
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 783731, 8 pages
http://dx.doi.org/10.1155/2013/783731

Research Article
Almost Sequence Spaces Derived by the Domain of the Matrix 𝐴𝑟

Ali Karaisa and ÜmJt KarabJyJk

Department of Mathematics-Computer Science, Faculty of Sciences, Necmettin Erbakan University, Meram Yerleşkesi, Meram,
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By using 𝐴𝑟, we introduce the sequence spaces 𝑎𝑟
𝑓
, 𝑎𝑟
𝑓0
, and 𝑎𝑟

𝑓𝑠
of normed space and 𝐵𝐾-space and prove that 𝑎𝑟

𝑓
, 𝑎
𝑟

𝑓0
, and 𝑎𝑟

𝑓𝑠
are

linearly isomorphic to the sequence spaces 𝑓, 𝑓
0
, and 𝑓𝑠 , respectively. Further, we give some inclusion relations concerning the

spaces 𝑎𝑟
𝑓
, 𝑎𝑟
𝑓0
, and the nonexistence of Schauder basis of the spaces 𝑓𝑠 and 𝑎𝑟

𝑓𝑠
is shown. Finally, we determine the 𝛽- and 𝛾-duals

of the spaces 𝑎𝑟
𝑓
and 𝑎𝑟

𝑓𝑠
. Furthermore, the characterization of certain matrix classes on new almost convergent sequence and series

spaces has exhaustively been examined.

1. Preliminaries, Background and Notation

By 𝑤, we will denote the space of all real or complex valued
sequences. Any vector subspace of𝑤 is called sequence space.
We will write ℓ

∞
, 𝑐
0
, 𝑐, and ℓ

𝑝
for the spaces of all bounded,

null, convergent, and absolutely 𝑝-summable sequences, re-
spectively, which are 𝐵𝐾-space with the usual sup-norm de-
fined by ‖𝑥‖

∞
= sup

𝑘
|𝑥
𝑘
| and ‖𝑥‖

ℓ𝑝
= (∑
𝑘
|𝑥
𝑘
|
𝑝

)
1/𝑝, for 1 <

𝑝 < ∞, where, here and inwhat follows, the summationwith-
out limits runs from 0 to∞. Further, we will write 𝑏𝑠, 𝑐𝑠 for
the spaces of all sequences associated with bounded and con-
vergent series, respectively, which are 𝐵𝐾-spaces with their
natural norm [1].

Let 𝜇 and 𝛾 be two sequence spaces and 𝐴 = (𝑎
𝑛𝑘
) an

infinite matrix of real or complex numbers 𝑎
𝑛𝑘
, where 𝑛, 𝑘 ∈

N. Then, we say that 𝐴 defines a matrix mapping from 𝜇 into
𝛾 and we denote it by writing that 𝐴 : 𝜇 → 𝛾 and if for
every sequence 𝑥 = (𝑥

𝑘
) ∈ 𝜇 the sequence 𝐴𝑥 = (𝐴𝑥)

𝑛
, the

𝐴-transform of 𝑥 is in 𝛾, where

(𝐴𝑥)
𝑛
= ∑

𝑘

𝑎
𝑛𝑘
𝑥
𝑘
, (𝑛 ∈ N) . (1)

The notation (𝜇 : 𝛾) denotes the class of all matrices 𝐴
such that𝐴 : 𝜇 → 𝛾.Thus,𝐴 ∈ (𝜇 : 𝛾) if and only if the series
on the right hand side of (1) converges for each 𝑛 ∈ N and
every 𝑥 ∈ 𝜇 and we have 𝐴𝑥 = {(𝐴𝑥)

𝑛
}
𝑛∈N ∈ 𝛾 for all 𝑥 ∈ 𝜇.

The matrix domain 𝜇
𝐴
of an infinite matrix 𝐴 in a sequence

space 𝜇 is defined by

𝜇
𝐴
= {𝑥 = (𝑥

𝑘
) ∈ 𝜔 : 𝐴𝑥 ∈ 𝜇} . (2)

The approach constructing a new sequence space by
means of the matrix domain of a particular triangle has re-
cently been employed by several authors in many research
papers. For example, they introduced the sequence spaces
(𝑐)
𝐶1
= 𝑐 in [2], (ℓ

𝑝
)
𝐴
𝑟 = 𝑎

𝑟

𝑝
and (ℓ

∞
)
𝐴
𝑟 = 𝑎

𝑟

∞
in [3], 𝜇

𝐺
=

𝑍(𝑢, V; 𝜇) in [4], (𝑐
0
)
Λ
= 𝑐
𝜆

0
and 𝑐
Λ
= 𝑐
𝜆 in [5], and (ℓ

𝑝
)
𝐸
𝑟 = 𝑒
𝑟

𝑝

and (ℓ
∞
)
𝐸
𝑟 = 𝑒
𝑟

∞
in [6]. Recently, matrix domains of the gen-

eralized difference matrix 𝐵(𝑟, 𝑠) and triple band matrix
𝐵(𝑟, 𝑠, 𝑡) in the sets of almost null and almost convergent se-
quences have been investigated by Başar and Kirişçi [7] and
Sönmez [8], respectively. Later, Kayaduman and Şengönül
introduced some almost convergent spaces which are the
matrix domains of the Riesz matrix and Cesàro matrix of
order 1 in the sets of almost null and almost convergent
sequences (see [9, 10]).

We now focus on the sets of almost convergent sequences.
A continuous linear functional 𝜙 on ℓ

∞
is called a Banach

limit if (i) 𝜙(𝑥) ⩾ 0 for 𝑥 = (𝑥
𝑘
) and 𝑥

𝑘
⩾ 0 for every 𝑘, (ii)

𝜙(𝑥
𝜎(𝑘)
) = 𝜙(𝑥

𝑘
), where 𝜎 is shift operator which is defined

on𝜔 by 𝜎(𝑘) = 𝑘+1, and (iii) 𝜙(𝑒) = 1, where 𝑒 = (1, 1, 1, . . .).
A sequence 𝑥 = (𝑥

𝑘
) ∈ ℓ
∞

is said to be almost convergent to
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the generalized limit 𝛼 if all Banach limits of 𝑥 are 𝛼 [11] and
denoted by 𝑓− lim𝑥 = 𝛼. In other words, 𝑓− lim𝑥

𝑘
= 𝛼 uni-

formly in 𝑛 if and only if

lim
𝑚→∞

1

𝑚 + 1

𝑚

∑

𝑘=0

𝑥
𝑘+𝑛

uniformly in 𝑛. (3)

The characterization given above was proved by Lorentz in
[11]. We denote the sets of all almost convergent sequences 𝑓
and series 𝑓𝑠 by

𝑓 = {𝑥 = (𝑥
𝑘
) ∈ 𝜔 : lim

𝑚→∞

𝑡
𝑚𝑛
(𝑥) = 𝛼 uniformly in 𝑛} ,

(4)

where

𝑡
𝑚𝑛
(𝑥) =

𝑚

∑

𝑘=0

1

𝑚 + 1

𝑥
𝑘+𝑛
, 𝑡
−1,𝑛

= 0,

𝑓𝑠 =

{

{

{

𝑥 = (𝑥
𝑘
) ∈ 𝜔 :

∃𝑙 ∈ C ∋ lim
𝑚→∞

𝑚

∑

𝑘=0

𝑛+𝑘

∑

𝑗=0

𝑥
𝑗

𝑚 + 1

= 𝑙

uniformly in 𝑛
}

}

}

.

