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This paper is concerned with a nonlocal nonlinear diffusion equation with Dirichlet boundary condition and a source 𝑢
𝑡
(𝑥, 𝑡) =

∫

+∞

−∞
𝐽((𝑥 − 𝑦)/𝑢(𝑦, 𝑡))𝑑𝑦 − 𝑢(𝑥, 𝑡) + 𝑢

𝑝
(𝑥, 𝑡), 𝑥 ∈ (−𝐿, 𝐿), 𝑡 > 0, 𝑢(𝑥, 𝑡) = 0, 𝑥 ∉ (−𝐿, 𝐿), 𝑡 ≥ 0, and 𝑢(𝑥, 0) = 𝑢

0
(𝑥) ≥ 0, 𝑥 ∈ (−𝐿, 𝐿),

which is analogous to the local porous medium equation. First, we prove the existence and uniqueness of the solution as well as the
validity of a comparison principle. Next, we discuss the blowup phenomena of the solution to this problem. Finally, we discuss the
blowup rates and sets of the solution.

1. Introduction

Since the long-range effects are taken into account, nonlocal
diffusion equations of the form

𝜕

𝜕𝑡

𝑢 (𝑥, 𝑡) = 𝐽 ∗ 𝑢 − 𝑢 (𝑥, 𝑡)

= ∫

R𝑁
𝐽 (𝑥 − 𝑦) (𝑢 (𝑦, 𝑡) − 𝑢 (𝑥, 𝑡)) 𝑑𝑦

(1)

have been widely used to model the dispersal of a species (see
[1–7] and references therein). In fact, as stated in [7], if 𝑢(𝑥, 𝑡)
is thought of as the density of a species at the point 𝑥 at time
𝑡 and 𝐽(𝑥 − 𝑦) is thought of as the probability distribution
of jumping from location 𝑦 to location 𝑥, then ∫

R𝑁
𝐽(𝑥 −

𝑦)𝑢(𝑦, 𝑡)𝑑𝑦 is the rate at which individuals are arriving to
position 𝑥 from all other places and −𝑢(𝑥, 𝑡) = − ∫

R𝑁
𝐽(𝑥 −

𝑦)𝑢(𝑥, 𝑡)𝑑𝑦 is the rate at which they are leaving location 𝑥
to travel to all other sites. It is known that (1) shares many
properties with the classical heat equation 𝑢

𝑡
= Δ𝑢, such

that bounded stationary solutions are constant, a maximum
principle holds for both of them, and perturbations propagate
with infinite speed (see [7]). However, there is no regularizing
effect in general (see [8]).

Another classical equation that has been used to model
diffusion is the well-known porous medium equation 𝑢

𝑡
=

Δ𝑢
𝑚 with𝑚 > 1. This equation also shares several properties

with the heat equation, but there is a fundamental difference;
in this case we have finite speed of propagation. Properties
of solutions to the porous medium equation, particularly the
blowup phenomena of the solution, have been largely studied
over the past years. See, for example, [9–12] and references
therein.

In [13, 14], a nonlocalmodel for diffusion that is analogous
to the local porousmedium equation is studied. In thismodel
the probability distribution of jumping from location 𝑦 to
location 𝑥 is given by 𝐽((𝑥 − 𝑦)/𝑢(𝑦, 𝑡))(1/𝑢(𝑦, 𝑡)) when
𝑢(𝑦, 𝑡) > 0 and 0 otherwise. In this case the rate at which
individuals are arriving to position 𝑥 from all other places is
∫
R
𝐽((𝑥−𝑦)/𝑢(𝑦, 𝑡))𝑑𝑦, and the rate at which they are leaving

location 𝑥 to travel to all other sites is −𝑢(𝑥, 𝑡) = − ∫
R
𝐽((𝑥 −

𝑦)/𝑢(𝑦, 𝑡))𝑑𝑦. As before this consideration, in the absence of
external sources, leads immediately to the fact that the density
𝑢(𝑥, 𝑡) has to satisfy

𝑢
𝑡
(𝑥, 𝑡) = ∫

R

𝐽(

𝑥 − 𝑦

𝑢 (𝑦, 𝑡)

) 𝑑𝑦 − 𝑢 (𝑥, 𝑡) . (2)
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In [15], Bogoya and Elorreaga studied the following
nonlocal equation:

𝑢
𝑡
(𝑥, 𝑡) = ∫

R𝑁
(𝐽(

𝑥 − 𝑦

𝑢
𝛼
(𝑦, 𝑡)

) 𝑢
1−𝑁𝛼

(𝑦, 𝑡)

− 𝐽 (

𝑥 − 𝑦

𝑢
𝛼
(𝑥, 𝑡)

) 𝑢
1−𝑁𝛼

(𝑥, 𝑡)) 𝑑𝑦

+ 𝑓 (𝑢 (𝑥, 𝑡)) , 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∉ Ω,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω.

(3)

They proved the existence and uniqueness of the solution
as well as the validity of a comparison principle and also
discussed the blowup phenomena of the solution for some
sources.

