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Themain purpose of this paper is using the properties of Gauss sums and the mean value theorem of Dirichlet L-functions to study
one kind of hybrid mean value problems involving Kloosterman sums and sums analogous to Dedekind sums and give two exact
computational formulae for them.

1. Introduction

Let 𝑐 be a natural number and let 𝑑 be an integer prime to 𝑐.
The classical Dedekind sums

𝑆 (𝑑, 𝑐) =

𝑐

∑

𝑗=1

((

𝑗

𝑐

))((

𝑑𝑗

𝑐

)) , (1)

where

((𝑥)) =

{

{

{

𝑥 − [𝑥] −

1

2

, if 𝑥 is not an integer;
0, if 𝑥 is an integer,

(2)

describe the behaviour of the logarithm of the eta-function
(see [1, 2]) under modular transformations. Gandhi [3] also
introduced another sum analogous to Dedekind sums 𝑆(ℎ, 𝑘)
as follows:

𝑆
2
(ℎ, 𝑘) =

𝑘

∑

𝑗=1

(−1)
𝑗

((

𝑗

𝑘

))((

ℎ𝑗

𝑘

)) , (3)

where 𝑘 denotes any positive even number and ℎ denotes any
integer with (ℎ, 𝑘) = 1.

About the arithmetical properties of 𝑆
2
(ℎ, 𝑘) and related

sums,many authors had studied themandobtained a series of
interesting results; see [1–9]. For example, the second author
[7] proved the following conclusion.

Let 𝑘 = 2𝛽𝑀 be a positive integer with𝛽 ≥ 1 and (𝑀, 2) =
1. Then we have the asymptotic formula

𝑘

∑



ℎ=1





𝑆
2
(ℎ, 𝑘)






2

=

5

112

𝑘𝜙 (𝑘) (

3

5

−

2

2
2𝛽

)

× ∏

𝑝
𝛼
‖𝑀

[(1 + (1/𝑝))
2

− (1/𝑝
3𝛼+1

)]

(1 + (1/𝑝) + (1/𝑝
2
))

+ 𝑂(𝑘 ⋅ exp(4 ln ln 𝑘
ln 𝑘

)) ,

(4)

where ∑𝑘
ℎ=1

denotes the summation over all integers 1 ≤ ℎ ≤
𝑘 such that (ℎ, 𝑘) = 1, ∏

𝑝
𝛼
‖𝑀

denotes the product over all
prime divisors of𝑀 such that 𝑝𝛼 | 𝑀 and 𝑝𝛼+1†𝑀, 𝜙(𝑘) is
the Euler function, and exp(𝑦) = 𝑒𝑦.

The sum 𝑆
2
(ℎ, 𝑘) is important, because it has close

relations with the classical Dedekind sums 𝑆(ℎ, 𝑘). But unfor-
tunately, so far, we knew that all results of 𝑆

2
(ℎ, 𝑘) are the

properties of their own, or the relationships between 𝑆
2
(ℎ, 𝑘)

and 𝑆(ℎ, 𝑘), and had nothing to do with the other arithmetic
functions. If we can find some relations between 𝑆

2
(ℎ, 𝑘) and

other arithmetic function, that will be very useful for further
study of the properties of 𝑆

2
(ℎ, 𝑘).
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On the other hand, we introduce the classical Kloost-
erman sums 𝐾(𝑛, 𝑞), which are defined as follows. For any
positive integer 𝑞 > 1 and integer 𝑛,

𝐾(𝑛, 𝑞) =

𝑞

∑



𝑏=1

𝑒 (

𝑛𝑏 + 𝑏

𝑞

) , (5)

where 𝑏 denotes the solution of the congruence 𝑥 ⋅ 𝑏 ≡ 1 mod
𝑞 and 𝑒(𝑥) = 𝑒2𝜋𝑖𝑥.

Some elementary properties of 𝐾(𝑛, 𝑞) can be found in
[10, 11].

The main purpose of this paper is using the properties
of the Gauss sums and the mean square value theorem of
Dirichlet 𝐿-functions to study a hybrid mean value problem
involving 𝑆

2
(ℎ, 𝑘) and Kloosterman sums and give two exact

computational formulae for them. That is, we will prove the
following.

