 + 1 > 0, then one has

H
𝐴

Ω,𝛽
𝑓
�̇�𝑞,𝜆

≤ 𝐶‖𝐴‖CḂMO𝑝2,𝜆2
𝑓
�̇�𝑝1,𝜆1 , (47)

where the constant 𝐶 is independent of 𝑓 and 𝐴.
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In order to prove Theorems 12 and 13, by a standard
argument, we have the following lemma.

Lemma 14 (see [16]). Suppose 𝑓 ∈ CḂMO𝑝,𝜆, 1 ≤ 𝑝 < ∞,
𝜆 < 1/𝑛, and 𝑟

1
, 𝑟
2
∈ 𝑅+; then

(
1

𝐵 (0, 𝑟1)

1+𝑝𝜆

∫
𝐵(0,𝑟
1
)

𝑓 (𝑥) − 𝑓𝐵(0,𝑟2)

𝑝

𝑑𝑥)

1/𝑝

≤ 𝐶(1 +

log 𝑟1
𝑟
2


)
𝑓
CḂMO𝑝,𝜆 .

(48)

Proof of Theorem 12. For any 𝑅 > 0, we denote 𝐵(0, 𝑅) by 𝐵
and𝐵(0, 𝑘𝑅) by 𝑘𝐵 for any 𝑘 ∈ 𝑍+.Thuswe have the following
estimates:

1

|𝐵|
∫
𝐵

H
𝑚

Ω,𝐴,𝛽
𝑓 (𝑥)


𝑞

𝑑𝑥

≤
1

|𝐵|
∫
𝐵



1

|𝑥|𝑛−𝛽
∫
𝐵(0,|𝑥|)

Ω (𝑥 − 𝑦)𝑓 (𝑦)


𝑥 − 𝑦

𝑚−1

×
𝑅𝑚 (𝐴; 𝑥, 𝑦)

 𝑑𝑦



𝑞

𝑑𝑥

=
1

|𝐵|

0

∑
𝑘=−∞

∫
2
𝑘
𝐵\2
𝑘−1

𝐵



1

|𝑥|𝑛−𝛽

𝑘

∑
𝑖=−∞

∫
2
𝑖
𝐵\2
𝑖−1
𝐵

Ω (𝑥 − 𝑦)𝑓 (𝑦)


𝑥 − 𝑦

𝑚−1

×
𝑅𝑚 (𝐴; 𝑥, 𝑦)

 𝑑𝑦



𝑞

𝑑𝑥

≤
1

|𝐵|

0

∑
𝑘=−∞

∫
2
𝑘
𝐵\2
𝑘−1

𝐵



1

|𝑥|𝑛−𝛽

𝑘−3

∑
𝑖=−∞

∫
2
𝑖
𝐵\2
𝑖−1
𝐵

Ω (𝑥 − 𝑦)𝑓 (𝑦)


𝑥 − 𝑦

𝑚−1

×
𝑅𝑚 (𝐴; 𝑥, 𝑦)

 𝑑𝑦



𝑞

𝑑𝑥

+
1

|𝐵|

×
0

∑
𝑘=−∞

∫
2
𝑘
𝐵\2
𝑘−1

𝐵



1

|𝑥|𝑛−𝛽

𝑘

∑
𝑖=𝑘−2

∫
2
𝑖
𝐵\2
𝑖−1
𝐵

Ω (𝑥 − 𝑦)𝑓 (𝑦)


𝑥 − 𝑦

𝑚−1

×
𝑅𝑚 (𝐴; 𝑥, 𝑦)

 𝑑𝑦



𝑞

𝑑𝑥

= 𝐼 + 𝐼𝐼.

(49)

For the term 𝐼, let 𝐴(𝑥) = 𝐴(𝑥) −
∑
|𝛾|=𝑚−1

(1/𝛾!)𝑚
2
𝑘
𝐵
(𝐷𝛾𝐴)𝑥𝛾. Then it is easy to see

𝑅
𝑚
(𝐴; 𝑥, 𝑦) = 𝑅

𝑚
(𝐴; 𝑥, 𝑦). As 𝑝

2
> 𝑛, then by Lemmas

8 and 9, we have

𝑅𝑚 (𝐴; 𝑥, 𝑦)
 ≤
𝑅𝑚−1 (𝐴; 𝑥, 𝑦)



+ ∑

|𝛾|=𝑚−1

1

𝛾!

