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We study the quasilinear Schrédinger equation of the form —Au+V (x)u—A(w?)u = h(x, u), x € RY. Under appropriate assumptions
on V(x) and h(x, u), existence results of nontrivial solutions and high energy solutions are obtained by the dual-perturbation

method.

1. Introduction and Preliminaries

In this paper we consider the quasilinear Schrédinger equa-
tion of the form

—Au+V(x)u—A(u2)u=h(x,u), xeRY, (O

where h € C(RY x R,R) and V € C(RYN, R). Solutions of (1)
are standing waves of the following quasilinear Schrodinger
equation:

iy, + Ay =V )y + kA (o ([v])) o (v) v

+g(xy)=0, xeRY,
where V() is a given potential, k is a real constant, and e and
g are real functions. The quasilinear Schrédinger equations
(2) are derived as models of several physical phenomena; for
example, see [1-5]. Several methods can be used to solve (1).
For instance, the existence of a positive ground state solution
hasbeen proved in [6, 7] by using a constrained minimization
argument; the problem is transformed to a semilinear one
in [8-11] by a change of variables (dual approach); Nehari
method is used to get the existence results of ground state
solutions in [12, 13].

Recently, some new methods have been applied to these
equations. In [14], the authors prove that the critical points

are L functions by the Moser’s iteration; then the existence
of multibump type solutions is constructed for this class of
quasilinear Schrodinger equations. In [15], by analysing the
behavior of the solutions for subcritical case, the authors
pass to the limit as the exponent approaches to the critical
exponent in order to establish the existence of both one-
sign and nodal ground state solutions. Another new method
which works for these equations is perturbations. In [16] 4-
Laplacian perturbations are led into these equations; then
high energy solutions are obtained on bounded smooth
domain.

In this paper, the perturbation, combined with dual
approach, is applied to search the existence of nontrivial
solution and sequence of high energy solutions of (1) on the
whole space RY. For simplicity we call this method the dual-
perturbation method.

We need the following several notations. Let C.” (RM) be
the collection of smooth functions with compact support. Let

H'(R):={uel’(RY): |Vul e *(RY)}, (3
with the inner product

(U, V) = JRN [Vu-Vv+uv]dx (4)



and the norm
el = G 0) 17 5)
Let the following assumption (V) hold:

(V) V € C(RN,R) satisfies inf pnV(x) >
hmMHooV(x) = +0Q.

a, > 0and

Set

E::{ueHl(RN):J

V (x) u’dx < +oo}- (6)
RN

with the inner product
(U, v)g = J . [Vu-Vv+V (x)uv]dx (7)
R

and the norm
lullp = (u )} (8)

Then both H'(RY) and E are Hilbert spaces.

By the continuity of the embedding E < LY (R") for s €
[2,27] we know that, for each s € [2,2"], there exists constant
a, > 0 such that

luls < agllullg,  Vu € E, €

where | - ||, denotes the L*-norm. In the following, we use C
or C; to denote various positive constants. Moreover, we need
the following assumptions:

(h,) thereexist 4 < p < 2(2")if N >3 and 4 < p < o0 if
N = 2 such that

lh(x,s) <C(1+]sl""), VseR, (10)

(hy) lim, _, yh(x,s)/s = 0 uniformly in x € RN,
(hs) there exist y > 4 and r > 0 such that
6= inf H(x,s)>0,
x€RN |s|=r
(11)
uH (x,s) <h(x,s)s

forall x € RN and |s| > r, where H(x, s) = J: h(x, t)dt.

By Lemma 3.4 in [17] we know that, under the assumption
(V), the embedding E — LS(RN) is compact foreach2 < s <
2%,

Equation (1) is the Euler-Lagrange equation of the energy
functional

J(u) = % JRN [(1 + 2u2) |Vul* + V (x) uz] dx )
- J H (x,u) dx,
RN

where H(x,u) = Iou h(x,t)dt. Due to the presence of the term
.[RN u?|Vul*dx, J (u) is not well defined in E. To overcome this
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difficulty, a dual approach is used in [9, 10]. Following the idea
from these papers, let f be defined by

1 1
0 P ———
\V1+2f%(1) (13)
on [0,+00), f(0) = 0and f(~t) = — f(t) on (00, 0]. Then f

has the following properties:

(f1) f is uniquely defined C* function and invertible;
(f,) 0< f'(t) < 1forallt € R

(f3) If@)| < |t| forallt € R;

(fy) lim, o f(O)/t=1;

(fs) limy oo F(O)/NE =214 Tim, o F(0)/VIE] = =2

(fo) (1/2)f(®) < tf'(t) < f(t) forallt > 0and f(t) <
tf'(t) < (1/2) f(t) forall t < 0;

(f,) 1f )] < 2Y*/[t] for all t € R;
(fs) the function f 2(t) is strictly convex;
(f,) there exists a positive C such that

Ciel, =1,
)| =
U“'{aﬁ@ ERE

(f10) there exist positive constants C; and C, such that

(14)

1 <C |f 0]+ Gl f O (15)

forallt € R;

(f) IfOf () < 1/V2forallt € R;

(f1,) foreach & > 0, there exists C(£) > 0 such that f*(&t) <
CE ).

