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We study the blowup criterion of smooth solutions for an inviscid aggregation equation in R𝑛. By means of the losing estimates
and the logarithmic Sobolev inequality, we establish an improved blowup criterion of smooth solutions.

1. Introduction

In this paper, we consider the following aggregation equation
in R𝑛:

𝑢
𝑡
+ ∇ ⋅ (𝑢 (∇𝐾 ∗ 𝑢)) = 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ,

(1)

with a given kernel 𝐾 : R𝑛 → R. The unknown function
𝑢 is either the population density of a species or the density
of particles in a granular medium. Aggregation equations
of form (1) arise in many problems in biology, chemistry,
and population dynamics and describe a collective motion
and aggregation phenomena in biology and in mechanics
of continuous media. From the mathematical point of view,
(1) can be considered as a nonlinear, nonlocal transport
equation, and its character depends strongly on properties of
a given kernel𝐾.

Laurent [1] has studied problem (1) in detail and proved
several local and global existence results for a class of kernels
𝐾 with different regularity. Then, Bertozzi et al. [2–5] have
proved finite-time blowup of solutions corresponding to
compactly supported radial initial data. Those results can be
summarized as follow. Kernels that are smooth (not singular)
at origin 𝑥 = 0 lead to the global in time existence of solutions
(see e.g., [1, 4]). Nonsmooth kernels (and 𝐶1 off the origin,

like 𝐾(𝑥) = 𝑒
−|𝑥|) may lead to blowup of solutions either in

finite or infinite time [1–4, 6, 7].
Equation (1) has been also intensively considered in the

viscous case, namely, with the dissipative term (−Δ)
𝛾

𝑢. The
authors of [6–10] studied the problem (1) with fractional
dissipation (−Δ)

𝛾/2

𝑢 and proved finite blowup of solutions
or their global well-posedness for certain class of kernels.
Recently, Karch and Suzuki [11] have classified kernels, which
lead either to the blowup or global existence of solutions to
(1) with the classical dissipation Δ𝑢.

Typical approaches to prove a finite-time aggregation
include an extension of the method of characteristics [4, 12],
the energy method (e.g., [2, 3, 6, 7]) and the moment (or
virial) method. The latter has been first applied to mean field
models for self-gravitating particles and chemotaxis system
[13] and recently in [8, 9, 11].

Our aim in this paper is to present another method
showing finite time blowup of a large class of solutions of
(1). In the mixed time-space Besov spaces, using the losing
estimates and the logarithmic Sobolev inequality, we can set
up the blowup criterion at some Δ

𝑗
which is the frequency

localization operator in the Littlewood-Paley decomposition.
The blowup result we obtained for (1) had been proved under
the assumptions much relaxed compared to [6, 7, 12]. In
addition, it allows us to consider potentials which are more
general than those considered in previous papers, namely, we
require ∇𝐾 ∈ 𝑊

1,1

(R𝑛) which contains the case 𝐾 = 𝑒
−|𝑥|.

Here, we follow the ideas introduced in [2, 14–18]. Our main
result reads as follows.
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Theorem 1. Let∇𝐾 ∈ 𝑊
1,1

(R𝑛), 𝑢
0
∈ 𝐵

𝑠

𝑝,𝑞
, 𝑠 > 𝑛/𝑝+1, 1 < 𝑝,

𝑞 < ∞. Suppose that 𝑢 ∈ 𝐶([0, 𝑇); 𝐵
𝑠

𝑝,𝑞
) ∩ 𝐶

1

([0, 𝑇); 𝐵
𝑠−1

𝑝,𝑞
)

is a smooth solution to (1). If there exists an absolute constant
𝑀 > 0 such that if

lim
𝜀→0

sup
𝑗∈Z

∫

𝑇

𝑇−𝜀






Δ
𝑗
𝑢





∞

𝑑𝑡 = 𝛿 < 𝑀, (2)

then 𝛿 = 0 and the solution 𝑢 can be extended past time 𝑡 = 𝑇.
In other words, if

lim
𝜀→0

sup
𝑗∈Z

∫

𝑇

𝑇−𝜀






Δ
𝑗
𝑢





∞

𝑑𝑡 ≥ 𝑀, (3)

then the solution blows up at 𝑡 = 𝑇. Here, Δ
𝑗
is a frequency

localization on |𝜉| ≈ 2𝑗; see Section 2.

