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A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some
quadratic stochastic operators have been studied by Lotka and Volterra.The general problem in the nonlinear operator theory is to
study the behavior of operators. This problem was not fully finished even for quadratic stochastic operators which are the simplest
nonlinear operators. To study this problem, several classes of QSO were investigated. We study 𝜉

(𝑠)-QSO defined on 2D simplex.
We first classify 𝜉(𝑠)-QSO into 20 nonconjugate classes. Further, we investigate the dynamics of three classes of such operators.

1. Introduction

The history of quadratic stochastic operators can be traced
back to Bernstein’s work [1].Thequadratic stochastic operator
was considered an important source of analysis for the study
of dynamical properties and modelings in various fields such
as biology [1–7], physics [8, 9], economics, and mathematics
[3, 6, 10, 11].

One of such systems which relates to the population
genetics is given by a quadratic stochastic operator [1]. A
quadratic stochastic operator (in short QSO) is usually used
to present the time evolution of species in biology, which
arises as follows. Consider a population consisting of 𝑚

species (or traits) 1, 2, . . . , 𝑚. We denote a set of all species
(traits) by 𝐼 = {1, 2, . . . , 𝑚}. Let 𝑥

(0) = (𝑥
(0)
1 , . . . , 𝑥(0)𝑚 ) be a

probability distribution of species at an initial state and let
𝑃𝑖𝑗,𝑘 be a probability that individuals in the 𝑖th and 𝑗th species
(traits) interbreed to produce an individual from 𝑘th species
(trait). Then, a probability distribution 𝑥(1) = (𝑥

(1)
1 , . . . , 𝑥(1)𝑚 )

of the species (traits) in the first generation can be found as a
total probability; that is,

𝑥
(1)

𝑘
=

𝑚

∑
𝑖,𝑗=1

𝑃𝑖𝑗,𝑘𝑥
(0)

𝑖 𝑥
(0)

𝑗 , 𝑘 = 1,𝑚. (1)

This means that the association 𝑥
(0) → 𝑥(1) defines a

mapping 𝑉 called the evolution operator. The population
evolves by starting from an arbitrary state 𝑥(0), then passing
to the state 𝑥(1) = 𝑉(𝑥(0)) (the first generation), then to the
state 𝑥(2) = 𝑉(𝑥(1)) = 𝑉(𝑉(𝑥(0))) = 𝑉(2)(𝑥(0)) (the second
generation), and so on. Therefore, the evolution states of the
population system are described by the following discrete
dynamical system:

𝑥
(0)

, 𝑥
(1)

= 𝑉 (𝑥
(0)

) ,

𝑥
(2)

= 𝑉
(2)

(𝑥
(0)

) , 𝑥
(3)

= 𝑉
(3)

(𝑥
(0)

) ⋅ ⋅ ⋅ .

(2)

In other words, a QSO describes a distribution of the
next generation if the distribution of the current generation
was given.The fascinating applications of QSO to population
genetics were given in [6].

In [12], it was given a long self-contained exposition of the
recent achievements and open problems in the theory of the
QSO.Themain problem in the nonlinear operator theory is to
study the behavior of nonlinear operators. This problem was
not fully finished even in the class of QSO (the QSO is the
simplest nonlinear operator). The difficulty of the problem
depends on the given cubic matrix (𝑃𝑖𝑗𝑘)

𝑚

𝑖,𝑗,𝑘=1
. An asymptotic
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behavior of the QSO even on the small dimensional simplex
is complicated [11, 13–16]. In order to solve this problem,
many researchers always introduced a certain class of QSO
and studied their behavior, for example, Volterra-QSO [11,
17–20], permutated Volterra-QSO [21, 22], Quasi-Volterra-
QSO [23], ℓ-Volterra-QSO [24, 25], non-Volterra-QSO [13,
15], strictly non-Volterra-QSO [26], F-QSO [27], and non-
Volterra operators generated by product measure [28–30].
However, all these classes together would not cover a set of
all QSO. Therefore, there are many classes of QSO which
were not studied yet. Recently, in the papers [31, 32], a new
class of QSO was introduced. This class was called a 𝜉

(𝑠)-
QSO. In this paper, we are going to continue the study of
𝜉(𝑠)-QSO. This class of operators depends on a partition of
the coupled index set (the coupled trait set) P𝑚 = {(𝑖, 𝑗) :

𝑖 < 𝑗} ⊂ 𝐼 × 𝐼. In case of two-dimensional simplex (𝑚 =

3), the coupled index set (the coupled trait set) P3 has five
possible partitions.The dynamics of 𝜉(𝑠)-QSO corresponding
to the point partition (themaximal partition) of P3 have been
investigated in [31, 32]. In the present paper, we are going to
describe and classify such operators generated by other three
partitions. Further, we also investigate the dynamics of three
classes of such operators.

The paper is organized as follows. In Section 2, we give
some preliminary definitions. In Section 3, we discuss the
classification of 𝜉(𝑠)-QSO related to |𝜉| = 2. It turns out that
some obtained operators are ℓ-Volterra-QSO (see [24, 25])
and permuted ℓ-Volterra-QSO. The dynamics of ℓ-Volterra-
QSO are not fully studied yet. In [24, 25], some particular
cases have been investigated, which do not cover our oper-
ators. Therefore, in further sections, we study dynamics of
ℓ-Volterra-QSO and permuted ℓ-Volterra-QSO. In Section 4,
we study the behavior of ℓ-Volterra-QSO 𝑉13 taken from
class 𝐾1. In Section 5, we study the behavior of a permuted
ℓ-Volterra-QSO 𝑉4 taken from class 𝐾4. Note that 𝑉4 is a
permutation of 𝑉13. In Section 6, we study the behavior of a
permuted Volterra-QSO 𝑉28 taken from class 𝐾19. In the last
section, we just highlight the dynamics of Volterra-QSO 𝑉25
taken from class 𝐾17 which was already studied in [17–19].

2. Preliminaries

Recall that a quadratic stochastic operator (QSO) is a map-
ping of the simplex:

𝑆
𝑚−1

= {𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ R
𝑚

:

𝑚

∑
𝑖=1

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0, 𝑖 = 1,𝑚}

(3)

into itself, of the form:

𝑥


𝑘 =

𝑚

∑
𝑖,𝑗=1

𝑃𝑖𝑗,𝑘𝑥𝑖𝑥𝑗, 𝑘 = 1,𝑚, (4)

where 𝑉(𝑥) = 𝑥
 = (𝑥1, . . . , 𝑥


𝑚) and 𝑃𝑖𝑗,𝑘 is a coefficient of

heredity, which satisfies the following conditions:

𝑃𝑖𝑗,𝑘 ≥ 0, 𝑃𝑖𝑗,𝑘 = 𝑃𝑗𝑖,𝑘,

𝑚

∑
𝑘=1

𝑃𝑖𝑗,𝑘 = 1.
(5)

Thus, each quadratic stochastic operator 𝑉 : 𝑆𝑚−1 → 𝑆𝑚−1

can be uniquely defined by a cubic matrix P = (𝑃𝑖𝑗𝑘)
𝑚

𝑖,𝑗,𝑘=1

with conditions (5).
We denote sets of fixed points and 𝑘-periodic points of

𝑉 : 𝑆
𝑚−1 → 𝑆𝑚−1 by Fix(𝑉) and Per𝑘(𝑉), respectively.

Due to Brouwer’s fixed point theorem, one always has that
Fix(𝑉) ̸= 0 for any QSO 𝑉. For a given point 𝑥(0) ∈ 𝑆𝑚−1,
a trajectory {𝑥(𝑛)}

∞

𝑛=0 of 𝑉 : 𝑆𝑚−1 → 𝑆𝑚−1 starting from
𝑥(0) is defined by 𝑥(𝑛+1) = 𝑉(𝑥(𝑛)). By 𝜔𝑉(𝑥

(0)), we denote
a set of omega limiting points of the trajectory {𝑥(𝑛)}

∞

𝑛=0.
Since {𝑥(𝑛)}

∞
𝑛=0 ⊂ 𝑆𝑚−1 and 𝑆𝑚−1 is compact, one has that

𝜔𝑉(𝑥
(0)) ̸= 0. Obviously, if 𝜔𝑉(𝑥

(0)) consists of a single point,
then the trajectory converges and a limiting point is a fixed
point of 𝑉 : 𝑆𝑚−1 → 𝑆𝑚−1.

Recall that a Volterra-QSO is defined by (4) and (5) and
the additional assumption:

𝑃𝑖𝑗,𝑘 = 0 if 𝑘 ∉ {𝑖, 𝑗} . (6)

The biological treatment of condition (6) is clear: the
offspring repeats the genotype (trait) of one of its parents.

One can see that a Volterra-QSO has the following form:

𝑥


𝑘 = 𝑥𝑘 (1 +

𝑚

∑
𝑖=1

𝑎𝑘𝑖𝑥𝑖) , 𝑘 ∈ 𝐼, (7)

where

𝑎𝑘𝑖 = 2𝑃𝑖𝑘,𝑘 − 1 for 𝑖 ̸= 𝑘, 𝑎𝑖𝑖 = 0, 𝑖 ∈ 𝐼. (8)

Moreover,

𝑎𝑘𝑖 = −𝑎𝑖𝑘,
𝑎𝑘𝑖

 ≤ 1. (9)

This kind of operators is intensively studied in [11, 17–20,
33]. Note that this operator is a discretization of the Lotka-
Volterra model [5, 7] which models an interacting competing
species in the population system. Such a model has received
considerable attention in the fields of biology, ecology, and
mathematics (see, e.g., [2, 3, 7, 8]).

In [24], a notion of ℓ-Volterra-QSO, which generalizes a
notion of Volterra-QSO, has been introduced. Let us recall it
here.