Theorem 1. Let 𝑝 be an odd prime. Then one has the identity

𝑝

∑

𝑚=1

(2𝑚−1,𝑝)=1

𝑝

∑

𝑛=1

(2𝑛−1,𝑝)=1

𝐾(2𝑚 − 1, 𝑝) ⋅ 𝐾 (2𝑛 − 1, 𝑝)

⋅ 𝑆
2
((2𝑚 − 1) ⋅ 2𝑛 − 1, 2𝑝)

= −

𝑝 (𝑝 − 1)

4

,

(6)

where (2𝑛 − 1) ⋅ (2𝑛 − 1) ≡ 1 mod 2𝑝.

Theorem 2. Let 𝑝 be an odd prime; then one has the identity

𝑝

∑

𝑚=1

(2𝑚−1,𝑝)=1

𝑝

∑

𝑛=1

(2𝑛−1,𝑝)=1





𝐾 (2𝑚 − 1, 𝑝)






2

⋅




𝐾 (2𝑛 − 1, 𝑝)






2

⋅ 𝑆
2
((2𝑚 − 1) ⋅ (2𝑛 − 1), 𝑝)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

−

1

4

𝑝
2

(𝑝 − 1) + 3 ⋅ 𝑝
2

⋅ ℎ
2

𝑝
, if 𝑝 ≡ 3 mod 8;

−

1

4

𝑝
2

(𝑝 − 1) − 𝑝
2

⋅ ℎ
2

𝑝
, if 𝑝 ≡ 7 mod 8;

−

1

4

𝑝
2

(𝑝 − 1) , if 𝑝 ≡ 1 mod 4,
(7)

where ℎ
𝑝
denotes the class number of the quadratic field

Q(√−𝑝).

2. Several Lemmas

In this section, we will give several lemmas, which are
necessary in the proof of our theorems. Hereinafter, we will
use many properties of Gauss sums, all of which can be found
in [12], so they will not be repeated here. First we have the
following.

Lemma 3. Let 𝑝 be an odd prime; then one has the identity

𝑝

∑

𝑛=1

𝜒 (2𝑛 − 1) ⋅




𝐾(2𝑛 − 1, 𝑝)






2

= 𝜒 (−1) ⋅

𝜏
3

(𝜒) ⋅ 𝜏 (𝜒
2

)

𝜏 (𝜒)

.

(8)

Proof. It is clear that if 𝑛 pass through a complete residue sys-
tem mod𝑝, then 2𝑛 − 1 also pass through a complete residue
system mod𝑝. So for any nonprincipal character 𝜒 mod 𝑝,
from the properties of Gauss sums 𝜏(𝜒) (see Theorem 8.9 of
[12])

𝜒 (𝑎) =

1

𝜏 (𝜒)

𝑝−1

∑

𝑏=1

𝜒 (𝑏) 𝑒 (

𝑏𝑎

𝑝

) , (9)

we have the identity

𝑝

∑

𝑛=1

𝜒 (2𝑛 − 1) ⋅




𝐾 (2𝑛 − 1, 𝑝)






2

=

𝑝

∑

𝑛=1

𝜒 (𝑛)




𝐾(𝑛, 𝑝)






2

=

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝−1

∑

𝑛=1

𝜒 (𝑛) 𝑒(

𝑛 (𝑎 − 𝑏) + (𝑎 − 𝑏)

𝑝

)

=

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝑝−1

∑

𝑛=1

𝜒 (𝑛) 𝑒 (

𝑛𝑏 (𝑎 − 1) + 𝑏 (𝑎 − 1)

𝑝

)

= 𝜏 (𝜒) ⋅

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝜒 (𝑏 (𝑎 − 1)) 𝑒 (

𝑏 (𝑎 − 1)

𝑝

)

= 𝜏
2

(𝜒) ⋅

𝑝−1

∑

𝑎=1

𝜒 (𝑎 − 1) 𝜒 (𝑎 − 1)

= 𝜏
2

(𝜒) ⋅

𝑝−1

∑

𝑎=1

𝜒 (𝑎) 𝜒 (−(𝑎 − 1)
2

)

= 𝜒 (−1) ⋅ 𝜏
2

(𝜒) ⋅

𝑝−2

∑

𝑎=1

𝜒 (𝑎 + 1) 𝜒 (𝑎
2

)

= 𝜒 (−1) ⋅ 𝜏
2

(𝜒) ⋅

𝑝−2

∑

𝑎=1

𝜒 (𝑎 + 𝑎
2

)

