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We study the quasilinear Schrödinger equation of the form−Δ𝑢+𝑉(𝑥)𝑢−Δ(𝑢

2
)𝑢 = ℎ(𝑥, 𝑢),𝑥 ∈ 𝑅

𝑁. Under appropriate assumptions
on 𝑉(𝑥) and ℎ(𝑥, 𝑢), existence results of nontrivial solutions and high energy solutions are obtained by the dual-perturbation
method.

1. Introduction and Preliminaries

In this paper we consider the quasilinear Schrödinger equa-
tion of the form

−Δ𝑢 + 𝑉 (𝑥) 𝑢 − Δ (𝑢

2
) 𝑢 = ℎ (𝑥, 𝑢) , 𝑥 ∈ 𝑅

𝑁
, (1)

where ℎ ∈ 𝐶(𝑅

𝑁
× 𝑅, 𝑅) and 𝑉 ∈ 𝐶(𝑅

𝑁
, 𝑅). Solutions of (1)

are standing waves of the following quasilinear Schrödinger
equation:

𝑖𝜓

𝑡
+ Δ𝜓 − 𝑉 (𝑥) 𝜓 + 𝑘Δ (𝛼 (









𝜓









2

)) 𝛼


(









𝜓









2

) 𝜓

+ 𝑔 (𝑥, 𝜓) = 0, 𝑥 ∈ 𝑅

𝑁
,

(2)

where𝑉(𝑥) is a given potential, 𝑘 is a real constant, and 𝛼 and
𝑔 are real functions. The quasilinear Schrödinger equations
(2) are derived as models of several physical phenomena; for
example, see [1–5]. Several methods can be used to solve (1).
For instance, the existence of a positive ground state solution
has been proved in [6, 7] by using a constrainedminimization
argument; the problem is transformed to a semilinear one
in [8–11] by a change of variables (dual approach); Nehari
method is used to get the existence results of ground state
solutions in [12, 13].

Recently, some new methods have been applied to these
equations. In [14], the authors prove that the critical points

are 𝐿∞ functions by the Moser’s iteration; then the existence
of multibump type solutions is constructed for this class of
quasilinear Schrödinger equations. In [15], by analysing the
behavior of the solutions for subcritical case, the authors
pass to the limit as the exponent approaches to the critical
exponent in order to establish the existence of both one-
sign and nodal ground state solutions. Another new method
which works for these equations is perturbations. In [16] 4-
Laplacian perturbations are led into these equations; then
high energy solutions are obtained on bounded smooth
domain.

In this paper, the perturbation, combined with dual
approach, is applied to search the existence of nontrivial
solution and sequence of high energy solutions of (1) on the
whole space 𝑅𝑁. For simplicity we call this method the dual-
perturbation method.

We need the following several notations. Let 𝐶∞

𝑐
(𝑅

𝑁
) be

the collection of smooth functions with compact support. Let

𝐻

1
(𝑅) := {𝑢 ∈ 𝐿

2
(𝑅

𝑁
) : |∇𝑢| ∈ 𝐿

2
(𝑅

𝑁
)} , (3)

with the inner product

⟨𝑢, V⟩𝐻1 = ∫

𝑅
𝑁

[∇𝑢 ⋅ ∇V + 𝑢V] 𝑑𝑥 (4)
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and the norm

‖𝑢‖𝐻
1 = ⟨𝑢, 𝑢⟩

1/2

𝐻
1 .

(5)

Let the following assumption (𝑉) hold:

(𝑉) 𝑉 ∈ 𝐶(𝑅

𝑁
, 𝑅) satisfies inf

𝑥∈𝑅
𝑁𝑉(𝑥) ≥ 𝑎

0
> 0 and

lim
|𝑥|→∞

𝑉(𝑥) = +∞.

Set

𝐸 := {𝑢 ∈ 𝐻

1
(𝑅

𝑁
) : ∫

R𝑁
𝑉 (𝑥) 𝑢

2
𝑑𝑥 < +∞} (6)

with the inner product

⟨𝑢, V⟩𝐸 = ∫

𝑅
𝑁

[∇𝑢 ⋅ ∇V + 𝑉 (𝑥) 𝑢V] 𝑑𝑥 (7)

and the norm

‖𝑢‖𝐸
= ⟨𝑢, 𝑢⟩

1/2

𝐸
.

(8)

Then both𝐻

1
(𝑅

𝑁
) and 𝐸 are Hilbert spaces.