The properties (f,)-(f;;) have been proved in [8-11]. It
suffices to prove (f;,).

Indeed, by (f;), (f,),and (f5), there existd > Oand M > 0
such that, for |t| < 6,

1, 2 3,

-t < t) < =t7, 16

T RCES (16
and for [t| > M,

’fuwf(n<ﬂcm 1)

Since there exists a C, > 0 such that f(2t) <
[10]), we can assume that 0 < & < 1. For [t|
|Et] < &, and hence

Cof(t) (see
< 0, we have

e < 280 <381 0); (18)

for |t| > M/E > M, one has |&t] > M, and hence

\/_

F2E) < =28 < 387 (1) 19)
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and for § < |t| < M/, there exist m(&) > 0 and M(&) > 0
such that fz(Et) < M(&) and fz(t) > m(&). Then we have

M@ -
m(f)f (t). (20)

Hence fz(Et) < C(f)fz(t), where C(§) = max{3&, M(§)/
m(&)}.

After the change of variable, J(u) can be reduced to

FPE) <M @) <

10) = J(F () = % JRN (Vv +V () f2 () dx
(21)

- JRN H(x, f (v))dx.

From [8, 9, 11] we know that if v € E is a critical point of I,
that is,

(I 0g) = | v9pdx+ | Ve £0) £ g

B LN h(x, f ) f' (v) pdx = 0
(22)
for all ¢ € E, then u := f(v) is a weak solution of (1).
Particularly, if v € H YRN) n C*(RY) is a critical point of I,
then u := f(v) is a classical solution of (1).
A sequence {u,} C E is called a Cerami sequence of ] if
{J(u,)} is bounded and (1 + IIunII)]'(un) — 0in E*. We say

that J satisfies the Cerami condition if every Cerami sequence
possesses a convergent subsequence.

2. Some Lemmas

Consider the following perturbation functional I, defined by
0 2
Ig(w)=1()+ 2 J V (x) v'dx, (23)
RN

where 6 € (0, 1]. We have the following lemmas.

Lemma 1. If assumptions (V), (h;), and (h,) hold, then the
functional 1, is well defined on E and I € C'(E, R).

Proof. By conditions (h;) and (h,), the properties (f,), (f3),
(f7), and (f,;) imply that there exists § > 0 such that

|h (5 fW) f (V)l <|fW|f <l forlv| <38,
[pGe s o) £ ol <clr o o

<Clf M2 <CWP?? for|v| = 6.
(24)

Hence
h(x f ) ff )| s C(+W®PT), (25

H (x, f )| < C(Iv]* + [v*?) (26)

for all v € R. By (26) and the continuity of the embedding
E — L'(RY) (s € [2,2")),

J- H(x, f (v))dx < 0o, Vv e€E. (27)
RN

Hence I, is well defined in E.
Now, we prove that I, € C'(E, R). It suffices to prove that

¥, (v) = j H(x, f (v))dx € C' (E,R),
RN
(28)
¥, (v) = LN V (x) f*(v)dx € C' (E,R).

For any v,¢ € E and 0 < |t/ < 1, by the mean value
theorem, (25) and (f,)-(f;), we have

|H (x f (v+t4)) - H (x, f (V)]

I¢]

< JO |h(f(x,v+st¢))f’ (v+st¢)¢|ds

<Clmlg]+ g + 27 o] + 91",

V() £ (v+ tﬂ ~V(x) £ () (29)
t

<2 J: V (x) |f (v+ stp) f' (v + stp) ¢|ds

<2V (x) Jl |V + st¢| |<[>| ds
0

<2V (x) [Ivl|¢] + |4[] -

The Holder inequality implies that

ClIviIgl+ Il + 7 ] + |¢]] € L' (RY),

(30)
2V (x) [Vl |¢] + |9]"] € L' (RY).
Hence, by the Lebesgue theorem, we have
<‘I’1' (v),¢> = IRN h(x, f () f (v) ¢dx,
(31)

(¥, (), ¢) =2 JRN V(x) f () f (v) ¢pdx

for all ¢ € E. Now, we show that ‘I’i'(-) E — E*,i=1,2, are
continuous. Indeed, if v, — vin E, then v, — vin L°(RY)
foralls € [2,27].