= 𝜒 (−1) ⋅ 𝜏
2

(𝜒) ⋅

𝑝−1

∑

𝑎=1

𝜒 (𝑎
2

+ 𝑎)

= 𝜒 (−1) ⋅ 𝜏
2

(𝜒) ⋅

1

𝜏 (𝜒)

𝑝−1

∑

𝑎=1

𝑝−1

∑

𝑏=1

𝜒 (𝑏) 𝑒(

𝑏 (𝑎
2

+ 𝑎)

𝑝

)

= 𝜒 (−1) ⋅ 𝜏
2

(𝜒) ⋅

1

𝜏 (𝜒)

⋅

𝑝−1

∑

𝑏=1

𝜒 (𝑏) 𝑒 (

𝑏

𝑝

)

𝑝−1

∑

𝑎=1

𝜒 (𝑎) 𝑒 (

𝑏𝑎

𝑝

)
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= 𝜒 (−1) ⋅ 𝜏
3

(𝜒) ⋅

1

𝜏 (𝜒)

⋅

𝑝−1

∑

𝑏=1

𝜒
2

(𝑏) 𝑒 (

𝑏

𝑝

)

= 𝜒 (−1) ⋅

𝜏
3

(𝜒) ⋅ 𝜏 (𝜒
2

)

𝜏 (𝜒)

.

(10)

This proves Lemma 3.

Lemma 4. Let 𝑞 > 2 be an integer; then for any integer 𝑎 with
(𝑎, 𝑞) = 1, one has the identity

𝑆 (𝑎, 𝑞) =

1

𝜋
2
𝑞

∑

𝑑|𝑞

𝑑
2

𝜙 (𝑑)

∑

𝜒 mod 𝑑
𝜒(−1)=−1

𝜒 (𝑎)




𝐿 (1, 𝜒)






2

, (11)

where𝐿(1, 𝜒) denotes theDirichlet 𝐿-function corresponding to
character 𝜒 mod 𝑑.

Proof. See Lemma 2 of [8].

Lemma 5. Let 𝑝 be an odd prime. Then for any odd number ℎ
with (ℎ, 𝑝) = 1, one has the identity

𝑆
2
(ℎ, 2𝑝) = −𝑆 (ℎ, 𝑝) + 𝑆 (2ℎ, 𝑝) + 𝑆 (2ℎ, 𝑝) , (12)

where 2 satisfies the congruence 2 ⋅ 2 ≡ 1 mod 𝑝.

Proof. Note that the divisors of 2𝑝 are 1, 2, 𝑝, and 2𝑝. So from
Lemma 4 and the definition of 𝑆

2
(ℎ, 2𝑝) and 𝑆(ℎ, 𝑘) we have

𝑆
2
(ℎ, 2𝑝)

=

2𝑝

∑

𝑗=1

(−1)
𝑗

((

𝑗

2𝑝

))((

ℎ𝑗

2𝑝

))

= 2

𝑝

∑

𝑗=1

((

𝑗

𝑝

))((

ℎ𝑗

𝑝

)) −

2𝑝

∑

𝑗=1

((

𝑗

2𝑝

))((

ℎ𝑗

2𝑝

))

= 2𝑆 (ℎ, 𝑝) − 𝑆 (ℎ, 2𝑝)

= 2𝑆 (ℎ, 𝑝) −

1

2𝜋
2
𝑝

∑

𝑑|2𝑝

𝑑
2

𝜙 (𝑑)

∑

𝜒 mod 𝑑
𝜒(−1)=−1

𝜒 (ℎ)




𝐿 (1, 𝜒)






2

= 2𝑆 (ℎ, 𝑝) −

𝑝

2𝜋
2
(𝑝 − 1)

∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (ℎ)




𝐿 (1, 𝜒)






2

(13)

−

2𝑝

𝜋
2
(𝑝 − 1)

∑

𝜒 mod 2𝑝
𝜒(−1)=−1

𝜒 (ℎ)




𝐿 (1, 𝜒)






2

= 2𝑆 (ℎ, 𝑝) −

𝑝

2𝜋
2
(𝑝 − 1)

∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (ℎ)




𝐿 (1, 𝜒)






2

−

2𝑝

𝜋
2
(𝑝 − 1)

∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (ℎ) 𝜆 (ℎ)




𝐿 (1, 𝜒𝜆)






2

,

(14)

where 𝜆 denotes the principal character mod 2.

