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We deal with a uniqueness question of entire functions sharing a nonzero value with their difference operators and obtain some
results, which improve the results of Qi et al. (2010) and Zhang (2011).

1. Introduction and Main Results

In this paper, a meromorphic function will mean meromor-
phic in the whole complex plane. We will use the standard
notations of Nevanlinna’s value distribution theory such as
𝑇(𝑟, 𝑓), 𝑁(𝑟, 𝑓), 𝑁(𝑟, 𝑓), and 𝑚(𝑟, 𝑓), as explained in Hay-
man [1], Yang [2], and Yang and Yi [3]. We denote by 𝑆(𝑟, 𝑓)

any quantity satisfying 𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓)), as 𝑟 → ∞ possi-
bly outside a set of finite linearmeasures. For𝑓meromorphic
inC, denote by 𝑆(𝑓) the family of all meromorphic functions
𝑎(𝑧) that satisfy 𝑇(𝑟, 𝑎) = 𝑜(𝑇(𝑟, 𝑓)) for 𝑟 → ∞ outside a
possible exceptional set of finite linear measure. In addition,
we denote by 𝜌(𝑓) and 𝜌

2
(𝑓) the order of 𝑓 and the hyper-

order of 𝑓 [3, 4]. Moreover, we define difference operators by
Δ
𝑐
𝑓 = 𝑓(𝑧+ 𝑐) −𝑓(𝑧)where 𝑐 is a nonzero constant. If 𝑐 = 1,

we use the usual difference notation Δ
𝑐
𝑓 = Δ𝑓.

Let 𝑓 and 𝑔 be two nonconstant meromorphic functions
and 𝑎 be a finite complex number. We say that 𝑓, 𝑔 share the
value 𝑎 CM (counting multiplicities) if 𝑓, 𝑔 have the same 𝑎-
points with the samemultiplicities, and we say that𝑓, 𝑔 share
the value 𝑎 IM (ignoring multiplicities) if we do not consider
themultiplicities.We denote by𝑁

𝐿
(𝑟, 1/(𝑓−𝑎)) the counting

function for 𝑎-points of both 𝑓 and 𝑔 about which 𝑓 has
larger multiplicity than 𝑔, with multiplicity not being
counted. Similarly, we have the notation 𝑁

𝐿
(𝑟, 1/(𝑔 − 𝑎)).

Next, we denote by𝑁
0
(𝑟, 1/𝐹

󸀠
) the counting function of those

zeros of 𝐹󸀠 that are not the zeros of 𝐹(𝐹 − 1) and denote by
𝑁
11
(𝑟, 1/(𝑓 − 𝑎)) the counting function for common simple

1-point of both 𝑓 and 𝑔. In addition, we need the following
three definitions.

Definition 1. Let 𝑘 be a positive integer. Let 𝑓 and 𝑔 be two
nonconstant meromorphic functions such that 𝑓 and 𝑔 share
the value 1 IM. Let 𝑧

0
be a 1-point of 𝑓with multiplicity 𝑝 and

a 1-point of𝑔withmultiplicity 𝑞.We denote by𝑁
𝑓>𝑘

(𝑟, 1/(𝑔−

1)) the reduced counting function of those 1-points of𝑓 and𝑔

such that𝑝 > 𝑞 = 𝑘.𝑁
𝑔>𝑘

(𝑟, 1/(𝑓−1)) is defined analogously.

Definition 2 (see [5]). Let 𝑘 be a nonnegative integer or infin-
ity. For 𝑎 ∈ C∪∞, we denote by𝐸

𝑘
(𝑎, 𝑓) the set of all 𝑎-points

of 𝑓, where an 𝑎-point of multiplicity𝑚 is counted𝑚 times if
≤ 𝑘 and 𝑘+1 times if𝑚 > 𝑘. If𝐸

𝑘
(𝑎, 𝑓) = 𝐸

𝑘
(𝑎, 𝑔), we say that

𝑓, 𝑔 share the value a with weight 𝑘.
The definition implies that if 𝑓, 𝑔 share a value a with

weight 𝑘, then 𝑧
0
is an 𝑎-point of𝑓withmultiplicity𝑚(≤ 𝑘) if

and only if it is an 𝑎-point of𝑔withmultiplicity𝑚(≤ 𝑘) and 𝑧
0

is an 𝑎-point of𝑓withmultiplicity𝑚(> 𝑘) if and only if it is an
𝑎-point of 𝑔 with multiplicity 𝑛(> 𝑘), where 𝑚 is not neces-
sarily equal to 𝑛.

We write that 𝑓, 𝑔 share (𝑎, 𝑘) to mean that 𝑓, 𝑔 share the
value a with weight 𝑘. Clearly if 𝑓, 𝑔 share (𝑎, 𝑘), then 𝑓, 𝑔
share (𝑎, 𝑝) for any integer 𝑝, 0 ≤ 𝑝 < 𝑘. Also we note that 𝑓,
𝑔 share a value 𝑎 IM or CM if and only if 𝑓, 𝑔 share (𝑎, 0) or
(𝑎,∞), respectively.

Definition 3. Let 𝑓 be a nonconstant meromorphic function,
and let 𝑝 be a positive integer and 𝑎 ∈ 𝐶 ∪ {∞}. Then, by
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𝑁
𝑝)
(𝑟, 1/(𝑓−𝑎)), we denote the counting function of those 𝑎-

points of 𝑓 (counted with proper multiplicities) whose mul-
tiplicities are not greater than 𝑝, and by𝑁

𝑝)
(𝑟, 1/(𝑓 − 𝑎)), we

denote the corresponding reduced counting function (ignor-
ing multiplicities). By𝑁

(𝑝
(𝑟, 1/(𝑓−𝑎)), we denote the count-

ing function of those 𝑎-points of 𝑓 (counted with proper
multiplicities) whose multiplicities are not less than 𝑝,
and by 𝑁

(𝑝
(𝑟, 1/(𝑓 − 𝑎)), we denote the corresponding

reduced counting function (ignoring multiplicities), where
𝑁
𝑝)
(𝑟, 1/(𝑓 − 𝑎)), 𝑁

𝑝)
(𝑟, 1/(𝑓 − 𝑎)), 𝑁

(𝑝
(𝑟, 1/(𝑓 − 𝑎)), and

𝑁
(𝑝
(𝑟, 1/(𝑓 − 𝑎)) mean 𝑁

𝑝)
(𝑟, 𝑓), 𝑁

𝑝)
(𝑟, 𝑓), 𝑁

(𝑝
(𝑟, 𝑓), and

𝑁
(𝑝
(𝑟, 𝑓), respectively, if 𝑎 = ∞.
In 2010, Qi et al. [6] proved the following uniqueness

theorem.

TheoremA. Let 𝑓 and 𝑔 be transcendental entire functions of
finite order, let 𝑐 be a nonzero complex constant, and let 𝑛 ≥ 6

be an integer. If 𝑓(𝑧)
𝑛
𝑓(𝑧 + 𝑐) and 𝑔(𝑧)

𝑛
𝑔(𝑧 + 𝑐) share 𝑧 CM,

then 𝑓 = 𝑡𝑔 for a constant 𝑡 that satisfies 𝑡𝑛+1 = 1.

In 2011, Zhang et al. [7] complemented the above theorem
and obtained the following result.

Theorem B. Let 𝑓 and 𝑔 be nonconstant entire functions of
finite order, and let 𝑛 ≥ 5 be an integer. Suppose that 𝑐 is a
nonzero complex constant such that Δ

𝑐
𝑓 ̸≡ 0 and Δ

𝑐
𝑔 ̸≡ 0.