In the present paper, we are concerned with the following
nonlocal “Dirichlet” boundary value problem with a source:

𝑢
𝑡
(𝑥, 𝑡) = ∫

+∞

−∞

𝐽(

𝑥 − 𝑦

𝑢 (𝑦, 𝑡)

) 𝑑𝑦

− 𝑢 (𝑥, 𝑡) + 𝑢
𝑝
(𝑥, 𝑡) , 𝑥 ∈ (−𝐿, 𝐿) , 𝑡 > 0,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∉ (−𝐿, 𝐿) , 𝑡 ≥ 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) = 𝑐 + 𝑤

0
(𝑥) , 𝑥 ∈ (−𝐿, 𝐿) .

(4)

Here 𝑝 ≥ 1 and 𝑐 ≥ 0. Let 𝐽 : R → R be a nonnegative,
smooth function, with ∫

R
𝐽(𝑧)𝑑𝑧 = 1, supported in [−1, 1],

symmetric, and strictly decreasing in [0, 1]. We assume that
𝑤
0
∈ 𝐿
1
(R) is a nonnegative function.

In this model, it is assumed that no individual can survive
outside of the domain (−𝐿, 𝐿). Therefore, the density must be
zero there. However, individuals are allowed to jump outside
the domain (where they die instantaneously).This is what we
call Dirichlet boundary conditions.

For the convenience of the statement of our results, denot-
ing Ω = (−𝐿, 𝐿), some related definitions are introduced in
the following.

Definition 1. A nonnegative function 𝑢 ∈ 𝐶([0, 𝑇); 𝐿
1
) is a

supersolution of the problem (4) if it satisfies

𝜕

𝜕𝑡

𝑢 (𝑥, 𝑡) ≥ ∫

+∞

−∞

𝐽(

𝑥 − 𝑦

𝑢 (𝑦, 𝑡)

) 𝑑𝑦

− 𝑢 (𝑥, 𝑡) + 𝑢
𝑝
(𝑥, 𝑡) , 𝑥 ∈ (−𝐿, 𝐿) , 𝑡 > 0,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∉ (−𝐿, 𝐿) , 𝑡 ≥ 0,

𝑢 (𝑥, 0) ≥ 𝑐 + 𝑤
0
(𝑥) , 𝑥 ∈ (−𝐿, 𝐿) .

(5)

The subsolution is defined similarly by reversing the inequal-
ities. Furthermore, if 𝑢 is a supersolution as well as subsolu-
tion, then we call it a solution of the problem (4).

Definition 2. A solution 𝑢(𝑥, 𝑡) of the problem (4) is called a
global solution if supremumnorm ‖𝑢(⋅, 𝑡)‖

𝐿
1
(Ω)

is finite for all
𝑡 ≥ 0.

Definition 3. If there is a time 𝑇
∞
< ∞ such that a solution

𝑢(𝑥, 𝑡) of the problem (4) is bounded for all 𝑇 < 𝑇
∞

with
lim
𝑡→𝑇∞

‖𝑢(⋅, 𝑡)‖
𝐿
1
(Ω)

= ∞, then 𝑢 blows up in finite time𝑇
∞
.

Now our main results can be stated as follows.

Theorem 4. If 𝑝 ≥ 1, 𝑤
0
∈ 𝐿
1
(R), and 𝑐 ≥ 0, then there exists

a unique solution 𝑢 ∈ 𝐶([0, 𝑇); 𝐿1(R)) to the problem (4).

Theorem 5 (blowup). Let 𝑤
0
∈ 𝐶(Ω) be nonnegative and

nontrivial. If 𝑝 > 1, then the solution to the problem (4) blows
up in finite time. If 𝑝 = 1, the solution to the problem (4) is
global. Moreover, if 𝑝 > 1, one has the following estimate for
the blowup time:

𝑇 ≤

1

𝑝 − 1

(

|Ω|

∫
Ω
𝑤
0
(𝑥) 𝑑𝑥 + 𝑐 |Ω|

)

𝑝−1

. (6)

The rest of the paper is organized as follows. In Section 2,
we prove the existence and uniqueness of the solutions for
the problem (4) and show a comparison principle for the
solution. In Section 3, we deal with the blowup phenomenon
for the problem (4) by the method of supersolutions and
subsolutions. That is, the estimate of the blowup time, the
blowup rates, and sets of the solution of the problem (4) are
discussed.

2. Existence and Uniqueness

This section is devoted to the proof of the existence and
uniqueness of the solution to the problem (4) via Banach’s
fixed point theorem. Simultaneously, the comparison princi-
ple for the solution of the problem (4) is also proved. To this
end, it is convenient to give some preliminaries before giving
its proof.

Fix 𝑡
0

> 0 and consider the Banach space 𝑌
𝑡0

:=

𝐶([0, 𝑡
0
]; 𝐿
1
(R)) with the norm

|‖𝑤‖|
𝑌𝑡0

= max
0≤𝑡≤𝑡0

‖𝑤 (⋅, 𝑡)‖
𝐿
1
(R). (7)

We assume that 0 ≤ 𝑤
0
(𝑥) ≤ 𝑀 a.e. in Ω and 𝐴 = 2𝑀 + 1.