On the space L7 (RN) n LP2(RYN), we define the norm

Wl ponp, = IV, + VI, (32)
Then

v, — v in L*(RV)nL®P7 (RY). (33)



Moreover, on the space LP'(RY) + LP”2(RN), we define the
norm

1Vl p,vp, = inf {llull,, + llwll,, : v

=u+w, uelh (RN),w €L (RN)}.
(34)

By (25), we have
'h (x,f(v))f' (v)| < C<|v| + |v|(p/2)—1)
<C(W"*+ ),

where g = p/2 and r = p/(p — 2). Then Theorem A.4 in [18]

implies
h(x f () f' () =h(x f W) f' (1) — 0
inL? (RY) +L" (RY)

asn — +00. Ifh(x, f(v,)) f'(v,) —h(x, W) f (v) = y, + 2,
with y, € L*(RY) and z,, € L"(RY), one has

(35)

[ 3£ ) £ ) = £ 00) £ 9] g

< |l 191+ 2] ¢l dx &7
< C([yall; + lzall,) 11l -
Hence
[, [0 ) 7 ) = £ ) )] g
<l (e f () £ () =h (% £ ) £ O], Il
(38)
and hence
| (v) -1 )] — 0 (39)
asn — 00. Therefore, ¥, € CYE,R).
Define
Ly, (RN) = {u : RN — R : u is measurable
(40)

and J V(%) u'dx < oo}
RN

with the norm ||u||LsV = (IRN V(x)u'dx)"s. On the space
Lf,l (RN n L‘?} (RM), we define the norm

Wlnpe = I¥lzes + IVl (41)
On the space le} (RN) + Lf} (RM), we define the norm

Wlvp, = inf {1V, = lelor + el -

v=u+w,u€L‘f",1 (RN), weLf,z(RN)}.
(42)
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Fromv, — vinE,onehasv,,v € L%,(RN) and
v, —v in L}, (RV)n L (RY) (43)

asn — 00. Since |f(v)f’(v)| <
Lemma 2, we have

f)f () — fO f @

[v], by the following
in L3, (RV) + L}, (RY).
(44)

Iff(vn)f'(vn) - f(v)f'(v) =y, +z,with y, € LZV(RN) and
z, € LZV(RN ), one has

URN V(x) [f ) f () - f) f (v)] bdx
<[ Vel vl 6

< (bl +llzallz, ) 19l

Hence

[ V05 00 505 0]
R (46)

< |FODF 0 = £ £ 0], 18]

and hence
“‘I’Z' (v,) - ¥, (v)“ —0 (47)

asn — 0. Therefore, ¥, € C'(E,R). This completes the
proof. O

Lemma 2. Assume that1 < p,q,r,s < +co, g € C(RY x R)
and

g (e v)| < C (WP + v)7). (48)

Then, for every v € L{,(RN) n L?,(RN), g(,v) € LrV(RN) +
LSV(RN ), and the operator

A:LE (RY)n Ly (RY)
(49)
— L, (RN) +L, (RN) 1V g (x,v)

is continuous.

Proof. Let#(s) beasmooth cut-off function such that#(s) = 1
for |s| < 1 and #(s) = 0 for |s| > 2. Define

g1 (x,v) == (v) g(x,v),
(50)
g (x5, v) =(1-n()g(x,v).

We can assume that p/r < gq/s. Hence

lg: )| <CWP", gy Gev)| < CWTE (51
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forall (x,v) € RY x R. Assume v, — vin L? (RN) nLi (RN)
Thenv, — v1nL‘€,(RN)andg( v,) — g(,v)inL}, (RN) As
in the proof of Lemma A.1in [18], there exists a subsequence
{w,} of {v,} and « € LI",(RN) such that w,(x) — v(x) and
[v(x)l, lw,(x)| < a(x) for a.e. x € RY. Hence, from (51), one
has

lg: (x,w,) = g, (x, )| < 2"Cla (x)I? (52)

ae. on RV, Tt follows from the Lebesgue theorem that
g1 w,) — g;(-v)in L} (R ). Consequently, g,(-,v,) —
g1(5v) in LY (RN) Similarly, we can prove g,(-,v,) —
g,(,v)in L, Slnce

-9 V)"er < ”gl (" V -9
+ g (-

”g (" Vn)
(53)

gz( V)

Ls)

it follows that g(-,v,) — g(-v)in LrV + LY. This completes
the proof. O

Lemma 3. Let (V), (h,), and (h,) hold. Then every bounded
sequence {v,} C E with I,(v,) — 0 possesses a convergent
subsequence.