(5)
We know that the inclusions 𝑐 ⊂ 𝑓 ⊂ ℓ

∞
strictly hold. Be-

cause of these inclusions, norms ‖ ⋅ ‖
𝑓
and ‖ ⋅ ‖

∞
of the spaces

𝑓 and ℓ
∞

are equivalent. So the sets 𝑓 and 𝑓
0
are BK-spaces

with the norm ‖𝑥‖
𝑓
= sup

𝑚,𝑛
|𝑡
𝑚𝑛
(𝑥)|.

The rest of this paper is organized, as follows. We give
foreknowledge on the main argument of this study and nota-
tions in this section. In Section 2, we introduce the almost
convergent sequence and series spaces 𝑎𝑟

𝑓𝑠
and 𝑎𝑟
𝑓
which are

thematrix domains of the𝐴𝑟matrix in the almost convergent
sequence and series spaces𝑓𝑠 and𝑓, respectively. In addition,
we give some inclusion relations concerning the spaces 𝑎𝑟

𝑓
,

𝑎
𝑟

𝑓0

, and the non-existence of Schauder basis of the spaces 𝑓𝑠
and 𝑎𝑟
𝑓𝑠
is shown to give certain theorems related to behavior

of some sequences. In Section 3, we determine the beta- and
gamma-duals of the spaces 𝑎𝑟

𝑓
and 𝑎𝑟

𝑓𝑠
and characterize the

classes (𝛾 : 𝑎𝑟
𝑓
), (𝑎𝑟
𝑓
: 𝜇), (𝛿 : 𝑎𝑟

𝑓𝑠
) and (𝑎𝑟

𝑓
: 𝜃), where 𝛾 ∈

{𝑐(𝑝), 𝑐
0
(𝑝), ℓ
∞
(𝑝), 𝑐𝑠, 𝑏𝑠, 𝑓𝑠, 𝑓, 𝑐, ℓ

∞
}, 𝜇 ∈ {𝑐𝑠, 𝑐, ℓ

∞
}, 𝛿 ∈

{𝑐𝑠, 𝑓𝑠, 𝑏𝑠}, and 𝜃 ∈ {𝑓, 𝑐, 𝑓𝑠, ℓ
∞
}, where 𝑐(𝑝), 𝑐

0
(𝑝), and ℓ

∞
(𝑝)

denote the space of Maddox convergent, null and bounded
sequence spaces defined by Maddox [12].

Lemma 1 (see [13]). The set 𝑓𝑠 has no Schauder basis.

2. The Sequence Spaces 𝑎𝑟
𝑓

, 𝑎𝑟
𝑓
0

, and 𝑎𝑟
𝑓𝑠

Derived
by the Domain of the Matrix 𝐴𝑟

In the present section, we introduce the sequence spaces 𝑎𝑟
𝑓
,

𝑎
𝑟

𝑓0

, and 𝑎𝑟
𝑓𝑠
as the set of all sequences such that𝐴𝑟-transforms

of them are in the spaces 𝑓, 𝑓
0
, and 𝑓𝑠, respectively. Further,

this section is devoted to examination of the basic topological
properties of the sets 𝑎𝑟

𝑓
, 𝑎𝑟
𝑓0

, and 𝑎𝑟
𝑓𝑠
. Recently, Aydın and

Başar [14] studied the sequence spaces 𝑎𝑟
𝑐
and 𝑎𝑟
0
:

𝑎
𝑟

𝑐
= {𝑥 = (𝑥

𝑘
) ∈ 𝜔 : lim

𝑛→∞

1

𝑛 + 1

𝑛

∑

𝑘=0

(1 + 𝑟
𝑘

) 𝑥
𝑘
exists} ,

𝑎
𝑟

0
= {𝑥 = (𝑥

𝑘
) ∈ 𝜔 : lim

𝑛→∞

1

𝑛 + 1

𝑛

∑

𝑘=0

(1 + 𝑟
𝑘

) 𝑥
𝑘
= 0} ,

(6)

where 𝐴𝑟 denotes the matrix 𝐴𝑟 = (𝑎𝑟
𝑛𝑘
) defined by

𝑎
𝑟

𝑛𝑘
=

{

{

{

1 + 𝑟
𝑘

𝑛 + 1

(0 ⩽ 𝑘 ⩽ 𝑛) ,

0 (𝑘 > 𝑛) .

(7)

Now we introduce the sequence spaces 𝑎𝑟
𝑓
, 𝑎𝑟
𝑓
, and 𝑎𝑟

𝑓𝑠
as

the sets of all sequences such that their 𝐴𝑟-transforms are in
the spaces 𝑓, 𝑓

0
, and 𝑓𝑠, respectively; that is,

𝑎
𝑟

𝑓
= {𝑥 = (𝑥

𝑘
) ∈ 𝜔 :

∃𝛼 ∈ C ∋ lim
𝑚→∞

𝑚

∑

𝑘=0

1

𝑚 + 1

𝑘

∑

𝑖=0

1

𝑘 + 1

(1 + 𝑟
𝑖

) 𝑥
𝑛+𝑖

= 𝛼 uniformly in 𝑛} ,

𝑎
𝑟

𝑓0

= {𝑥 = (𝑥
𝑘
) ∈ 𝜔 :

lim
𝑚→∞

𝑚

∑

𝑘=0

1

𝑚 + 1

𝑘

∑

𝑖=0

1 + 𝑟
𝑖

𝑘 + 1

𝑥
𝑛+𝑖
= 0

uniformly in 𝑛} ,

𝑎
𝑟

𝑓𝑠
= {𝑥 = (𝑥

𝑘
) ∈ 𝜔 :

∃𝛽 ∈ C ∋ lim
𝑚→∞

𝑚

∑

𝑘=0

𝑛+𝑘

∑

𝑗=0

𝑗

∑

𝑖=0

1 + 𝑟
𝑗

𝑖 + 1

𝑥
𝑛+𝑗

= 𝛽 uniformly in 𝑛} .

(8)

We can redefine the spaces 𝑎𝑟
𝑓𝑠
, 𝑎𝑟
𝑓
, and 𝑎𝑟

𝑓0

by the notation of
(2):

𝑎
𝑟

𝑓0

= (𝑓
0
)
𝐴
𝑟 , 𝑎

𝑟

𝑓
= 𝑓
𝐴
𝑟 , 𝑎

𝑟

𝑓𝑠
= (𝑓𝑠)

𝐴
𝑟 . (9)

It is known by Başar [15] that the method is regular for 0 <
𝑟 < 1. We assume unless stated otherwise that 0 < 𝑟 < 1.
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Define the sequence 𝑦 = (𝑦
𝑘
), which will be frequently

used, as the 𝐴𝑟-transform of a sequence 𝑥 = (𝑥
𝑘
); that is,

𝑦
𝑘
(𝑟) =

𝑘

∑

𝑖=0

1 + 𝑟
𝑖

𝑘 + 1

𝑥
𝑖
(𝑘 ∈ N) . (10)

Theorem 2. The spaces 𝑎𝑟
𝑓
and 𝑎𝑟
𝑓𝑠
have no Schauder basis.

Proof. Since it is known that the matrix domain 𝜇
𝐴
of a

normed sequence space𝜇has a basis if and only if𝜇has a basis
whenever 𝐴 = (𝑎

𝑛𝑘
) is a triangle [16, Remark 2.4] and the

space 𝑓 has no Schauder basis by [7, Corollary 3.3], we have
that 𝑎𝑟
𝑓
has no Schauder basis. Since the set 𝑓𝑠 has no basis in

Lemma 1, 𝑎𝑟
𝑓𝑠
has no Schauder basis.