Let

𝑋
𝑡0
= {𝑤 ∈ 𝐶 ([0, 𝑡

0
] ; 𝐿
1
(R)) | 0 ≤ 𝑤 ≤ 𝐴} , (8)

which is a closed subset of 𝑌
𝑡0
. We will obtain the solution of

the problem (4) in the form 𝑢(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) + 𝑐, where 𝑤 is
a fixed point of the operator 𝐹

𝑤0
: 𝑋
𝑡0
→ 𝑋
𝑡0
defined by

𝐹
𝑤0
(𝑤) (𝑥, 𝑡) = ∫

𝑡

0

𝑒
−(𝑡−𝑠)

[∫

R

𝐽(

𝑥 − 𝑦

𝑤 (𝑦, 𝑠) + 𝑐

) 𝑑𝑦

+(𝑤 (𝑥, 𝑠) + 𝑐)
𝑝
] 𝑑𝑠

+ 𝑒
−𝑡
𝑤
0
− 𝑐 (1 − 𝑒

−𝑡
) .

(9)
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The following lemma is the main ingredient of the proof of
Theorem 4.

Lemma 6. Let 𝑤
0
and 𝑧

0
be nonnegative functions such that

𝑤
0
, 𝑧
0
∈ 𝐿
1
(R) and 𝑤, 𝑧 ∈ 𝑋

𝑡0
, and then

󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
𝑤0
(𝑤) (𝑥, 𝑡) − 𝐹

𝑧0
(𝑧) (𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
󵄨

≤ [1 + 𝑝(𝐴 + 𝑐)
𝑝−1
] (1 − 𝑒

−𝑡0
) |‖𝑤 − 𝑧‖|

+
󵄩
󵄩
󵄩
󵄩
𝑤
0
− 𝑧
0

󵄩
󵄩
󵄩
󵄩𝐿
1
(Ω)
.

(10)

Therefore, if 𝑡
0
is small enough,𝐹

𝑤0
is a strict contraction in𝑋

𝑡0
.

Proof. From the definition of 𝐹
𝑤0
, we have

∫

R

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑤0
(𝑤) (𝑥, 𝑡) − 𝐹

𝑧0
(𝑧) (𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥

= ∫

R

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

𝑒
−(𝑡−𝑠)

[∫

R

(𝐽(

𝑥 − 𝑦

𝑤 (𝑦, 𝑠) + 𝑐

)

−𝐽(

𝑥 − 𝑦

𝑧 (𝑦, 𝑠) + 𝑐

))𝑑𝑦

+(𝑤 (𝑥, 𝑠) + 𝑐)
𝑝
− (𝑧 (𝑥, 𝑠) + 𝑐)

𝑝
]𝑑𝑠

+𝑒
−𝑡
(𝑤
0
− 𝑧
0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑥

≤ ∫

𝑡

0

𝑒
−(𝑡−𝑠)

∫

R

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R

(𝐽(

𝑥 − 𝑦

𝑤 (𝑦, 𝑠) + 𝑐

)

−𝐽(

𝑥 − 𝑦

𝑧 (𝑦, 𝑠) + 𝑐

))𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑥 𝑑𝑠

+ ∫

𝑡

0

𝑒
−(𝑡−𝑠)

∫

R

󵄨
󵄨
󵄨
󵄨
(𝑤 (𝑥, 𝑠) + 𝑐)

𝑝
− (𝑧 (𝑥, 𝑠) + 𝑐)

𝑝󵄨
󵄨
󵄨
󵄨
𝑑𝑥 𝑑𝑠

+ 𝑒
−𝑡
∫

R

󵄨
󵄨
󵄨
󵄨
𝑤
0
− 𝑧
0

󵄨
󵄨
󵄨
󵄨
𝑑𝑥.

(11)

Now set 𝐴+(𝑠) = {𝑦 | 𝑤(𝑦, 𝑠) ≥ 𝑧(𝑦, 𝑠)} and 𝐴−(𝑠) = {𝑦 |
𝑤(𝑦, 𝑠) < 𝑧(𝑦, 𝑠)}. We have

∫

R

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R

(𝐽(

𝑥 − 𝑦

𝑤 (𝑦, 𝑠) + 𝑐

) − 𝐽(

𝑥 − 𝑦

𝑧 (𝑦, 𝑠) + 𝑐

))𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑥

≤ ∫

R

∫

𝐴
+
(𝑠)

(𝐽(

𝑥 − 𝑦

𝑤 (𝑦, 𝑠) + 𝑐

)

−𝐽(

𝑥 − 𝑦

𝑧 (𝑦, 𝑠) + 𝑐

))𝑑𝑦𝑑𝑥

+ ∫

R

∫

𝐴
−
(𝑠)

(𝐽(

𝑥 − 𝑦

𝑧 (𝑦, 𝑠) + 𝑐

)

−𝐽(

𝑥 − 𝑦

𝑤 (𝑦, 𝑠) + 𝑐

))𝑑𝑦𝑑𝑥.

(12)

Since the integrands are nonnegative, applying Fubini’s theo-
rem, we can get

∫

R

∫

𝐴
+
(𝑠)

(𝐽(

𝑥 − 𝑦

𝑤 (𝑦, 𝑠) + 𝑐

) − 𝐽(

𝑥 − 𝑦

𝑧 (𝑦, 𝑠) + 𝑐

))𝑑𝑦𝑑𝑥

= ∫

𝐴
+
(𝑠)

(𝑤 (𝑦, 𝑠) − 𝑧 (𝑦, 𝑠)) 𝑑𝑦,

∫

R

∫

𝐴
−
(𝑠)

(𝐽(

𝑥 − 𝑦

𝑧 (𝑦, 𝑠) + 𝑐

) − 𝐽(

𝑥 − 𝑦

𝑤 (𝑦, 𝑠) + 𝑐

))𝑑𝑦𝑑𝑥

= ∫

𝐴
−
(𝑠)

(𝑧 (𝑦, 𝑠) − 𝑤 (𝑦, 𝑠)) 𝑑𝑦.