In order to introduce a new class of QSO, we need some
auxiliary notations.
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We fix ℓ ∈ 𝐼 and assume that elements 𝑃𝑖𝑗,𝑘 of the matrix
(𝑃𝑖𝑗,𝑘)

𝑚

𝑖,𝑗,𝑘=1
satisfy

𝑃𝑖𝑗,𝑘 = 0 if 𝑘 ∉ {𝑖, 𝑗}

for any 𝑘 ∈ {1, . . . , ℓ} , 𝑖, 𝑗 ∈ 𝐼,

𝑃𝑖0𝑗0 ,𝑘 > 0 for some (𝑖0, 𝑗0) ,

𝑖0 ̸= 𝑘, 𝑗0 ̸= 𝑘, 𝑘 ∈ {ℓ + 1, . . . , 𝑚} .

(10)

For any fixed ℓ ∈ 𝐼, the QSO defined by (4), (5), and (10)
is called ℓ-Volterra-QSO.

Remark 1. Here, we stress the following points.

(1) Note that an ℓ-Volterra-QSO is a Volterra-QSO if and
only if ℓ = 𝑚.

(2) It is known [17] that there is not a periodic trajectory
for Volterra-QSO. However, there are such trajecto-
ries for ℓ-Volterra-QSO [24].

By following [25], take 𝑘 ∈ {1, . . . , ℓ}; then, 𝑃𝑘𝑘,𝑖 = 0 for
𝑖 ̸= 𝑘 and

1 =

𝑚

∑
𝑖=1

𝑃𝑘𝑘,𝑖 = 𝑃𝑘𝑘,𝑘 +

𝑚

∑
𝑖=ℓ+1

𝑃𝑘𝑘,𝑖. (11)

By using 𝑃𝑖𝑗,𝑘 = 𝑃𝑗𝑖,𝑘 and denoting 𝑎𝑘𝑖 = 2𝑃𝑖𝑘,𝑘 −1, 𝑘 ̸= 𝑖, 𝑎𝑘𝑘 =

𝑃𝑘𝑘,𝑘 − 1, one then gets

𝑉 :

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑥

𝑘 = 𝑥𝑘 (1 +

𝑚

∑
𝑖=1

𝑎𝑘𝑖𝑥𝑖) if 𝑘 = 1, ℓ,

𝑥𝑘 = 𝑥𝑘 (1 +

𝑚

∑
𝑖=1

𝑎𝑘𝑖𝑥𝑖)

+

𝑚

∑
𝑖,𝑗=1

𝑖 ̸= 𝑘,𝑗 ̸= 𝑘

𝑃𝑖𝑗,𝑘𝑥𝑖𝑥𝑗

if 𝑘 = ℓ + 1,𝑚.

(12)

ℓ-Volterra-QSO.
Note that

𝑎𝑘𝑘 ∈ [−1, 0] ,
𝑎𝑘𝑖

 ≤ 1,

𝑎𝑘𝑖 + 𝑎𝑖𝑘 = 2 (𝑃𝑖𝑘,𝑖 + 𝑃𝑖𝑘,𝑘) − 2 ≤ 0, 𝑖, 𝑘 ∈ 𝐼.
(13)

We call that an operator 𝑉 is permuted ℓ-Volterra-QSO if
there is a permutation 𝜏 of the set 𝐼 and an ℓ-Volterra-QSO𝑉0
such that (𝑉(𝑥))𝜏(𝑘) = (𝑉0(𝑥))𝑘 for any 𝑘 ∈ 𝐼. In other words,
𝑉 can be represented as follows:

𝑉𝜏 :

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑥

𝜏(𝑘) = 𝑥𝑘 (1 +

𝑚

∑
𝑖=1

𝑎𝑘𝑖𝑥𝑖) if 𝑘 = 1, ℓ,

𝑥

𝜏(𝑘) = 𝑥𝑘 (1 +

𝑚

∑
𝑖=1

𝑎𝑘𝑖𝑥𝑖)

+

𝑚

∑
𝑖,𝑗=1

𝑖 ̸= 𝑘,𝑗 ̸= 𝑘

𝑃𝑖𝑗,𝑘𝑥𝑖𝑥𝑗

if 𝑘 = ℓ + 1,𝑚.

(14)

We remark that if ℓ = 𝑚, then a permuted ℓ-Volterra-
QSO becomes a permuted Volterra-QSO. Some properties
of such operators were studied in [19, 34]. The dynamics of
certain class of permuted Volterra-QSO have been investi-
gated in [32]. Note that, in [24, 25], a class of ℓ-Volterra-QSO
has been studied. An asymptotic behavior of permuted ℓ-
Volterra-QSO has not been investigated yet. Some particular
cases have been considered in [31, 32].

In this paper, we are going to introduce a new class
of QSO which contain ℓ-Volterra-QSO and permuted ℓ-
Volterra-QSO as a particular case.

Note that each element 𝑥 ∈ 𝑆
𝑚−1 is a probability

distribution of the set 𝐼 = {1, . . . , 𝑚}. Let 𝑥 = (𝑥1, . . . , 𝑥𝑚)

and 𝑦 = (𝑦1, . . . , 𝑦𝑚) be vectors taken from 𝑆𝑚−1. We say that
𝑥 is equivalent to 𝑦 if 𝑥𝑘 = 0 ⇔ 𝑦𝑘 = 0. We denote this
relation by 𝑥 ∼ 𝑦.

Let supp(𝑥) = {𝑖 : 𝑥𝑖 ̸= 0} be a support of 𝑥 ∈ 𝑆𝑚−1. We
say that 𝑥 is singular to 𝑦 and denote by 𝑥 ⊥ 𝑦 if supp(𝑥) ∩

supp(𝑦) = 0. Note that if 𝑥, 𝑦 ∈ 𝑆𝑚−1, then 𝑥 ⊥ 𝑦 if and only
if (𝑥, 𝑦) = 0; here, (⋅, ⋅) stands for a standard inner product in
R𝑚.

We denote sets of coupled indexes by

P𝑚 = {(𝑖, 𝑗) : 𝑖 < 𝑗} ⊂ 𝐼 × 𝐼,

Δ𝑚 = {(𝑖, 𝑖) : 𝑖 ∈ 𝐼} ⊂ 𝐼 × 𝐼.
(15)

For a given pair (𝑖, 𝑗) ∈ P𝑚 ∪ Δ𝑚, we set a vector P𝑖𝑗 =

(𝑃𝑖𝑗,1, . . . , 𝑃𝑖𝑗,𝑚). It is clear due to the condition (5) that P𝑖𝑗 ∈

𝑆𝑚−1.
Let 𝜉1 = {𝐴 𝑖}

𝑁
𝑖=1 and 𝜉2 = {𝐵𝑖}

𝑀
𝑖=1 be some fixed partitions

of P𝑚 and Δ𝑚, respectively; that is, 𝐴 𝑖 ∩ 𝐴𝑗 = 0, 𝐵𝑖 ∩ 𝐵𝑗 = 0,
and ⋃

𝑁

𝑖=1 𝐴 𝑖 = P𝑚, ⋃
𝑀

𝑖=1 𝐵𝑖 = Δ𝑚, where 𝑁,𝑀 ≤ 𝑚.

Definition 2. A quadratic stochastic operator 𝑉 : 𝑆𝑚−1 →

𝑆𝑚−1 given by (4) and (5) is called a 𝜉(as)-QSO with respect to
the partitions 𝜉1, 𝜉2 (where the letter “as” stands for absolutely
continuous-singular) if the following conditions are satisfied:

(i) for each 𝑘 ∈ {1, . . . , 𝑁} and any (𝑖, 𝑗), (𝑢, V) ∈ 𝐴𝑘, one
has that P𝑖𝑗 ∼ P𝑢V;

(ii) for any 𝑘 ̸= ℓ, 𝑘, ℓ ∈ {1, . . . , 𝑁} and any (𝑖, 𝑗) ∈ 𝐴𝑘 and
(𝑢, V) ∈ 𝐴ℓ, one has that P𝑖𝑗 ⊥ P𝑢V;

(iii) for each 𝑑 ∈ {1, . . . ,𝑀} and any (𝑖, 𝑖), (𝑗, 𝑗) ∈ 𝐵𝑑, one
has that P𝑖𝑖 ∼ P𝑗𝑗;

(iv) for any 𝑠 ̸= ℎ, 𝑠, ℎ ∈ {1, . . . ,𝑀} and any (𝑢, 𝑢) ∈ 𝐵𝑠,
and (V, V) ∈ 𝐵ℎ one has that P𝑢𝑢 ⊥ PVV.

Remark 3. If 𝜉2 is the point partition, that is, 𝜉2 =

{{(1, 1)}, . . . {(𝑚,𝑚)}}, thenwe call the correspondingQSOby
𝜉(𝑠)-QSO (where the letter “𝑠” stands for singularity) since in
this case every two different vectors P𝑖𝑖 and P𝑗𝑗 are singular.
If 𝜉2 is the trivial, that is, 𝜉2 = {Δ𝑚}, then we call the
corresponding QSO by 𝜉(𝑎)-QSO (where the letter “𝑎” stands
for absolute continuous) since in this case every two vectors
P𝑖𝑖 and P𝑗𝑗 are equivalent. We note that some classes of 𝜉(𝑎)-
QSO have been studied in [35]. In the present paper, we
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restrict ourselves to the 𝜉(𝑠)-case. Note that, in general, the
class of 𝜉(as)-QSO will be studied elsewhere in the future.

Remark 4. For the 𝜉(𝑠)-QSO, that is, in the case 𝜉2 =

{{(1, 1)}, . . . {(𝑚,𝑚)}}, the condition (iii) of Definition 2 is
trivial and the condition (iv) means that there is a permu-
tation 𝜋 of the set 𝐼 = {1, . . . , 𝑚} such that P𝑖𝑖 = 𝑒𝜋(𝑖) for any
𝑖 = 1,𝑚 where 𝑒𝑘 = (0, . . . , 0, 1⏟⏟⏟⏟⏟⏟⏟

𝑘

, 0, . . . , 0), 𝑘 = 1,𝑚, are

vertices of the simplex 𝑆𝑚−1.