Theorem 3. The following statements hold.

(i) The sets 𝑎𝑟
𝑓
and 𝑎𝑟

𝑓0

are linear spaces with the coordi-
natewise addition and scalar multiplication which are
𝐵𝐾-spaces with the norm

‖𝑥‖
𝑎
𝑟

𝑓

= sup
𝑚












𝑚

∑

𝑘=0

1

𝑚 + 1

𝑘

∑

𝑖=0

1 + 𝑟
𝑖

𝑘 + 1

𝑥
𝑖+𝑛












. (11)

(ii) The set 𝑎𝑟
𝑓𝑠

is a linear space with the coordinatewise
addition and scalar multiplication which is a 𝐵𝐾-space
with the norm

‖𝑥‖
𝑎
𝑟

𝑓𝑠

= sup
𝑚













𝑚

∑

𝑘=0

1

𝑚 + 1

𝑘+𝑛

∑

𝑗=0

𝑗

∑

𝑖=0

1 + 𝑟
𝑖

𝑗 + 1

𝑥
𝑖













. (12)

Proof. Since the second part can be similarly proved, we only
focus on the first part. Since the sequence spaces𝑓 and𝑓

0
en-

dowed with the norm ‖ ⋅ ‖
∞

are 𝐵𝐾-spaces (see [1, Example
7.3.2(b)]) and thematrix𝐴𝑟 = (𝑎𝑟

𝑛𝑘
) is normal,Theorem 4.3.2

of Wilansky [17, p.61] gives the fact that the spaces 𝑎𝑟
𝑓
and 𝑎𝑟
𝑓0

are 𝐵𝐾-spaces with the norm in (11).

Now, we may give the following theorem concerning the
isomorphism between our spaces and the sets 𝑓, 𝑓

0
, and 𝑓𝑠.

Theorem 4. The sequence spaces 𝑎𝑟
𝑓
, 𝑎𝑟
𝑓0

, and 𝑎𝑟
𝑓𝑠
are linearly

isomorphic to the sequence spaces 𝑓, 𝑓
0
, and 𝑓𝑠, respectively;

that is, 𝑎𝑟
𝑓
≅ 𝑓, 𝑎𝑟

𝑓0

≅ 𝑓
0
, and 𝑎𝑟

𝑓𝑠
≅ 𝑓𝑠.

Proof. To prove the fact that 𝑎𝑟
𝑓
≅ 𝑓, we should show the exis-

tence of a linear bijection between the spaces 𝑎𝑟
𝑓
and 𝑓. Con-

sider the transformation 𝑇 defined with the notation of (2)
from 𝑎

𝑟

𝑓
to𝑓 by 𝑥 → 𝑦 = 𝑇𝑥 = 𝐴

𝑟

𝑥.The linearity of𝑇 is clear.
Further, it is clear that𝑥 = 𝜃whenever𝑇𝑥 = 𝜃, and hence,𝑇 is
injective.

Let 𝑦 = (𝑦
𝑘
) ∈ 𝑎
𝑟

𝑓
, and define the sequence 𝑥 = (𝑥

𝑘
(𝑟)) by

𝑥
𝑘
=

1

1 + 𝑟
𝑘

[(𝑘 + 1) 𝑦
𝑘
− 𝑘𝑦
𝑘−1
] for each 𝑘 ∈ N,

(13)

whence
𝑓
𝐴
𝑟 − lim𝑥

= lim
𝑚→∞

𝑚

∑

𝑘=0

1

𝑚 + 1

×

𝑘

∑

𝑖=0

(1 + 𝑟
𝑖

) 𝑥
𝑖+𝑛

1 + 𝑘

uniformly in 𝑛

= lim
𝑚→∞

𝑚

∑

𝑘=0

1

𝑚 + 1

×

𝑘

∑

𝑖=0

(1 + 𝑟
𝑖

) [1/ (1 + 𝑟
𝑖

) (𝑦
𝑖+𝑛
(𝑘 + 1) − 𝑦

𝑖+𝑛−1
𝑘)]

1 + 𝑘

uniformly in 𝑛

= lim
𝑚→∞

1

𝑚 + 1

𝑚

∑

𝑘=0

𝑦
𝑘+𝑛

uniformly in 𝑛

= 𝑓 − lim𝑦
(14)

which implies that𝑥 ∈ 𝑎𝑟
𝑓
. As a result,𝑇 is surjective.Hence,𝑇

is a linear bijection which implies that the spaces 𝑎𝑟
𝑓
and𝑓 are

linearly isomorphic, as desired. Similarly, the isomorphisms
𝑎
𝑟

𝑓0

≅ 𝑓
0
and 𝑎𝑟
𝑓𝑠
≅ 𝑓𝑠 can be proved.

Theorem 5. The inclusion 𝑓 ⊂ 𝑎𝑟
𝑓
strictly holds.

Proof. Let 𝑥 = (𝑥
𝑘
) ∈ 𝑐. Since 𝑐 ⊂ 𝑓, 𝑥 ∈ 𝑓. Because 𝐴𝑟 is

regular for 0 < 𝑟 < 1,𝐴𝑟𝑥 ∈ 𝑐.Therefore, since lim𝐴𝑟𝑥 = 𝑓−
lim𝐴𝑟𝑥, we see that 𝑥 ∈ 𝑎𝑟

𝑓
. So we have that the inclusion𝑓 ⊂

𝑎
𝑟

𝑓
holds. Further, consider the sequence 𝑡 = (𝑡

𝑘
(𝑟)) defined

by 𝑡
𝑘
(𝑟) = (2𝑘 + 1)/(1 + 𝑟

𝑘

)(−1)
𝑘

∀𝑘 ∈ N. Then, since 𝐴𝑟t =
(−1)
𝑛

∈ 𝑓, 𝑥 ∈ 𝑎𝑟
𝑓
. One can easily see that 𝑡 ∉ 𝑓.Thus, 𝑡 ∈ 𝑎𝑟

𝑓
\

𝑓, and this completes the proof.

Theorem 6. The sequence spaces 𝑎𝑟
𝑓
and ℓ
∞

overlap, but nei-
ther of them contains the other.

Proof. Let us consider the sequence 𝑢 = (𝑢
𝑘
(𝑟)) defined by

𝑢
𝑘
(𝑟) = 1/(1+𝑟

𝑘

) for allN.Then, since𝐴𝑟𝑢 = 𝑒 ∈ 𝑓, 𝑢 ∈ 𝑎𝑟
𝑓
. It

is clear that 𝑢 ∈ ℓ
∞
. This means that the sequence spaces 𝑎𝑟

𝑓

and ℓ
∞
are not disjoint.Now,we show that the sequence space

𝑎
𝑟

𝑓
and ℓ
∞

do not include each other. Let us consider the se-
quence 𝑡 = (𝑡

𝑘
(𝑟)) defined as in proof of Theorem 5 above

and 𝑧 = (𝑧
𝑘
(𝑟)) = (0, . . . , 0, 1/(1 + 𝑟

101

), . . . , 1/(1 + 𝑟
110

),

0, . . . , 0, 1/(1 + 𝑟
211

), . . . , 1/(1 + 𝑟
231

), 0, . . . , 0, . . .) where the
blocks of 0’s are increasing by factors of 100 and the blocks of
1/(1 + 𝑟

𝑘

)’s are increasing by factors of 10. Then, since 𝐴𝑟𝑡 =
(−1)
𝑛

∈ 𝑓, 𝑡 ∈ 𝑎𝑟
𝑓
, but 𝑡 ∉ ℓ

∞
.Therefore, 𝑡 ∈ 𝑎𝑟

𝑓
\ℓ
∞
. Also, the

sequence 𝑧 ∉ 𝑎𝑟
𝑓
since𝐴𝑟𝑧 = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0, 1, . . . ,

1, 0, . . . , 0, . . .) ∉ 𝑓 where the blocks of 0’s are increasing by
factors of 100 and the blocks of 1’s are increasing by factors of
10, but 𝑧 is bounded.This means that 𝑧 ∈ ℓ

∞
\ 𝑎
𝑟

𝑓
. Hence, the
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sequence spaces 𝑎𝑟
𝑓
and ℓ
∞
overlap, but neither of them con-

tains the other. This completes the proof.