(13)

Therefore, we obtain

∫

R

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R

(𝐽(

𝑥 − 𝑦

𝑤 (𝑦, 𝑠) + 𝑐

) − 𝐽(

𝑥 − 𝑦

𝑧 (𝑦, 𝑠) + 𝑐

))𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑥

≤ ∫

R

󵄨
󵄨
󵄨
󵄨
𝑤 (𝑦, 𝑠) − 𝑧 (𝑦, 𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑦.

(14)

Since 𝑝 ≥ 1 and 𝑤, 𝑧 ∈ 𝑋
𝑡0
, by the differential mid-value

theorem, we deduce that

∫

R

󵄨
󵄨
󵄨
󵄨
(𝑤 (𝑥, 𝑠) + 𝑐)

𝑝
− (𝑧 (𝑥, 𝑠) + 𝑐)

𝑝󵄨
󵄨
󵄨
󵄨
𝑑𝑥

≤ 𝑝(𝐴 + 𝑐)
𝑝−1

∫

R
|𝑤 (𝑥, 𝑠) − 𝑧 (𝑥, 𝑠)| 𝑑𝑥.

(15)

Furthermore, from the estimate (14) and (15), we get the
desired estimate (10).

Next, we check that 𝐹
𝑤0

maps𝑋
𝑡0
into𝑋

𝑡0
. Since 0 ≤ 𝑤 ≤

𝐴, for any 𝑤 ∈ 𝑋
𝑡0
, we have

𝐽 (

𝑥 − 𝑦

𝐴 + 𝑐

) ≥ 𝐽(

𝑥 − 𝑦

𝑤 (𝑦, 𝑠) + 𝑐

) ≥ 𝐽 (

𝑥 − 𝑦

𝑐

) . (16)

Hence, taking 𝑡
0
≤ ln((𝐴 + (𝐴 + 𝑐)𝑝)/(𝑀 + (𝐴 + 𝑐)

𝑝
)), we get

that

𝐹
𝑤0
(𝑤) (𝑥, 𝑡) ≥ ∫

𝑡

0

𝑒
−(𝑡−𝑠)

∫

R

𝐽 (

𝑥 − 𝑦

𝑐

) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

𝑒
−(𝑡−𝑠)

(𝑤 (𝑥, 𝑠) + 𝑐)
𝑝
𝑑𝑠

+ 𝑒
−𝑡
𝑤
0
− 𝑐 (1 − 𝑒

−𝑡
)

= 𝑐𝑒
−𝑡
(𝑒
𝑡
− 𝑒
0
) + 𝑒
−𝑡
𝑤
0
(𝑡) − 𝑐 (1 − 𝑒

−𝑡
)

+ ∫

𝑡

0

𝑒
−(𝑡−𝑠)

(𝑤 (𝑥, 𝑠) + 𝑐)
𝑝
𝑑𝑠

= 𝑒
−𝑡
𝑤
0
(𝑡) + ∫

𝑡

0

𝑒
−(𝑡−𝑠)

(𝑤 (𝑥, 𝑠) + 𝑐)
𝑝
𝑑𝑠 ≥ 0,
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𝐹
𝑤0
(𝑤) (𝑥, 𝑡) ≤ ∫

𝑡

0

𝑒
−(𝑡−𝑠)

∫

R

𝐽 (

𝑥 − 𝑦

𝐴 + 𝑐

) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

𝑒
−(𝑡−𝑠)

(𝑤 (𝑥, 𝑠) + 𝑐)
𝑝
𝑑𝑠

+ 𝑒
−𝑡
𝑤
0
− 𝑐 (1 − 𝑒

−𝑡
)

≤ 𝑒
−𝑡
(𝐴 + 𝑐) (𝑒

𝑡
− 1) + 𝑒

−𝑡
(𝐴 + 𝑐)

𝑝
(𝑒
𝑡
− 1)

+ 𝑒
−𝑡
𝑤
0
− 𝑐 (1 − 𝑒

−𝑡
)

= [𝐴 + (𝐴 + 𝑐)
𝑝
] (1 − 𝑒

−𝑡
) + 𝑒
−𝑡
𝑤
0

≤ [𝐴 + (𝐴 + 𝑐)
𝑝
] (1 − 𝑒

−𝑡0
) + 𝑤
0
≤ 𝐴.

(17)

Thus, we conclude that 𝐹
𝑤0
(𝑤)(𝑥, 𝑡) ∈ 𝑋

𝑡0
.

Finally, choosing 𝑡
0
≤ ln((2𝑝(𝐴+𝑐)𝑝−1+2)/(2𝑝(𝐴+𝑐)𝑝−1+

1)), we have

󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
𝑤0
(𝑤) (𝑥, 𝑡) − 𝐹

𝑤0
(𝑧) (𝑥, 𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

󵄨
󵄨
󵄨
󵄨
󵄨

≤ [1 + 𝑝(𝐴 + 𝑐)
𝑝−1
] (1 − 𝑒

−𝑡0
) |‖𝑤 − 𝑧‖|

≤

1

2

|‖𝑤 − 𝑧‖| .