Proof. Since {v,} c E is bounded, then, by the compactness
of the embedding E < L*(RM) (2 < s < 2*), passing to a
subsequence, one has v, — vin E, v, — vin L(RY) for all
2<s<2% andv,(x) > v(x)forae x € RN, By (25)

URN h(x f(v) f (v,) (v=v,) dx
< LN C <|vn| + |Vn|(P/2)71> by, - v|dx

o/
< C(Ivallallva =+ Beallys”™ v =1,1)

o/
<C(Ivalglvn = vl + Wl E™ v = vl) — 0

(54)

asn — ©o. Similarly, .[RN h(x, f(v))f'(v)(v -v,)dx — Oas
n — 00. Hence, by the property of ( f;), we have

<Ié (Vn) - Ié (V) >V = V>

- J IV (v, —v)'dx + GJ V (%) |v, - v[dx
RN RN

[ VLo £ ) o5 )]
x (v, —v)dx (55)
[ e r e 5 )
~h(x, f ) f' )] (v, = v) dx

> 0||vn - v||12E -0,(1),

whereo,(1) — O0asn — o00. This shows that ||v, — vllé -0
asn — 00. This completes the proof. O

The following Lemma 4 has been proved in [10] (see
Proposition 2.1(3) in [10]).

Lemma 4. If v,(x) — v(x) ae in RY and
iMoo [ V@O L2 )dx = [ V) (dx,  then
Jn V&) f2 (v, = v)dx — Oasn — co.

3. Main Results

Theorem 5. Assume conditions (V), (hy)-(h;) hold. Let {0,} C
(0, 1] be such that 6, — 0. Let v, € E be a critical point of Iy
with I (v,) < c for some constant ¢ independent of n. Then, up
to subsequence, one hasv, — v inE, Iy, (v,) — I(v) andvis
a critical point of I.

Proof. By (h,), for 0 < &, < (1/4)(1/2 - 1/u)a,, there exists
&y > 0 such that

H (x,s) Vs € [-85,8,].  (56)

2
< &S

lsh (x,8) —
U

By (h,), for §, < |s| < r (r is the constant appearing in
condition (h;)), we have

H (x,s)

lsh (x,8) —
U

<2C( +rP2>s, (57)
60

where C is the constant appearing in condition (h,). Hence

< g5’ +2C i+rp_2 s,
0 62
0 (58)

Vs € [-r,r].

lsh (x,8) — H (x,s)
7

Since lim _,

1 l_l 1

for all |x| > p,. Hence

(1) v

1
p— h ,
+ J{x:|f(v)|£f} [#f(v) (x, f ()

ooV (x) = +00, there exists p, > 0 such that

-H (x, f (v) ] dx (60)

(1 _ i) LNV(x)f2 (v) dx

1
2\2
p-2 2
—2C<62+r )r |Bp0.




Since v,, is a critical point of Iy ,

(1, ()-9) = | Vv, vgdx

o[ VO 1 () gax
(61)

+0, J V (x) v,¢dx
RN

- LN h(x f (va) f* (v,) pdx = 0

for all ¢ € E. Consequently, taking ¢ = f(v,)/ f'(v,) € E, by
(h3) and ( f4) we have

2 1y, (1) = 1o, () - <Ién -2 ((VJ;)) >

L2 e

27 ()
+ (% - i) LNV(ac)f2 (v,)dx

0 J Vo e ) g

u S ()
[ ) )= G )|
> G - 3) JRN Vv, [2dx + (1 - l) J V) £ (v, dx

1
* J{x:lf(vn)lg} [;h (x) f (V”)) f (V”)

H(xf (7)) | s

\Y
S
N | =

|
=
N—
=
Z

<
:<
)

U

*

Abstract and Applied Analysis

> <1 - g) J |an|2dx
2 u/) ey

+ <le - i) JRNV(x)fZ (v,)dx

+ <l - E>Q"J V(x)vfldx—Cl,
2w RN

(62)

and hence

J Vv, | dx + J V(x) f*(v,)dx
RN RY
(63)
+enj V(x)vidx < C
RN

for some constant C independent of #n. By the boundedness
of .[RN |Vv, |*dx, there exists C, > 0 such that

2| SOV ()
< | 2P eI )P oo

= JRN |an|2dx < C2

for all n. Hence, by the Sobolev embedding theorem, one has

2

L <a|vfP i< (©)

If Ol = |00

Next, we prove that f(v,) € L®(RN) and | FIle <
C, where the positive constant C is independent of n. Setting
T > 2,7 > 0,define ¥} = b(v,), whereb : R — Risasmooth
function satisfying b(s) = s for |s| < T — 1, b(-s) = -b(s);
b'(s) =0fors>T,and b'(s) is decreasingin [T — 1, T].