Note that 𝐵𝑠−1
𝑝,𝑞

is a Banach algebra for 𝑠 > 𝑛/𝑝 + 1. One
can easily prove that there exists a unique smooth solution𝑢 ∈
𝐶([0, 𝑇); 𝐵

𝑠

𝑝,𝑞
)∩𝐶

1

([0, 𝑇); 𝐵
𝑠−1

𝑝,𝑞
) to (1) by standardmethod; see

[19] for details.

Notation. Throughout the paper, 𝐶 stands for a generic con-
stant. We will use the notation 𝐴 ≲ 𝐵 to denote the relation
𝐴 ≤ 𝐶𝐵 and the notation𝐴 ≈ 𝐵 to denote the relations𝐴 ≲ 𝐵

and 𝐵 ≲ 𝐴.

2. Preliminaries

In this preparatory section, we provide the definition of some
function spaces based on the so-called Littlewood-Paley
decomposition and we review some important lemmas that
will be used constantly in the sequel.

We start with the dyadic decomposition. Let 𝜑 ∈ 𝐶∞
0
(R𝑛)

be supported in the ring C := {𝜉 ∈ R𝑛, 3/4 ≤ |𝜉| ≤ 8/3} and
such that

∑

𝑞∈Z

𝜑 (2
−𝑞

𝜉) = 1 for 𝜉 ̸= 0. (4)

We define also the function 𝜒(𝜉) = 1−∑
𝑞∈N 𝜑(2

−𝑞

𝜉). Now for
𝑢 ∈ S we set

Δ
−1
𝑢 = 𝜒 (𝐷) 𝑢;

∀𝑞 ∈ N, Δ
𝑞
𝑢 = 𝜑 (2

−𝑞

𝐷)𝑢,

∀𝑞 ∈ Z, Δ̇
𝑞
𝑢 = 𝜑 (2

−𝑞

𝐷)𝑢.

(5)

The following low-frequency cut-off will be also used:

𝑆
𝑞
𝑢 = ∑

−1≤𝑗≤𝑞−1

Δ
𝑗
𝑢,

̇𝑆
𝑞
𝑢 = ∑

𝑗≤𝑞−1

Δ̇
𝑗
𝑢.

(6)

Let us now recall the definition of Besov spaces through
dyadic decomposition.

Let (𝑝, 𝑞) ∈ [1, +∞]
2 and 𝑠 ∈ R; then the inhomogeneous

space 𝐵𝑠
𝑝,𝑞

is the set of tempered distributions 𝑢 such that

‖𝑢‖
𝐵
𝑠

𝑝,𝑞

:= (2
𝑞𝑠





Δ
𝑞
𝑢





𝐿
𝑝
)
ℓ
𝑞
< ∞. (7)

To define the homogeneous Besov spaces we first denote by
S/P the space of tempered distributions modulo polyno-
mials. Thus, we define the space �̇�𝑠

𝑝,𝑟
as the set of distribution

𝑢 ∈ S/P such that

‖𝑢‖
�̇�
𝑠

𝑝,𝑞

:= (2
𝑞𝑠





Δ̇
𝑞
𝑢





𝐿
𝑝
)
ℓ
𝑞
< ∞. (8)

We point out that if 𝑠 > 0, then we have 𝐵𝑠
𝑝,𝑞

= �̇�
𝑠

𝑝,𝑞
∩ 𝐿

𝑝 and

‖𝑢‖
𝐵
𝑠

𝑝,𝑞

≈ ‖𝑢‖
�̇�
𝑠

𝑝,𝑞

+ ‖𝑢‖
𝐿
𝑝 . (9)

In our next study, we require two kinds of coupled space-
time Besov spaces. The first one is defined in the following
manner: for 𝑇 > 0 and 𝑞 ≥ 1, we denote by 𝐿𝑟

𝑇
�̇�
𝑠

𝑝,𝑞
the set of

all tempered distributions 𝑢 satisfying

‖𝑢‖
𝐿
𝑟

𝑇
�̇�
𝑠

𝑝,𝑟

:=








(2
𝑞𝑠





Δ̇
𝑞
𝑢





𝐿
𝑝
)
ℓ
𝑞






𝐿
𝑟

𝑇

< ∞. (10)