(18)

Therefore, if 𝑡
0
is small enough, 𝐹

𝑤0
is a strict contraction

in𝑋
𝑡0
. The proof is completed.

2.1. The Proof of Theorem 4

Proof. From Lemma 6, 𝐹
𝑤0

is a strict contraction in𝑋
𝑡0
for 𝑡
0

small enough. By the Banach fixed point theorem, there exists
only one fixed point of 𝐹

𝑤0
in 𝑋
𝑡0
. This proves the existence

and uniqueness of the solution of (4) in the time interval
[0, 𝑡
0
]. To continue, we may take 𝑢(𝑥, 𝑡

0
) as initial data and

obtain a unique solution of (4) in the time interval [0, 𝑡
1
].

If |‖𝑤‖|
𝑌𝑡1

< ∞, arguing as before with 𝑢(⋅, 𝑡
1
) as the initial

datum, it is possible to extend the solution up to some interval
[0, 𝑡
2
) for certain 𝑡

2
> 𝑡
1
. Hence, we can conclude that if the

maximal time of the existence of the solution,𝑇, is finite, then
the solution blows up in 𝐿1(Ω) norm; that is,

lim sup
𝑡↗𝑇

‖𝑢 (𝑥, 𝑡)‖
𝐿
1
(Ω)

= +∞. (19)

Otherwise, the solution of the problem (4) is global.

Remark 7. From the proof of Theorem 4, the solution of (4)
𝑢(𝑥, 𝑡) is nonnegative.

Remark 8. If 𝑤
0
∈ 𝐶(Ω), then the solution of (4) 𝑢(⋅, 𝑡) ∈

𝐶(Ω) for all 𝑡 ≥ 0.

To complete the proof of Theorem 5, we introduce the
comparison principle for the problem (4) which is a very
useful tool in studying diffusion problems.

Lemma 9. Let 𝑢 and 𝑢 be continuous supersolution and
subsolution of the problem (4), respectively, and then 𝑢(𝑥, 𝑡) ≤
𝑢(𝑥, 𝑡) for all (𝑥, 𝑡) ∈ Ω × [0, 𝑇).

Proof. By an approximation procedure we restrict ourselves
to consider strict inequalities for the supersolution. Indeed,
we can take 𝑢(𝑥, 𝑡) + 𝛿𝑡 + 𝛿 (𝛿 > 0) as a strict supersolution
and take limit as 𝛿 → 0 at the end.

Hence, we consider strict inequalities for the supersolu-
tion and subsolution. Let 𝑢(𝑥, 0) − 𝑢(𝑥, 0) > 0 for all 𝑥 ∈ Ω.
Arguing by contradiction, we assume that there exist a first
time 𝑡

0
> 0 and some point 𝑥

0
∈ Ω such that 𝑢(𝑥

0
, 𝑡
0
) =

𝑢(𝑥
0
, 𝑡
0
) and 𝑢(𝑥, 𝑡) ≤ 𝑢(𝑥, 𝑡) for all (𝑥, 𝑡) ∈ Ω × [0, 𝑡

0
]. Then,

it holds that

0 ≤

𝜕𝑢

𝜕𝑡

(𝑥
0
, 𝑡
0
) −

𝜕𝑢

𝜕𝑡

(𝑥
0
, 𝑡
0
)

< ∫

Ω

[𝐽(

𝑥
0
− 𝑦

𝑢 (𝑦, 𝑡
0
)

) − 𝐽(

𝑥
0
− 𝑦

𝑢 (𝑦, 𝑡
0
)

)] 𝑑𝑦 ≤ 0,

(20)

and we reach the desired contradiction.

3. Blowup Time, Blowup Rates, and Sets

Once the existence and uniqueness of the solutions to the
problem (4) are proved, we begin to analyze the blowup
phenomenon for the problem (4).

3.1. The Proof of Theorem 5

Proof. For 𝑝 > 1, integrating in 𝑥 ∈ R and 𝑠 ∈ (0, 𝑡) in (4), we
get

∫

+∞

−∞

𝑢 (𝑥, 𝑡) 𝑑𝑥 = ∫

+∞

−∞

𝑢
0
(𝑥) 𝑑𝑥

+ ∫

+∞

−∞

∫

𝑡

0

∫

+∞

−∞

𝐽(

𝑥 − 𝑦

𝑢 (𝑦, 𝑠)

) 𝑑𝑦𝑑𝑠 𝑑𝑥

+ ∫

+∞

−∞

∫

𝑡

0

(𝑢
𝑝
(𝑥, 𝑠) − 𝑢 (𝑥, 𝑠)) 𝑑𝑠 𝑑𝑥.

(21)

Applying Fubini’s theorem, we can obtain

∫

Ω

𝑢 (𝑥, 𝑡) 𝑑𝑥 = ∫

Ω

𝑢
0
(𝑥) 𝑑𝑥

+ ∫

𝑡

0

∫

+∞

−∞

∫

+∞

−∞

𝐽(

𝑥 − 𝑦

𝑢 (𝑦, 𝑠)

) 𝑑𝑥 𝑑𝑦𝑑𝑠

+ ∫

𝑡

0

∫

+∞

−∞

(𝑢
𝑝
(𝑥, 𝑠) − 𝑢 (𝑥, 𝑠)) 𝑑𝑠 𝑑𝑥.