This means that Vz: =y, for|v,|<T-1; |'17:| = |b(v,)| <
[v,l, for T =1 < |v,| < T; |9 | = Cp > 0, for |v,| > T, where
T-1<Cr<T.

Let ¢ = (f(vn)/f'(vn))lf(ﬂ)lzr; then ¢ € E. By (61)
(I'(vn), ¢) = 0. Hence

L+L+L+1,+1;

o (66)
- JRNh(x,f(vn))f(vn) |f(;:)| dx,
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where

I = LNV(x) £ )@
o[ v )

JRNV(x)f (v,) 'f ~T' dx,

. J{x [v,|=>T} |: 1+ 2f2 (V ]
~T (67)
= J{x [v, |>T} | lvv l dx
= wa |>T}[1+2
x |Vf (v

S 2(, . 2 7T 2r X
B zj{xw |>T}f ( n)|Vf( n)| |f( n)| ’

- %J v 5T} MERCORCY |2dx’

2
Iz:ZJ [2r+1 f(2 )
{x:lv,l<T-1}) 1+2f2(v,)
X 'f ?n |an| dx

[\

2f* (v,) r
J{XI|V,,|ST—1} 1+2f2(v,) |f (Vn)

> | O ) dx
{x:|v, |<T-1}

1

= V2 () )P
(7’ + 2)2 JV{X:lvn|5T_1} | f ( n)'
1

= ~T
B (r+2)° J{X:IV,,IST—1} |V () 1 ( )]

2 2
I; := J |:1 + f (Vn)
(x:T—1<v,|<T} 1+2f2(v,)

N J 212 (v,)
T g ey 1+ 22 (v,)

[ (7)) V2 ()] b

| 7 wnfas

N (?Z) |an|2dx

1

2 J{x:T—ISIVnIST}

I, =2 2r—1 (=T 1 (-T

! rj{x:T71g|vn|ST}f (Vn)f (Vn)
') lVanzdx.
V)

b (v,) jf,((

(68)

7

For T -1 < |v,| < T, 9| = |b(v,)| < |v,|. By the properties
of f and b, the mean value theorem implies

[f )2 f (o@))E () [v]

1 (b b 2 (69)
Z@f( (V)b (v,) £~ (v).-

Hence

_ 2—1 (~T\ 41 (~T
ly=2r J{x:T—lslvnlsT} fr (V")f (v")

) L2

= 2’J FHew) £ (0 ()
{x:T—1<]|v,|<T}
xb' (v,) f (v,)

X mw%lzdx

[F7 0 0)) £ )b ()]

X f (1) v 21 (v) |9,

N S P

> 2r

J{x:T—lSIvnIST}

x f* (v,) |V, dx

= J{x:T—ls|vn|gT} f (Vn)
<[ b () Vf (b (v,)] dx
[£2 () V" (37)] .

1 Jx I— |
{ : <|V”|< }

Consequently,

— l r (~T 2 2
13 " 14 - 2 j{x:T—lSIv,,IST} [f (VH)Vf (Vn)] dx

1 Jxl, |
{' <|Vn|<}

S j
(r +2)° JieT-1<v,I<T}

[£2 () Vf (7] dix

2 () VP2 )]

+2[f* (v,) Vf' (7:)]2dx
V[ ()

—1 r (~T\1|?
- (r+2)° J'{x:T—1s|vn|gT} f (Vn)” dx.

(71)



Combining (67) and (68), we have

ST

e
(72)

L+L+L+1 2

(r+2)

For any € > 0, by (h) and (h,), there exists C(¢) > 0 such that
|h(x,s)| < els|+C(e) |s|P. (73)

Combining (66), (72), and (73), one has

el IAAERONEG

r(=T\1|?
—L F)Ifax
wlP|f ()] dx

(74)

<c@| I
By the Holder inequality and (65),
[ 17 @r]
R
= [ e
R

(p=4)-(4N/(p-4)(N-2))
(] L G g

(.0
xf* ()]

([ 17 G ax
(.1

xf* (V)

<(,.

>(p—4)(N—2)/4N

INJUN—(p-a)(N-2)) . \EN-(p-H(N-2)/4N
dx)

>((P*4)(N*2))/4N

8N/(4N—(p-4)(N-2)) dx>(4N ~(p-H)(N-D)/4N

x f? (Vn)]SN/(4Nf(P*4)(N—2)) dx>(4N ~(p-)(N-D)/4N
(75)
Moreover,
1
L e (s
(76)

> ([ el G a)
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Hence

([ L el GO T )™
<C(r+2)
([ 16 7

SN/UN-(p-4)(N-2)) | UN~(p-DN=2)/4N
dx)