A Biological Interpretation of a 𝜉(𝑠)-QSO. We treat 𝐼 =

{1, . . . , 𝑚} as a set of all possible traits of the population
system. A coefficient 𝑃𝑖𝑗,𝑘 is a probability that parents in
the 𝑖th and 𝑗th traits interbreed to produce a child from
the 𝑘th trait. The condition 𝑃𝑖𝑗,𝑘 = 𝑃𝑗𝑖,𝑘 means that the
gender of parents do not influence having a child from the
𝑘th trait. In this sense, P𝑚 ∪ Δ𝑚 is a set of all possible
coupled traits of parents. A vector P𝑖𝑗 = (𝑃𝑖𝑗,1, . . . , 𝑃𝑖𝑗,𝑚) is
a possible distribution of children in a family while parents
are carrying traits from the 𝑖th and 𝑗th types. A biological
meaning of a 𝜉(𝑠)-QSO is as follows: a set P𝑚 of all differently
coupled traits of parents is splitted into𝑁 groups𝐴1, . . . , 𝐴𝑁

(here 𝑁 is less than the number 𝑚 of traits) such that the
chance (probability) of having a child from any trait in two
different families whose parents’ coupled traits belong to the
same group 𝐴𝑘 is simultaneously either positive or zero (the
condition (i) of Definition 2); meanwhile, two families whose
parents’ coupled traits belong to two different groups 𝐴𝑘 and
𝐴 𝑙 cannot have a child from the same trait, simultaneously
(condition (ii) of Definition 2).Moreover, the parents who are
sharing the same type of traits can have a child from only one
type of traits (condition (iv) of Definition 2 and Remark 4).

3. Classification of 𝜉
(𝑠)-QSO on 2D Simplex

In this section, we are going to study 𝜉(𝑠)-QSO in two-
dimensional simplex; that is, 𝑚 = 3. In this case, we have the
following possible partitions of P3:

𝜉1 = {{(1, 2)} , {(1, 3)} , {(2, 3)}} ,
𝜉1

 = 3,

𝜉2 = {{(2, 3)} , {(1, 2) , (1, 3)}} ,
𝜉2

 = 2,

𝜉3 = {{(1, 3)} , {(1, 2) , (2, 3)}} ,
𝜉3

 = 2,

𝜉4 = {{(1, 2)} , {(1, 3) , (2, 3)}} ,
𝜉4

 = 2,

𝜉5 = {(1, 2) , (1, 3) , (2, 3)} ,
𝜉5

 = 1.

(16)

We note that, in [31, 32], 𝜉(𝑠)-QSO related to the partition
𝜉1 which is the maximal partition of P3 has been investigated.
In this paper, we are aiming to study 𝜉(𝑠)-QSO related to
the partitions 𝜉2, 𝜉3, and 𝜉4. We shall show that these three
classes of 𝜉(𝑠)-QSO are conjugate to each other. Therefore,
it is enough to study 𝜉(𝑠)-QSO related to the partition 𝜉2. A
class of 𝜉(𝑠)-QSO related to the partition 𝜉5 will be studied in
elsewhere in the future.

Let us recall that two operators 𝑉1 and 𝑉2 are called
(topologically or linearly) conjugate if there is a permutation
matrix 𝑃 such that 𝑃−1𝑉1𝑃 = 𝑉2. Let 𝜋 be a permutation of
the set 𝐼 = {1, . . . , 𝑚}. For any vector 𝑥, we define 𝜋(𝑥) =

(𝑥𝜋(1), . . . , 𝑥𝜋(𝑚)). It is easy to check that if 𝜋 is a permutation
of the set 𝐼 corresponding to the given permutation matrix
𝑃, then one has that 𝑃𝑥 = 𝜋(𝑥). Therefore, two operators 𝑉1
and 𝑉2 are conjugate if and only if 𝜋−1𝑉1𝜋 = 𝑉2 for some
permutation 𝜋. Throughout this paper, we shall consider
“conjugate operators” in this sense. We say that two classes
𝐾1 and 𝐾2 of operators are conjugate if every operator taken
from𝐾1 is conjugate to some operator taken from𝐾2 and vice
versa.

Proposition 5. A class of all 𝜉(𝑠)-QSO corresponding to
partition 𝜉3 (or 𝜉4) is conjugate to a class of all 𝜉(𝑠)-QSO
corresponding to partition 𝜉2.

Proof. We show that two classes of all 𝜉(𝑠)-QSO correspond-
ing to partitions 𝜉2 and 𝜉3 are conjugate to each other.
Analogously, one can show that two classes of all 𝜉(𝑠)-QSO
corresponding to partitions 𝜉2 and 𝜉4 are conjugate to each
other as well.

Assume that an operator 𝑉 : 𝑆
2 → 𝑆2 given by

𝑉 : 𝑥


𝑘 =

3

∑
𝑖,𝑗=1

𝑃𝑖𝑗,𝑘𝑥𝑖𝑥𝑗, 𝑘 = 1, 2, 3, (17)

is a 𝜉(𝑠)-QSO corresponding to partition 𝜉3 =

{{(1, 3)}, {(1, 2), (2, 3)}}. This means that the coefficients
(𝑃𝑖𝑗,𝑘)

3

𝑖,𝑗,𝑘=1
of 𝑉 satisfy the following three conditions:

(i) P12 ∼ P23, (ii) P13 ⊥ P12, P13 ⊥ P23, and (iii)
P11 ⊥ P22 ⊥ P33 where P𝑖𝑗 = (𝑃𝑖𝑗,1, 𝑃𝑖𝑗,2, 𝑃𝑖𝑗,3).

We consider the following operator: 𝑉𝜋 = 𝜋−1𝑉𝜋, where
𝜋 = ( 1 2 3

2 1 3 ). It is clear that 𝑉𝜋 is conjugate to 𝑉, where

𝑉𝜋 : 𝑥


𝑘 =

3

∑
𝑖,𝑗=1

𝑃
𝜋

𝑖𝑗,𝑘𝑥𝑖𝑥𝑗, 𝑘 = 1, 2, 3 (18)

such that 𝑃𝜋
𝑖𝑗,𝑘 = 𝑃𝜋(𝑖)𝜋(𝑗),𝜋(𝑘) for any 𝑖, 𝑗, 𝑘 = 1, 2, 3;

equivalently, P𝜋
𝑖𝑗 = 𝜋P𝜋(𝑖)𝜋(𝑗) (in a vector form) for any

𝑖, 𝑗 = 1, 2, 3. Now, we are going to show that 𝑉𝜋 is a 𝜉(𝑠)-
QSO corresponding to 𝜉2 = {{(2, 3)}, {(1, 2), (1, 3)}}. In order
to show it we have to check three conditions.

(i) P𝜋
12 ∼ P𝜋

13. Indeed, since P
𝜋
12 = 𝜋P12, P

𝜋
13 = 𝜋P23,

P12 ∼ P23, one has P
𝜋
12 ∼ P𝜋

13.
(ii) P𝜋

12 ⊥ P𝜋
23, P

𝜋
13 ⊥ P𝜋

23. Indeed, since P
𝜋
12 = 𝜋P12,

P𝜋
23 = 𝜋P13, andP12 ⊥ P13, we obtain thatP

𝜋
12 ⊥ P𝜋

23.
In the same manner, we can get that P𝜋

13 ⊥ P𝜋
23.

(iii) P𝜋
11 ⊥ P𝜋

22 ⊥ P𝜋
33. Indeed, since P

𝜋
11 = 𝜋P22, P𝜋

22 =

𝜋P11, P𝜋
33 = 𝜋P33, and P11 ⊥ P22 ⊥ P33, we have

that P𝜋
11 ⊥ P𝜋

22 ⊥ P𝜋
33.

This shows that any 𝜉(𝑠)-QSO taken from the class corre-
sponding to partition 𝜉3 is conjugate to some 𝜉(𝑠)-QSO taken
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Table 1

(a)

Case P12 P13 P23

I1 (𝑎, 1 − 𝑎, 0) (𝑎, 1 − 𝑎, 0) (0, 0, 1)

I2 (0, 𝑎, 1 − 𝑎) (0, 𝑎, 1 − 𝑎) (1, 0, 0)

I3 (𝑎, 0, 1 − 𝑎) (𝑎, 0, 1 − 𝑎) (0, 1, 0)

I4 (0, 0, 1) (0, 0, 1) (𝑎, 1 − 𝑎, 0)

I5 (1, 0, 0) (1, 0, 0) (0, 𝑎, 1 − 𝑎)

I6 (0, 1, 0) (0, 1, 0) (𝑎, 0, 1 − 𝑎)

(b)

Case P11 P22 P33

II1 (1, 0, 0) (0, 1, 0) (0, 0, 1)

II2 (0, 1, 0) (1, 0, 0) (0, 0, 1)

II3 (0, 0, 1) (0, 1, 0) (1, 0, 0)

II4 (1, 0, 0) (0, 0, 1) (0, 1, 0)

II5 (0, 0, 1) (1, 0, 0) (0, 1, 0)

II6 (0, 1, 0) (0, 0, 1) (1, 0, 0)

from the class corresponding to partition 𝜉2. Analogously,
we can show that any 𝜉(𝑠)-QSO 𝑉 taken from the class
corresponding to partition 𝜉2 is conjugate to a 𝜉

(𝑠)-QSO 𝑉𝜋 =

𝜋−1𝑉𝜋 which belongs to the class corresponding to partition
𝜉3, where 𝜋 is the same permutation as given above. This
completes the proof.