The secondmixed space is �̃�𝑟
𝑇
�̇�
𝑠

𝑝,𝑞
which is the set of tempered

distribution 𝑢 satisfying

‖𝑢‖
�̃�
𝑟

𝑇
�̇�
𝑠

𝑝,𝑞

:= (2
𝑞𝑠





Δ̇
𝑞
𝑢





𝐿
𝑟

𝑇
𝐿
𝑝
)

ℓ
𝑞

< ∞. (11)

We can define by the same way the spaces 𝐿𝑟
𝑇
𝐵
𝑠

𝑝,𝑞
and �̃�𝑟

𝑇
𝐵
𝑠

𝑝,𝑞
.

The following embeddings are a direct consequence of
Minkowski’s inequality.

Let 𝑠 ∈ R, 𝑟 ≥ 1, and (𝑝, 𝑞) ∈ [1,∞]
2; then we have

𝐿
𝑟

𝑇
�̇�
𝑠

𝑝,𝑞
→ �̃�

𝑟

𝑇
�̇�
𝑠

𝑝,𝑞
, if 𝑞 ≥ 𝑟,

�̃�
𝑟

𝑇
�̇�
𝑠

𝑝,𝑞
→ 𝐿

𝑟

𝑇
�̇�
𝑠

𝑝,𝑞
, if 𝑟 ≥ 𝑞.

(12)

Now we give two useful lemmas.

Lemma 2 (Bernstein’s inequalities [20]). Let 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞.
Assume that𝑓 ∈ 𝐿

𝑝; then there exists a constant𝐶 independent
of 𝑓, 𝑗 such that

supp ̂
𝑓 ⊂ {





𝜉




≤ 𝐶2

𝑗

}

⇒




𝜕
𝛼

𝑓



𝐿
𝑞 ≤ 𝐶2

𝑗|𝛼|+𝑗𝑛((1/𝑝)−(1/𝑞))



𝑓



𝐿
𝑝 ,

supp ̂
𝑓 ⊂ {

1

𝐶

2
𝑗

≤




𝜉




≤ 𝐶2

𝑗

}

⇒




𝑓



𝐿
𝑝 ≤ 𝐶2

−𝑗|𝛼| sup
|𝛽|=|𝛼|






𝜕
𝛽

𝑓





𝐿
𝑝
.

(13)
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Lemma 3 (logarithmic Sobolev inequality). Let 1 ≤ 𝑝 < ∞,
1 ≤ 𝑞 < ∞, and 𝑠 > 𝑛/𝑝 + 1. Assume that 𝑓 ∈ �̃�

1

𝑇
(�̇�
0

∞,∞
) ∩

𝐿
∞

𝑇
(𝐵
𝑠−1

𝑝,𝑞
). Then, the following inequality holds:

∫

𝑇

0





𝑓 (𝑡)




∞

𝑑𝑡

≤ 𝐶(1 + sup
𝑗

∫

𝑇

0






Δ
𝑗
𝑓





∞

𝑑𝑡 (1 + log+ (𝑇

𝑓



𝐿
∞

𝑇
(𝐵
𝑠−1

𝑝,𝑞
)
))) ,

(14)

where log+𝑥 = log𝑥, for 𝑥 > 1, log+𝑥 = 0, for 𝑥 ≤ 1, and 𝐶 is
an absolute constant independent of 𝑓, 𝑇.

The proof is rather standard and can be found in [14].

3. Proof of Theorem 1

Applying Δ̇
𝑗
to (1), we have

𝜕
𝑡
Δ̇
𝑗
𝑢 + ∇ ⋅ Δ̇

𝑗
(𝑢 (∇𝐾 ∗ 𝑢)) = 0. (15)

Multiplying (15) by |Δ̇
𝑗
𝑢|

𝑝−2

Δ̇
𝑗
𝑢 and integrating the obtained

equation in R𝑛 with respect to the space variable give

1

𝑝

𝑑

𝑑𝑡






Δ̇
𝑗
𝑢







𝑝

𝑝

= −∫

R𝑛
∇ ⋅ Δ̇

𝑗
(𝑢 (∇𝐾 ∗ 𝑢))






Δ̇
𝑗
𝑢







𝑝−2

Δ̇
𝑗
𝑢𝑑𝑥.