Since 4 < p < 2(2%),d = 2" /(8N/(4N — (p — 4)(N - 2))) =
2°/2-p/4+1>1.Setqg =8N/(4N — (p — 4)(N - 2)). Then

1/qd(r+2)

([ L Gl 1)

2] 1/2(r+2)

<[Cr+2) (78)

(.1

Take r = r, such that (2 + r,)g = 2(2%). Since I'VZI =|b(v,)| <
[v,], |f(17£)| < |f(v,)|. Hence, from (65), we have

JRN H

> 1/q(r+2)

< J lf (vn)|(2+r")qu <C.
RN
(79)

Since f(VZ:) — f(v,)asT — +oo,takingT — +00in (78)
with r = r,, we have

>1/qd(r0+2)

(], 17 Gl ax

2] 1/2(r0+2)

< [Cry+2) (80)

<([ 15 ¢

(2 + 1y)d. Then

1/q(ry+2)
)| *dx

Set2 +r; =

>1/q(r1 +2)

(], Lr (I

2] 1/2(ry+2)

< [C(r0 +2) (81)

1/q(ry+2)
([ L GalEax)
R
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Inductively, we have

(], b fom1a

1/2(r+2)

>1/q(rk+1+2)

< [C(rk + 2)2]

1/q(r+2)
(2+1)q
X " d )
<J-RN |f (va)l x (82)
k 511/2(r+2)
< TTlct,+2)]
i=0
1/q(ry+2)
([ L malerax)
RN
where 2 +1;) = de+ o) (i=0,1,...,k), and
1
k
[C(ri + 2)2] 2(r; +2)
i=0
= exp {Zk:h'l \/Edl (T'O + 2) } (83)
S di(ry+2)
e 5 [InVC(ry +2) ., ilnd
TPVL| T (g r2) di(ry+2)

is convergent as k — 0. Let C; = Hsz[C(ri + 2)2]1/2(”2).
ThenC, — C., > 0ask — oo.Hence

||f(vn)||L<2+m>qdk“ s Ck"f (vn)"LZ(Z*)' (84)
Letk — 005 by (65), we have

”f(vn)”Lw < Coo"f(Vn)"Lz(z*) <C,
Hence, by (fy) and (85), we have

[/l < C. (85

J V (x) vidx
RN

J V (x) vfldx
{xelv, (x)I<1}

+ J V (x) vfldx
{x:lv, (x)[>1}

1
< =

C J{x:lvn(x)lﬁl}
1

C J{x:lvn(x)bl}

V(x) f* (v,)dx
(86)
V (x) f4 (v,)dx

1
< —

| v
C Jixv,(l<1)

+CJ V(x) f*(v,)dx
{oxzlv, ()21}

<c| veosn)dx
RN

By (63) we know that .[RN V(x)vfldx is bounded, and hence
{v,} is bounded in E. Up to subsequence, one has v, — v in
E,v, — vin L'(RN) for s € [2,2*),and v,(x) — v(x) a.e.
x € RY.

Now, we show that v is a critical point of I. For any
v € CPRN) with y > 0, by (85), we know that ¢ =
yexp(—f(v,)) € E. Take ¢ = wexp(—f(v,)) as the test
function in (61); we have

0= | exp(=f (1)) vy, - Vyds
- [ Pyexn (£ () £ () dx
+0, | Vevyes(-f (v)dx (87)
[ V@IS ) ven S ()dx

- [ e f O 7 () wesn (< (n)) .
By [V(v, — v)|21// exp(—f(vn))f'(vn) > 0, one has

timsup [ = Vv, Pyexp (=f () £ (1) dx

n— 00

(88)
< - LN IVv*yexp (- f (1) f (v)dx.

Since 8, — 0, by (63)

0, J V(x)v,wexp(—f(v,)dx — 0 (89)
RN

asn — ©00. Moreover, notice that v, — vin E, v, — vin
L*(RM) for s € [2,2%), and v,(x) — v(x) a.e. x € RY; by
Holder inequality and Lebesgue theorem, we have

JRN €xp (_f (vn)) Vv, - V‘//dx
— LN exp (—f (v)) Vv - Vydx,
[ V6 £ () f () yexp (= (1) dx
(90)
— | V@0 f Gvexp(-f )
[ Bt 0D F () wexp (= (1)) dx

— J‘RN hx, f) f D wexp(=f () dx.
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Hence, from (87), we have
0< J exp (—f (v)) Vv - Vydx
RN
_ LN [Vv]*wexp (- f () f (v)dx
+0, J V (x) vy exp (- f (v)) dx
RN
« [ V@O Ovexp(-f 0)dx
1)
- LN h(x, f ) f' ) wexp (—f (1) dx
= JRN Vv-V(yexp(-f(v))dx

+ JRN V(x) f ) f Mwexp(~f () dx

_ ,[RN h(x, f ) f M wexp(~f () dx.