Therefore, it is enough to study a class of all 𝜉(𝑠)-QSO
corresponding to the partition 𝜉2. Now, we shall consider
some subclass of a class of all 𝜉(𝑠)-QSO corresponding to
partition 𝜉2 by choosing coefficients (𝑃𝑖𝑗,𝑘)

3

𝑖,𝑗,𝑘=1
in special

forms where 𝑎 ∈ [0, 1] (see Table 1).
The choices of the cases (I𝑖, II𝑗), where 𝑖, 𝑗 = 1, 6, will

give 36 operators from the class of 𝜉(𝑠)-QSO corresponding to
partition 𝜉2. Finally, we obtain 36 parametric operators which
are defined as follows:

𝑉1 :

{{

{{

{

𝑥

1 = 𝑥21 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥22 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑥

3 = 𝑥

2
3 + 2𝑥2𝑥3,

𝑉2 :

{{

{{

{

𝑥

1 = 𝑥22 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥21 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥23 + 2𝑥2𝑥3,

𝑉3 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥22 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥21 + 2𝑥2𝑥3,

𝑉4 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥23 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥22 + 2𝑥2𝑥3,

𝑉5 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥23 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑥

3 = 𝑥

2
1 + 2𝑥2𝑥3,

𝑉6 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥21 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥22 + 2𝑥2𝑥3,

𝑉7 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑥2𝑥3,

𝑥2 = 𝑥22 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥23 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉8 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑥2𝑥3,

𝑥2 = 𝑥21 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥23 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉9 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑥2𝑥3,

𝑥2 = 𝑥22 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥21 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉10 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑥2𝑥3,

𝑥2 = 𝑥23 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥

3 = 𝑥

2
2 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉11 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑥2𝑥3,

𝑥

2 = 𝑥

2
3 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥21 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉12 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑥2𝑥3,

𝑥2 = 𝑥21 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥22 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉13 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥22 + 2𝑥2𝑥3,

𝑥

3 = 𝑥

2
3 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉14 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥

2 = 𝑥

2
1 + 2𝑥2𝑥3,

𝑥3 = 𝑥23 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉15 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥22 + 2𝑥2𝑥3,

𝑥3 = 𝑥21 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉16 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥23 + 2𝑥2𝑥3,

𝑥

3 = 𝑥

2
2 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉17 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥23 + 2𝑥2𝑥3,

𝑥3 = 𝑥21 + 2 (1 − 𝑎) 𝑥 (1 − 𝑥) ,
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𝑉18 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥21 + 2𝑥2𝑥3,

𝑥

3 = 𝑥

2
2 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑉19 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥22 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑥3 = 𝑥23 + 2𝑥1 (1 − 𝑥1) ,

𝑉20 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥21 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑥3 = 𝑥23 + 2𝑥1 (1 − 𝑥1) ,

𝑉21 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥22 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑥3 = 𝑥21 + 2𝑥1 (1 − 𝑥1) ,

𝑉22 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥23 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑥3 = 𝑥22 + 2𝑥1 (1 − 𝑥1) ,

𝑉23 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥23 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑥

3 = 𝑥

2
1 + 2𝑥1 (1 − 𝑥1) ,

𝑉24 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥21 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑥3 = 𝑥22 + 2𝑥1 (1 − 𝑥1) ,

𝑉25 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥22 + 2𝑎𝑥2𝑥3,

𝑥3 = 𝑥23 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉26 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥21 + 2𝑎𝑥2𝑥3,

𝑥3 = 𝑥23 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉27 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥22 + 2𝑎𝑥2𝑥3,

𝑥3 = 𝑥21 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉28 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥23 + 2𝑎𝑥2𝑥3,

𝑥3 = 𝑥22 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉29 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥23 + 2𝑎𝑥2𝑥3,

𝑥3 = 𝑥21 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉30 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥21 + 2𝑎𝑥2𝑥3,

𝑥3 = 𝑥22 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉31 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥22 + 2𝑥1 (1 − 𝑥1) ,

𝑥

3 = 𝑥

2
3 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉32 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥21 + 2𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥23 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉33 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥22 + 2𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥21 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉34 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥23 + 2𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥22 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉35 :

{{

{{

{

𝑥1 = 𝑥22 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥23 + 2𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥21 + 2 (1 − 𝑎) 𝑥2𝑥3,

𝑉36 :

{{

{{

{

𝑥1 = 𝑥23 + 2𝑎𝑥2𝑥3,

𝑥2 = 𝑥21 + 2𝑥1 (1 − 𝑥1) ,

𝑥

3 = 𝑥

2
2 + 2 (1 − 𝑎) 𝑥2𝑥3.

(19)

Theorem 6. All 36 operators from the class of 𝜉(𝑠)-QSO
corresponding to partition 𝜉2 defined as above are classified into
20 nonconjugate classes:

𝐾1 = {𝑉1, 𝑉13} , 𝐾2 = {𝑉2, 𝑉15} ,

𝐾3 = {𝑉3, 𝑉14} , 𝐾4 = {𝑉4, 𝑉16} ,

𝐾5 = {𝑉5, 𝑉18} , 𝐾6 = {𝑉6, 𝑉17} ,

𝐾7 = {𝑉7} , 𝐾8 = {𝑉8, 𝑉9} ,

𝐾9 = {𝑉10} , 𝐾10 = {𝑉11, 𝑉12} ,

𝐾11 = {𝑉19, 𝑉31} , 𝐾12 = {𝑉20, 𝑉33} ,

𝐾13 = {𝑉21, 𝑉32} , 𝐾14 = {𝑉22,V34} ,

𝐾15 = {𝑉23, 𝑉36} , 𝐾16 = {𝑉24, 𝑉35} ,

𝐾17 = {𝑉25} , 𝐾18 = {𝑉26, 𝑉27} ,

𝐾19 = {𝑉28} , 𝐾20 = {𝑉29, 𝑉30} .

(20)

Proof. It is easy to check that partition 𝜉2 = {{(2, 3)},

{(1, 2), (1, 3)}} is invariant under only one permutation 𝜋 =

( 1 2 3
1 3 2 ). The proof of the theorem can be easily insured with

respect to this permutation. It is straightforward.

The main problem is to investigate the dynamics of these
classes of operators. In what follows, we are going to study
three classes𝐾1,𝐾4, and𝐾19. From the list, one can conclude
that these three classes of operators are either ℓ-Volterra-
QSO or permuted ℓ-Volterra-QSO.The class𝐾17 was already
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studied in [17, 18]. The rest of the classes of operators would
be studied in elsewhere in the future.

4. Dynamics of 𝜉
(𝑠)-QSO from Class 𝐾1

In this section we are going to study dynamics of 𝜉(𝑠)-QSO
from class 𝐾1.

We need some auxiliary facts about properties of the
function 𝑓𝑎 : [0, 1] → [0, 1] given by

𝑓𝑎 (𝑥) = 𝑥
2
+ 2𝑎𝑥 (1 − 𝑥) , (21)

where 𝑎 ∈ [0, 1]. If 𝑎 = 1/2, then the function becomes the
identity mapping. Therefore, we shall consider only the case
of 𝑎 ̸= 1/2.

Proposition 7. Let 𝑓𝑎 : [0, 1] → [0, 1] be a function given by
(21) where 𝑎 ̸= 1/2. Then, the following statements hold true.

(i) One has that Fix(𝑓𝑎) = {0, 1}.

(ii) The function 𝑓𝑎 is increasing.

(iii) One has that (𝑎 − (1/2))(𝑓𝑎(𝑥) − 𝑥) > 0 for any 𝑥 ∈

(0, 1).

(iv) One has that 𝜔𝑓𝑎
(𝑥0) = {

{0} 𝑖𝑓 0≤𝑎<1/2

{1} 𝑖𝑓 1/2<𝑎≤1
for any 𝑥0 ∈

(0, 1).

Proof. Let 𝑓𝑎 : [0, 1] → [0, 1] be a function given by (21)
where 𝑎 ̸= 1/2.

(i) In order to find fixed points of the function 𝑓𝑎, we
should solve the following equation: 𝑥2+2𝑎𝑥(1−𝑥) =

𝑥. It follows from the last equation that (1 − 2𝑎)(𝑥2 −

𝑥) = 0. Since 𝑎 ̸= 1/2, we get that 𝑥 = 0 or 𝑥 = 1.
Therefore, Fix(𝑓𝑎) = {0, 1}.

(ii) Since 𝑓
𝑎(𝑥) = 2𝑥(1 − 𝑎) + 2𝑎(1 − 𝑥) ≥ 0, the function

𝑓𝑎 is increasing.

(iii) Since 𝑓𝑎(𝑥) − 𝑥 = (1 − 2𝑎)(𝑥2 − 𝑥), we may get that
(𝑎 − (1/2))(𝑓𝑎(𝑥) − 𝑥) > 0.

(iv) Let 0 ≤ 𝑎 < 1/2 and 𝑥0 ∈ (0, 1). Due to (iii), we have
that 𝑓𝑎(𝑥0) < 𝑥0. Since 𝑓𝑎 is increasing, we obtain
that 𝑓(𝑛+1)

𝑎 (𝑥0) < 𝑓(𝑛)
𝑎 (𝑥0) for any 𝑛 ∈ N. This means

that {𝑓(𝑛)
𝑎 (𝑥0)}

∞

𝑛=1
is a bounded decreasing sequence.

Consequently, it converges to some point 𝑥∗, and 𝑥∗

should be a fixed point; that is, 𝑥∗ = 0. This means
that 𝑤𝑓𝑎

(𝑥0) = {0}. Similarly, one can show that if
1/2 < 𝑎 ≤ 1, then 𝜔𝑓𝑎

(𝑥0) = {1} for any 𝑥0 ∈ (0, 1).
This completes the proof.

Now, we are going to study dynamics of a 𝜉(𝑠)-QSO 𝑉13 :

𝑆2 → 𝑆2 taken from 𝐾1:

𝑉13 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑥1𝑎 (1 − 𝑥1)

𝑥2 = 𝑥22 + 2𝑥2𝑥3

𝑥3 = 𝑥23 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

(22)

where 0 ≤ 𝑎 ≤ 1. This operator is an ℓ-Volterra-QSO, and its
behavior was not studied in [24, 25].