Theorem 7. Let the spaces 𝑎𝑟
𝑓0

, 𝑎𝑟
𝑐
, and 𝑎𝑟

𝑓
be given. Then,

(i) 𝑎𝑟
𝑓0

⊂ 𝑎
𝑟

𝑓
strictly hold;

(ii) 𝑎𝑟
𝑐
⊂ 𝑎
𝑟

𝑓
strictly hold.

Proof. (i) Let 𝑥 = (𝑥
𝑘
) ∈ 𝑎

𝑟

𝑓0

which means that 𝐴𝑟𝑥 ∈ 𝑓
0
.

Since𝑓
0
⊂ 𝑓,𝐴𝑟𝑥 ∈ 𝑓.This implies that𝑥 ∈ 𝑎𝑟

𝑓
.Thus,we have

𝑎
𝑟

𝑓0

⊂ 𝑎
𝑟

𝑓
.

Now, we show that this inclusion is strict. Let us consider
the sequence 𝑢 = (𝑢

𝑘
(𝑟)) defined as in proof ofTheorem 6 for

all 𝑘 ∈ N. Consider the following:

𝑓
𝐴
𝑟 − lim 𝑢 = lim

𝑚→∞

𝑚

∑

𝑘=0

1

𝑚 + 1

𝑘

∑

𝑖=0

1 + 𝑟
𝑖

𝑘 + 1

𝑢
𝑖+𝑛

= lim
𝑚→∞

𝑚

∑

𝑘=0

1

𝑚 + 1

= 𝑒 = (1, 1, . . .)

(15)

which means that 𝑢 ∈ 𝑎𝑟
𝑓
\ 𝑎
𝑟

𝑓0

; that is to say, the inclusion is
strict.

(ii) Let 𝑥 = (𝑥
𝑘
) ∈ 𝑎
𝑟

𝑐
whichmeans that𝐴𝑟𝑥 ∈ 𝑐. Since 𝑐 ⊂

𝑓, 𝐴𝑟𝑥 ∈ 𝑓. This implies that 𝑥 ∈ 𝑎𝑟
𝑓
. Thus, we have

𝑎
𝑟

𝑐
⊂ 𝑎
𝑟

𝑓
. Furthermore, let us consider the sequence

𝑡 = {𝑡
𝑘
(𝑟)} defined as in proof of Theorem 5 for all

𝑘 ∈ N. Then, since 𝐴𝑟𝑡 = (−1)𝑛 ∈ 𝑓 \ 𝑐, 𝑡 ∈ 𝑎𝑟
𝑓
\ 𝑎
𝑟

𝑐
.

This completes the proof.

3. Certain Matrix Mappings on the Sets 𝑎𝑟
𝑓

, 𝑎𝑟
𝑓𝑠

and Some Duals

In this section, we will characterize some matrix transforma-
tions between the spaces of 𝐴𝑟 almost convergent sequence
and almost convergent series in addition to paranormed and
classical sequence spaces after giving 𝛽- and 𝛾-duals of the
spaces 𝑎𝑟

𝑓𝑠
and 𝑎𝑟
𝑓
.We start with the definition of the beta- and

gamma-duals.
If𝑥 and𝑦 are sequences and𝑋 and𝑌 are subsets of𝜔, then

we write 𝑥 ⋅ 𝑦 = (𝑥
𝑘
𝑦
𝑘
)
∞

𝑘=0
, 𝑥−1 ∗ 𝑌 = {𝑎 ∈ 𝜔 : 𝑎 ⋅ 𝑥 ∈ 𝑌} and

𝑀(𝑋,𝑌) = ⋂

𝑥∈𝑋

𝑥
−1

∗ 𝑌 = {𝑎 : 𝑎 ⋅ 𝑥 ∈ 𝑌 ∀𝑥 ∈ 𝑋} (16)

for themultiplier space of𝑋 and𝑌. One can easily observe for
a sequence space 𝑍 with 𝑌 ⊂ 𝑍 and 𝑍 ⊂ 𝑋 that inclusions
𝑀(𝑋,𝑌) ⊂ 𝑀(𝑋,𝑍) and𝑀(𝑋,𝑌) ⊂ 𝑀(𝑍, 𝑌) hold, respec-
tively. The 𝛼-, 𝛽-, and 𝛾-duals of a sequence space, which are,
respectively, denoted by𝑋𝛼, 𝑋𝛽, and𝑋𝛾, are defined by

𝑋
𝛼

= 𝑀(𝑋, ℓ
1
) , 𝑋

𝛽

= 𝑀(𝑋, 𝑐𝑠) , 𝑋
𝛾

= 𝑀(𝑋, 𝑏𝑠) .

(17)

It is obvious that 𝑋𝛼 ⊂ 𝑋𝛽 ⊂ 𝑋𝛾. Also, it can easily be seen
that the inclusions 𝑋𝛼 ⊂ 𝑌𝛼, 𝑋𝛽 ⊂ 𝑌𝛽, and 𝑋𝛾 ⊂ 𝑌

𝛾 hold
whenever 𝑌 ⊂ 𝑋.

Lemma 8 (see [18]). 𝐴 = (𝑎
𝑛𝑘
) ∈ (𝑓 : ℓ

∞
) if and only if

sup
𝑛

∑

𝑘





𝑎
𝑛𝑘





< ∞. (18)

Lemma 9 (see [18]). 𝐴 = (𝑎
𝑛𝑘
) ∈ (𝑓 : 𝑐) if and only if (18)

holds and there are 𝛼, 𝛼
𝑘
∈ C such that

lim
𝑛→∞

𝑎
𝑛𝑘
= 𝛼
𝑘

∀k ∈ N, (19)

lim
𝑛→∞

∑

𝑘

𝑎
𝑛𝑘
= 𝛼, (20)

lim
𝑛→∞

∑

𝑘





Δ (𝑎
𝑛𝑘
− 𝛼
𝑘
)




= 0. (21)

Theorem 10. Define the sets 𝑡𝑟
1
and 𝑡𝑟
2
by

𝑡
𝑟

1
= {𝑎 = (𝑎

𝑘
) ∈ 𝜔 : ∑

𝑘









Δ (

𝑎
𝑘

1 + 𝑟
𝑘

) (𝑘 + 1)









< ∞} ,

𝑡
𝑟

2
= {𝑎 = (𝑎

𝑘
) ∈ 𝜔 : sup

𝑘










𝑎
𝑘
(𝑘 + 1)

1 + 𝑟
𝑘










< ∞} ,

(22)

where Δ(𝑎
𝑘
/(1 + 𝑟

𝑘

)) = 𝑎
𝑘
/(1 + 𝑟

𝑘

) − 𝑎
𝑘+1
/(1 + 𝑟

𝑘+1

) for all 𝑘 ∈
N. Then (𝑎𝑟

𝑓
)
𝛾

= 𝑡
𝑟

1
∩ 𝑡
𝑟

2
.