(22)
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Let 𝜏 = (𝑥 − 𝑦)/𝑢(𝑦, 𝑠); then 𝑥 = 𝜏𝑢(𝑦, 𝑠) + 𝑦, and we have

∫

Ω

𝑢 (𝑥, 𝑡) 𝑑𝑥

= ∫

Ω

𝑢
0
(𝑥) 𝑑𝑥 + ∫

𝑡

0

∫

+∞

−∞

𝑢 (𝑦, 𝑠) 𝑑𝑦 𝑑𝑠

+ ∫

𝑡

0

∫

+∞

−∞

(𝑢
𝑝
(𝑥, 𝑠) − 𝑢 (𝑥, 𝑠)) 𝑑𝑠 𝑑𝑥.

(23)

That is,

∫

Ω

𝑢 (𝑥, 𝑡) 𝑑𝑥 = ∫

Ω

𝑢
0
(𝑥) 𝑑𝑥 + ∫

𝑡

0

∫

Ω

𝑢
𝑝
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥. (24)

Using Hölder inequality, we have

𝑑

𝑑𝑡

∫

Ω

𝑢 (𝑥, 𝑡) 𝑑𝑥 = ∫

Ω

𝑢
𝑝
(𝑥, 𝑡) 𝑑𝑥

≥ |Ω|
1−𝑝
(∫

Ω

𝑢 (𝑥, 𝑡) 𝑑𝑥)

𝑝

.

(25)

Since𝑝 > 1, we have that∫
Ω
𝑢(𝑥, 𝑡)𝑑𝑥 cannot be global; thus 𝑢

cannot be global either. Note that, byTheorem 4, in this case,
we have that 𝑢(𝑥, 𝑡) blows up in finite time in 𝐿∞(Ω) norm.
Moreover, let ∫

Ω
𝑢(𝑥, 𝑡)𝑑𝑥 = 𝑧(𝑡), and we obtain

𝑑𝑧

𝑑𝑡

≥ |Ω|
1−𝑝
𝑧
𝑝
. (26)

Integrating the above inequality, we have

𝑧
1−𝑝

(𝑡) − 𝑧
1−𝑝

(0)

1 − 𝑝

≥ |Ω|
1−𝑝
𝑡. (27)

Hence, it holds that

𝑡 ≤

|Ω|
𝑝−1

(𝑧
1−𝑝

(0) − 𝑧
1−𝑝

(𝑡))

𝑝 − 1

≤

|Ω|
𝑝−1
𝑧
1−𝑝

(0)

𝑝 − 1

=

1

𝑝 − 1

(

|Ω|

𝑧 (0)

)

𝑝−1

,

(28)

where 𝑧(0) = ∫
Ω
𝑢(𝑥, 0)𝑑𝑥 = ∫

Ω
𝑤
0
(𝑥)𝑑𝑥 + 𝑐|Ω|. Therefore,

we can obtain the following estimate for the blowup time:

𝑇 ≤

1

𝑝 − 1

(

|Ω|

∫
Ω
𝑤
0
(𝑥) 𝑑𝑥 + 𝑐 |Ω|

)

𝑝−1

. (29)

For 𝑝 = 1, let us consider the ODE problem

𝑧
󸀠
(𝑡) = 𝑧 (𝑡) ,

𝑧 (0) = max
𝑥∈Ω

{𝑤
0
(𝑥) + 𝑐, 1} .

(30)

Then, it follows that 𝑧(𝑡) = 𝑧(0)𝑒𝑡 and 𝑧(𝑡) ≥ 1 for 𝑡 > 0. We
observe that ∫∞

−∞
𝐽((𝑥−𝑦)/𝑧(𝑡))𝑑𝑦 = 𝑧(𝑡). Therefore, 𝑧(𝑡) is a

global supersolution of the problem (4). Thus, 𝑢 is global by
comparison.

Concerning the blowup rate, that is, the speed at which
solutions are blowing up, we find the following result.

Theorem 10 (blowup rates). Let 𝑝 > 1 and 𝑢 be a continuous
solution to the problem (4) which blows up at time 𝑇. Then

lim
𝑡→𝑇

−

(𝑇 − 𝑡)
1/(𝑝−1)max

𝑥∈Ω

𝑢 (𝑥, 𝑡) = (

1

𝑝 − 1

)

1/(𝑝−1)

. (31)

Proof. For every 𝑡 < 𝑇, let 𝑥
0
(𝑡) ∈ [−𝐿, 𝐿] be such that

max
𝑥∈Ω

𝑢(⋅, 𝑡) = 𝑢(𝑥
0
(𝑡), 𝑡). Since 𝑢(𝑦, 𝑡) ≤ 𝑢(𝑥

0
, 𝑡) for any

𝑦 ∈ R, we have

𝐽(

𝑥
0
− 𝑦

𝑢 (𝑦, 𝑡)

) ≤ 𝐽(

𝑥
0
− 𝑦

𝑢 (𝑥
0
, 𝑡)

) . (32)