(16)

Let us now turn to estimate the right-hand term of the pre-
vious equation by Bony’s decomposition [21]. We decompose
𝑢(∇𝐾 ∗ 𝑢) as a paraproduct

𝑢 (∇𝐾 ∗ 𝑢) = 𝑇
𝑢
∇𝐾 ∗ 𝑢 + 𝑇

∇𝐾∗𝑢
𝑢 + 𝑅 (𝑢, ∇𝐾 ∗ 𝑢)

= ∑

𝑘

̇𝑆
𝑘−1

𝑢Δ̇
𝑘
(∇𝐾 ∗ 𝑢) +∑

𝑘

̇𝑆
𝑘−1

(∇𝐾 ∗ 𝑢) Δ̇
𝑘
𝑢

+ ∑

|𝑘−𝑘


|≤1

Δ̇
𝑘
𝑢Δ̇

𝑘
 (∇𝐾 ∗ 𝑢)

= 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

(17)

For 𝐼, integrating by parts together with theHölder inequality
yields








∫

R𝑛
∇ ⋅ Δ̇

𝑗
(𝐼)






Δ̇
𝑗
𝑢







𝑝−2

Δ̇
𝑗
𝑢𝑑𝑥









≲ ∑

|𝑘−𝑗|≤4







̇𝑆
𝑘−1

𝑢





𝐿
∞






Δ̇
𝑘
(∇𝐾 ∗ 𝑢)





𝐿
𝑝






Δ̇
𝑗
𝑢







𝑝−2

𝐿
𝑝






∇Δ̇

𝑗
𝑢





𝐿
𝑝

≲ ∑

|𝑘−𝑗|≤4

2
𝑗−𝑘






̇𝑆
𝑘−1

𝑢





𝐿
∞






Δ̇
𝑘
(∇

2

𝐾 ∗ 𝑢)





𝐿
𝑝

×






Δ̇
𝑗
𝑢







𝑝−2

𝐿
𝑝






Δ̇
𝑗
𝑢





𝐿
𝑝

≲ ∑

|𝑘−𝑗|≤4







̇𝑆
𝑘−1

𝑢





𝐿
∞






Δ̇
𝑘
𝑢





𝐿
𝑝






Δ̇
𝑗
𝑢







𝑝−1

𝐿
𝑝
.

(18)

We have similar estimates for 𝐼𝐼 using twice integration by
parts:









∫

R𝑛
∇ ⋅ Δ̇

𝑗
(𝐼𝐼)






Δ̇
𝑗
𝑢







𝑝−2

Δ̇
𝑗
𝑢𝑑𝑥









≲ ∑

|𝑘−𝑗|≤4









∫

R𝑛
̇𝑆
𝑘−1

(∇𝐾 ∗ 𝑢) Δ̇
𝑘
𝑢






Δ̇
𝑗
𝑢







𝑝−2

∇Δ̇
𝑗
𝑢𝑑𝑥









≲ ∑

|𝑘−𝑗|≤4









∫

R𝑛
̇𝑆
𝑘−1

(∇𝐾 ∗ 𝑢) ∇






Δ̇
𝑗
𝑢







𝑝

𝑑𝑥









≲ ∑

|𝑘−𝑗|≤4









∫

R𝑛
̇𝑆
𝑘−1

(Δ𝐾 ∗ 𝑢)






Δ̇
𝑗
𝑢







𝑝

𝑑𝑥









≲ ∑

|𝑘−𝑗|≤4







̇𝑆
𝑘−1

𝑢





𝐿
∞






Δ̇
𝑗
𝑢







𝑝

𝐿
𝑝
.