Proof. Take any sequence 𝑎 = (𝑎
𝑘
) ∈ 𝜔, and consider the fol-

lowing equality:
𝑛

∑

𝑘=0

𝑎
𝑘
𝑥
𝑘
=

𝑛

∑

𝑘=0

𝑎
𝑘
[

𝑘

∑

𝑖=𝑘−1

(−1)
𝑘−𝑗

𝑖 + 1

1 + 𝑟
𝑖
𝑦
𝑖
]

=

𝑛−1

∑

𝑘=0

Δ(

𝑎
𝑘

1 + 𝑟
𝑘

) (𝑘 + 1) 𝑦
𝑘

+

𝑛 + 1

1 + 𝑟
𝑛
𝑎
𝑛
𝑦
𝑛

= (𝑇𝑦)
𝑛
,

(23)

where 𝑇 = {𝑡𝑟
𝑛𝑘
} is

𝑡
𝑟

𝑛𝑘
=

{
{
{
{

{
{
{
{

{

Δ(

𝑎
𝑘

1 + 𝑟
𝑘

) (𝑘 + 1) (0 ⩽ 𝑘 ⩽ 𝑛 − 1)

𝑛 + 1

1 + 𝑟
𝑛
𝑎
𝑛

(𝑘 = 𝑛)

0 (𝑘 > 𝑛)

(24)

for all 𝑘, 𝑛 ∈ N.Thus, we deduce from (23) that 𝑎𝑥 = (𝑎
𝑘
𝑥
𝑘
) ∈

𝑏𝑠 whenever 𝑥 = (𝑥
𝑘
) ∈ 𝑎
𝑟

𝑓
if and only if 𝑇𝑦 ∈ ℓ

∞
whenever

𝑦 = (𝑦
𝑘
) ∈ 𝑓 where 𝑇 = {𝑡𝑟

𝑛𝑘
} is defined in (24). Therefore,

with the help of Lemma 8, (𝑎𝑟
𝑓
)
𝛾

= 𝑡
𝑟

1
∩ 𝑡
𝑟

2
.

Theorem 11. The 𝛽-dual of the space 𝑎𝑟
𝑓
is the intersection of

the sets

𝑡
𝑟

3
= {𝑎 = (𝑎

𝑘
) ∈ 𝜔 : lim

𝑛→∞

∑

𝑘





Δ (𝑡
𝑟

𝑛𝑘
− 𝛼
𝑘
)




= 0} ,

𝑡
𝑟

4
= {𝑎 = (𝑎

𝑘
) ∈ 𝜔 : (

𝑘 + 1

1 + 𝑟
𝑘

𝑎
𝑘
) ∈ 𝑐𝑠} ,

(25)

where lim
𝑛→∞

𝑡
𝑟

𝑛𝑘
= 𝛼
𝑘
for all 𝑘 ∈ N. Then, (𝑎𝑟

𝑓
)
𝛽

= 𝑡
𝑟

3
∩ 𝑡
𝑟

4
.
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Proof. Let us take any sequence 𝑎 ∈ 𝜔. By (23), 𝑎𝑥 = (𝑎
𝑘
𝑥
𝑘
) ∈

𝑐𝑠whenever 𝑥 = (𝑥
𝑘
) ∈ 𝑎
𝑟

𝑓
if and only if 𝑇𝑦 ∈ 𝑐whenever 𝑦 =

(𝑦
𝑘
) ∈ 𝑓. It is obvious that the columns of that matrix 𝑇 in 𝑐

where𝑇 = {𝑡𝑟
𝑛𝑘
} defined in (24), we derive the consequence by

Lemma 9 that (𝑎𝑟
𝑓
)
𝛽

= 𝑡
𝑟

3
∩ 𝑡
𝑟

4
.

Theorem 12. The 𝛾-dual of the space 𝑎𝑟
𝑓𝑠
is the intersection of

the sets

𝑐
𝑟

1
= {𝑎 = (𝑎

𝑘
) ∈ 𝜔 : ∑

𝑘









Δ [Δ(

𝑎
𝑘

1 + 𝑟
𝑘

) (𝑘 + 1)

+

𝑎
𝑘

1 + 𝑟
𝑘
(𝑘 + 1)]









< ∞} ,

𝑐
𝑟

2
= {𝑎 = (𝑎

𝑘
) ∈ 𝜔 : (

𝑎
𝑘
(𝑘 + 1)

1 + 𝑟
𝑘

) ∈ 𝑐
0
} .

(26)

In other words, we have (𝑎𝑟
𝑓𝑠
)
𝛾

= 𝑐
𝑟

1
∩ 𝑐
𝑟

2
.

Proof. We obtain from (23) that 𝑎𝑥 = (𝑎
𝑘
𝑥
𝑘
) ∈ 𝑏𝑠 whenever

𝑥 = (𝑥
𝑘
) ∈ 𝑎
𝑟

𝑓𝑠
if and only if𝑇𝑦 ∈ ℓ

∞
whenever 𝑦 = (𝑦

𝑘
) ∈ 𝑓𝑠,

where 𝑇 = {𝑡
𝑟

𝑛𝑘
} is defined in (24). Therefore, by Lemma 19

(viii), (𝑎𝑟
𝑓𝑠
)
𝛾

= 𝑐
𝑟

1
∩ 𝑐
𝑟

2
.

Theorem 13. Define the set 𝑐𝑟
3
by

𝑐
𝑟

3
= {𝑎 = (𝑎

𝑘
) ∈ 𝜔 : lim

𝑛→∞

∑

𝑘






Δ
2

(𝑡
𝑟

𝑛𝑘
)






exists} . (27)

Then, (𝑎𝑟
𝑓𝑠
)
𝛽

= 𝑐
𝑟

1
∩ 𝑐
𝑟

2
∩ 𝑐
𝑟

3
.

Proof. This may be obtained in the same way as mentioned
in the proof of Theorem 12 with Lemma 19(viii) instead of
Lemma 19(vii). So we omit details.

For the sake of brevity, the following notations will be
used:

𝑎 (𝑛, 𝑘,𝑚) =

1

𝑚 + 1

𝑚

∑

𝑖=0

𝑎
𝑛+𝑖,𝑘

, 𝑎 (𝑛, 𝑘) =

𝑛

∑

𝑖=0

𝑎
𝑖𝑘
,

𝑎
𝑛𝑘
= Δ(

𝑎
𝑛𝑘

1 + 𝑟
𝑘

) (𝑘 + 1) = (

𝑎
𝑛𝑘

1 + 𝑟
𝑘

−

𝑎
𝑛,𝑘+1

1 + 𝑟
𝑘+1

) (𝑘 + 1) ,

Δ𝑎
𝑛𝑘
= 𝑎
𝑛,𝑘
− 𝑎
𝑛,𝑘+1

, 𝑎
𝑛𝑘
=

𝑛

∑

𝑗=0

(1 + 𝑟
𝑗

) 𝑒
𝑗𝑘

𝑛 + 1

,

(28)

for all 𝑘, 𝑛 ∈ N. Assume that the infinite matrices 𝐴 = (𝑎
𝑛𝑘
)

and𝐵 = (𝑏
𝑛𝑘
)map the sequences𝑥 = (𝑥

𝑘
) and𝑦 = (𝑦

𝑘
)which

are connectedwith relation (10) to the sequences 𝑢 = (𝑢
𝑛
) and

V = (V
𝑛
), respectively; that is,

𝑢
𝑛
= (𝐴𝑥)