Changing the variable 𝜏 = (𝑦−𝑥
0
)/𝑢(𝑥
0
, 𝑡), then 𝑦 = 𝑥

0
+𝑢𝜏,

𝑑𝑦 = 𝑢(𝑥
0
, 𝑡)𝑑𝜏. Thus, we have

𝑢
𝑡
(𝑥
0
, 𝑡) = ∫

+∞

−∞

𝐽(

𝑥
0
− 𝑦

𝑢 (𝑦, 𝑡)

) 𝑑𝑦 + 𝑢
𝑝
(𝑥
0
, 𝑡) − 𝑢 (𝑥

0
, 𝑡)

= ∫

+∞

−∞

𝐽 (𝜏) 𝑢 (𝑥
0
, 𝑡) 𝑑𝜏 + 𝑢

𝑝
(𝑥
0
, 𝑡) − 𝑢 (𝑥

0
, 𝑡)

= 𝑢 (𝑥
0
, 𝑡) + 𝑢

𝑝
(𝑥
0
, 𝑡) − 𝑢 (𝑥

0
, 𝑡)

= 𝑢
𝑝
(𝑥
0
, 𝑡) .

(33)

Integrating the above inequality from (𝑡, 𝑇) and taking into
account 𝑝 > 1, we obtain

max
𝑥∈Ω

𝑢 (𝑥, 𝑡) ≥ (𝑇 − 𝑡)
−1/(𝑝−1)

(

1

𝑝 − 1

)

1/(𝑝−1)

. (34)

To get the upper estimate, for any (𝑥, 𝑡) ∈ Ω × [0, 𝑇), we
observe that

𝑢
𝑡
(𝑥, 𝑡) = ∫

+∞

−∞

𝐽(

𝑥 − 𝑦

𝑢 (𝑦, 𝑡)

) 𝑑𝑦 + 𝑢
𝑝
(𝑥, 𝑡) − 𝑢 (𝑥, 𝑡)

≥ −𝑢 (𝑥, 𝑡) + 𝑢
𝑝
(𝑥, 𝑡) = 𝑢

𝑝
(𝑥, 𝑡) (1 − 𝑢

−(𝑝−1)
(𝑥, 𝑡)) .

(35)

In particular

max
𝑥∈R

𝑢
𝑡
(𝑥, 𝑡) ≥ 𝑢

𝑡
(𝑥, 𝑡)

≥ max
𝑥∈R

𝑢
𝑝
(𝑥, 𝑡) (1 −max

𝑥∈R
𝑢
−(𝑝−1)

(𝑥, 𝑡)) .

(36)

Taking into account (34) in this expression, we get

max
𝑥∈Ω

𝑢
𝑡
(𝑥, 𝑡) ≥ max

𝑥∈Ω

𝑢
𝑝
(𝑥, 𝑡) (1 − (𝑝 − 1) (𝑇 − 𝑡)) . (37)

Integrating (37) in (𝑡, 𝑇), we obtain

max
𝑥∈Ω

𝑢 (𝑥, 𝑡) ≤ ((𝑝 − 1) (𝑇 − 𝑡) −

1

2

(𝑝 − 1)
2

(𝑇 − 𝑡)
2
)

−1/(𝑝−1)

.

(38)

Taking the limit as 𝑡 → 𝑇, we will get the results.
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The blowup set, that is, the set of points at which the
solutions blow up, is defined as follows:

𝐵 (𝑢) = {𝑥 ∈ Ω; there exists a finite time 𝑇

with 𝑢 (𝑥, 𝑡) 󳨀→ ∞ as 𝑡 ↗ 𝑇} .

(39)

Finally, we give the result concerning the blowup sets for the
solution to the problem (4).

Theorem 11 (blowup sets). Let us consider the problem (4)
with 𝑝 > 2. Given 𝑥

0
∈ Ω and 𝜀 > 0, there exists an initial

condition, 𝑢
0
, such that the blowup set 𝐵(𝑢) ⊂ 𝐵

𝜀
(𝑥
0
) = {𝑥 ∈

Ω; |𝑥 − 𝑥
0
| < 𝜀}.

Proof. Given 𝑥
0
∈ Ω and 𝜀 > 0we want to construct an initial

condition 𝑢
0
such that

𝐵 (𝑢) ⊂ 𝐵
𝜀
(𝑥
0
) = {𝑥 ∈ Ω;

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑥
0

󵄨
󵄨
󵄨
󵄨
< 𝜀} . (40)

To this end, we will consider 𝑢
0
concentrated near 𝑥

0
and

small enough away from 𝑥
0
.

Let 𝜑 be a nonnegative smooth function such that

supp (𝜑) ⊂ 𝐵
𝜀/2
(𝑥
0
) , 𝜑 (𝑥) > 0 for 𝑥 ∈ 𝐵

𝜀/2
(𝑥
0
) . (41)

Now, let

𝑢
0
(𝑥) = 𝑀𝜑 (𝑥) + 𝛿. (42)

We want to choose 𝑀 large and 𝛿 small in such a way that
(40) holds.