Let 𝑒1, 𝑒2, and 𝑒3 be the vertices of the simplex 𝑆2 and let
Γ𝑖 = {𝑥 ∈ 𝑆2 : 𝑥𝑖 = 0} be an edge of the simplex 𝑆2, where
𝑖 = 1, 2, 3. Let 𝑆1≤3 = {𝑥 ∈ 𝑆2 : 𝑥1 ≤ 𝑥3}, 𝑆1≥3 = {𝑥 ∈ 𝑆2 : 𝑥1 ≥

𝑥3}, and 𝑙13 = {𝑥 ∈ 𝑆2 : 𝑥1 = 𝑥3}.

Theorem 8. Let 𝑉13 : 𝑆2 → 𝑆2 be a 𝜉(𝑠)-QSO given by (22)
and let 𝑥(0) = (𝑥

(0)
1 , 𝑥

(0)
2 , 𝑥

(0)
3 ) ∉ Fix(𝑉13) be an initial point.

Then the following statements hold true.

(i) One has that

Fix (𝑉13) =

{{{

{{{

{

{𝑒1, 𝑒2, 𝑒3} 𝑖𝑓 𝑎 ̸=
1

2
,

Γ2 ∪ 𝑙13 𝑖𝑓 𝑎 =
1

2
.

(23)

(ii) If 0 ≤ 𝑎 < 1/2, then

𝜔𝑉13
(𝑥

(0)
) =

{

{

{

{𝑒2} 𝑖𝑓 𝑥
(0)
2 ̸= 0,

{𝑒3} 𝑖𝑓 𝑥
(0)
2 = 0.

(24)

(iii) If 1/2 < 𝑎 ≤ 1, then

𝜔𝑉13
(𝑥

(0)
) =

{

{

{

{𝑒1} 𝑖𝑓 𝑥
(0)
1 ̸= 0,

{𝑒2} 𝑖𝑓 𝑥
(0)
1 = 0.

(25)

(iv) If 𝑎 = 1/2, then

𝜔𝑉13
(𝑥

(0)
) =

{{{

{{{

{

{(𝑥
(0)
1 , 0, 1 − 𝑥

(0)
1 )} 𝑖𝑓 𝑥

(0)
1 >

1

2
,

{(𝑥
(0)
1 , 1 − 2𝑥

(0)
1 , 𝑥

(0)
1 )} 𝑖𝑓 𝑥

(0)
1 ≤

1

2
.

(26)

Proof. Let 𝑉13 : 𝑆2 → 𝑆2 be a 𝜉(𝑠)-QSO given by (22), let
𝑥(0) = (𝑥

(0)
1 , 𝑥

(0)
2 , 𝑥

(0)
3 ) ∉ Fix(𝑉13) be an initial point, and let

{𝑥(𝑛)}
∞

𝑛=0 be a trajectory of 𝑉13 starting from the point 𝑥(0).
(i) In order to find fixed points of (22), we should solve

the following system of equations:

𝑥1 = 𝑥
2

1 + 2𝑥1𝑎 (1 − 𝑥1) ,

𝑥2 = 𝑥
2

2 + 2𝑥2𝑥3,

𝑥3 = 𝑥
2

3 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) .

(27)

We shall separately consider two cases: 𝑎 = 1/2 and 𝑎 ̸= 1/2.
Let 𝑎 ̸= 1/2. From the first equation of (27), we get that

𝑥1 = 0 and 𝑥1 = 1 (see Proposition 7(i)). It follows from the
second equation of (27) that if 𝑥1 = 0, then 𝑥2 = 0, 𝑥3 = 1 or
𝑥2 = 1, 𝑥3 = 0 and if 𝑥1 = 1, then 𝑥2 = 𝑥3 = 0. This means
that Fix(𝑉13) = {𝑒1, 𝑒2, 𝑒3}.

Let 𝑎 = 1/2. The first equation of (27) takes the form
𝑥1 = 𝑥1. From the second equation of (27), we get that
𝑥2(𝑥1 − 𝑥3) = 0. This yields that 𝑥2 = 0 or 𝑥1 = 𝑥3. In
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both cases, the third equation of (27) holds true. Therefore,
we have that Fix(𝑉13) = Γ2 ∪ 𝑙13.

(ii) Let 0 ≤ 𝑎 < 1/2. It is clear that 𝑥
(𝑛)
1 =

𝑓(𝑛)
𝑎 (𝑥

(0)
1 ). Therefore, due to Proposition 7(iv), we have that

lim𝑛→∞𝑥
(𝑛)
1 = 0. Hence, 𝜔𝑉13

(𝑥(0)) ⊂ Γ1 = {𝑥 ∈ 𝑆2 : 𝑥1 = 0}.
Now, we shall separately consider two cases: 𝑥(0)2 = 0 and
𝑥
(0)
2 ̸= 0.
Let 𝑥(0)2 = 0. In this case, 𝑥(𝑛)2 = 0 and lim𝑛→∞𝑥

(𝑛)
3 = 1.

Hence, 𝜔𝑉13
(𝑥(0)) = {𝑒3}.

Let 𝑥(0)2 ̸= 0. We need the following result.

Claim. One has that 𝑉13(𝑆1≤3) ⊂ 𝑆1≤3. Moreover, for any
𝑥(0) ∉ Fix(𝑉13), there exists 𝑛0 (depending on 𝑥(0)) such that
{𝑥(𝑛)}

∞

𝑛=𝑛0
⊂ 𝑆1≤3.

Proof of Claim. If 𝑥1 ≤ 𝑥3, then 𝑥1 = 𝑥21 + 2𝑎𝑥1(1 − 𝑥1) ≤

𝑥
2
3+2(1−𝑎)𝑥1(1−𝑥1) = 𝑥


3.This means that𝑉13(𝑆1≤3) ⊂ 𝑆1≤3.

Let 𝑥(0) ∉ 𝑆1≤3, and suppose that all elements of the
trajectory belong to set 𝑆2 \ 𝑆1≤3; that is, {𝑥

(𝑛)}
∞

𝑛=0 ⊂ 𝑆2 \ 𝑆1≤3.
It follows from 𝑥

(𝑛)
1 → 0 and 𝑥

(𝑛)
3 < 𝑥

(𝑛)
1 that 𝑥(𝑛)3 → 0. This

with ∑
3

𝑖=1 𝑥
(𝑛)

𝑖
= 1 implies that 𝑥(𝑛)2 → 1. On the other hand,

we have that 𝑥(𝑛+1)2 = 𝑥
(𝑛)
2 (1 − (𝑥

(𝑛)
1 − 𝑥

(𝑛)
3 )) ≤ 𝑥

(𝑛)
2 . It yields

that {𝑥(𝑛)2 }
∞

𝑛=0
is decreasing; hence, it converges to some point

𝑥∗ < 1. This is a contradiction. This completes the proof of
Claim.

Due to Claim, there exists 𝑛0 such that 𝑥(𝑛)1 ≤ 𝑥
(𝑛)
3 for all

𝑛 ≥ 𝑛0. Therefore, 𝑥(𝑛+1)2 = 𝑥
(𝑛)
2 (1 − (𝑥

(𝑛)
1 − 𝑥

(𝑛)
3 )) ≥ 𝑥

(𝑛)
2 , and

{𝑥
(𝑛)
2 }

∞

𝑛=𝑛0
is an increasing sequence which converges to 𝑥∗2 .

This yields that 𝑥(𝑛) = (𝑥
(𝑛)
1 , 𝑥

(𝑛)
2 , 𝑥

(𝑛)
3 ) converges to (0, 𝑥∗2 , 1 −

𝑥∗2 ), where 𝑥∗2 > 0. We know that (0, 𝑥∗2 , 1 − 𝑥∗2 ) should be
a fixed point. Consequently, (0, 𝑥∗2 , 1 − 𝑥∗2 ) = (0, 1, 0) and
𝜔𝑉13

(𝑥(0)) = {𝑒2}.
(iii) Let 1/2 < 𝑎 ≤ 1. Due to Proposition 7(iv), we have

that lim𝑛→∞𝑥
(𝑛)
1 = 1, whenever 0 < 𝑥

(0)
1 < 1. Therefore, if

𝑥
(0)
1 ̸= 0, then 𝜔𝑉13

(𝑥(0)) ⊂ {𝑒1}. Since 𝜔𝑉13
(𝑥(0)) is not empty,

we obtain that 𝜔𝑉13
(𝑥(0)) = {𝑒1}. Let 𝑥

(0)
1 = 0, then 𝑥

(𝑛)
1 =

0 for all 𝑛 ∈ N. Moreover, we have that 𝑥
(𝑛+1)
3 = (𝑥

(𝑛)
3 )

2

and lim𝑛→∞𝑥
(𝑛)
3 = 0. This means that lim𝑛→∞𝑥

(𝑛)
2 = 1.

Therefore, if 𝑥(0)1 = 0, then 𝜔𝑉13
(𝑥

(0)
) = {𝑒2}.

(iv) Let 𝑎 = 1/2 and 𝑥
(0)
1 > 1/2. Then 𝑥

(𝑛)
1 = 𝑥

(0)
1 > 1/2

for any 𝑛 ∈ N. Since 𝑥
(𝑛)
3 = 1 − 𝑥

(𝑛)
1 − 𝑥

(𝑛)
2 , one gets that

𝑥
(𝑛)
3 < 1/2 < 𝑥

(𝑛)
1 .This implies that {𝑥(𝑛)2 }

∞
𝑛=0 is decreasing, and

hence it converges to 𝑥∗2 . Consequently, (𝑥
(𝑛)
1 , 𝑥

(𝑛)
2 , 𝑥

(𝑛)
3 ) →

(𝑥
(0)
1 , 𝑥∗2 , 𝑥

∗
3 ). We know that (𝑥

(0)
1 , 𝑥∗2 , 𝑥

∗
3 ) should be a fixed

point. Since 𝑥
(0)
1 > 1/2 ≥ 𝑥

(∗)
3 , we find that 𝑥∗2 = 0 and

𝑥∗3 = 1 − 𝑥
(0)
1 . This means that 𝜔𝑉13

(𝑥(0)) = {(𝑥
(0)
1 , 0, 1 − 𝑥

(0)
1 )}.