From the Euler infinite product formula (see Theorem
11.6 of [12]) we have,





𝐿 (1, 𝜒𝜆)






2

= ∏

𝑝
1










1 −

𝜒(𝑝
1
)𝜆(𝑝
1
)

𝑝
1










−2

= ∏

𝑝
1
>2










1 −

𝜒(𝑝
1
)

𝑝
1










−2

=










1 −

𝜒 (2)

2










2

⋅ ∏

𝑝
1











1 −

𝜒 (𝑝
1
)

𝑝
1











−2

= (

5

4

−

𝜒 (2)

2

−

𝜒 (2)

2

) ⋅




𝐿 (1, 𝜒)






2

,

(15)

where∏
𝑝
denotes the product over all primes 𝑝.

From Lemma 4 we also have the identity

𝑆 (ℎ, 𝑝) =

1

𝜋
2
⋅

𝑝

𝑝 − 1

∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (ℎ)




𝐿 (1, 𝜒)






2

.

(16)

Note that ℎ is an odd number; combining (14), (15), and (16)
we have the identity

𝑆
2
(ℎ, 2𝑝) = 2𝑆 (ℎ, 𝑝) −

1

2

𝑆 (ℎ, 𝑝) −

2𝑝

𝜋
2
(𝑝 − 1)

⋅ ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (ℎ)




𝐿 (1, 𝜒𝜆)






2

=

3

2

𝑆 (ℎ, 𝑝) −

2𝑝

𝜋
2
(𝑝 − 1)

⋅ ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (ℎ) (

5

4

−

𝜒 (2)

2

−

𝜒 (2)

2

) ⋅




𝐿 (1, 𝜒)






2

= −𝑆 (ℎ, 𝑝) + 𝑆 (2ℎ, 𝑝) + 𝑆 (2ℎ, 𝑝) .

(17)

This proves Lemma 5.

Lemma 6. Let 𝑝 be an odd prime. Then one has the identities

(A)

∑

𝜒 mod 𝑝
𝜒(−1)=−1





𝐿 (1, 𝜒)






2

=

𝜋
2

12

⋅

(𝑝 − 1)
2

⋅ (𝑝 − 2)

𝑝
2

; (18)

(B)

∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2) ⋅




𝐿 (1, 𝜒)






2

=

𝜋
2

24

⋅

(𝑝 − 1)
2

⋅ (𝑝 − 5)

𝑝
2

. (19)

Proof. From the definition of Dedekind sums we have

𝑆 (1, 𝑐) =

𝑐−1

∑

𝑎=1

(

𝑎

𝑐

−

1

2

)

2

=

(𝑐 − 1) (𝑐 − 2)

12𝑐

. (20)
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If 𝑝 ≡ 1 mod 𝑐, then, from (20) and noting that the
reciprocity theorem of Dedekind sums (see [5]), we have the
computational formula

𝑆 (𝑐, 𝑝) =

𝑝
2

+ 𝑐
2

+ 1

12𝑝𝑐

−

1

4

− 𝑆 (𝑝, 𝑐)

=

𝑝
2

+ 𝑐
2

+ 1

12𝑝𝑐

−

1

4

− 𝑆 (1, 𝑐)

=

𝑝
2

+ 𝑐
2

+ 1

12𝑝𝑐

−

1

4

−

(𝑐 − 1) (𝑐 − 2)

12𝑐

=

(𝑝 − 1) (𝑝 − 1 − 𝑐
2

)

12𝑝𝑐

.

(21)

Now taking 𝑐 = 1 in (21), from (16) we may immediately
deduce the identity

∑

𝜒 mod 𝑝
𝜒(−1)=−1





𝐿 (1, 𝜒)






2

=

𝜋
2

12

⋅

(𝑝 − 1)
2

⋅ (𝑝 − 2)

𝑝
2

. (22)

Taking 𝑐 = 2 in (21), from (16) we can also deduce the identity

∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2) ⋅




𝐿 (1, 𝜒)






2

=

𝜋
2

24

⋅

(𝑝 − 1)
2

⋅ (𝑝 − 5)

𝑝
2

. (23)

Now Lemma 6 follows from (22) and (23).