By the continuity of the embedding 𝐸 → 𝐿

𝑠
(R𝑁

) for 𝑠 ∈
[2, 2

∗
]we know that, for each 𝑠 ∈ [2, 2

∗
], there exists constant

𝑎

𝑠
> 0 such that

‖𝑢‖𝑠
≤ 𝑎

𝑠‖
𝑢‖𝐸

, ∀𝑢 ∈ 𝐸, (9)

where ‖ ⋅ ‖
𝑠
denotes the 𝐿𝑠-norm. In the following, we use 𝐶

or𝐶
𝑖
to denote various positive constants. Moreover, we need

the following assumptions:

(ℎ

1
) there exist 4 < 𝑝 < 2(2

∗
) if𝑁 ≥ 3 and 4 < 𝑝 < ∞ if

𝑁 = 2 such that

|ℎ (𝑥, 𝑠)| ≤ 𝐶 (1 + |𝑠|

𝑝−1
) , ∀𝑠 ∈ 𝑅, (10)

(ℎ

2
) lim

𝑠→0
ℎ(𝑥, 𝑠)/𝑠 = 0 uniformly in 𝑥 ∈ 𝑅

𝑁,
(ℎ

3
) there exist 𝜇 > 4 and 𝑟 > 0 such that

𝑐

0
:= inf

𝑥∈𝑅
𝑁
,|𝑠|=𝑟

𝐻(𝑥, 𝑠) > 0,

𝜇𝐻 (𝑥, 𝑠) ≤ ℎ (𝑥, 𝑠) 𝑠

(11)

for all 𝑥 ∈ 𝑅

𝑁 and |𝑠| ≥ 𝑟, where𝐻(𝑥, 𝑠) = ∫

𝑠

0
ℎ(𝑥, 𝑡)𝑑𝑡.

By Lemma 3.4 in [17] we know that, under the assumption
(𝑉), the embedding 𝐸 → 𝐿

𝑠
(𝑅

𝑁
) is compact for each 2 ≤ 𝑠 <

2

∗.
Equation (1) is the Euler-Lagrange equation of the energy

functional

𝐽 (𝑢) =

1

2

∫

𝑅
𝑁

[(1 + 2𝑢

2
) |∇𝑢|

2
+ 𝑉 (𝑥) 𝑢

2
] 𝑑𝑥

− ∫

𝑅
𝑁

𝐻(𝑥, 𝑢) 𝑑𝑥,

(12)

where𝐻(𝑥, 𝑢) = ∫

𝑢

0
ℎ(𝑥, 𝑡)𝑑𝑡. Due to the presence of the term

∫

𝑅
𝑁
𝑢

2
|∇𝑢|

2
𝑑𝑥, 𝐽(𝑢) is not well defined in 𝐸. To overcome this

difficulty, a dual approach is used in [9, 10]. Following the idea
from these papers, let 𝑓 be defined by

𝑓


(𝑡) =

1

√
1 + 2𝑓

2
(𝑡)

(13)

on [0, +∞), 𝑓(0) = 0 and 𝑓(−𝑡) = −𝑓(𝑡) on (−∞, 0]. Then 𝑓

has the following properties:

(𝑓

1
) 𝑓 is uniquely defined 𝐶∞ function and invertible;

(𝑓

2
) 0 < 𝑓


(𝑡) ≤ 1 for all 𝑡 ∈ 𝑅;

(𝑓

3
) |𝑓(𝑡)| ≤ |𝑡| for all 𝑡 ∈ 𝑅;

(𝑓

4
) lim

𝑡→0
𝑓(𝑡)/𝑡 = 1;

(𝑓

5
) lim

𝑡→+∞
𝑓(𝑡)/

√

𝑡 = 2

1/4, lim
𝑡→−∞

𝑓(𝑡)/

√

|𝑡| = −2

1/4;
(𝑓

6
) (1/2)𝑓(𝑡) ≤ 𝑡𝑓


(𝑡) ≤ 𝑓(𝑡) for all 𝑡 ≥ 0 and 𝑓(𝑡) ≤

𝑡𝑓


(𝑡) ≤ (1/2)𝑓(𝑡) for all 𝑡 ≤ 0;

(𝑓

7
) |𝑓(𝑡)| ≤ 2

1/4
√

|𝑡| for all 𝑡 ∈ 𝑅;
(𝑓

8
) the function 𝑓

2
(𝑡) is strictly convex;

(𝑓

9
) there exists a positive 𝐶 such that









𝑓 (𝑡)









≥ {

𝐶 |𝑡| , |𝑡| ≤ 1,

𝐶|𝑡|

1/2
, |𝑡| ≥ 1;

(14)

(𝑓

10
) there exist positive constants 𝐶

1
and 𝐶

2
such that

|𝑡| ≤ 𝐶

1









𝑓 (𝑡)









+ 𝐶

2









𝑓 (𝑡)









2 (15)

for all 𝑡 ∈ 𝑅;
(𝑓

11
) |𝑓(𝑡)𝑓


(𝑡)| ≤ 1/

√

2 for all 𝑡 ∈ 𝑅;
(𝑓

12
) for each 𝜉 > 0, there exists𝐶(𝜉) > 0 such that𝑓2

(𝜉𝑡) ≤

𝐶(𝜉)𝑓

2
(𝑡).