𝑛
= ∑

𝑘

𝑎
𝑛𝑘
𝑥
𝑘

∀𝑛 ∈ N, (29)

V
𝑛
= (𝐵𝑦)

𝑛
= ∑

𝑘

𝑏
𝑛𝑘
𝑦
𝑘

∀𝑛 ∈ N. (30)

One can easily conclude here that the method 𝐴 is directly
applied to the terms of the sequence 𝑥 = (𝑥

𝑘
), while the

method 𝐵 is applied to the 𝐴𝑟-transform of the sequence 𝑥 =
(𝑥
𝑘
). So the methods 𝐴 and 𝐵 are essentially different.
Now, suppose that the matrix product 𝐵𝐴𝑟 exists which is

amuch weaker assumption than the conditions on thematrix
𝐵 belonging to anymatrix class, in general. It is not difficult to
see that the sequence in (30) reduces to the sequence in (29)
under the application of formal summation by parts. This
leads us to the fact that 𝐵𝐴𝑟 exists and is equal to 𝐴 and
(𝐵𝐴
𝑟

)𝑥 = 𝐵(𝐴
𝑟

𝑥) formally holds if one side exists. This state-
ment is equivalent to the following relation between the en-
tries of the matrices 𝐴 = (𝑎

𝑛𝑘
) and 𝐵 = (𝑏

𝑛𝑘
) which are con-

nected with the relation

𝑎
𝑛𝑘
= 𝑏
𝑛𝑘
= Δ(

𝑎
𝑛𝑘

1 + 𝑟
𝑘

) (𝑘 + 1) or

𝑎
𝑛𝑘
= (1 + 𝑟

𝑘

)

∞

∑

𝑗=𝑘

𝑏
𝑛𝑗

1 + 𝑗

∀𝑘, 𝑛 ∈ N.

(31)

Note that the methods 𝐴 and 𝐵 are not necessarily equi-
valent since the order of summationmay not be reversed.We
now give the following fundamental theorem connected with
thematrixmappings on/into the almost convergent spaces 𝑎𝑟

𝑓

and 𝑎𝑟
𝑓s.

Theorem 14. Suppose that the entries of the infinite matrices
𝐴 = (𝑎

𝑛𝑘
) and 𝐵 = (𝑏

𝑛𝑘
) are connected with relation (31) for all

𝑘, 𝑛 ∈ N, and let 𝜆 be any given sequence space.Then,𝐴 ∈ (𝑎𝑟
𝑓
:

𝜆) if and only if

𝐵 ∈ (𝑓 : 𝜆) ,

{

𝑛 + 1

1 + 𝑟
𝑘

𝑎
𝑛𝑘
}

𝑘∈N
∈ 𝑐
0
.

(32)

Proof. Suppose that 𝐴 = (𝑎
𝑛𝑘
) and 𝐵 = (𝑏

𝑛𝑘
) are connected

with the relation (31), and let 𝜆 be any given sequence space,
and keep in mind that the spaces 𝑎𝑟

𝑓
and 𝑓 are norm iso-

morphic.
Let 𝐴 ∈ (𝑎𝑟

𝑓
: 𝜆), and take any sequence 𝑥 ∈ 𝑎𝑟

𝑓
, and keep

in mind that 𝑦 = 𝐴𝑟𝑥. Then, (𝑎
𝑛𝑘
)
𝑘∈N ∈ (𝑎

𝑟

𝑓
)
𝛽; that is, (32)

holds for all 𝑛 ∈ N and 𝐵𝐴𝑟 exists which implies that
(𝑏
𝑛𝑘
)
𝑘∈N ∈ ℓ1 = 𝑓

𝛽 for each 𝑛 ∈ N. Thus, 𝐵𝑦 exists for all 𝑦 ∈
𝑓, and thus, we have𝑚 → ∞ in the equality

𝑚

∑

𝑘=0

𝑏
𝑛𝑘
𝑦
𝑘
=

𝑚

∑

𝑘=0

𝑚

∑

𝑗=𝑘

(1 + 𝑟
𝑘

)

𝑏
𝑛𝑗

1 + 𝑗

𝑥
𝑘 (33)

for all𝑚, 𝑛 ∈ N, and we have (31) 𝐵𝑦 = 𝐴𝑥 which means that
𝐵 ∈ (𝑓 : 𝜆). On the other hand, assume that (32) holds and
𝐵 ∈ (𝑓 : 𝜆). Then, we have (𝑏

𝑛𝑘
)
𝑘∈N ∈ ℓ1 for all 𝑛 ∈ N which
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gives together with (𝜐
𝑛𝑘
)
𝑘∈N ∈ (𝑎

𝑟

𝑓
)
𝛽 for each 𝑛 ∈ N that 𝐴𝑥

exists. Then, we obtain from the equality

𝑚

∑

𝑘=0

𝑎
𝑛𝑘
𝑥
𝑘
=

𝑚−1

∑

𝑘=0

Δ(

𝑎
𝑛𝑘

1 + 𝑟
𝑘

) (𝑘 + 1) 𝑦
𝑘
+

𝑚 + 1

1 + 𝑟
𝑚
𝑎
𝑛𝑚
𝑦
𝑚

=

𝑚

∑

𝑘=0

𝑏
𝑛𝑘
𝑦
𝑘

(34)

for all 𝑚, 𝑛 ∈ N, as 𝑚 → ∞, that 𝐴𝑥 = 𝐵𝑦, and this shows
that 𝐴 ∈ (𝑎𝑟

𝑓
: 𝜆).

Theorem 15. Suppose that the entries of the infinite matrices
𝐸 = (𝑒

𝑛𝑘
) and 𝐹 = (𝑓

𝑛𝑘
) are connected with the relation

𝑓
𝑛𝑘
= 𝑎
𝑛𝑘

(35)

for all 𝑚, 𝑛 ∈ N and 𝜆 is any given sequence space. Then, 𝐸 ∈
(𝜆 : 𝑎
𝑟

𝑓
) if and only if 𝐹 ∈ (𝜆 : 𝑓).

Proof. Let 𝑥 = (𝑥
𝑘
) ∈ 𝜆, and consider the following equality:

𝑛

∑

𝑗=0

𝑚

∑

𝑘=0

1 + 𝑟
𝑗

𝑛 + 1

𝑒
𝑗𝑘
𝑥
𝑘
=

𝑚

∑

𝑘=0

𝑓
𝑛𝑘
𝑥
𝑘 (36)

for all 𝑘,𝑚, 𝑛 ∈ N, which yields as 𝑚 → ∞ that 𝐸𝑥 ∈ 𝑎𝑟
𝑓

whenever 𝑥 ∈ 𝜆 if and only if 𝐹𝑥 ∈ 𝑓 whenever 𝑥 ∈ 𝜆. This
step completes the proof.

Theorem 16. Let𝜆 be any given sequence space, and thematri-
ces𝐴 = (𝑎

𝑛𝑘
) and𝐵 = (𝑏

𝑛𝑘
) are connectedwith the relation (31).

Then, 𝐴 ∈ (𝑎
𝑟

𝑓𝑠
: 𝜆) if and only if 𝐵 ∈ (𝑓𝑠 : 𝜆) and (𝑎

𝑛𝑘
)
𝑘∈N ∈

(𝑎
𝑟

𝑓𝑠
)
𝛽 for all 𝑛 ∈ N.

Proof. The proof is based on the proof of Theorem 14.