If𝑓𝑛Δ
𝑐
𝑓 and 𝑔

𝑛
Δ
𝑐
𝑔 share 𝑧CM, and 𝑔(𝑧+𝑐) and 𝑔(𝑧) share 0

CM then 𝑓 = 𝑡𝑔, where 𝑡 is a constant satisfying 𝑡
𝑛+1

= 1.

In this paper, we complement Theorems A and B and
obtain the following results which generalize the above
theorems.

Theorem 4. Let 𝑓 be a transcendental entire function of finite
order and Δ

𝑐
𝑓 ̸≡ 0, let 𝑎 ̸= 0 be a small function with respect

to 𝑓, and let 𝑐 be a nonzero complex constant. Then for 𝑛 ≥ 2,
𝑓(𝑧)
𝑛
(𝑓(𝑧 + 𝑐) − 1)Δ

𝑐
𝑓 − 𝑎 has infinitely many zeros.

Theorem 5. Let 𝑓(𝑧) and 𝑔(𝑧) be transcendental entire func-
tions of 𝜌

2
< 1, 𝑛 ≥ 2𝑘+7. Suppose that 𝑐 is a nonzero complex

constant such that Δ
𝑐
𝑓 ̸≡ 0 and Δ

𝑐
𝑔 ̸≡ 0. If [𝑓𝑛Δ

𝑐
𝑓]
(𝑘)

and [𝑔
𝑛
Δ
𝑐
𝑔]
(𝑘) share 1 CM, then 𝑓 = 𝑡𝑔 for a constant 𝑡 with

𝑡
𝑛+1

= 1.

Theorem 6. Let 𝑓 and 𝑔 be transcendental entire functions of
𝜌
2
< 1, 𝑛 ≥ 5𝑘 + 13. 𝑐 is a nonzero complex constant such that

Δ
𝑐
𝑓 ̸≡ 0 and Δ

𝑐
𝑔 ̸≡ 0. If [𝑓𝑛Δ

𝑐
𝑓]
(𝑘) and [𝑔

𝑛
Δ
𝑐
𝑔]
(𝑘) share 1

IM, then 𝑓 = 𝑡𝑔 for a constant 𝑡 with 𝑡
𝑛+1

= 1.

2. Some Lemmas

Lemma7 (see [8]). Let𝑓 be a nonconstantmeromorphic func-
tion of finite order 𝜎, and let 𝑐 be a nonzero constant. Then, for
each 𝜀 > 0,

𝑇 (𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑂 (𝑟
𝜎−1+𝜀

) + 𝑂 (log 𝑟) . (1)

Lemma 8 (see [9]). Let 𝑓 be a meromorphic function of finite
order, and let 𝑐 ∈ C and 𝛿 ∈ (0, 1). Then

𝑚(𝑟,
𝑓 (𝑧 + 𝑐)

𝑓 (𝑧)
) + 𝑚(𝑟,

𝑓 (𝑧)

𝑓 (𝑧 + 𝑐)
)

= 𝑜(
𝑇 (𝑟, 𝑓)

𝑟𝛿
) = 𝑆 (𝑟, 𝑓) .

(2)

Lemma 9 (see [10]). Let 𝑓
1
, 𝑓
2
, and 𝑓

3
be nonconstant mero-

morphic functions such that𝑓
1
+𝑓
2
+𝑓
3
= 1. If𝑓

1
,𝑓
2
, and𝑓

3
are

linearly independent, then

𝑇 (𝑟, 𝑓
1
) ≤

3

∑

𝑗=1

𝑁
2
(𝑟,

1

𝑓
𝑗

) +

3

∑

𝑗=1

𝑁(𝑟, 𝑓
𝑗
) + 𝑜 (𝑇 (𝑟)) , (3)

where 𝑇(𝑟) = max
1≤𝑗≤3

𝑇(𝑟, 𝑓
𝑗
), 𝑟 ∉ 𝐸, and 𝐸 denote a set of

positive real numbers of finite linear measure.

Lemma 10. Let 𝑓 be transcendental entire functions of finite
order, let 𝑐 be a nonzero complex constant, and set 𝐹(𝑧) =

𝑓(𝑧)
𝑛
Δ
𝑐
𝑓; then

𝑛𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≤ 𝑇 (𝑟, 𝐹) ≤ (𝑛 + 1) 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(4)

Proof. Since

𝑇 (𝑟, 𝐹) = 𝑇 (𝑟, 𝑓(𝑧)
𝑛
Δ
𝑐
𝑓) ≤ 𝑛𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, Δ

𝑐
𝑓)

≤ 𝑛𝑇 (𝑟, 𝑓) + 𝑚 (𝑟, Δ
𝑐
𝑓) ≤ 𝑛𝑇 (𝑟, 𝑓)

+ 𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

= (𝑛 + 1) 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

(5)

then

(𝑛 + 1) 𝑇 (𝑟, 𝑓) = 𝑇 (𝑟, 𝑓(𝑧)
𝑛+1

) = 𝑚 (𝑟, 𝑓(𝑧)
𝑛+1

)

≤ 𝑚(𝑟,
𝑓(𝑧)
𝑛+1

𝐹
) + 𝑚 (𝑟, 𝐹) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟,
𝑓 (𝑧)

Δ
𝑐
𝑓

) + 𝑚 (𝑟, 𝐹) + 𝑆 (𝑟, 𝑓)

≤ 𝑇(𝑟,
𝑓 (𝑧)

Δ
𝑐
𝑓

) + 𝑇 (𝑟, 𝐹) + 𝑆 (𝑟, 𝑓)

≤ 𝑇(𝑟,
Δ
𝑐
𝑓

𝑓 (𝑧)
) + 𝑇 (𝑟, 𝐹) + 𝑆 (𝑟, 𝑓)

= 𝑚(𝑟,
Δ
𝑐
𝑓

𝑓 (𝑧)
) + 𝑁(𝑟,

Δ
𝑐
𝑓

𝑓 (𝑧)
)

+ 𝑇 (𝑟, 𝐹) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝐹) + 𝑁(𝑟,
1

𝑓 (𝑧)
) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝐹) + 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(6)
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That is,

𝑛𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≤ 𝑇 (𝑟, 𝐹) ≤ (𝑛 + 1) 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(7)

Lemma 11 (see [11]). Let 𝑓
1
and 𝑓

2
be two nonconstant mero-

morphic functions. If 𝑐
1
𝑓
1
+ 𝑐
2
𝑓
2
= 𝑐
3
, where 𝑐

1
, 𝑐
2
, and 𝑐

3
are

nonzero constants, then

𝑇 (𝑟, 𝑓
1
) ≤ 𝑁 (𝑟, 𝑓

1
) + 𝑁(𝑟,

1

𝑓
1

) + 𝑁(𝑟,
1

𝑓
2

) + 𝑆 (𝑟, 𝑓
1
) .

(8)

Lemma 12 (see [12]). Let𝑓(𝑧) be a nonconstant meromorphic
function, and let 𝑘 be a positive integer. Suppose that 𝑓(𝑘) ̸≡ 0;
then

𝑁(𝑟,
1

𝑓(𝑘)
) ≤ 𝑁(𝑟,

1

𝑓
) + 𝑘𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (9)

Lemma 13 (see [13]). Let 𝑓, 𝑔 share (1, 0). Then

(i) 𝑁
𝑓>1

(𝑟, 1/(𝑔−1))≤ 𝑁(𝑟, 1/𝑓)+𝑁(𝑟, 𝑓)−𝑁
0
(𝑟, 1/𝑓

󸀠
)+

𝑆(𝑟, 𝑓),

(ii) 𝑁
𝑔>1

(𝑟, 1/(𝑓−1)) ≤ 𝑁(𝑟, 1/𝑔)+𝑁(𝑟, 𝑔)−𝑁
0
(𝑟, 1/𝑔

󸀠
)+

𝑆(𝑟, 𝑔).