(19)

For 𝐼𝐼𝐼, we have









∫

R𝑛
∇ ⋅ Δ̇

𝑗
(𝐼𝐼𝐼)






Δ̇
𝑗
𝑢







𝑝−2

Δ̇
𝑗
𝑢𝑑𝑥









≲ ∑

|𝑘−𝑘


|≤1

𝑘≥𝑗−3






Δ̇
𝑘
𝑢





𝐿
∞






Δ̇
𝑘
 (∇𝐾 ∗ 𝑢)





𝐿
𝑝

×






Δ̇
𝑗
𝑢







𝑝−2

𝐿
𝑝






∇Δ̇

𝑗
𝑢





𝐿
𝑝

≲ ∑

|𝑘−𝑘


|≤1

𝑘≥𝑗−3

2
𝑗−𝑘





Δ̇
𝑘
𝑢





𝐿
∞






Δ̇
𝑘
 (∇

2

𝐾 ∗ 𝑢)





𝐿
𝑝






Δ̇
𝑗
𝑢







𝑝−1

𝐿
𝑝

≲ ∑

𝑘≥𝑗−3






Δ̇
𝑘
𝑢





𝐿
∞






Δ̇
𝑘
𝑢





𝐿
𝑝






Δ̇
𝑗
𝑢







𝑝−1

𝐿
𝑝
.

(20)

Adding (18)–(20), we infer that

1

𝑝

𝑑

𝑑𝑡






Δ̇
𝑗
𝑢







𝑝

𝐿
𝑝
≲ ∑

𝑗∈Z







̇𝑆
𝑘−1

𝑢





𝐿
∞






Δ̇
𝑗
𝑢







𝑝

𝐿
𝑝

+ ∑

𝑘≥𝑗−3






Δ̇
𝑘
𝑢





𝐿
∞






Δ̇
𝑘
𝑢





𝐿
𝑝






Δ̇
𝑗
𝑢







𝑝−1

𝐿
𝑝

≲ ∑

𝑗∈Z

‖𝑢‖
𝐿
∞






Δ̇
𝑗
𝑢







𝑝

𝐿
𝑝

+ ∑

𝑘≥𝑗−3

‖𝑢‖
𝐿
∞






Δ̇
𝑘
𝑢





𝐿
𝑝






Δ̇
𝑗
𝑢







𝑝−1

𝐿
𝑝
,

(21)

where we use the inequalities ‖ ̇𝑆
𝑘−1

𝑢‖
𝐿
∞ ≤ ‖𝑢‖

𝐿
∞ and

‖Δ̇
𝑘
𝑢‖
𝐿
∞ ≤ ‖𝑢‖

𝐿
∞ . Thus, we deduce

𝑑

𝑑𝑡






Δ̇
𝑗
𝑢





𝑝
≲ ∑

𝑗∈Z

‖𝑢‖
𝐿
∞






Δ̇
𝑗
𝑢





𝐿
𝑝
+ ∑

𝑘≥𝑗−3

‖𝑢‖
𝐿
∞






Δ̇
𝑘
𝑢





𝐿
𝑝
,

(22)
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which implies that

𝑑

𝑑𝑡






Δ̇
𝑗
𝑢







𝑞

𝐿
𝑝
≲ 𝑞∑

𝑗∈Z

‖𝑢‖
𝐿
∞






Δ̇
𝑗
𝑢







𝑞

𝐿
𝑝

+ 𝑞 ∑

𝑘≥𝑗−3

‖𝑢‖
𝐿
∞






Δ̇
𝑘
𝑢





𝐿
𝑝






Δ̇
𝑗
𝑢







𝑞−1

𝐿
𝑝
.

(23)

Set

Ψ
𝜆
(𝑡


, 𝑡) = 𝜆∫

𝑡


𝑡






𝑢 (𝑡



)





∞

𝑑𝑡


, Ψ
𝜆
(𝑡) = Ψ

𝜆
(0, 𝑡) .