Theorem 17. Let 𝜆 be any given sequence space, and the ele-
ments of the infinite matrices 𝐸 = (𝑒

𝑛𝑘
) and 𝐹 = (𝑓

𝑛𝑘
) are con-

nectedwith relation (35).Then,𝐸 = (𝑒
𝑛𝑘
) ∈ (𝜆 : 𝑎

𝑟

𝑓𝑠
) if and only

if 𝐹 ∈ (𝜆 : 𝑓𝑠).

Proof. The proof is based on the proof of Theorem 15.

By Theorems 14, 15, 16, and 17, we have quite a few out-
comes depending on the choice of the space 𝜆 to characterize
certain matrix mappings. Hence, by the help of these theo-
rems, the necessary and sufficient conditions for the classes
(𝑎
𝑟

𝑓
: 𝜆), (𝜆 : 𝑎𝑟

𝑓
), (𝑎𝑟
𝑓𝑠
: 𝜆) and (𝜆 : 𝑎𝑟

𝑓𝑠
) may be derived by

replacing the entries of𝐴 and 𝐵 by those of 𝐵 = 𝐴(𝐴𝑟)−1, and
𝐹 = 𝐴

𝑟

𝐸, respectively, where the necessary and sufficient con-
ditions on the matrices 𝐸 and 𝐹 are read from the concerning
results in the existing literature

Lemma 18. Let 𝐴 = (𝑎
𝑛𝑘
) be an infinite matrix. Then, the fol-

lowing statements hold:

(i) 𝐴 ∈ (𝑐
0
(𝑝) : 𝑓) if and only if

∃𝑁 > 1 ∋ sup
𝑚∈N

∑

𝑘

|𝑎 (𝑛, 𝑘, 𝑚)|𝑁
1/𝑝𝑘

< ∞, ∀𝑛 ∈ N,

∃𝛼
𝑘
∈ C ∀𝑘 ∈ N ∋ lim

𝑚→∞

𝑎 (𝑛, 𝑘,𝑚) = 𝛼
𝑘

uniformly in 𝑛;
(37)

(ii) 𝐴 ∈ (𝑐(𝑝) : 𝑓) if and only if (37) and

∃𝛼 ∈ C ∋ lim
𝑚→∞

∑

𝑘

𝑎 (𝑛, 𝑘,𝑚) = 𝛼 uniformly in 𝑛; (38)

(iii) 𝐴 ∈ (ℓ
∞
(𝑝) : 𝑓) if and only if (37) and

∃𝑁 > 1 ∋ lim
𝑚→∞

∑

𝑘





𝑎 (𝑛, 𝑘, 𝑚) − 𝛼

𝑘





𝑁
1/𝑝𝑘

= 0

uniformly in 𝑛.
(39)

Lemma 19. Let 𝐴 = (𝑎
𝑛𝑘
) be an infinite matrix. Then, the fol-

lowing statements hold:

(i) (Duran, [19])𝐴 ∈ (ℓ
∞
: 𝑓) if and only if (18) holds and

𝑓 − lim𝑎
𝑛𝑘
= 𝛼
𝑘
exists for each fixed 𝑘, (40)

lim
𝑚→∞

∑

𝑘





𝑎 (𝑛, 𝑘, 𝑚) − 𝛼

𝑘





= 0 uniformly in 𝑛; (41)

(ii) (King, [20]) 𝐴 ∈ (𝑐 : 𝑓) if and only if (18), (40) hold
and

𝑓 − lim∑
𝑘

𝑎
𝑛𝑘
= 𝛼; (42)

(iii) (Başar and Çolak, [21])𝐴 ∈ (𝑐𝑠 : 𝑓) if and only if (40)
holds and

sup
𝑛∈N

∑

𝑘





Δ𝑎
𝑛𝑘





< ∞; (43)

(iv) (Başar and Çolak, [21])𝐴 ∈ (𝑏𝑠 : 𝑓) if and only if (40),
(43) hold and

lim
𝑘

𝑎
𝑛𝑘
= 0 exists for each fixed 𝑛, (44)

lim
𝑞→∞

∑

𝑘

1

𝑞 + 1

𝑞

∑

𝑖=0





Δ [𝑎 (𝑛 + 𝑖, 𝑘) − 𝛼

𝑘
]




= 0 uniformly in 𝑛;

(45)

(v) (Duran, [19]) 𝐴 ∈ (𝑓 : 𝑓) if and only if (18), (40), and
(42) hold and

lim
𝑚→∞

∑

𝑘





Δ [𝑎 (𝑛, 𝑘,𝑚) − 𝛼

𝑘
]




= 0 uniformly in 𝑛; (46)

(vi) (Başar, [22])𝐴 ∈ (𝑓𝑠 : 𝑓) if and only if (40), (44), (46),
and (45) hold;
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(vii) (Öztürk, [23])𝐴 ∈ (𝑓𝑠 : 𝑐) if and only if (19), (43), and
(44) hold and

lim
𝑛→∞

∑

𝑘






Δ
2

𝑎
𝑛𝑘






= 𝛼; (47)

(viii) 𝐴 ∈ (𝑓𝑠 : ℓ
∞
) if and only if (43) and (44) hold;

(ix) (Başar and Solak, [24]) 𝐴 ∈ (𝑏𝑠 : 𝑓𝑠) if and only if
(44), (45) hold and

sup
𝑛∈N

∑

𝑘

|Δ𝑎 (𝑛, 𝑘)| < ∞,

𝑓 − lim 𝑎 (𝑛, 𝑘) = 𝛼
𝑘
exists for each fixed 𝑘;

(48)

(x) (Başar, [22])𝐴 ∈ (𝑓𝑠 : 𝑓𝑠) if and only if (45), (48) hold
and

lim
𝑞→∞

∑

𝑘

1

𝑞 + 1

𝑞

∑

𝑖=0






Δ
2

[𝑎 (𝑛 + 𝑖, 𝑘) − 𝛼
𝑘
]






= 0 uniformly in 𝑛;

(49)

(xi) (Başar and Çolak, [21])𝐴 ∈ (𝑐𝑠 : 𝑓𝑠) if and only if (48)
holds;

(xii) (Başar, [25]) 𝐴 ∈ (𝑓 : 𝑐𝑠) if and only if

sup
𝑛∈N

∑

𝑘

|𝑎 (𝑛, 𝑘)| < ∞, (50)

∑

𝑛

𝑎
𝑛𝑘
= 𝛼
𝑘

exists for each fixed 𝑘, (51)

∑

𝑛

∑

𝑘

𝑎
𝑛𝑘
= 𝛼, (52)

lim
𝑚→∞

∑

𝑘





Δ [𝑎 (𝑛, 𝑘) − 𝛼

𝑘
]




= 0. (53)

Now we give our main results which are related to matrix
mappings on/into the spaces of almost convergent series 𝑎𝑟

𝑓𝑠

and sequences 𝑎𝑟
𝑓
.

Corollary 20. Let 𝐴 = (𝑎
𝑛𝑘
) be an infinite matrix. Then, the

following statements hold.

(i) 𝐴 ∈ (𝑎𝑟
𝑓𝑠
: 𝑓) if and only if {𝑎

𝑛𝑘
}
𝑘∈N ∈ (𝑎

𝑟

𝑓
)
𝛽 for all 𝑛 ∈

N and (40), (44) holdwith 𝑎
𝑛𝑘
instead of 𝑎

𝑛𝑘
, (46) holds

with 𝑎(𝑛, 𝑘,𝑚) instead of 𝑎(𝑛, 𝑘,𝑚), and (45) holds
with 𝑎(𝑛, 𝑘) instead of 𝑎(𝑛, 𝑘).