Lemma 14. Let 𝑓(𝑧) and 𝑔(𝑧) be two nonconstant entire
functions. If 𝑓 and 𝑔 share 1 IM, then one of the following cases
holds:

(i) 𝑇(𝑟, 𝑔) ≤ 𝑁
2
(𝑟, 1/𝑔) + 𝑁

2
(𝑟, 1/𝑓) + 𝑁(𝑟, 1/𝑓) +

2𝑁(𝑟, 1/𝑔)+𝑆(𝑟, 𝑓)+𝑆(𝑟, 𝑔), the same inequality hold-
ing for 𝑇(𝑟, 𝑓);

(ii) 𝑓 ≡ (𝐴𝑔+𝐵)/(𝐶𝑔+𝐷), where A, B, C, and D are finite
complex numbers satisfying 𝐴𝐷 ̸= 𝐵𝐶.

Proof. Let

Φ (𝑧) =
𝑓
󸀠󸀠

𝑓󸀠
− 2

𝑓
󸀠

𝑓 − 1
−

𝑔
󸀠󸀠

𝑔󸀠
+ 2

𝑔
󸀠

𝑔 − 1
. (10)

Clearly 𝑚(𝑟,Φ) = 𝑆(𝑟, 𝑓) + 𝑆(𝑟, 𝑔). We consider the cases
Φ(𝑧) ̸≡ 0 and Φ(𝑧) ≡ 0.

If Φ(𝑧) ̸≡ 0, then if 𝑧
0
is a common simple 1-point of 𝑓󸀠

and 𝑔
󸀠, substituting their Taylor series at 𝑧

0
into (10), we see

that 𝑧
0
is a zero ofΦ(𝑧). Thus, we have

𝑁
11

(𝑟,
1

𝑓 − 1
) = 𝑁

11
(𝑟,

1

𝑔 − 1
) ≤ 𝑁(𝑟,

1

Φ
)

≤ 𝑇 (𝑟, Φ) + 𝑂 (1)

≤ 𝑁 (𝑟, Φ) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .

(11)

Our assumptions are that Φ(𝑧) has poles; all are simple
only at zeros of𝑓󸀠and 𝑔

󸀠 and poles of𝑓 and 𝑔, and 1-points of

𝑓whosemultiplicities are not equal to themultiplicities of the
corresponding 1-points of 𝑔. Thus, we deduce from (10) that

𝑁(𝑟,Φ) ≤ 𝑁
(2
(𝑟,

1

𝑓
) + 𝑁

(2
(𝑟,

1

𝑔
) + 𝑁

0
(𝑟,

1

𝑓󸀠
)

+ 𝑁
0
(𝑟,

1

𝑔󸀠
) + 𝑁

𝐿
(𝑟,

1

𝑓 − 1
) + 𝑁

𝐿
(𝑟,

1

𝑔 − 1
) ,

(12)

where𝑁
0
(𝑟, 1/𝑓

󸀠
) is the counting functionwhich only counts

those points such that 𝑓󸀠 = 0, but 𝑓(𝑓−1) ̸= 0. By the second
fundamental theorem, we have

𝑇 (𝑟, 𝑔) ≤ 𝑁(𝑟,
1

𝑔
) + 𝑁(𝑟,

1

𝑔 − 1
)

− 𝑁
0
(𝑟,

1

𝑔󸀠
) + 𝑆 (𝑟, 𝑔) ,

(13)

since

𝑁(𝑟,
1

𝑔 − 1
) = 𝑁

11
(𝑟,

1

𝑔 − 1
) + 𝑁

(2
(𝑟,

1

𝑓 − 1
)

+ 𝑁
𝑔>1

(𝑟,
1

𝑓 − 1
) .

(14)

Thus, we deduce from (11)–(14) that

𝑇 (𝑟, 𝑔) ≤ 𝑁(𝑟,
1

𝑔
) + 𝑁

(2
(𝑟,

1

𝑓
)

+ 𝑁
(2
(𝑟,

1

𝑔
) + 𝑁

0
(𝑟,

1

𝑓󸀠
)

+ 𝑁
(2
(𝑟,

1

𝑓 − 1
) + 𝑁

𝐿
(𝑟,

1

𝑓 − 1
)

+ 𝑁
𝐿
(𝑟,

1

𝑔 − 1
) + 𝑁

𝑔>1
(𝑟,

1

𝑓 − 1
)

+ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .

(15)

From the definition of𝑁
0
(𝑟, 1/𝑓

󸀠
), we see that

𝑁
0
(𝑟,

1

𝑓󸀠
) + 𝑁

(2
(𝑟,

1

𝑓 − 1
) + 𝑁

(2
(𝑟,

1

𝑓
)

− 𝑁
(2
(𝑟,

1

𝑓
) ≤ 𝑁(𝑟,

1

𝑓󸀠
) .

(16)

The above inequality and Lemma 12 give

𝑁
0
(𝑟,

1

𝑓󸀠
) + 𝑁

(2
(𝑟,

1

𝑓 − 1
)

≤ 𝑁(𝑟,
1

𝑓󸀠
) − 𝑁

(2
(𝑟,

1

𝑓
) + 𝑁

(2
(𝑟,

1

𝑓
)

≤ 𝑁(𝑟,
1

𝑓
) − 𝑁

(2
(𝑟,

1

𝑓
) + 𝑁

(2
(𝑟,

1

𝑓
) + 𝑆 (𝑟, 𝑓)

≤ 𝑁(𝑟,
1

𝑓
) + 𝑆 (𝑟, 𝑓) .

(17)
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Substituting (17) in (15), we get

𝑇 (𝑟, 𝑔) ≤ 𝑁(𝑟,
1

𝑔
) + 𝑁

(2
(𝑟,

1

𝑓
) + 𝑁

(2
(𝑟,

1

𝑔
)

+ 𝑁(𝑟,
1

𝑓
) + 𝑁

𝐿
(𝑟,

1

𝑓 − 1
) + 𝑁

𝐿
(𝑟,

1

𝑔 − 1
)

+ 𝑁
𝑔>1

(𝑟,
1

𝑓 − 1
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 𝑁
2
(𝑟,

1

𝑔
) + 𝑁

(2
(𝑟,

1

𝑓
) + 𝑁(𝑟,

1

𝑓
)

+ 𝑁
𝐿
(𝑟,

1

𝑓 − 1
) + 𝑁

𝐿
(𝑟,

1

𝑔 − 1
)

+ 𝑁
𝑔>1

(𝑟,
1

𝑓 − 1
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) ,

(18)
since

𝑁
𝐿
(𝑟,

1

𝑓 − 1
) ≤ 𝑁(𝑟,

1

𝑓 − 1
) − 𝑁(𝑟,

1

𝑓 − 1
)

≤ 𝑁(𝑟,
𝑓

𝑓󸀠
) ≤ 𝑁(𝑟,

𝑓
󸀠

𝑓
) + 𝑆 (𝑟, 𝑓)

≤ 𝑁(𝑟,
1

𝑓
) + 𝑆 (𝑟, 𝑓) .