𝐷
𝛾𝐴 (𝑦)


𝑥 − 𝑦


𝑚−1

≤ 𝐶
𝑥 − 𝑦


𝑚−1

∑

|𝛾|=𝑚−1
[
𝑄

𝜆
2𝐷

𝛾𝐴
CḂMO𝑝2,𝜆2

+
𝐷

𝛾 (𝐴) (𝑦)
 ] ,

(50)

where 𝑄(𝑥, 𝑦) is the cube centered at 𝑥 and having diameter
5√𝑛|𝑥 − 𝑦|.

As 𝑥 ∈ 2𝑘𝐵 \ 2𝑘−1𝐵 and 𝑦 ∈ 2𝑖𝐵 \ 2𝑖−1𝐵 with 𝑖 ≤ 𝑘 − 3, we
have |𝑥 − 𝑦| ∼ |𝑥| ∼ |2𝑘𝐵|1/𝑛 and |𝑥 − 𝑦| ≥ 𝐶

1
|2𝑖𝐵|1/𝑛.

Thus by theHölder inequality and the condition 1−1/𝑝
1
−

1/𝑝
2
− 1/𝑟 = 1/𝑟 − 𝛽/𝑛 − 1/𝑞 > 0, we have

𝐼 ≤ 𝐶|𝐵|
−1

×
0

∑
𝑘=−∞

∫
2
𝑘
𝐵\2
𝑘−1

𝐵



1

|𝑥|𝑛−𝛽

×
𝑘−3

∑
𝑖=−∞

∫
2
𝑖
𝐵\2
𝑖−1
𝐵

Ω (𝑥 − 𝑦)𝑓 (𝑦)


𝑥 − 𝑦

𝑚−1

×
𝑥 − 𝑦


𝑚−1

× ∑
|𝛾|=𝑚−1

(
𝑄

𝜆
2𝐷

𝛾𝐴
CḂMO𝑝2,𝜆2

+
𝐷

𝛾𝐴 (𝑦)
 ) 𝑑𝑦



𝑞

𝑑𝑥

≤ 𝐶|𝐵|
−1

×
0

∑
𝑘=−∞

∫
2
𝑘
𝐵\2
𝑘−1

𝐵



1

|𝑥|𝑛−𝛽

×
𝑘−3

∑
𝑖=−∞

∫
2
𝑖
𝐵\2
𝑖−1
𝐵

Ω (𝑥 − 𝑦)𝑓 (𝑦)


× ∑
|𝛾|=𝑚−1

(
𝑄

𝜆
2

×
𝐷

𝛾𝐴
CḂMO𝑝2,𝜆2

+
𝐷

𝛾𝐴 (𝑦)
 ) 𝑑𝑦



𝑞

𝑑𝑥
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≤ 𝐶|𝐵|
−1

×
0

∑
𝑘=−∞

∫
2
𝑘
𝐵\2
𝑘−1

𝐵

1

|𝑥|(𝑛−𝛽)𝑞

×



𝑘−3

∑
𝑖=−∞

(∫
2
𝑖
𝐵\2
𝑖−1
𝐵

Ω (𝑥 − 𝑦)

𝑟

𝑑𝑦)
1/𝑟

× (∫
2
𝑖
𝐵\2
𝑖−1
𝐵

∑

|𝛾|=𝑚−1
(
𝑥 − 𝑦


𝜆
2
𝑛

×
𝐷

𝛾𝐴
CḂMO𝑝2,𝜆2

+
𝐷

𝛾𝐴 (𝑦)
 )

𝑝
2

𝑑𝑦)

1/𝑝
2

×(∫
2
𝑖
𝐵\2
𝑖−1
𝐵

𝑓 (𝑦)

𝑝
1𝑑𝑦)

1/𝑝
1

×
2
𝑖𝐵

1−1/𝑝

1
−1/𝑝
2
−1/𝑟



𝑞

𝑑𝑥.