For any ¢ € E with ¢ > 0, by (85) we know that { :=
pexp(f(v)) € E. By Theorem 2.8 in [19], there exists a
sequence {y,} ¢ CP(RY) such thaty, > 0Oandy, — (
and y,(x) — ((x) fora.e x € RYN. Take Y =y, in (91), and
letn — o00; we have

0< j Vv~V¢dx+J V(x) f ) ' (v) pdx
RN RN 92)

. LN h(x f W) f (V) pdx.

The opposite inequality can be obtained by taking ¢ =
yexp(f(v,)) and { = g exp(—f(v)). Consequently,

J Vv- Vodx + J V(x)f(v)f’ (v) pdx
RN RN
(93)
- j-RN h(x, f() f (") pdx =0, V¢ €E.

This shows that v € E is a critical point of I, and by taking
¢ = f(W)/f'(v) € E, one has

L[

- J.RN h(x, f(v)) f(v)dx = 0.

2f% (v)
1+2f2(v)

] VoPdx + j V) 0
! (94)
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Finally, taking ¢ = f(v,)/f (v,) as the test function in
(61), we have

Zfz (Vn) 2 an (Vn)
jRN [1 + m] IVVn| dx + Gn JRNV(X) f’ (Vn) dx
! JRN V) fz (v,) dx
[ rC e () =
(95)

Since

[ G F O F@)dx— [ hGnf ) fwdn
[ [0

272 (v,)
by Fatou’s Lemma, (63), (94), (95), up to subsequence, one has

ARES o

J |an|2dx—>J |Vv|dx,
RN RN

217 (v,) 2 21* ()
JRN 1227200 2f2 (Vn) |VVn| dx — .[RN I+ 2f2 )

] IV (v, - v)|’dx = 0,
(96)

|Vv|*dx,
(97)

J V(%) fz(vn)dx—>J V) P dx. (98)
RN RN

Hence Iy (v,) — I(v)asn — oo.Setw, = v, —v € E. By
(fs), (f12), and (85), one has

f2 (wn)zf2 (2-%)SC[%]€2 (Vn)+%f2(v)] (99)

<C[fA(v)+ ffm]=cC.

Consequently, by ( fy), (98), and Lemma 4, one has
J V (x) |wn|2dx
RN
_ J V (x) [w, [*dx
{x:lw,|<1}
+ J V (x) |wn|2dx
{x:lw, |21}
< Cj V (x) £ (w,) dx
{x:lw, <1}

+CJ V (x) f* (w,) dx
(el 21}
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SCJ V(x) f* (w,) dx
{xerlw, <1}
+CJ V(x) f* (w,) dx
{x:lw, |1}

= Cj V (x) f* (w,)dx — 0
RN
(100)

asn — ©00. Therefore,v, — vin E. This completes the proof.
O

Theorem 6. Assume conditions (V'), (hy)-(hs) hold; then (1)
has a weak solution.

Proof. First, we prove that, for each 0 € (0, 1], I, satisfy the
Cerami condition. Indeed, let {v,} ¢ E be an arbitrary Cerami
sequence of Iy. Set ¢ = f(vn)/f'(vn). Then [¢ll; < Cllv,llg.
Similar to the proof of (63), we can prove that {v,} is bounded
in E. Hence, by Lemma 3, the sequence {v,} possesses a
convergent subsequence in E. This shows that I, satisfy the
Cerami condition.

Next, for any € > 0, by (h;), (h,), (f3), and (f;), there
exists C(e) > 0 such that

H(x, f (1)) < e’ + C(e) |t|"* (101)

for all (x,¢) € RN x R. For small 0 < p < 1,set

S, = {veE: |Vl =p}. (102)
Then, from (101), for v € SP,
1
Iy = - JRN [IVV] +V (x) f2 (v)] dx
0 )
*3 JRN V (x) vidx - JRN H(x, f (v))dx
> g J . [|V1/|2 +V (x) vz] dx
. (103)

—sJ vzdx—C(s)J |v|P/2dx
RN RN

0 2 20 2 /2 /2
> EIIVIIE —ea) vl - C(e) aﬁ,z Ivil%

> p’ <§ —Cp(p_‘”/z) >8>0
for small € > 0 and p > 0. Moreover, by (h;), for any (x, z) €
RN x R with |z| > r, one has

H (x,2) 2 g|z|”. (104)

Since p > 4, there exists a constant 4 < « < min{y,2(2")}.
Hence, by (f5), we have

m —H (x,f(t)) = lim
e|*2

i H(x, f®) [fO _
H—co |f (1)

|t] = oo

12
(105)