(24)

Integrating (23) over [0, 𝑡)with respect to time variable 𝜏 and
then multiplying by 2𝑞(𝑗𝑠−Ψ𝜆(𝑡)) the both obtained inequality,
we get

2
𝑞(𝑗𝑠−Ψ

𝜆
(𝑡))





Δ̇
𝑗
𝑢







𝑞

𝐿
𝑝
(𝑡)

≲ 2
𝑗𝑞𝑠





Δ̇
𝑗
𝑢







𝑞

𝐿
𝑝
(0)

+ ∫

𝑡

0

2
−𝑞Ψ
𝜆
(𝜏,𝑡)

‖𝑢‖
𝐿
∞ (𝜏)

× (∑

𝑗∈Z

2
𝑞(𝑗𝑠−Ψ

𝜆
(𝜏))





Δ
𝑗
𝑢







𝑞

𝐿
𝑝

+ ∑

𝑘≥𝑗−3

2
(𝑗−𝑘)𝑠

2
(𝑞−1)(𝑗𝑠−Ψ

𝜆
(𝜏))

×






Δ̇
𝑗
𝑢







𝑞−1

𝐿
𝑝
2
𝑘𝑠−Ψ
𝜆
(𝜏)





Δ̇
𝑘
𝑢





𝐿
𝑝
)𝑑𝜏.

(25)

Let

𝛼
𝑗,𝑇

= sup
𝑡∈[0,𝑇)

2
𝑗𝑠−Ψ
𝜆
(𝑡)





Δ̇
𝑗
𝑢





𝑝
, 𝛼

𝑇
=






𝛼
𝑗,𝑇





𝑙
𝑞
. (26)

Taking the supremum over [0, 𝑇) on both sides of inequality
(25), we deduce that

𝛼
𝑞

𝑗,𝑇
≲ 𝛼

𝑞

𝑗,0
+ sup
𝑡∈[0,𝑇)

∫

𝑡

0

2
−𝑞Ψ
𝜆
(𝜏,𝑡)

‖𝑢‖
𝐿
∞𝑑𝜏

× (𝛼
𝑞−1

𝑗,𝑇
∑

𝑗∈Z

𝛼
𝑘,𝑇

+ 𝛼
𝑞−1

𝑗,𝑇
∑

𝑘≥𝑗−3

2
(𝑗−𝑘)𝑠

𝛼
𝑘,𝑇
) .

(27)

By the definition of Ψ
𝜆
(𝜏, 𝑡), we know

𝑑

𝑑𝜏

2
−𝑞Ψ
𝜆
(𝜏,𝑡)

= 𝑞𝜆 log 2 ⋅ 2−𝑞Ψ𝜆(𝜏,𝑡)‖𝑢‖
∞
(𝜏) ; (28)

then we have

∫

𝑡

0

2
−𝑞Ψ
𝜆
(𝜏,𝑡)

‖𝑢‖
∞
𝑑𝜏 = ∫

𝑡

0

1

𝑞𝜆 log 2
𝑑

𝑑𝜏

2
−𝑞Ψ
𝜆
(𝜏,𝑡)

=

1

𝑞𝜆 log 2
(1 − 2

−𝑞Ψ
𝜆
(0,𝑡)

)

≤

1

𝑞𝜆 log 2
.

(29)

Taking the sum over 𝑗 of (27) then using (29) and the Young
inequality lead to

𝛼
𝑞

𝑇
≲




𝑢
0






𝑞

�̇�
𝑠

𝑝,𝑞

+

1

𝑞𝜆 log 2
𝛼
𝑞

𝑇
. (30)

Now if we choose 𝜆 large enough such that

𝜆 >

2

𝑞 log 2
, (31)

then

𝛼
𝑇
≲




𝑢
0






𝑞

�̇�
𝑠

𝑝,𝑞

. (32)

Next we estimate ‖𝑢‖
𝑝
. It is easy to obtain that

‖𝑢 (𝑡)‖
𝐿
𝑝 ≲





𝑢
0




𝐿
𝑝 + ∫

𝑡

0

‖𝑢 (𝜏)‖
𝐿
∞‖𝑢 (𝜏)‖

𝐿
𝑝𝑑𝜏. (33)

Multiplying by 2−Ψ𝜆(𝑡), both sides of the inequality yields

2
−Ψ
𝜆
(𝑡)

‖𝑢 (𝑡)‖
𝐿
𝑝 ≲





𝑢
0




𝐿
𝑝

+ ∫

𝑡

0

2
−Ψ
𝜆
(𝜏,𝑡)

‖𝑢 (𝜏)‖
𝐿
∞2

−Ψ
𝜆
(𝜏)

‖𝑢 (𝜏)‖
𝐿
𝑝𝑑𝜏,

(34)

from which and (29) we have

sup
𝑡∈[0,𝑇)

2
−Ψ
𝜆
(𝑡)

‖𝑢 (𝑡)‖
𝐿
𝑝

≲




𝑢
0




𝐿
𝑝 +

1

𝑞𝜆 log 2
sup
𝑡∈[0,𝑇)

2
−Ψ
𝜆
(𝑡)

‖𝑢 (𝑡)‖
𝐿
𝑝 .