(51)

Note the following fact:

(∫
2
𝑖
𝐵\2
𝑖−1
𝐵

∑

|𝛾|=𝑚−1
(
𝑥 − 𝑦


𝜆
2
𝑛𝐷

𝛾𝐴
CḂMO𝑝2,𝜆2

+
𝐷

𝛾𝐴 (𝑦)
 )

𝑝
2

𝑑𝑦)

1/𝑝
2

≤ 𝐶 ∑
|𝛾|=𝑚−1

[
𝐷

𝛾𝐴
CḂMO𝑝2,𝜆2

2
𝑘𝐵

𝜆
2 2

𝑖𝐵

1/𝑝
2

+(∫
2
𝑖
𝐵

𝐷
𝛾𝐴 (𝑦) − 𝑚̃

𝑄
(𝐷𝛾𝐴)


𝑝
2

𝑑𝑦)
1/𝑝
2

]

≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2,𝜆2

2
𝑖𝐵

1/𝑝
2

(
2
𝑘𝐵

𝜆
2

+
2
𝑖𝐵

𝜆
2

) ,

(52)

where the last inequality follows from Lemma 14 and the fact
|𝑥 − 𝑦| ≥ 𝐶

1
|2𝑖𝐵|1/𝑛. Thus by the condition 1 + 𝑞𝜆 > 0 and

𝜆
1
+ 1 > 𝜆

1
+ 1/𝑝

1
> 0, we have

𝐼 ≤ 𝐶|𝐵|
−1

×
0

∑
𝑘=−∞

2
𝑘𝐵

(𝛽/𝑛−1)𝑞

× ∫
2
𝑘
𝐵\2
𝑘−1

𝐵

(
𝑘−3

∑
𝑖=−∞

𝑓
�̇�𝑝1,𝜆1

2
𝑖𝐵

1/𝑝
1
+𝜆
1 2

𝑖𝐵

1/𝑟

× ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2,𝜆2

2
𝑖𝐵

1/𝑝
2

× (
2
𝑘𝐵

𝜆
2

+
2
𝑖𝐵

𝜆
2

)

×
2
𝑖𝐵

1−1/𝑝

1
−1/𝑝
2
−1/𝑟

)

𝑞

𝑑𝑥

≤ 𝐶
𝑓

𝑞

�̇�
𝑝
1
,𝜆
1

∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑞

CḂMO𝑝2,𝜆2 |𝐵|
−1

×
0

∑
𝑘=−∞

2
𝑘𝐵

(𝛽/𝑛−1)𝑞 2

𝑘𝐵

2
𝑘𝐵

𝜆
2
𝑞

× (
𝑘−3

∑
𝑖=−∞

2
𝑖𝐵

1/𝑝
1
+𝜆
1

×
2
𝑖𝐵

1/𝑝
2 2

𝑖𝐵

1/𝑟2

𝑖𝐵

1−1/𝑝

1
−1/𝑝
2
−1/𝑟

)

𝑞

≤ 𝐶
𝑓

𝑞

�̇�
𝑝
1
,𝜆
1

∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑞

CḂMO𝑝2,𝜆2

× |𝐵|
−1+𝛽𝑞/𝑛−𝑞+𝜆

2
𝑞+1+𝜆

1
𝑞+𝑞

×
0

∑
𝑘=−∞

2𝑛𝑘𝛽𝑞/𝑛−𝑘𝑛𝑞+𝑘𝑛+𝑘𝜆2𝑛𝑞+𝑘𝜆1𝑛𝑞+𝑘𝑛𝑞

≤ 𝐶 ∑
|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑞

CḂMO𝑝2,𝜆2
𝑓

𝑞

�̇�
𝑝
1
,𝜆
1

|𝐵|
𝑞𝜆.

(53)

To estimate the term 𝐼𝐼, we adopt some basic ideas from
the estimates of the term 𝐼