(19)

Similarly,

𝑁
𝐿
(𝑟,

1

𝑔 − 1
) ≤ 𝑁(𝑟,

1

𝑔
) + 𝑆 (𝑟, 𝑔) . (20)

Combining the above inequalities, Lemma 13, and (18),
we obtain

𝑇 (𝑟, 𝑔) ≤ 𝑁
2
(𝑟,

1

𝑔
) + 𝑁

2
(𝑟,

1

𝑓
) + 𝑁(𝑟,

1

𝑓
) + 2𝑁(𝑟,

1

𝑔
)

− 𝑁
0
(𝑟,

1

𝑔󸀠
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 𝑁
2
(𝑟,

1

𝑔
) + 𝑁

2
(𝑟,

1

𝑓
) + 𝑁(𝑟,

1

𝑓
)

+ 2𝑁(𝑟,
1

𝑔
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .

(21)

Thus, we obtain (i).
If Φ(𝑧) ≡ 0, then by (10), we have

𝑓
󸀠󸀠

𝑓󸀠
−

2𝑓
󸀠

𝑓 − 1
≡

𝑔
󸀠󸀠

𝑔󸀠
−

2𝑔
󸀠

𝑔 − 1
. (22)

By integrating two sides of the above equality, we obtain

𝑓 ≡
𝐴𝑔 + 𝐵

𝐶𝑔 + 𝐷
, (23)

where 𝐴, 𝐵, 𝐶, and 𝐷 are finite complex numbers satisfying
𝐴𝐷 ̸= 𝐵𝐶. This proves the lemma.

Lemma 15 (see [14]). Let𝑓(𝑧) be a nonconstant meromorphic
function, 𝑠, 𝑘 be two positive integers; then

𝑁
𝑠
(𝑟,

1

𝑓(𝑘)
) ≤ 𝑇(𝑟, 𝑓)

(𝑘)

− 𝑇 (𝑟, 𝑓)

+ 𝑁
𝑠+𝑘

(𝑟,
1

𝑓
) + 𝑆 (𝑟, 𝑓) ,

𝑁
𝑠
(𝑟,

1

𝑓(𝑘)
) ≤ 𝑘𝑁 (𝑟, 𝑓)

+ 𝑁
𝑠+𝑘

(𝑟,
1

𝑓
) + 𝑆 (𝑟, 𝑓) .

(24)

Clearly, 𝑁(𝑟, 1/𝑓
(𝑘)

) = 𝑁
1
(𝑟, 1/𝑓

(𝑘)
).

Lemma 16 (see [15]). Let 𝑎
0
(𝑧), 𝑎
1
(𝑧), . . . , 𝑎

𝑛
(𝑧), 𝑏(𝑧) be poly-

nomials such that 𝑎
0
(𝑧)𝑎
𝑛
(𝑧) ̸≡ 0; let 𝑐

𝑗
be constants and

deg( ∑

deg 𝑎𝑗=𝑑
𝑎
𝑗
) = 𝑑, (25)

where 𝑑 = max
0≤𝑗≤𝑛

{deg 𝑎
𝑗
}. If 𝑓(𝑧) is a transcendental mero-

morphic solution of

𝑛

∑

𝑗=0

𝑎
𝑗
(𝑧) 𝑓 (𝑧 + 𝑐

𝑗
) = 𝑏 (𝑧) , (26)

then 𝜌(𝑓) ≥ 1.

3. Proof of Theorems

3.1. Proof of Theorem 4. Let 𝐺(𝑧) = 𝑓(𝑧)
𝑛
(𝑓(𝑧 + 𝑐) − 1)Δ

𝑐
𝑓.

Since 𝑓 is a transcendental entire function of finite order,
from Lemma 7, we have

(𝑛 + 2) 𝑇 (𝑟, (𝑟, 𝑓 (𝑧)))

≤ 𝑇 (𝑟, 𝑓(𝑧)
𝑛+1

(𝑓 (𝑧 + 𝑐) − 1)) + 𝑆 (𝑟, 𝑓)

≤ 𝑚 (𝑟, 𝑓(𝑧)
𝑛+1

(𝑓 (𝑧 + 𝑐) − 1)) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟,
𝑓(𝑧)
𝑛+1

(𝑓 (𝑧 + 𝑐) − 1)

𝐺
) + 𝑚 (𝑟, 𝐺) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝐺) + 𝑆 (𝑟, 𝑓) .

(27)

By the second main theorem, we deduce that

𝑇 (𝑟, 𝐺) ≤ 𝑁 (𝑟, 𝐺) + 𝑁(𝑟,
1

𝐺
) + 𝑁(𝑟,

1

𝐺 − 𝑎
) + 𝑆 (𝑟, 𝐺)

≤ 𝑁(𝑟,
1

𝐺 − 𝑎
) + 𝑁(𝑟,

1

𝑓
) + 𝑁(𝑟,

1

𝑓 (𝑧 + 𝑐) − 1
)

+ 𝑁(𝑟,
1

Δ
𝑐
𝑓
) + 𝑆 (𝑟, 𝑓)
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≤ 𝑁(𝑟,
1

𝐺 − 𝑎
) + 𝑁(𝑟,

1

𝑓
) + 𝑇 (𝑟, 𝑓 (𝑧 + 𝑐) − 1)

+ 𝑇 (𝑟, Δ
𝑐
𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑁(𝑟,
1

𝐺 − 𝑎
) + 𝑁(𝑟,

1

𝑓
) + 𝑇 (𝑟, 𝑓 (𝑧 + 𝑐) − 1)

+ 𝑚(𝑟,
Δ
𝑐
𝑓

𝑓
⋅ 𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑁(𝑟,
1

𝐺 − 𝑎
) + 𝑁(𝑟,

1

𝑓
) + 𝑇 (𝑟, 𝑓 (𝑧 + 𝑐) − 1)

+ 𝑚(𝑟,
Δ
𝑐
𝑓

𝑓
) + 𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑁(𝑟,
1

𝐺 − 𝑎
) + 3𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(28)

According to (27) and (28), we have

(𝑛 − 1) 𝑇 (𝑟, 𝑓) ≤ 𝑁(𝑟,
1

𝐺 − 𝑎
) + 𝑆 (𝑟, 𝑓) . (29)

Noting that 𝑛 ≥ 2, we get that𝐺−𝑎 has infinitely many zeros.
This completes the proof of Theorem 4.

3.2. Proof of Theorem 5. Since [𝑓(𝑧)
𝑛
Δ
𝑐
𝑓]
(𝑘) and

[𝑔(𝑧)
𝑛
Δ
𝑐
𝑔]
(𝑘) share 1 CM, we have

[𝑓(𝑧)
𝑛
Δ
𝑐
𝑓]
(𝑘)

− 1

[𝑔(𝑧)
𝑛
Δ
𝑐
𝑔]
(𝑘)

− 1

= 𝑒
ℎ(𝑧)

, (30)

where ℎ(𝑧) is a polynomial. Set 𝐹 = 𝑓(𝑧)
𝑛
Δ
𝑐
𝑓, 𝐺 =

𝑔(𝑧)
𝑛
Δ
𝑐
𝑔,

𝐹
1
= 𝐹
(𝑘)

, 𝐹
2
= −𝑒
ℎ(𝑧)

𝐺
(𝑘)

, 𝐹
3
= 𝑒
ℎ(𝑧)

,

then 𝐹
1
+ 𝐹
2
+ 𝐹
3
= 1,

𝑇 (𝑟) = max
1≤𝑗≤3

𝑇 (𝑟, 𝐹
𝑗
) , 𝑆 (𝑟) = 𝑜 (𝑇 (𝑟)) .

(31)

Next, wewill prove that𝐹
1
,𝐹
2
, and𝐹

3
are linearly depend-

ent and either 𝐹
2
or 𝐹
3
is a constant.