(35)

If 𝜆 ≳ 2/ log 2, then

sup
𝑡∈[0,𝑇)

2
−Ψ
𝜆
(𝑡)

‖𝑢 (𝑡)‖
𝑝
≲




𝑢
0




𝑝
. (36)

Let us define

𝛽
𝑇
= sup(𝛼

𝑇
, sup
𝑡∈[0,𝑇)

2
−Ψ
𝜆
(𝑡)

‖𝑢 (𝑡)‖
𝑝
) . (37)

This together with (32) and (36) implies that

𝛽
𝑇
≲




𝑢
0




𝐵
𝑠

𝑝,𝑞

. (38)

In particular, we have

‖𝑢 (𝑡)‖
𝐵
𝑠

𝑝,𝑞

≲ 2
Ψ
𝜆
(𝑡)



𝑢
0




𝐵
𝑠

𝑝,𝑞

, ∀𝑡 ∈ [0, 𝑇) . (39)

Applying Lemma 3 with 𝑓(𝑡) = 𝑢(𝑡) and the embedding
𝐵
𝑠

𝑝,𝑞
→ 𝐵

𝑠−1

𝑝,𝑞
, we have

∫

𝑡

0

‖𝑢‖
𝐿
∞𝑑𝜏 ≲ 1 + sup

𝑗

∫

𝑡

0






Δ
𝑗
𝑢





𝐿
∞
𝑑𝜏

× (1 + log+ (𝑡‖𝑢‖
𝐿
∞

𝑡
(𝐵
𝑠

𝑝,𝑞
)
)) .

(40)
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For the sake of convenience, we denote

𝜁 (𝑇) = sup
[0,𝑇)

‖𝑢 (𝑡)‖
𝐵
𝑠

𝑝,𝑞

, (41)

noting that

Ψ
𝜆
(𝑡) = 𝜆∫

𝑡

0

‖𝑢‖
∞
𝑑𝜏. (42)

Plugging (40) into (39) then taking supremum over [0, 𝑇)
with respect to 𝑡, we have

𝜁 (𝑇) ≲ 2
𝜆(1+sup

𝑗
∫

𝑇

0

‖Δ
𝑗
𝑢‖
𝐿
∞
𝑑𝜏(1+log+(𝑇𝜁(𝑇))))

𝜁 (0) . (43)

We should point out that the previous inequality still holds if
the time interval [0, 𝑇) is replaced with [𝑇 − 𝜀, 𝑇). Thanks to
the assumption (2) of Theorem 1, we deduce that

𝜁 (𝑇) ≲ 2
𝜆sup
𝑗
∫

𝑇

𝑇−𝜀

‖Δ
𝑗
𝑢‖
∞

𝑑𝜏log+(𝜀𝜁(𝑇))
𝜁 (𝑇 − 𝜀) . (44)

Setting 𝑍(𝑇) = log(𝑒 + 𝜁(𝑇)), we finally have

𝑍 (𝑇) ≲ 𝜆sup
𝑗

∫

𝑇

𝑇−𝜀






Δ
𝑗
∇𝑢





∞

𝑑𝜏𝑍 (𝑇) + 𝑍 (𝑇 − 𝜀) . (45)

If we choose 𝑀 = 1/𝐶𝐶
0
𝜆, condition (2) ensures the term

𝜆sup
𝑗
∫

𝑇

𝑇−𝜀

‖Δ
𝑗
𝑢‖
∞

𝑑𝜏 < 1/𝐶 when 𝜀 → 0, which implies
that

𝑍 (𝑇) ≲ 𝑍 (𝑇 − 𝜀) . (46)

Hence, we have the 𝐵𝑠
𝑝,𝑞

regularity for the solution at 𝑡 = 𝑇

and the solution can be continued after 𝑡 = 𝑇. This completes
the proof of Theorem 1.
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