2
in Theorem 3. First, we denote

𝑅
𝑚
(𝐴; 𝑥, 𝑦) = 𝑅

𝑚
(𝐴

𝜙

𝑘
; 𝑥, 𝑦) = 𝑅

𝑚
(𝐴

𝑘
; 𝑥, 𝑦) for 𝑥 ∈ 2𝑘𝐵

and 𝑦 ∈ 2𝑖𝐵 with 𝑘 − 2 ≤ 𝑖 ≤ 𝑘, where 𝐴𝜙
𝑘
(𝑥) =

𝑅
𝑚−1
(𝐴

𝑘
; , 𝑥, 𝑦

0
)𝜙(|𝑥 − 𝑦

0
|−1𝑥) with 𝑦

0
∈ 2𝑖𝐵 \ 2𝑖−1𝐵. Here

𝐴
𝑘
(𝑥) = 𝐴(𝑥) −∑

|𝛾|=𝑚−1
(1/𝛾!)𝑚

2
𝑘
𝐵
(𝐷𝛾𝐴)𝑥𝛾 and 𝜙 is defined

as in Section 2.
AsΩ ∈ 𝐿𝑟(S𝑛−1) with 𝑟 > 𝑝

1
, by Lemma 7, we get

𝐼𝐼 ≤
1

|𝐵|

0

∑
𝑘=−∞

𝑘

∑
𝑖=𝑘−2


H

𝑚

Ω,𝐴
𝜙

𝑘
,𝛽

𝑓
𝑖



𝑞

𝑞

≤
𝐶

|𝐵|

0

∑
𝑘=−∞

𝑘

∑
𝑖=𝑘−2

𝑓𝑖

𝑞

𝐿
𝑝
1
∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝜙

𝑘


𝑞

𝐿
𝑝
2

,

(54)

where 𝑓
𝑖
is defined by 𝑓

𝑖
(𝑥) = 𝑓(𝑥)𝜒

2
𝑖
𝐵\2
𝑖−1
𝐵
(𝑥).
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For𝐷𝛾𝐴
𝜙

𝑘
, as |𝑥 − 𝑦

0
| ≤ 𝐶|𝑦

0
|, then by Lemmas 8 and 14,

we have the following estimates:

𝐷
𝛾𝐴

𝜙

𝑘
(𝑥)


≤ ∑

|𝜇|+|]|=𝑚−1
𝐶
𝜇]
𝑅𝑚−1−|𝜇| (𝐷

𝜇𝐴
𝑘
; 𝑥, 𝑦

0
)


×
𝐷

]𝜙 (
𝑥 − 𝑦0


−1

𝑥)

𝑥 − 𝑦0


−|]|

≤ 𝐶 ∑
|𝜇|+|]|=𝑚−1

𝑥 − 𝑦0

𝑚−1−|𝜇|−|]|

× ∑

|𝛾|=𝑚−1−|𝜇|

(
1

𝑄 (𝑥, 𝑦0)


∫
̃
𝑄(𝑥,𝑦

0
)


𝐷𝛾


(𝐷𝜇𝐴
𝑘
) (𝑧)



𝑝
2

𝑑𝑧)

1/𝑝
2

× 𝜒
|𝑥|≤|𝑥−𝑦

0
|
(𝑥)

≤ 𝐶 ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴
CḂMO𝑝2,𝜆2

𝑥 − 𝑦0

𝜆
2
𝑛

𝜒
|𝑥|≤𝐶|𝑦

0
|
(𝑥) .

(55)

Thus we have

∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝜙

𝑘


𝑞

𝐿
𝑝
2

≤ 𝐶 ∑
|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑞

CḂMO𝑝2,𝜆2
2
𝑖𝐵

𝑞𝜆
2 2

𝑖𝐵

𝑞/𝑝
2

.

(56)

By the above estimates, we obtain

𝐼𝐼 ≤
𝐶

|𝐵|

0

∑
𝑘=−∞

𝑘

∑
𝑖=𝑘−2

(
1

|2𝑖𝐵|1+𝑝1𝜆1
∫
2
𝑖
𝐵

𝑓 (𝑥)

𝑝
1𝑑𝑥)

𝑞/𝑝
1

×
2
𝑖𝐵

𝑞/𝑝
1
+𝑞𝜆
1

× ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑞

CḂMO𝑝2,𝜆2
2
𝑖𝐵

𝑞𝜆
2
+𝑞/𝑝
2

≤ 𝐶
0

∑
𝑘=−∞

𝑘

∑
𝑖=𝑘−2

2𝑖𝑛(1+𝜆𝑞)

× ∑

|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑞

CḂMO𝑝2,𝜆2
𝑓

𝑞

�̇�
𝑝
1
,𝜆
1

|𝐵|
𝑞𝜆

≤ 𝐶 ∑
|𝛾|=𝑚−1

𝐷
𝛾𝐴

𝑞

CḂMO𝑝2,𝜆2
𝑓

𝑞

�̇�
𝑝
1
,𝜆
1

|𝐵|
𝑞𝜆.

(57)

Combining the estimates of 𝐼 and 𝐼𝐼 and by the definition of
�̇�𝑞,𝜆, we finish the proof of Theorem 12.

Proof of Theorem 13. The proof ofTheorem 13 is quite similar
but much simpler than Theorem 12 and we omit the details
here.
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