Now, we suppose that neither 𝐹
2
nor 𝐹
3
is a constant and

𝐹
1
, 𝐹
2
, and 𝐹

3
are linearly independent; then by Lemma 9, we

have

𝑇 (𝑟, 𝐹
1
) ≤

3

∑

𝑗=1

𝑁
2
(𝑟,

1

𝐹
𝑗

) +

3

∑

𝑗=1

𝑁(𝑟, 𝐹
𝑗
) + 𝑜 (𝑇 (𝑟)) . (32)

Since 𝐹
𝑗
(𝑗 = 1, 2, 3) are entire functions, by the above ine-

quality, we get

𝑇 (𝑟, 𝐹
1
) ≤ 𝑁

2
(𝑟,

1

𝐹(𝑘)
) + 𝑁

2
(𝑟,

1

𝐺(𝑘)
) + 𝑜 (𝑇 (𝑟)) . (33)

From (33) and the first main theorem, we have

𝑇(𝑟,
1

𝐹(𝑘)
) = 𝑇 (𝑟, 𝐹

(𝑘)
) + 𝑂 (1) = 𝑇 (𝑟, 𝐹

1
) + 𝑂 (1)

≤ 𝑁
2
(𝑟,

1

𝐹(𝑘)
) + 𝑁

2
(𝑟,

1

𝐺(𝑘)
) + 𝑜 (𝑇 (𝑟))

≤ 𝑁(𝑟,
1

𝐹(𝑘)
)

− [𝑁
(3
(𝑟,

1

𝐹(𝑘)
) − 2𝑁

(3
(𝑟,

1

𝐹(𝑘)
)]

+ 𝑁(𝑟,
1

𝐺(𝑘)
)

− [𝑁
(3
(𝑟,

1

𝐺(𝑘)
) − 2𝑁

(3
(𝑟,

1

𝐺(𝑘)
)]

+ 𝑜 (𝑇 (𝑟)) .

(34)

Assuming that 𝑧
0
is zero of 𝑓(𝑧) (or 𝑔(𝑧)) with multiplicity 𝑝,

if 𝑧
0
is zero of𝑓(𝑧+𝑐) (or 𝑔(𝑧+𝑐)) withmultiplicity 𝑞(≥ 1), let

𝑚 = min{𝑝, 𝑞}, then 𝑧
0
is a zero of 𝐹(𝑘) (or 𝐺(𝑘)) with multi-

plicity 𝑛𝑝+𝑚−𝑘 ≥ 𝑛𝑝−𝑘 ≥ 3, and if 𝑧
0
is not zero of𝑓(𝑧+𝑐) (or

𝑔(𝑧 + 𝑐)), then 𝑧
0
is a zero of 𝐹(𝑘) (or 𝐺(𝑘)) with multiplicity

𝑛𝑝 − 𝑘 ≥ 3. Therefore, we get that

𝑁
(3
(𝑟,

1

𝐹(𝑘)
) − 2𝑁

(3
(𝑟,

1

𝐹(𝑘)
) ≥ (𝑛 − 𝑘 − 2)𝑁(𝑟,

1

𝑓
) ,

(35)

𝑁
(3
(𝑟,

1

𝐺(𝑘)
) − 2𝑁

(3
(𝑟,

1

𝐺(𝑘)
) ≥ (𝑛 − 𝑘 − 2)𝑁(𝑟,

1

𝑔
) ,

(36)

since

𝑛𝑚(𝑟,
1

𝑓
) = 𝑚(𝑟,

1

𝑓𝑛
) = 𝑚(𝑟,

Δ
𝑐
𝑓

𝐹
)

≤ 𝑚(𝑟,
1

𝐹
) + 𝑚(𝑟,

Δ
𝑐
𝑓

𝑓
⋅ 𝑓)

≤ 𝑚(𝑟,
𝐹
(𝑘)

𝐹
⋅

1

𝐹(𝑘)
) + 𝑚(𝑟,

Δ
𝑐
𝑓

𝑓
)

+ 𝑚 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

≤ 𝑚(𝑟,
1

𝐹(𝑘)
) + 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓)

= 𝑇(𝑟,
1

𝐹(𝑘)
) − 𝑁(𝑟,

1

𝐹(𝑘)
) + 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(37)

Therefore, from (34), (35), (36), (37), and Lemma 12,

(𝑛 − 1) 𝑇 (𝑟, 𝑓) ≤ (𝑘 + 2)𝑁(𝑟,
1

𝑓
) + (𝑘 + 2)𝑁(𝑟,

1

𝑔
)

+ 𝑇 (𝑟, 𝑔) + 𝑜 (𝑇 (𝑟)) .

(38)
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On the other hand, from (30), we have𝐺(𝑘)+𝑒
−ℎ

−𝑒
−ℎ

𝐹
(𝑘)

= 1.
Obviously, according to our assumptions, neither 𝑒

−ℎ nor
𝑒
−ℎ

𝐹
(𝑘) is a constant and 𝐹

1
, 𝐹
2
, and 𝐹

3
are linearly indepen-

dent. Similarly, we have

(𝑛 − 1) 𝑇 (𝑟, 𝑔) ≤ (𝑘 + 2)𝑁(𝑟,
1

𝑔
) + (𝑘 + 2)𝑁(𝑟,

1

𝑓
)

+ 𝑇 (𝑟, 𝑓) + 𝑜 (𝑇 (𝑟)) .

(39)

From (38) and (39), we obtain that

[𝑛 − 2𝑘 − 6] (𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔)) ≤ 𝑜 (𝑇 (𝑟)) , (40)

which is a contradiction to 𝑛 ≥ 2𝑘 + 7.
Therefore,𝐹

1
,𝐹
2
, and𝐹

3
are linearly dependent, and there

exist constants𝐶
1
,𝐶
2
,𝐶
3
which are not all equal to zero such

that

𝐶
1
𝐹
1
+ 𝐶
2
𝐹
2
+ 𝐶
3
𝐹
3
= 0. (41)

Suppose that 𝐶
1
= 0; we have 𝐶

2
𝐹
2
+ 𝐶
3
𝐹
3
= 0. If 𝐶

2
̸= 0,

we get 𝐹
2
= −(𝐶

3
/𝐶
2
) 𝐹
3
; that is, 𝐺(𝑘) = 𝐶

3
/𝐶
2
; thus 𝑔(𝑧) is

a polynomial; it is impossible. Similarly, if 𝐶
2

= 0, we also
deduce a contradiction.

Suppose that 𝐶
1

̸= 0, from (41); we know that
(𝐶
2
, 𝐶
3
) ̸= (0, 0). If 𝐶

2
̸= 0, from (41), we have

(1 −
𝐶
2

𝐶
1

)𝐹
2
+ (1 −

𝐶
3

𝐶
1

)𝐹
3
= 1 (42)

and 𝐶
1

̸= 𝐶
2
, 𝐶
1

̸= 𝐶
3
. That is,

(1 −
𝐶
2

𝐶
1

)𝐺
(𝑘)

+
1

𝑒ℎ
= 1 −

𝐶
3

𝐶
1

. (43)

From Lemma 11, we have

𝑇 (𝑟, 𝐺
(𝑘)

) ≤ 𝑁(𝑟,
1

𝐺(𝑘)
) + 𝑁(𝑟, 𝐺

(𝑘)
) + 𝑁(𝑟, 𝑒

ℎ
) + 𝑆 (𝑟, 𝑔)

= 𝑁(𝑟,
1

𝐺(𝑘)
) + 𝑆 (𝑟, 𝑔) ≤ 𝑁(𝑟,

1

𝐺(𝑘)
)

− [𝑁
(2
(𝑟,

1

𝐺(𝑘)
) − 𝑁

(2
(𝑟,

1

𝐺(𝑘)
)] + 𝑆 (𝑟, 𝑔) .