3. Proof of the Theorems

In this section, we will complete the proof of our theorems.
First we prove Theorem 1. Note that if 𝜒 is a nonprincipal
character mod𝑝, then |𝜏(𝜒)| = √𝑝 and












𝑝

∑

𝑚=1

𝜒 (2𝑚 − 1)𝐾 (2𝑚 − 1, 𝑝)












=












𝑝−1

∑

𝑎=1

𝑝

∑

𝑚=1

𝜒 (𝑚) 𝑒 (

𝑚𝑎 + 𝑎

𝑝

)












=






𝜏
2

(𝜒)






= 𝑝.

(24)

From (24) and Lemmas 4, 5, and 6 we have

𝑝

∑

𝑚=1

(2𝑚−1,𝑝)=1

𝑝

∑

𝑛=1

(2𝑛−1,𝑝)=1

𝐾(2𝑚 − 1, 𝑝) ⋅ 𝐾 (2𝑛 − 1, 𝑝)

⋅ 𝑆
2
((2𝑚 − 1) ⋅ 2𝑛 − 1, 2𝑝)

= −

𝑝

𝜋
2
(𝑝 − 1)

∑

𝜒 mod 𝑝
𝜒(−1)=−1












𝑝

∑

𝑛=1

𝜒 (2𝑛 − 1) ⋅ 𝐾 (2𝑛 − 1, 𝑝)












2

⋅




𝐿 (1, 𝜒)






2

+

𝑝

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2)












𝑝

∑

𝑛=1

𝜒 (2𝑛 − 1) ⋅ 𝐾 (2𝑛 − 1, 𝑝)












2

⋅




𝐿 (1, 𝜒)






2

+

𝑝

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2)












𝑝

∑

𝑛=1

𝜒 (2𝑛 − 1) ⋅ 𝐾 (2𝑛 − 1, 𝑝)












2

⋅




𝐿 (1, 𝜒)






2

= −

𝑝
3

𝜋
2
(𝑝 − 1)

∑

𝜒 mod 𝑝
𝜒(−1)=−1





𝐿 (1, 𝜒)






2

+

𝑝
3

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2)




𝐿 (1, 𝜒)






2

+

𝑝
3

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2) ⋅




𝐿 (1, 𝜒)






2

= −

𝑝 (𝑝 − 1) (𝑝 − 2)

12

+

𝑝 (𝑝 − 1) (𝑝 − 5)

12

= −

𝑝 (𝑝 − 1)

4

.

(25)

This proves Theorem 1.
Now we prove Theorem 2. If 𝑝 ≡ 1 mod 4, then from

Lemmas 3, 5, and 6 we have

𝑝

∑

𝑚=1

(2𝑚−1,𝑝)=1

𝑝

∑

𝑛=1

(2𝑛−1,𝑝)=1





𝐾 (2𝑚 − 1, 𝑝)






2

⋅




𝐾 (2𝑛 − 1, 𝑝)






2

⋅ 𝑆
2
((2𝑚 − 1) ⋅ (2𝑛 − 1), 𝑝)

= −

𝑝

𝜋
2
(𝑝 − 1)

∑

𝜒 mod 𝑝
𝜒(−1)=−1












𝑝

∑

𝑛=1

𝜒(2𝑛 − 1) ⋅




𝐾 (2𝑛 − 1, 𝑝)






2












2

⋅




𝐿 (1, 𝜒)






2

+

𝑝

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2)












𝑝

∑

𝑛=1

𝜒(2𝑛 − 1) ⋅




𝐾 (2𝑛 − 1, 𝑝)






2












2

⋅




𝐿 (1, 𝜒)






2

+

𝑝

𝜋
2
(𝑝 − 1)
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× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2)












𝑝

∑

𝑛=1

𝜒(2𝑛 − 1) ⋅




𝐾 (2𝑛 − 1, 𝑝)






2












2

⋅




𝐿 (1, 𝜒)






2

= −

𝑝
4

𝜋
2
(𝑝 − 1)

∑

𝜒 mod 𝑝
𝜒(−1)=−1





𝐿 (1, 𝜒)






2

+

𝑝
4

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2)




𝐿 (1, 𝜒)






2

+

𝑝
4

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2) ⋅




𝐿 (1, 𝜒)






2

= −

1

12

𝑝
2

(𝑝 − 1) (𝑝 − 2) +

1

12

𝑝
2

(𝑝 − 1) (𝑝 − 5)

= −

1

4

𝑝
2

(𝑝 − 1) .