Let 𝑥
(0)
1 ≤ 1/2. Then 𝑥

(𝑛)
1 = 𝑥

(0)
1 ≤ 1/2 for any 𝑛 ∈ N.

Since 𝑥3 − 𝑥1 = 𝑥23 − 𝑥21, we have that 𝑉(𝑆1≤3) ⊂ 𝑆1≤3 and
𝑉(𝑆1≥3) ⊂ 𝑆1≥3. If 𝑥

(0) = (𝑥
(0)
1 , 𝑥

(0)
2 , 𝑥

(0)
3 ) ∈ 𝑆1≤3, then 𝑥(𝑛) =

(𝑥
(𝑛)
1 , 𝑥

(𝑛)
2 , 𝑥

(𝑛)
3 ) ∈ 𝑆1≤3. This yields that {𝑥(𝑛)2 }

∞

𝑛=0
is decreasing,

and hence it converges to 𝑥
∗
2 . Therefore, (𝑥

(𝑛)
1 , 𝑥

(𝑛)
2 , 𝑥

(𝑛)
3 )

converges to (𝑥
(0)
1 , 𝑥

(∗)
2 , 𝑥

(∗)
3 ). Since (𝑥

(0)
1 , 𝑥∗2 , 𝑥

∗
3 ) ∈ 𝑆1≤3 is a

fixed point, we have that 𝑥
(∗)
2 = 1 − 2𝑥

(0)
1 and 𝑥

(∗)
3 = 𝑥

(0)
1 .

In the similar manner, one may have that if 𝑥(0) ∈ 𝑆1≥3, then
𝜔𝑉13

(𝑥
(0)

) = {(𝑥
(0)
1 , 1 − 2𝑥

(0)
1 , 𝑥

(0)
1 )}.

This completes the proof.

5. Dynamics of 𝜉(𝑠)-QSO from Class 𝐾4

We are going to study dynamics of a 𝜉(𝑠)-QSO 𝑉4 : 𝑆2 → 𝑆2

taken from 𝐾4:

𝑉4 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥23 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥22 + 2𝑥2𝑥3,

(28)

where 0 ≤ 𝑎 ≤ 1. One can immediately see that this
operator is a permuted ℓ-Volterra-QSO. As we mentioned,
the behavior of such kinds of operators is not studied yet. It is
worth mentioning that 𝑉4 is a permutation of 𝑉13.

Let

𝐵 (𝑏) =
3 − 2𝑏 − √4𝑏2 − 8𝑏 + 5

2
, 𝑏 ∈ [0, 1] ,

𝐶± (𝑐) =
1 − 2𝑐 ± √4𝑐2 − 8𝑐 + 1

2
, 𝑐 ∈ [0,

2 − √3

2
] .

(29)

It is clear that

0 ≤ 𝐵 (𝑏) =
2 (1 − 𝑏)

1 + 2 (1 − 𝑏) + √1 + 4(1 − 𝑏)
2

≤ 1,

0 ≤
1 − 2𝑐 ± √(1 − 2𝑐)

2
− 4𝑐

2
= 𝐶± (𝑐)

≤
1 − 2𝑐 + √4𝑐2 + 4𝑐 + 1

2
= 1

(30)

for any 𝑏 ∈ [0, 1] and 𝑐 ∈ [0, (2 − √3)/2] ⊂ [0, 1/2].

Theorem 9. Let 𝑉4 : 𝑆2 → 𝑆2 be a 𝜉(𝑠)-QSO given by (28)
and let 𝑥(0) = (𝑥

(0)
1 , 𝑥

(0)
2 , 𝑥

(0)
3 ) ∉ Fix(𝑉4)∪Per2(𝑉4) be an initial

point. Then, the following statements hold true.
(i) One has that

Fix (𝑉4) =

{{{

{{{

{

{𝑒1, (0,
3 − √5

2
,
−1 + √5

2
)} 𝑖𝑓 𝑎 ̸=

1

2
,

{𝑏, 𝐵(𝑏), 1 − 𝐵(𝑏)}𝑏∈[0,1] 𝑖𝑓 𝑎 =
1

2
.

(31)

(ii) One has that

Per2 (𝑉4) =

{{{

{{{

{

{𝑒2, 𝑒3} 𝑖𝑓 𝑎 ̸=
1

2
,

{𝑐, 𝐶±(𝑐), 1 − 𝐶±(𝑐)}𝑐∈[0,(2−√3)/2) 𝑖𝑓 𝑎 =
1

2
.

(32)
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(iii) If 1/2 < 𝑎 ≤ 1, then

𝜔𝑉4
(𝑥

(0)
) =

{

{

{

{𝑒1} 𝑖𝑓 𝑥
(0)
1 ̸= 0,

{𝑒2, 𝑒3} 𝑖𝑓 𝑥
(0)
1 = 0.

(33)

(iv) If 𝑎 = 1/2, then

𝜔𝑉4
(𝑥

(0)
)

=

{{{{

{{{{

{

{(𝑥
(0)

1 , 𝐶± (𝑥
(0)

1 ) , 1 − 𝐶± (𝑥
(0)

1 ))} 𝑖𝑓 𝑥
(0)

1 ∈[0,
2 − √3

2
) ,

{(𝑥
(0)

1 , 𝐵 (𝑥
(0)

1 ) , 1 − 𝐵 (𝑥
(0)

1 ))} 𝑖𝑓 𝑥
(0)

1 ∈[
2 − √3

2
, 1] .

(34)

Proof. Let 𝑥(0) = (𝑥
(0)
1 , 𝑥

(0)
2 , 𝑥

(0)
3 ) ∉ Fix(𝑉4) ∪ Per2(𝑉4) be an

initial point and let {𝑥(𝑛)}
∞

𝑛=0 be a trajectory of𝑉4 starting from
the point 𝑥(0).

(i) In order to find fixed points of𝑉4, we have to solve the
following system:

𝑥1 = 𝑥
2

1 + 2𝑎𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥
2

3 + 2 (1 − 𝑎) 𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥
2

2 + 2𝑥2𝑥3.

(35)

Let 𝑎 ̸= 1/2. From the first equation of the system (35), one
can find that 𝑥1 = 0 or 𝑥1 = 1 (see Proposition 7(i)). If 𝑥1 = 1,
then 𝑥2 = 𝑥3 = 0. If 𝑥1 = 0, then the second equation of the
system (35) becomes as follows:

𝑥
2

2 − 3𝑥2 + 1 = 0. (36)

So, the solutions of this quadratic equation are 𝑥±2 = (3 ±

√5)/2. We can verify that the only solution 𝑥2 = (3 − √5)/2

belongs to [0, 1].Therefore, one has 𝑥3 = (−1+√5)/2. Hence,
Fix(𝑉4) = {𝑒1, (0, (3−√5)/2, (−1+√5)/2)}whenever 𝑎 ̸= 1/2.

Let 𝑎 = 1/2.The system (35) then takes the following form

𝑥1 = 𝑥1,

𝑥2 = 𝑥
2

3 + 𝑥1 (1 − 𝑥1) ,

𝑥3 = 𝑥
2

2 + 2𝑥2𝑥3.

(37)

So, by letting 𝑥1 = 𝑏 (any 𝑏 ∈ [0, 1]), the second equation of
the system (37) can be written as follows

𝑥
2

2 − (3 − 2𝑏) 𝑥2 + (1 − 𝑏) = 0. (38)

The solutions of the last equation are 𝑥±2 = (3 − 2𝑏 ±

√4𝑏2 − 8𝑏 + 5)/2. One can check that the only solution 𝑥2 =

(3−2𝑏−√4𝑏2 − 8𝑏 + 5)/2 = 𝐵(𝑏) belongs to [0, 1].Therefore,
one has that Fix(𝑉4) = {(𝑏, 𝐵(𝑏), 1 − 𝐵(𝑏))}𝑏∈[0,1] whenever
𝑎 = 1/2.

(ii) Let 𝑎 ̸= 1/2. Now, we are going to show that the
operator 𝑉4 given by (28) does not have any order periodic

points in the set 𝑆2 \ Γ1, where Γ1 = {𝑥 ∈ 𝑆2 : 𝑥1 = 0}. In fact,
since the function 𝑓𝑎(𝑥) = 𝑥2 + 2𝑎𝑥(1 − 𝑥) is increasing (due
to Proposition 7(ii)), the first coordinate of𝑉4 increases along
the iteration of 𝑉4 in the set 𝑆2 \ Γ1. This means that 𝑉4 does
not have any order periodic points in set 𝑆2 \ Γ1. Therefore, it
is enough to find periodic points of 𝑉4 in Γ1. In this case, in
order to find 2-periodic points, we have to solve the following
system of equations:

𝑥1 = 0,

𝑥2 = (1 − (1 − 𝑥2)
2
)
2
,

𝑥3 = 1 − (1 − 𝑥
2

3)
2
.

(39)

The solutions of the second equation of the last system are
0, 1, (3 ± √5)/2. Hence, we have that Per(𝑉4) = {𝑒2, 𝑒3}

whenever 𝑎 ̸= 1/2.
Let 𝑎 = 1/2. In order to find 2-periodic points of 𝑉4, we

should solve the following system of equations:

𝑥1 = 𝑥1,

𝑥2 = 𝑥
2

2(1 − 𝑥1 + 𝑥3)
2
+ 𝑥1 (1 − 𝑥1) ,

𝑥3 = (𝑥
2

3 + 𝑥1 (1 − 𝑥1)) (1 − 𝑥1 + 𝑥2 (1 − 𝑥1 + 𝑥3)) .