(44)

By the similar argument in (37), we have

𝑛𝑚(𝑟,
1

𝑔
) ≤ 𝑇(𝑟,

1

𝐺(𝑘)
) − 𝑁(𝑟,

1

𝐺(𝑘)
)

+𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔) .

(45)

From 𝑛 ≥ 2𝑘+7 > 𝑘+2, if 𝑧
0
is zero of𝑔(𝑧)withmultiplic-

ity 𝑝, then 𝑧
0
is a zero of𝐺(𝑘) withmultiplicity 𝑛𝑝−𝑘 ≥ 2, and

we get

𝑁
(2
(𝑟,

1

𝐺(𝑘)
) − 𝑁

(2
(𝑟,

1

𝐺(𝑘)
) ≥ (𝑛 − 𝑘 − 1)𝑁(𝑟,

1

𝑔
) .

(46)

According to (44), (45), and (46), we have

(𝑛 − 1) 𝑇 (𝑟, 𝑔) ≤ (𝑘 + 1)𝑁(𝑟,
1

𝑔
) + 𝑆 (𝑟, 𝑔) , (47)

which is a contradiction to 𝑛 ≥ 2𝑘 + 7.
Therefore,𝐶

2
= 0,𝐶

3
̸= 0, which gives (1−𝐶

1
/𝐶
3
)𝐹
1
+𝐹
2
=

1. Similarly, we derive a contradiction by calculation.
Hence, we deduce that either 𝐹

2
or 𝐹
3
is a constant.

Suppose 𝐹
2

= 𝑐 ̸= 1; from 𝐹
1
+ 𝐹
2
+ 𝐹
3

= 1, we have
𝐹
(𝑘)

+𝑒
ℎ
= 1−𝑐; in the samemanner as above, we get a contra-

diction. Therefore, 𝑐 = 1; that is, 𝐹
2
= 1. Suppose 𝐹

3
= 𝑐 ̸= 1;

similarly as above, we get 𝑐 = 1; that is, 𝐹
3
= 1.

Therefore, we conclude that 𝐹
2
= 1 or 𝐹

3
= 1.

If𝐹
2
= 1, since𝐹

1
+𝐹
2
+𝐹
3
= 1, we have𝐹

1
= −𝐹
3
= −𝑒
ℎ(𝑧).

That is

[𝑓
𝑛
Δ
𝑐
𝑓]
(𝑘)

⋅ [𝑔
𝑛
Δ
𝑐
𝑔]
(𝑘)

≡ 1. (48)

Since 𝑛 ≥ 2𝑘 + 7 and 𝑓 and 𝑔 are transcendental entire func-
tions with hyperorder less than one, we get that 𝑓 and 𝑔 have
no zeros. Thus,

𝑓 (𝑧) = 𝑒
𝑎(𝑧)

, 𝑔 (𝑧) = 𝑒
𝑏(𝑧)

, (49)

where 𝑎(𝑧), 𝑏(𝑧) are nonzero polynomials.
Substitute (49) into (48); we have

[𝑒
𝑛𝑎(𝑧)

(𝑒
𝑎(𝑧+𝑐)

− 𝑒
𝑎(𝑧)

)]
(𝑘)

⋅ [𝑒
𝑛𝑏(𝑧)

(𝑒
𝑏(𝑧+𝑐)

− 𝑒
𝑏(𝑧)

)]
(𝑘)

≡ 1.

(50)

Let 𝑛𝑎(𝑧)+𝑎(𝑧+𝑐) = 𝐴
1
, 𝑛𝑎(𝑧)+𝑎(𝑧) = 𝐴

2
, 𝑛𝑏(𝑧)+𝑏(𝑧+𝑐) =

𝐵
1
, and 𝑛𝑏(𝑧) + 𝑏(𝑧) = 𝐵

2
. If 𝑘 = 1, we have

(𝐴
󸀠

1
𝑒
𝐴1 − 𝐴

󸀠

2
𝑒
𝐴2) ⋅ (𝐵

󸀠

1
𝑒
𝐵1 − 𝐵

󸀠

2
𝑒
𝐵2) ≡ 1. (51)

From (51), we know that 𝐴󸀠
1
𝑒
𝐴1 − 𝐴

󸀠

2
𝑒
𝐴2 = 𝑒

𝐴2(𝐴
󸀠

1
𝑒
𝐴1−𝐴2 −

𝐴
󸀠

2
) ̸= 0; If 𝐴󸀠

1
̸= 0, then we have 𝐴

󸀠

2
= 0; thus, 𝐴

2
must be a

constant. By Lemma 16, we have 𝜌(𝑎(𝑧)) ≥ 1; thus, 𝜌
2
(𝑓) ≥ 1,

which is a contradiction. If 𝐴󸀠
1
= 0, then 𝐴

1
must be a con-

stant; similarly, we also deduce a contradiction.
If 𝑘 = 2, by calculation, we have

𝐴
󸀠󸀠

1
𝑒
𝐴1 + (𝐴

󸀠

1
)
2

𝑒
𝐴1 − 𝐴

󸀠󸀠

2
𝑒
𝐴2 − (𝐴

󸀠

2
)
2

𝑒
𝐴2

= 𝑒
𝐴2 [𝑒
𝐴1−𝐴2 (𝐴

󸀠󸀠

1
+ (𝐴
󸀠

1
)
2

) − (𝐴
󸀠󸀠

2
+ (𝐴
󸀠

2
)
2

)] ̸= 0.

(52)

If𝐴󸀠󸀠
1
+(𝐴
󸀠

1
)
2

̸= 0, then𝐴
󸀠󸀠

2
+(𝐴
󸀠

2
)
2
= 0. If𝐴

2
is transcendental

entire, then we have

𝑚(𝑟, 𝐴
󸀠

2
) = 𝑚(

𝐴
󸀠󸀠

2

𝐴
󸀠

2

) = 𝑆 (𝑟, 𝐴
󸀠

2
) , (53)

which is a contradiction to 𝐴
󸀠

2
being transcendental entire.

If 𝐴
2
is a polynomial, from Lemma 16, which induces that

𝜌
2
(𝑓) ≥ 1, we get a contradiction. If 𝐴󸀠󸀠

1
+ (𝐴
󸀠

1
)
2
= 0, similar

as above, we get a contradiction. For 𝑘 ≥ 3, using the similar
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Method as above, we also deduce a contradiction. Therefore,
There are not transcendental entire functions 𝑓(𝑧) and 𝑔(𝑧)

satisfying (48).
If 𝐹
3
= 1, that is, 𝑒ℎ(𝑧) = 1, from (30), we get

[𝑓
𝑛
Δ
𝑐
𝑓]
(𝑘)

≡ [𝑔
𝑛
Δ
𝑐
𝑔]
(𝑘)

. (54)

From (54), we have

𝑓
𝑛
Δ
𝑐
𝑓 ≡ 𝑔

𝑛
Δ
𝑐
𝑔 + 𝑝 (𝑧) , (55)

where 𝑝(𝑧) is a polynomial of degree at most 𝑘 − 1. Suppose
𝑝(𝑧) ̸≡ 0; then we get

𝑓
𝑛
Δ
𝑐
𝑓

𝑝 (𝑧)
=

𝑔
𝑛
Δ
𝑐
𝑔

𝑝 (𝑧)
+ 1. (56)

Therefore, from the second main theorem, we have

(𝑛 + 1) 𝑇 (𝑟, 𝑓) ≤ 𝑇(
𝑓
𝑛
Δ
𝑐
𝑓

𝑝 (𝑧)
) + 𝑆 (𝑟, 𝑓)

≤ 𝑁(
𝑓
𝑛
Δ
𝑐
𝑓

𝑝 (𝑧)
) + 𝑁(

𝑝 (𝑧)

𝑓𝑛Δ
𝑐
𝑓
)

+ 𝑁(
𝑝 (𝑧)

𝑔𝑛Δ
𝑐
𝑔
) + 𝑆 (𝑟, 𝑓)

≤ 𝑁(
1

𝑓
) + 𝑁(

1

Δ
𝑐
𝑓
) + 𝑁(

1

𝑔
)

+ 𝑁(
1

Δ
𝑐
𝑔
) + 𝑆 (𝑟, 𝑓)

≤ 2𝑇 (𝑟, 𝑓) + 2𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑓) .

(57)

Similarly, we have

(𝑛 + 1) 𝑇 (𝑟, 𝑔) ≤ 2𝑇 (𝑟, 𝑓) + 2𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑓) . (58)

Therefore,
(𝑛 + 1) [𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔)]

≤ 4 [𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔)] + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) ,

(59)

which is a contradiction to 𝑛 ≥ 2𝑘 + 7. Thus, 𝑝(𝑧) ≡ 0, which
implies that

𝑓
𝑛
Δ
𝑐
𝑓 ≡ 𝑔

𝑛
Δ
𝑐
𝑔. (60)

Let 𝑓/𝑔 = ℎ; if ℎ is not a constant, then by (60), we have

ℎ
𝑛+1

≡
𝑓

Δ
𝑐
𝑓

⋅
Δ
𝑐
𝑔

𝑔
. (61)

Thus,

(𝑛 + 1) 𝑇 (𝑟, ℎ) ≤ 𝑇(𝑟,
Δ
𝑐
𝑓

𝑓
) + 𝑇(𝑟,

Δ
𝑐
𝑔

𝑔
) + 𝑂 (1)

≤ 𝑁(𝑟,
Δ
𝑐
𝑓

𝑓
) + 𝑁(𝑟,

Δ
𝑐
𝑔

𝑔
)

+ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .

(62)

Combining 𝑇(𝑟, ℎ) = 𝑇(𝑟, 𝑓/𝑔) = 𝑇(𝑟, 𝑓)+𝑇(𝑟, 𝑔)+𝑂(1), we
obtain 𝑛(𝑇(𝑟, 𝑓)+𝑇(𝑟, 𝑔)) ≤ 𝑆(𝑟, 𝑓)+𝑆(𝑟, 𝑔), which is impos-
sible.

Therefore, ℎ is a constant; then substituting 𝑓 = 𝑔ℎ into
(60), we have ℎ

𝑛+1
≡ 1. Hence 𝑓(𝑧) = 𝑡𝑔(𝑧), where 𝑡 is a con-

stant and 𝑡
𝑛+1

= 1.
The proof of Theorem 5 is complete.

3.3. Proof of Theorem 6. Let

𝐹 (𝑧) = [𝑓(𝑧)
𝑛
Δ
𝑐
𝑓]
(𝑘)

, 𝐺 (𝑧) = [𝑔(𝑧)
𝑛
Δ
𝑐
𝑔]
(𝑘)

,

𝐹
1
(𝑧) = 𝑓(𝑧)

𝑛
Δ
𝑐
𝑓, 𝐺

1
(𝑧) = 𝑔(𝑧)

𝑛
Δ
𝑐
𝑔.

(63)

Then 𝐹(𝑧) and 𝐺(𝑧) share 1 IM, and 𝐹
(𝑘)

1
= 𝐹, 𝐺(𝑘)

1
= 𝐺. By

Lemma 10, we have

𝑛𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ≤ 𝑇 (𝑟, 𝐹
1
) ≤ (𝑛 + 1) 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

(64)

𝑛𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔) ≤ 𝑇 (𝑟, 𝐺
1
) ≤ (𝑛 + 1) 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔) .

(65)

Since 𝑓 is transcendental entire, by the definition of 𝐹, we
have

𝑁
2
(𝑟,

1

𝐹
) = 𝑁(𝑟,

1

𝐹
) + 𝑁

(2
(𝑟,

1

𝐹
)

= 𝑁(𝑟,
1

𝐹
) − [𝑁

(3
(𝑟,

1

𝐹
) − 2𝑁

(3
(𝑟,

1

𝐹
)] .

(66)

Using the argument in (35), we have

𝑁
(3
(𝑟,

1

𝐹
) − 2𝑁

(3
(𝑟,

1

𝐹
) ≥ (𝑛 − 𝑘 − 2)𝑁(𝑟,

1

𝑓
) . (67)

It follows from Lemma 12 and (66), (67), we have

𝑁
2
(𝑟,

1

𝐹
) ≤ 𝑁(𝑟,

1

𝐹
) − (𝑛 − 𝑘 − 2)𝑁(𝑟,

1

𝑓
)

≤ 𝑁(𝑟,
1

𝑓𝑛Δ
𝑐
𝑓
) − (𝑛 − 𝑘 − 2)𝑁(𝑟,

1

𝑓
)

+ 𝑆 (𝑟, 𝑓) ≤ 𝑛𝑁(𝑟,
1

𝑓
) + 𝑁(𝑟,

1

Δ
𝑐
𝑓
)

− (𝑛 − 𝑘 − 2)𝑁(𝑟,
1

𝑓
) + 𝑆 (𝑟, 𝑓)

≤ (𝑘 + 3) 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(68)

From Lemma 15, we have

𝑁(𝑟,
1

𝐹
) ≤ 𝑁

𝑘+1
(𝑟,

1

𝑓𝑛Δ
𝑐
𝑓
) + 𝑆 (𝑟, 𝑓)

≤ (𝑘 + 1)𝑁(𝑟,
1

𝑓
) + 𝑁(𝑟,

1

Δ
𝑐
𝑓
) + 𝑆 (𝑟, 𝑓)

≤ (𝑘 + 2) 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(69)
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Similarly,

𝑁
2
(𝑟,

1

𝐺
) ≤ (𝑘 + 3) 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔) ,

𝑁(𝑟,
1

𝐺
) ≤ (𝑘 + 2) 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑓) .

(70)

By Lemma 14, one of the following cases holds:

(i) 𝑇(𝑟, 𝐺) ≤ 𝑁
2
(𝑟, 1/𝐺) + 𝑁

2
(𝑟, 1/𝐹) + 𝑁(𝑟, 1/𝐹) +

2𝑁(𝑟, 1/𝐺) + 𝑆(𝑟, 𝐹) + 𝑆(𝑟, 𝐺), the same inequality
holding for 𝑇(𝑟, 𝐹);

(ii) 𝐹 ≡ (𝐴𝐺 + 𝐵)/(𝐶𝐺 + 𝐷).
For case (i), we have

𝑇 (𝑟, 𝐺) ≤ 𝑁
2
(𝑟,

1

𝐺
) + 𝑁

2
(𝑟,

1

𝐹
) + 𝑁(𝑟,

1

𝐹
)

+ 2𝑁(𝑟,
1

𝐺
) + 𝑆 (𝑟, 𝐹) + 𝑆 (𝑟, 𝐺) ,

𝑇 (𝑟, 𝐹) ≤ 𝑁
2
(𝑟,

1

𝐹
) + 𝑁

2
(𝑟,

1

𝐺
) + 𝑁(𝑟,

1

𝐺
)

+ 2𝑁(𝑟,
1

𝐹
) + 𝑆 (𝑟, 𝐹) + 𝑆 (𝑟, 𝐺) .