(26)

If 𝑝 ≡ 3 mod 4, then note that the Legendre symbol (−1/𝑝) =
𝜒
2
(−1) = −1, 𝐿(1, 𝜒

2
) = 𝜋 ⋅ ℎ

𝑝
/√𝑝 (see Dirichlet’s class

number formula, Chapter 6 of [13]), and

𝜏 (𝜒
2

2
) =

𝑝−1

∑

𝑎=1

(

𝑎

𝑝

)

2

𝑒 (

𝑎

𝑝

) =

𝑝−1

∑

𝑎=1

𝑒 (

𝑎

𝑝

) = −1, (27)

so from Lemmas 3, 5, and 6 we have
𝑝

∑

𝑚=1

(2𝑚−1,𝑝)=1

𝑝

∑

𝑛=1

(2𝑛−1,𝑝)=1





𝐾 (2𝑚 − 1, 𝑝)






2

⋅




𝐾 (2𝑛 − 1, 𝑝)






2

⋅ 𝑆
2
((2𝑚 − 1) ⋅ (2𝑛 − 1), 𝑝)

= −

𝑝

𝜋
2
(𝑝 − 1)

∑

𝜒 mod 𝑝
𝜒(−1)=−1












𝑝

∑

𝑛=1

𝜒(2𝑛 − 1) ⋅




𝐾 (2𝑛 − 1, 𝑝)






2












2

⋅




𝐿 (1, 𝜒)






2

+

𝑝

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2)












𝑝

∑

𝑛=1

𝜒(2𝑛 − 1) ⋅




𝐾 (2𝑛 − 1, 𝑝)






2












2

⋅




𝐿 (1, 𝜒)






2

+

𝑝

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2)












𝑝

∑

𝑛=1

𝜒(2𝑛 − 1) ⋅




𝐾 (2𝑛 − 1, 𝑝)






2












2

⋅




𝐿 (1, 𝜒)






2

= −

𝑝
4

𝜋
2
(𝑝 − 1)

∑

𝜒 mod 𝑝
𝜒(−1)=−1





𝐿 (1, 𝜒)






2

+

𝑝
4

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2)




𝐿 (1, 𝜒)






2

+

𝑝
4

𝜋
2
(𝑝 − 1)

× ∑

𝜒 mod 𝑝
𝜒(−1)=−1

𝜒 (2) ⋅




𝐿 (1, 𝜒)






2

+

𝑝
3

𝜋
2
⋅




𝐿 (1, 𝜒

2
)





2

−

𝑝
3

𝜋
2
⋅ (

2

𝑝

) ⋅




𝐿 (1, 𝜒

2
)





2

−

𝑝
3

𝜋
2
⋅ (

2

𝑝

) ⋅




𝐿 (1, 𝜒

2
)





2

= −

1

4

𝑝
2

(𝑝 − 1) + 𝑝
2

⋅ ℎ
2

𝑝
− 2(

2

𝑝

) ⋅ 𝑝
2

⋅ ℎ
2

𝑝
.

(28)

Note that (2/𝑝) = (−1)(𝑝
2

−1)/8

= −1 if 𝑝 ≡ 3 mod 8; and
(2/𝑝) = 1 if 𝑝 ≡ 7 mod 8, from (28) we may immediately
deduce

𝑝

∑

𝑚=1

(2𝑚−1,𝑝)=1

𝑝

∑

𝑛=1

(2𝑛−1,𝑝)=1





𝐾 (2𝑚 − 1, 𝑝)






2

⋅




𝐾 (2𝑛 − 1, 𝑝)






2

⋅ 𝑆
2
((2𝑚 − 1) ⋅ (2𝑛 − 1), 𝑝)

=

{
{
{

{
{
{

{

−

1

4

𝑝
2

(𝑝 − 1) + 3 ⋅ 𝑝
2

⋅ ℎ
2

𝑝
, if 𝑝 ≡ 3 mod 8;

−

1

4

𝑝
2

(𝑝 − 1) − 𝑝
2

⋅ ℎ
2

𝑝
, if 𝑝 ≡ 7 mod 8.

(29)

NowTheorem 2 follows from (26) and (29).
This completes the proofs of all results.
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