(40)

By letting 𝑥1 = 𝑐, where 𝑐 ∈ [0, 1], the second equation of
system (40) reduces to the following equation:

𝑥
2

2(2 − 2𝑐 − 𝑥2)
2
+ 𝑐 (1 − 𝑐) = 𝑥2. (41)

One can easily check that the solutions of the last equation
which belong to [0, 1] are only 𝐵(𝑐) and 𝐶±(𝑐) when-
ever 𝑐 ∈ [0, (2 − √3)/2) and 𝐵(𝑐) whenever 𝑐 ∈

[(2 − √3)/2, 1]. Consequently, we get that Per2(𝑉4) =

{(𝑐, 𝐶±(𝑐), 1 − 𝐶±(𝑐))}𝑐∈[0,(2−√3)/2).
(iii) Let 1/2 < 𝑎 ≤ 1 and 𝑥

(0)
1 = 0. In this case, the

second coordinate of 𝑉4 has the form 𝑥2 = ℎ(𝑥2), where
ℎ(𝑥2) = (1 − 𝑥2)

2. It is clear that function ℎ is decreasing
on [0, 1]. This yields that function ℎ(2) is increasing on [0, 1],
As we already discussed in (i) and (ii) that Fix(ℎ) ∩ [0, 1] =

{(3 − √5)/2} and Fix(ℎ(2)) ∩ [0, 1] = {0, (3 − √5)/2, 1}. This
means that the sets [0, (3 − √5)/2] and [(3 − √5)/2, 1] are
invariant function ℎ(2). We immediately find (see the above
discussion (ii)) that ℎ(2)(𝑥2) > 𝑥2 whenever 𝑥2 > (3 − √5)/2

and ℎ(2)(𝑥2) < 𝑥2 whenever 𝑥2 < (3 − √5)/2. Consequently,
one has that if 𝑥(0)2 ∈ [0, (3−√5)/2), then𝜔ℎ(2)(𝑥

(0)
2 ) = {0} and

if 𝑥(0)2 ∈ ((3 − √5)/2, 1], then 𝜔ℎ(2)(𝑥
(0)
2 ) = {1}. On the other

hand, we have that

𝑉
(𝑛)

4 (𝑥
(0)

)

=
{

{

{

(0, ℎ
(2𝑘)

(𝑥
(0)

2 ) , 1 − ℎ
(2𝑘)

(𝑥
(0)

2 )) if 𝑛 = 2𝑘,

(0, ℎ(2𝑘) (ℎ (𝑥
(0)

2 )) , 1 − ℎ(2𝑘) (ℎ (𝑥
(0)

2 ))) if 𝑛 = 2𝑘 + 1.

(42)

Therefore, we obtain that 𝜔𝑉4
(𝑥(0)) = {𝑒2, 𝑒3} if 𝑥

(0)
1 = 0.
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Let 1/2 < 𝑎 ≤ 1 and 0 < 𝑥
(0)
1 < 1. In this case, it is clear

that 𝑥(𝑛)1 = 𝑓(𝑛)
𝑎 (𝑥

(0)
1 ). Therefore, due to Proposition 7(iv), we

have that lim𝑛→∞𝑥
(𝑛)
1 = 1. This means that 𝜔𝑉4

(𝑥(0)) ⊂ {𝑒1}.
Since 𝜔𝑉4

(𝑥(0)) ̸= 0, one has that 𝜔𝑉4
(𝑥(0)) = {𝑒1}.

(iv) Let 𝑎 = 1/2. Then the operator𝑉4 takes the following
form:

𝑥


1 = 𝑥1,

𝑥


2 = 𝑥
2

3 + 𝑥1 (1 − 𝑥1) ,

𝑥


3 = 𝑥2 (1 − 𝑥1 + 𝑥3) .

(43)

It is clear that 𝐿𝑐 = {𝑥 ∈ 𝑆2 : 𝑥1 = 𝑐} is invariant under 𝑉4
where 𝑐 ∈ [0, 1]. Therefore, we shall study the dynamics of𝑉4
over 𝐿𝑐.

Let 𝑥(0)1 = 𝑐 ∈ [0, (2 − √3)/2) be a fixed number. Let us
consider function ℎ𝑐 : [0, 1 − 𝑐] → [0, 1 − 𝑐],

ℎ𝑐 (𝑥2) = (1 − 𝑐 − 𝑥2)
2
+ 𝑐 (1 − 𝑐) . (44)

One can show that the function ℎ𝑐 is decreasing on [0, 1 − 𝑐].
This yields that the function ℎ(2)𝑐 is increasing. It follows from
the discussion presented above (see (ii)) that Fix(ℎ𝑐) ∩ [0, 1 −

𝑐] = {𝐵(𝑐)} and Fix(ℎ(2)𝑐 ) ∩ [0, 1 − 𝑐] = {𝐵(𝑐), 𝐶±(𝑐)} where
𝐶−(𝑐) < 𝐵(𝑐) < 𝐶+(𝑐). Moreover, one has that

ℎ𝑐 [0, 𝐶− (𝑐)] ⊂ [𝐶+ (𝑐) , 1 − 𝑐] ,

ℎ𝑐 [𝐶− (𝑐) , 𝐵 (𝑐)] ⊂ [𝐵 (𝑐) , 𝐶+ (𝑐)] ,

ℎ𝑐 [𝐵 (𝑐) , 𝐶+ (𝑐)] ⊂ [𝐶− (𝑐) , 𝐵 (𝑐)] ,

ℎ𝑐 [𝐶+ (𝑐) , 1 − 𝑐] ⊂ [0, 𝐶− (𝑐)] ,

(45)

Therefore, the sets [0, 𝐶−(𝑐)], [𝐶−(𝑐), 𝐵(𝑐)], [𝐵(𝑐), 𝐶+(𝑐)], and
[𝐶+(𝑐), 1 − 𝑐] are invariant under function ℎ(2)𝑐 . Simple
calculations show that

ℎ
(2)

𝑐 (𝑥2) > 𝑥2, ∀𝑥2 ∈ [0, 𝐶− (𝑐)) ∪ (𝐵 (𝑐) , 𝐶+ (𝑐)) ,

ℎ
(2)

𝑐 (𝑥2) < 𝑥2, ∀𝑥2 ∈ (𝐶− (𝑐) , 𝐵 (𝑐)) ∪ (𝐶+ (𝑐) , 1 − 𝑐] .

(46)

Consequently, we get that

𝜔
ℎ
(2)

𝑐

(𝑥
(0)

2 ) = {𝐶− (𝑐)} , ∀𝑥
(0)

2 ∈ [0, 𝐵 (𝑐)) ,

𝜔
ℎ
(2)

𝑐

(𝑥
(0)

2 ) = {𝐶+ (𝑐)} , ∀𝑥
(0)

2 ∈ (𝐵 (𝑐) , 1 − 𝑐] .

(47)

On the other hand, we have that
𝑉
(𝑛)

4 (𝑥
(0)

)

= {
(𝑐, ℎ(2𝑘)𝑐 (𝑥

(0)

2 ) , 1 − ℎ(2𝑘)𝑐 (𝑥
(0)

2 )) if 𝑛 = 2𝑘,

(𝑐, ℎ
(2𝑘)
𝑐 (ℎ𝑐 (𝑥

(0)

2 )) , 1 − ℎ
(2𝑘)
𝑐 (ℎ𝑐 (𝑥

(0)

2 ))) if 𝑛 = 2𝑘 + 1.

(48)
Therefore, we obtain that

𝜔𝑉4
(𝑥

(0)
) = {(𝑐, 𝐶± (𝑐) , 1 − 𝐶± (𝑐))}

if 𝑥
(0)

1 = 𝑐 ∈ [0,
2 − √3

2
) .

(49)

In the same manner, one can show that 𝜔𝑉4
(𝑥(0)) =

{(𝑐, 𝐵(𝑐), 1 − 𝐵(𝑐))} whenever 𝑥(0)1 = 𝑐 ∈ [(2 − √3)/2, 1].
This completes the proof.

6. Dynamics of 𝜉(𝑠)-QSO from Class 𝐾19

We are going to study dynamics of a 𝜉
(𝑠)-QSO 𝑉28 : 𝑆

2
→ 𝑆

2

taken from 𝐾19:

𝑉28 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥23 + 2𝑎𝑥2𝑥3,

𝑥3 = 𝑥22 + 2 (1 − 𝑎) 𝑥2𝑥3,

(50)

where 0 ≤ 𝑎 ≤ 1. One can see that this operator is a permuted
Volterra-QSO. The behavior of this operator was not studied
in [21, 22, 34]. It is worthmentioning that𝑉28 is a permutation
of 𝑉25.

Let𝐴 = (3−2𝑎−√4 + (2𝑎 − 1)
2
)/2(1−2𝑎) for any 𝑎 ̸= 1/2.

Then 0 ≤ 𝐴 ≤ 1. In fact, one has that

0 ≤ 𝐴 =
2

2 + (1 − 2𝑎) + √4 + (2𝑎 − 1)
2

≤ 1. (51)

Theorem 10. Let 𝑉28 : 𝑆2 → 𝑆2 be a 𝜉(𝑠)-QSO given by (50)
and let 𝑥(0) = (𝑥

(0)
1 , 𝑥

(0)
2 , 𝑥

(0)
3 ) ∉ Fix(𝑉28) ∪ Per2(𝑉28) be an

initial point. Then the following statements hold true.
(i) One has that

Fix (𝑉28) =

{{{

{{{

{

{𝑒1, (0, 𝐴, 1 − 𝐴)} 𝑖𝑓 𝑎 ̸=
1

2
,

{𝑒1, (0,
1

2
,
1

2
)} 𝑖𝑓 𝑎 =

1

2
.