(71)

Therefore, we get

𝑇 (𝑟, 𝐹) + 𝑇 (𝑟, 𝐺) ≤ 2 [𝑁
2
(𝑟,

1

𝐹
) + 𝑁

2
(𝑟,

1

𝐺
)]

+ 3 [𝑁(𝑟,
1

𝐺
) + 𝑁(𝑟,

1

𝐹
)]

+ 𝑆 (𝑟, 𝐹) + 𝑆 (𝑟, 𝐺) .

(72)

By (64) and Lemma 15, we have

𝑛𝑇 (𝑟, 𝑓) ≤ 𝑇 (𝑟, 𝐹
1
) + 𝑆 (𝑟, 𝑓) ≤ 𝑇 (𝑟, 𝐹) − 𝑁

2
(𝑟,

1

𝐹
)

+ 𝑁
𝑘+2

(𝑟,
1

𝐹
1

) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝐹) − 𝑁
2
(𝑟,

1

𝐹
) + (𝑘 + 2)𝑁(𝑟,

1

𝑓
)

+ 𝑁(𝑟,
1

Δ
𝑐
𝑓
) + 𝑆 (𝑟, 𝑓)

≤ 𝑇 (𝑟, 𝐹) − 𝑁
2
(𝑟,

1

𝐹
)

+ (𝑘 + 3) 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) .

(73)

Similarly,

𝑛𝑇 (𝑟, 𝑔) ≤ 𝑇 (𝑟, 𝐺) − 𝑁
2
(𝑟,

1

𝐺
) + (𝑘 + 3) 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔) .

(74)

By (70), (72), (73), and (74), we obtain

(𝑛 − 5𝑘 − 12) {𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔)} ≤ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) ,

(75)

which is a contradiction since 𝑛 ≥ 5𝑘 + 13.

For case (ii), we have

𝐹 ≡
𝐴𝐺 + 𝐵

𝐶𝐺 + 𝐷
, (76)

where 𝐴, 𝐵, 𝐶, and 𝐷 are finite complex numbers satisfy-
ing 𝐴𝐷 ̸= 𝐵𝐶. Therefore, by the first fundamental theorem,
𝑇(𝑟, 𝐹) = 𝑇(𝑟, 𝐺) + 𝑆(𝑟, 𝐹).

Next, we consider three cases.

Case 1. 𝐴𝐶 ̸= 0; from (76), we get

𝐹 −
𝐴

𝐶
=

𝐵 − 𝐴𝐷/𝐶

𝐶𝐺 + 𝐷
. (77)

By the second fundamental theorem and (69), we have

𝑇 (𝑟, 𝐹) ≤ 𝑁(𝑟,
1

𝐹 − 𝐴/𝐶
) + 𝑁(𝑟,

1

𝐹
) + 𝑆 (𝑟, 𝐹)

= 𝑁 (𝑟, 𝐺) + (𝑘 + 2) 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝐹)

≤ (𝑘 + 2) 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝐹) .

(78)

From (73), we obtain (𝑛 − 2𝑘 − 5)𝑇(𝑟, 𝑓) ≤ 𝑆(𝑟, 𝑓), contra-
dicting to 𝑛 ≥ 5𝑘 + 13.

Case 2. 𝐴 ̸= 0, and 𝐶 = 0. Then, 𝐹 ≡ 𝐴𝐺 + 𝐵/𝐷.
If 𝐵 ̸= 0, by the second fundamental theorem and (69),

(70), we have

𝑇 (𝑟, 𝐹) ≤ 𝑁(𝑟,
1

𝐹 − 𝐵/𝐷
) + 𝑁(𝑟,

1

𝐹
) + 𝑆 (𝑟, 𝐹)

= 𝑁(𝑟,
1

𝐺
) + 𝑁(𝑟,

1

𝐹
) + 𝑆 (𝑟, 𝐹)

≤ (𝑘 + 2) 𝑇 (𝑟, 𝑓) + (𝑘 + 2) 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝐹) .

(79)

Similarly,

𝑇 (𝑟, 𝐺) ≤ (𝑘 + 2) 𝑇 (𝑟, 𝑓) + (𝑘 + 2) 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝐺) . (80)

From (73), (74), (79), and (80), we get

(𝑛 − 3𝑘 − 7) [𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔)] ≤ 𝑆 (𝑟, 𝐹) + 𝑆 (𝑟, 𝐺) , (81)

which is a contradiction to 𝑛 ≥ 5𝑘 + 13.
If 𝐵 = 0, then 𝐹 ≡ 𝐴𝐺/𝐷. If 𝐴/𝐷 = 1, then 𝐹 ≡ 𝐺; that

is, [𝑓𝑛Δ
𝑐
𝑓]
(𝑘)

≡ [𝑔
𝑛
Δ
𝑐
𝑔]
(𝑘); using the argument in (54) and

noting that 𝑛 ≥ 5𝑘 + 13, we obtain 𝑓(𝑧) = 𝑡𝑔(𝑧), where 𝑡 is a
constant and 𝑡

𝑛+1
= 1. If𝐴/𝐷 ̸= 1, by the condition that 𝐹 and

𝐺 share 1 IM, then 𝐹 ̸= 1 and 𝐺 ̸= 1. we obtain then 𝐹 ̸= 1 and
𝐹 ̸=𝐴/𝐷. By the second fundamental theorem, we have

𝑇 (𝑟, 𝐹) ≤ 𝑁(
1

𝐹 − 1
) + 𝑁(

1

𝐹 − 𝐴/𝐷
) + 𝑆 (𝑟, 𝐹) ≤ 𝑆 (𝑟, 𝐹) ,

(82)

which is impossible.
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Case 3. 𝐴 = 0, and 𝐶 ̸= 0. Then, 𝐹 ≡ 𝐵/(𝐶𝐺 + 𝐷).
If 𝐷 ̸= 0, by the second fundamental theorem and (69),

(70), we have

𝑇 (𝑟, 𝐹) ≤ 𝑁(𝑟,
1

𝐹 − 𝐵/𝐷
) + 𝑁(𝑟,

1

𝐹
) + 𝑆 (𝑟, 𝐹)

= 𝑁(𝑟,
1

𝐺
) + 𝑁(𝑟,

1

𝐹
) + 𝑆 (𝑟, 𝐹)

≤ (𝑘 + 2) 𝑇 (𝑟, 𝑓) + (𝑘 + 2) 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝐹) .

(83)

Similarly,

𝑇 (𝑟, 𝐺) ≤ (𝑘 + 2) 𝑇 (𝑟, 𝑓) + (𝑘 + 2) 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝐺) . (84)

From (73), (74), (83), and (84), we get

(𝑛 − 3𝑘 − 7) [𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔)] ≤ 𝑆 (𝑟, 𝐹) + 𝑆 (𝑟, 𝐺) , (85)

which is a contradiction to 𝑛 ≥ 5𝑘 + 13.
If𝐷 = 0, then 𝐹 ≡ 𝐵/𝐶𝐺. If 𝐵/𝐶 = 1, then 𝐹⋅𝐺 ≡ 1; using

the argument in (48) in Theorem 5 and noting that 𝑛 ≥ 5𝑘 +

13, we get a contradiction. If 𝐵/𝐶 ̸= 1, by the condition that 𝐹
and𝐺 share 1 IM, we obtain 𝐹 ̸= 1 and 𝐹 ̸= 𝐵/𝐶. By the second
fundamental theorem, we have

𝑇 (𝑟, 𝐹) ≤ 𝑁(
1

𝐹 − 1
) + 𝑁(

1

𝐹 − 𝐵/𝐶
) + 𝑆 (𝑟, 𝐹) ≤ 𝑆 (𝑟, 𝐹) ,

(86)

which is impossible.
The proof of Theorem 6 is complete.
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