1

uniformly in x € RY. Consequently, there exist constants T >
1 such that

H(x f @)= [t V=1, (106)

for all x € RV, For any finite-dimensional subspace E ¢ E, by
the equivalency of all norms in the finite-dimensional space,
there is a constant a > 0 such that

IVlla2 = allvllg, Vve E. (107)

By (h,), (h,), and (106), there exists a positive constant C > 0
such that

H(x, f @)= |t1**-Ct*, V(x,t) e R¥N xR (108)
Since 4 < a < 2(2%), by (f3), (107), and (108), we have
I, () = % JRN [I9VE +V (x) £2 ()] dx
0 2
*3 LN V (%) vidx — LN H(x, f (v))dx (109)

2 2 2
< I = IVIE75 + Cllvl;

< Clvlig - a* vl
for all v € E. Hence there exists a large R > 0 such that I, < 0
on E\BR. Seta fixed e € E with lellz; = 1. Forany fixed T > p,

define the path hy : [0,1] +— E C E by hy(t) = tTe. Then for
large T' > 0, by (109), one has

I, (hy (1)) < CT? = a**1°* < 0,

lhe W]z =T > p, (110)

sup Iy (hy (1)) < CT? < +00.
te[0,1]

Hence by Theorem 2.2 with the Cerami condition in [20], I
possesses a critical value

G = %}rgtlel}é)l(]lg (y(®)=6>0,
) an)
¢ < sup Iy (hy (1)) < CT7,
te[0,1]

where
[={yeC(0,1],E): y(0) =0,y (1) = hp ()}.  (112)
Consequently, by Theorem 5, we know that (1) has a weak
solution. This completes the proof of Theorem 6. O

Remark 7 Let v' = max{v,0} and v~ = max{-v, 0}. Set

I (u) = % LN [IVV] +V (x) f2 (v)] dx

- | HE e ax (113)

=30 LN V (x)vdx + I* (v)

instead of I(u) and Iy(u), respectively. Then, under the
conditions of Theorem 6, we can obtain the existence of a
positive solution and a negative solution for (1).
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Theorem 8. Assume conditions (V), (h,)-(hs) hold. If h(x, s)
is odd in s, then (1) has a sequence {v,,} of solutions such that
I(v,,) — +00.

Proof. Consider the eigenvalue of the operate L = —A + V.
By assumption (V) and the compactness of the embedding
E — L*RY), we know that the spectrum o(L) =
AL A, -} of L with

0<A <Ay<-o- <A, < (114)

and A, — +ocoasn — +oo (see page 3820 in [21]). Let
@, be the eigenfunction corresponding to A,. By regularity
argument we know that ¢, € E.Set E,, = span{@;, ¢,,...,¢,}.
Then we can decompose the space Eas E = E, @ W, forn =
1,2,..., where W, is orthogonal to E,, in E. For p > 0, set

Q, = {v €E: LN [V +V () 2 ()] dx < PZ} - (115)

By (109) there exists r,, > 0 independent of 6 such that

I(») <0, YveE,\Q,. (116)
Set
Dn = En n Qr,ﬂ
G, = {(p € C(D,,E) : ¢ is odd and 9|y g, = id},
- (117)
L= 1{9(D\Q,) 9 G nzj
A=-ACE,NQ, isclosed and y (A) < n—j},
where y(-) is the genus. Let
¢ (0) = infsuply, j=1,2.... (118)

Belj yeB

We have the following three facts (we refer the reader to [16]
for their proofs).

Fact (I). Foreach B € T;,if0 < p < r, foralln > j,
then BNoQ, N W;_; #0.

Fact (2). There exist constants a; < ﬁj such that
cj(9) € [ocj,,Bj] and ®j — +ooasj — +0o.

Fact (3). c]-(9), j=1,2,...are critical values of I,.

Consequently, Theorem 8 follows from Theorem 5 and the
above Facts (2)-(3). This completes the proof. O

Corollary 9. Ifthe following conditions (hy) and (hs) are used
in place of (h;); then the conclusions of Theorem 5, Theorem 6,
and Theorem 8 hold:

(hs) there exist u > 4 and T > 0 such that

inf H(x, s) > 0 uniformly in x € RN,

— +00

uH (x,s) < h(x,s)s (119)

forall x € RY and |s| > 7.

Abstract and Applied Analysis

Proof. By (h,), there are constants A > 0 and r; > 0 such that
whenever |s| > r|, one has

H(x,s) >, VxeRY. (120)
Set r = max{t, r;}. Then, by (hs),
G:= inf H(x,s)=A>0,
x€RN |s|=r
(121)

puH (x,s) < h(x,s)s

for all x € RN and |s| > r. Therefore, condition (h3) holds.
This completes the proof. O
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