(52)

(ii) One has that

Per2 (𝑉28) =

{{{

{{{

{

{𝑒2, 𝑒3} 𝑖𝑓 𝑎 ̸=
1

2
,

Γ1 \ {(0,
1

2
,
1

2
)} 𝑖𝑓 𝑎 =

1

2
.

(53)

(iii) If 𝑎 ̸= 1/2, then

𝜔𝑉28
(𝑥

(0)
) =

{

{

{

{𝑒2, 𝑒3} 𝑖𝑓 𝑥
(0)
1 = 0,

{𝑒1} 𝑖𝑓 𝑥
(0)
1 ̸= 0.

(54)

(iv) If 𝑎 = 1/2, then 𝜔𝑉28
(𝑥(0)) = {𝑒1}.

Proof. Let 𝑥(0) = (𝑥
(0)
1 , 𝑥

(0)
2 , 𝑥

(0)
3 ) ∉ Fix(𝑉28) ∪ Per2(𝑉28) be

an initial point and let {𝑥(𝑛)}
∞

𝑛=0 be a trajectory of 𝑉28 starting
from point 𝑥(0).

(i) In order to find fixed points of 𝑉28, we need to solve
the following system of equations:

𝑥1 = 𝑥
2

1 + 2𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥
2

3 + 2𝑎𝑥2𝑥3,

𝑥3 = 𝑥
2

2 + 2 (1 − 𝑎) 𝑥2𝑥3.

(55)
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From the first equation of (55), one can find that 𝑥1 = 0 or
𝑥1 = 1. If 𝑥1 = 1, then 𝑥2 = 𝑥3 = 0. If 𝑥1 = 0, then 𝑥2+𝑥3 = 1.
So, the second equation of (55) becomes as follows:

(1 − 𝑥2)
2
+ 2𝑎𝑥2 (1 − 𝑥2) = 𝑥2. (56)

Let 𝑎 ̸= 1/2. Then, one can find that solutions of (56) are
𝑥±2 = (3 − 2𝑎 ± √4 + (2𝑎 − 1)

2
)/2(1 − 2𝑎). We can verify that

the only solution which lies in the interval [0, 1] is 𝑥2 = (3 −

2𝑎 − √4 + (2𝑎 − 1)
2
)/2(1 − 2𝑎) = 𝐴. Therefore, we have 𝑥3 =

1−𝐴 = (−1−2𝑎+√4 + (2𝑎 − 1)
2
)/2(1−2𝑎). Hence, Fix(𝑉28) =

{𝑒1, (0, 𝐴, 1 − 𝐴)} whenever 𝑎 ̸= 1/2.
Let 𝑎 = 1/2. Then, (56) has a solution 𝑥2 = 1/2. This

yields that 𝑥3 = 1/2. Therefore, one has that Fix(𝑉28) =

{𝑒1, (0, 1/2, 1/2)} whenever 𝑎 = 1/2.
(ii) It is clear that 𝑉28 does not have any order periodic

points in 𝑆2 \ Γ1 (see Proposition 7(ii)), where Γ1 = {𝑥 ∈ 𝑆2 :

𝑥1 = 0}. So, any order periodic points of𝑉28 lie on Γ1 (if any).
In order to find 2-periodic points of 𝑉28, we have to solve the
equation 𝑉2

28(𝑥) = 𝑥 with the condition 𝑥1 = 0. Then, by
taking into account 𝑥2 + 𝑥3 = 1, we may get the following
equation:

[𝑥
2

2 + 2 (1 − 𝑎) 𝑥2 (1 − 𝑥2)]
2

+ 2𝑎 [(1 − 𝑥2)
2
+ 2𝑎𝑥2 (1 − 𝑥2)]

× [𝑥
2

2 + 2 (1 − 𝑎) 𝑥2 (1 − 𝑥2)] = 𝑥2.

(57)

Let 𝑎 ̸= 1/2. Then, the last equation has the solutions
{0, 1, ±𝐴}. So, 2-periodic points of 𝑉28 are only 𝑒2 = (0, 1, 0)

and 𝑒3 = (0, 0, 1).
Let 𝑎 = 1/2. Then, the equation given above becomes an

identity 𝑥2 = 𝑥2. This means that all points of the edge Γ1
except (0, 1/2, 1/2) are 2-periodic points.

(iii) Let 𝑎 ̸= 1/2. It is clear that the edge Γ1 is invariant
under𝑉28. We want to study the behavior of𝑉28 over this line.
In this case, 𝑉28|Γ1 takes the following form:

𝑉28|Γ1 :

{{

{{

{

𝑥1 = 0,

𝑥2 = 𝑥23 + 2𝑎𝑥2𝑥3,

𝑥3 = 𝑥22 + 2 (1 − 𝑎) 𝑥2𝑥3.

(58)

Let us consider the function 𝑔𝑎(𝑥2) = (1 − 𝑥2)
2
+2𝑎𝑥2(1−

𝑥2), where 𝑎 ̸= 1/2. One can easily check that 𝑔𝑎 is decreasing
on [0, 1]. This yields that 𝑔(2)𝑎 is increasing on [0, 1], as we
already discussed that Fix(𝑔𝑎) ∩ [0, 1] = {𝐴} and Fix(𝑔(2)𝑎 ) ∩

[0, 1] = {0, 𝐴, 1}. This means that sets [0, 𝐴] and [𝐴, 1] are
invariant under function 𝑔

(2)
𝑎 . We immediately find (see the

above discussion (ii)) that 𝑔(2)𝑎 (𝑥2) > 𝑥2 whenever 𝑥2 > 𝐴

and 𝑔(2)𝑎 (𝑥2) < 𝑥2 whenever 𝑥2 < 𝐴. Consequently, one has

that if 𝑥(0)2 ∈ [0, 𝐴), then 𝜔
𝑔
(2)

𝑎

(𝑥
(0)
2 ) = {0} and if 𝑥(0)2 ∈ (𝐴, 1],

then 𝜔
𝑔
(2)

𝑎

(𝑥
(0)
2 ) = {1}. On the other hand, we have that

𝑉
(𝑛)
28 (𝑥(0))

=

{{

{{

{

(0, 𝑔(2𝑘)𝑎 (𝑥
(0)

2 ) , 1 − 𝑔(2𝑘)𝑎 (𝑥
(0)

2 )) if 𝑛 = 2𝑘,

(0, 𝑔(2𝑘)𝑎 (𝑔𝑎 (𝑥
(0)

2 )) , 1 − 𝑔(2𝑘)𝑎 (𝑔𝑎 (𝑥
(0)

2 ))) if 𝑛 = 2𝑘 + 1.

(59)

Therefore, we obtain that 𝜔𝑉28
(𝑥(0)) = {𝑒2, 𝑒3} if 𝑥

(0)
1 = 0.

Let 𝑥
(0)
1 ̸= 0. It is clear that 𝑥

(𝑛)
1 = 𝑓

(𝑛)
1 (𝑥

(0)
1 ). Therefore,

due to Proposition 7(iv), we have that lim𝑛→∞𝑥
(𝑛)
1 = 1. This

means that 𝜔𝑉28
(𝑥(0)) ⊂ {𝑒1}. Since 𝜔𝑉28

(𝑥(0)) is not empty, we
obtain that 𝜔𝑉28

(𝑥(0)) = {𝑒1}.
(iv) Let 𝑎 = 1/2. Since 𝑥(0) ∉ Fix(𝑉28)⋃Per2(𝑉28), we

have that 𝑥(0)1 > 0. Then, due to Proposition 7(iv), we again
have that 𝑥

(𝑛)
1 = 𝑓

(𝑛)
1 (𝑥

(0)
1 ) and lim𝑛→∞𝑥

(𝑛)
1 = 1. Since

𝜔𝑉28
(𝑥(0)) is not empty, we obtain that 𝜔𝑉28

(𝑥(0)) = {𝑒1}.
This completes the proof.

7. Dynamics of 𝜉
(𝑠)-QSO from the Class 𝐾17

We are going to highlight the dynamics of a 𝜉(𝑠)-QSO 𝑉25 :

𝑆2 → 𝑆2 taken from 𝐾17:

𝑉25 :

{{

{{

{

𝑥1 = 𝑥21 + 2𝑥1 (1 − 𝑥1) ,

𝑥2 = 𝑥22 + 2𝑎𝑥2𝑥3,

𝑥3 = 𝑥23 + 2 (1 − 𝑎) 𝑥2𝑥3,

(60)

where 0 ≤ 𝑎 ≤ 1. One can immediately see that operator (60)
is a Volterra-QSO. The dynamics of such kinds of operators
have been studied in [17–19]. By means of the results of the
mentioned papers, one can formulate the following.

Theorem 11. Let 𝑉25 : 𝑆2 → 𝑆2 be a 𝜉(𝑠)-QSO given by (60)
and let 𝑥(0) = (𝑥

(0)
1 , 𝑥

(0)
2 , 𝑥

(0)
3 ) ∉ Fix(𝑉25) be an initial point.

Then, the following statements hold true.
(i) One has that

Fix (𝑉25) =

{{

{{

{

{𝑒1, 𝑒2, 𝑒3} 𝑖𝑓 𝑎 ̸=
1

2
,

Γ1 𝑖𝑓 𝑎 =
1

2
.

(61)

(ii) If 0 ≤ 𝑎 < 1/2, then

𝜔𝑉25
(𝑥

(0)
) =

{

{

{

{𝑒3} 𝑖𝑓 𝑥
(0)
1 = 0,

{𝑒1} 𝑖𝑓 𝑥
(0)
1 ̸= 0.

(62)

(iii) If 1/2 < 𝑎 ≤ 1, then

𝜔𝑉25
(𝑥

(0)
) =

{

{

{

{𝑒2} 𝑖𝑓 𝑥
(0)
1 = 0,

{𝑒1} 𝑖𝑓 𝑥
(0)
1 ̸= 0.

(63)

(iv) If 𝑎 = 1/2, then 𝜔𝑉25
(𝑥(0)) = {𝑒1}.
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