(ii) 𝐴 ∈ (𝑎𝑟
𝑓𝑠
: 𝑐) if and only if {𝑎

𝑛𝑘
}
𝑘∈N ∈ (𝑎

𝑟

𝑓
)
𝛽 for all 𝑛 ∈ N

and (19), (43), (44), and (47) hold with 𝑎
𝑛𝑘

instead of
𝑎
𝑛𝑘
.

(iii) 𝐴 ∈ (𝑎𝑟
𝑓𝑠
: ℓ
∞
) if and only if {𝑎

𝑛𝑘
}
𝑘∈N ∈ (𝑎

𝑟

𝑓
)
𝛽 for all 𝑛 ∈

N and (43) and (44) hold with 𝑎
𝑛𝑘
instead of 𝑎

𝑛𝑘
.

(iv) 𝐴 ∈ (𝑎𝑟
𝑓𝑠
: 𝑓𝑠) if and only if {𝑎

𝑛𝑘
}
𝑘∈N ∈ (𝑎

𝑟

𝑓𝑠
)
𝛽 for all 𝑛 ∈

N and (45), (48), and (49) hold with 𝑎(𝑛, 𝑘) instead of
𝑎(𝑛, 𝑘).

(v) 𝐴 ∈ (𝑐𝑠 : 𝑎𝑟
𝑓𝑠
) if and only if (48) holds with 𝑎(𝑛, 𝑘) in-

stead of 𝑎(𝑛, 𝑘).

(vi) 𝐴 ∈ (𝑏𝑠 : 𝑎𝑟
𝑓𝑠
) if and only if (44) holds with 𝑎

𝑛𝑘
instead

of 𝑎
𝑛𝑘
and (45), (48) holdwith 𝑎(𝑛, 𝑘) instead of 𝑎(𝑛, 𝑘).

(vii) 𝐴 ∈ (𝑓𝑠 : 𝑎
𝑟

𝑓𝑠
) if and only if (45), (48), and (49) hold

with 𝑎(𝑛, 𝑘) instead of 𝑎(𝑛, 𝑘).

Corollary 21. Let 𝐴 = (𝑎
𝑛𝑘
) be an infinite matrix. Then, the

following statements hold.

(i) 𝐴 ∈ (𝑐(𝑝) : 𝑎
𝑟

𝑓𝑠
) if and only if (37)and (38) hold with

𝑎(𝑛, 𝑘,𝑚) instead of 𝑎(𝑛, 𝑘,𝑚).

(ii) 𝐴 ∈ (𝑐
0
(𝑝) : 𝑎

𝑟

𝑓𝑠
) if and only if (37) holds with 𝑎(𝑛,

𝑘,𝑚) instead of 𝑎(𝑛, 𝑘,𝑚).

(iii) 𝐴 ∈ (ℓ
∞
(𝑝) : 𝑎

𝑟

𝑓𝑠
) if and only if (37) and (39) hold with

𝑎(𝑛, 𝑘,𝑚) instead of 𝑎(𝑛, 𝑘,𝑚).

Corollary 22. Let 𝐴 = (𝑎
𝑛𝑘
) be an infinite matrix. Then, the

following statements hold.

(i) 𝐴 ∈ (𝑎
𝑟

𝑓
: ℓ
∞
) if and only if {𝑎

𝑛𝑘
}
𝑘∈N ∈ (𝑎

𝑟

𝑓
)
𝛽 for all

𝑛 ∈ N and (18) holds with 𝑎
𝑛𝑘
instead of 𝑎

𝑛𝑘
.

(ii) 𝐴 ∈ (𝑎𝑟
𝑓
: 𝑐) if and only if {𝑎

𝑛𝑘
}
𝑘∈N ∈ (𝑎

𝑟

𝑓
)
𝛽 for all 𝑛 ∈ N

and (18), (19), (20), and (21) hold with 𝑎
𝑛𝑘

instead of
𝑎
𝑛𝑘
.

(iii) 𝐴 ∈ (𝑎𝑟
𝑓
: 𝑐𝑠) if and only if {𝑎

𝑛𝑘
}
𝑘∈N ∈ (𝑎

𝑟

𝑓
)
𝛽 for all 𝑛 ∈

N and (50),(53) hold with 𝑎(𝑛, 𝑘) instead of 𝑎(𝑛, 𝑘) and
(51),(52) hold with 𝑎

𝑛𝑘
instead of 𝑎

𝑛𝑘
.

Corollary 23. Let 𝐴 = (𝑎
𝑛𝑘
) be an infinite matrix. Then, the

following statements hold.

(i) 𝐴 ∈ (ℓ
∞
: 𝑎
𝑟

𝑓
) if and only if (18), (40) hold with 𝑎

𝑛𝑘
in-

stead of 𝑎
𝑛𝑘

and (41) holds with 𝑎(𝑛, 𝑘,𝑚) instead of
𝑎(𝑛, 𝑘,𝑚).

(ii) 𝐴 ∈ (𝑓 : 𝑎𝑟
𝑓
) if and only if (18), (40), and (46) holdwith

𝑎(𝑛, 𝑘,𝑚) instead of 𝑎(𝑛, 𝑘,𝑚) and (42) holds with 𝑎
𝑛𝑘

instead of 𝑎
𝑛𝑘
.

(iii) 𝐴 ∈ (𝑐 : 𝑎𝑟
𝑓
) if and only if (18), (40), and (42) hold with

𝑎
𝑛𝑘
instead of 𝑎

𝑛𝑘
.

(iv) 𝐴 ∈ (𝑏𝑠 : 𝑎
𝑟

𝑓
) if and only if (40), (43), and (44) hold

with 𝑎
𝑛𝑘

instead of 𝑎
𝑛𝑘

and (45) holds with 𝑎(𝑛, 𝑘)
instead of 𝑎(𝑛, 𝑘).

(v) 𝐴 ∈ (𝑓𝑠 : 𝑎
𝑟

𝑓
) if and only if (40), (44) hold with 𝑎

𝑛𝑘

instead of 𝑎
𝑛𝑘
, (46) holds with 𝑎(𝑛, 𝑘,𝑚) instead of 𝑎(𝑛,

𝑘,𝑚), and (45) holds with 𝑎(𝑛, 𝑘) instead of 𝑎(𝑛, 𝑘).

(vi) 𝐴 ∈ (𝑐𝑠 : 𝑎𝑟
𝑓
) if and only if (40) and (43) hold with 𝑎

𝑛𝑘

instead of 𝑎
𝑛𝑘
.

Remark 24. Characterization of the classes (𝑎𝑟
𝑓
: 𝑓
∞
), (𝑓
∞
:

𝑎
𝑟

𝑓
), (𝑎𝑟
𝑓𝑠
: 𝑓
∞
), and (𝑓

∞
: 𝑎
𝑟

𝑓𝑠
) is redundant since the spaces of

almost bounded sequences 𝑓
∞

and ℓ
∞

are equal.
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[10] M. Şengönül and K. Kayaduman, “On the Riesz almost conver-
gent sequences space,” Abstract and Applied Analysis, vol. 2012,
Article ID 691694, 18 pages, 2012.

[11] G. G. Lorentz, “A contribution to the theory of divergent se-
quences,” Acta Mathematica, vol. 80, pp. 167–190, 1948.

[12] I. J. Maddox, “Paranormed sequence spaces generated by infi-
nite matrices,” Proceedings of the Cambridge Philosophical Soci-
ety, vol. 64, pp. 335–340, 1968.
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