First, note that, thanks to the estimate (6),

𝑇 ≤

1

𝑝 − 1

(

|Ω|

∫
Ω
(𝑀𝜑 (𝑥) + 𝛿) 𝑑𝑥

)

𝑝−1

≤

1

(𝑝 − 1)𝑀
𝑝−1

(

|Ω|

∫
Ω
𝜑 (𝑥) 𝑑𝑥

)

𝑝−1

,

(43)

and taking𝑀 large enough we can assume that 𝑇 is as small
as we need. Now, using the upper bound for the blowup rate,

max
𝑥∈Ω

𝑢 (𝑥, 𝑡) ≤ ((𝑝 − 1) (𝑇 − 𝑡) −

1

2

(𝑝 − 1)
2

(𝑇 − 𝑡)
2
)

−1/(𝑝−1)

≤ 𝐶(𝑇 − 𝑡)
−1/(𝑝−1)

,

(44)

we can obtain

𝑢
𝑡
(𝑥, 𝑡) = ∫

R

𝐽(

𝑥 − 𝑦

𝑢 (𝑦, 𝑡)

) 𝑑𝑦 − 𝑢 (𝑥, 𝑡) + 𝑢
𝑝
(𝑥, 𝑡)

≤ ∫

R

𝐽(

𝑥 − 𝑦

𝑢 (𝑦, 𝑡)

) 𝑑𝑦 + 𝑢
𝑝
(𝑥, 𝑡)

≤ 𝐶(𝑇 − 𝑡)
−1/(𝑝−1)

+ 𝑢
𝑝
(𝑥, 𝑡) ,

(45)

for any 𝑥 ∈ Ω, where 𝑇 is small enough. Therefore, 𝑢(𝑥, 𝑡) is
a subsolution to

𝑤
𝑡
(𝑡) = 𝐶(𝑇 − 𝑡)

−1/(𝑝−1)
+ 𝑤
𝑝
(𝑥, 𝑡) . (46)

And hence, if 𝑢(𝑥, 0) ≤ 𝑤(0), we have

𝑢 (𝑥, 𝑡) ≤ 𝑤 (𝑡) . (47)

Now we just have to prove that a solution 𝑤 to (46)
beginning with 𝑤(0) = 𝛿 remains bounded up to 𝑡 = 𝑇,
provided that 𝛿 and 𝑇 are small enough. To see this we use

𝑧 (𝑠) = (𝑇 − 𝑡)
1/(𝑝−1)

𝑤 (𝑡) , 𝑠 = − ln (𝑇 − 𝑡) . (48)

So we have

𝑑𝑧

𝑑𝑠

= [−

1

𝑝 − 1

(𝑇 − 𝑡)
(1/(𝑝−1))−1

𝑤

+(𝑇 − 𝑡)
1/(𝑝−1)

(𝐶(𝑇 − 𝑡)
−(1/(𝑝−1))

+ 𝑤
𝑝
) ] 𝑒
−𝑠

= −

1

𝑝 − 1

(𝑇 − 𝑡)
1/(𝑝−1)

𝑤

𝑒
−𝑠

𝑇 − 𝑡

+ 𝑐𝑒
−𝑠

+ (𝑇 − 𝑡)
−(1/(𝑝−1))

𝑒
−𝑠
𝑤
𝑝

= 𝐶𝑒
−𝑠
+ 𝑧
𝑝
(𝑠) −

1

𝑝 − 1

𝑧 (𝑠) , 𝑧 (− ln𝑇) = 𝑇(1/(𝑝−1))𝛿.

(49)

Note that for 𝑇 and 𝛿 small it holds that 𝑧󸀠(− ln𝑇) < 0.
Indeed, we need

𝐶𝑇 −

1

𝑝 − 1

𝛿𝑇
1/(𝑝−1)

+ 𝛿
𝑝
𝑇
𝑝/(𝑝−1)

< 0. (50)

For 𝑝 > 2, we have (2 − 𝑝)/(𝑝 − 1) < 0, 1/(𝑝 − 1) > 0. If we
choose the initial of the solution large enough tomake sure𝑀
large enough, then 𝑇 is small enough. So, for any fixed small
𝛿 > 0, it holds that𝐶 < (1/(𝑝−1))𝛿𝑇2−𝑝𝑝−1−𝛿𝑝𝑇𝑎/(𝑝−1). So
the (50) holds. From this, it is easy to prove that 𝑧󸀠(𝑠) < 0 for
all 𝑠 > − ln𝑇. Therefore, 𝑧(𝑠) → 0 as 𝑠 → ∞. Going back to
the equation verified by 𝑧, for any 𝜀 > 0, we have

(𝑒
(1/(𝑝−1))𝑠

𝑧 (𝑠))
𝑠
≤ 𝐶𝑒
−𝑠
− (

1

𝑝 − 1

− 𝜀) 𝑧 (𝑠) . (51)

Integrating the above inequality from (𝑠
0
, 𝑠) and using that

𝑝 > 2, we have

𝑧 (𝑠) ≤ 𝐶𝑒
(1/(𝑝−1))𝑠

. (52)

In terms of 𝑤(𝑡) this bound implies that 𝑤(𝑡) ≤ 𝐶, for 0 ≤
𝑡 < 𝑇. From the boundedness of 𝑤 and (47), we get 𝑢(𝑥, 𝑡) ≤
𝑤(𝑡) ≤ 𝐶 for every 𝑥 ∈ Ω − 𝐵

𝜀
(𝑥
0
), as we desired.
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