The properties (𝑓
1
)–(𝑓

11
) have been proved in [8–11]. It

suffices to prove (𝑓
12
).

Indeed, by (𝑓
1
), (𝑓

4
), and (𝑓

5
), there exist𝛿 > 0 and𝑀 > 0

such that, for |𝑡| ≤ 𝛿,

1

2

𝑡

2
≤ 𝑓

2
(𝑡) ≤

3

2

𝑡

2
,

(16)

and for |𝑡| ≥ 𝑀,

√

2

2

|𝑡| ≤ 𝑓

2
(𝑡) ≤

3

√

2

2

|𝑡| .

(17)

Since there exists a 𝐶
0
> 0 such that 𝑓2

(2𝑡) ≤ 𝐶

0
𝑓

2
(𝑡) (see

[10]), we can assume that 0 < 𝜉 < 1. For |𝑡| ≤ 𝛿, we have
|𝜉𝑡| ≤ 𝛿, and hence

𝑓

2
(𝜉𝑡) ≤

3

2

𝜉

2
𝑡

2
≤ 3𝜉

2
𝑓

2
(𝑡) ;

(18)

for |𝑡| ≥ 𝑀/𝜉 > 𝑀, one has |𝜉𝑡| ≥ 𝑀, and hence

𝑓

2
(𝜉𝑡) ≤

3

√

2

2

𝜉 |𝑡| ≤ 3𝜉𝑓

2
(𝑡) ;

(19)
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and for 𝛿 ≤ |𝑡| ≤ 𝑀/𝜉, there exist 𝑚(𝜉) > 0 and 𝑀(𝜉) > 0

such that 𝑓2
(𝜉𝑡) ≤ 𝑀(𝜉) and 𝑓2

(𝑡) ≥ 𝑚(𝜉). Then we have

𝑓

2
(𝜉𝑡) ≤ 𝑀 (𝜉) ≤

𝑀 (𝜉)

𝑚 (𝜉)

𝑓

2
(𝑡) . (20)

Hence 𝑓

2
(𝜉𝑡) ≤ 𝐶(𝜉)𝑓

2
(𝑡), where 𝐶(𝜉) = max{3𝜉2,𝑀(𝜉)/

𝑚(𝜉)}.
After the change of variable, 𝐽(𝑢) can be reduced to

𝐼 (V) := 𝐽 (𝑓 (V)) =
1

2

∫

𝑅
𝑁

(|∇V|2 + 𝑉 (𝑥) 𝑓

2
(V)) 𝑑𝑥

− ∫

𝑅
𝑁

𝐻(𝑥, 𝑓 (V)) 𝑑𝑥.

(21)

From [8, 9, 11] we know that if V ∈ 𝐸 is a critical point of 𝐼,
that is,

⟨𝐼


(V) , 𝜑⟩ = ∫

𝑅
𝑁

∇V∇𝜑𝑑𝑥 + ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓 (V) 𝑓
(V) 𝜑𝑑𝑥

− ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V)) 𝑓
(V) 𝜑𝑑𝑥 = 0

(22)

for all 𝜑 ∈ 𝐸, then 𝑢 := 𝑓(V) is a weak solution of (1).
Particularly, if V ∈ 𝐻

1
(𝑅

𝑁
) ∩ 𝐶

2
(𝑅

𝑁
) is a critical point of 𝐼,

then 𝑢 := 𝑓(V) is a classical solution of (1).
A sequence {𝑢

𝑛
} ⊂ 𝐸 is called a Cerami sequence of 𝐽 if

{𝐽(𝑢

𝑛
)} is bounded and (1 + ‖𝑢

𝑛
‖)𝐽


(𝑢

𝑛
) → 0 in 𝐸

∗. We say
that 𝐽 satisfies the Cerami condition if every Cerami sequence
possesses a convergent subsequence.

2. Some Lemmas

Consider the following perturbation functional 𝐼
𝜃
defined by

𝐼

𝜃
(V) = 𝐼 (V) +

𝜃

2

∫

𝑅
𝑁

𝑉 (𝑥) V2𝑑𝑥, (23)

where 𝜃 ∈ (0, 1]. We have the following lemmas.

Lemma 1. If assumptions (𝑉), (ℎ
1
), and (ℎ

2
) hold, then the

functional 𝐼
𝜃
is well defined on 𝐸 and 𝐼

𝜃
∈ 𝐶

1
(𝐸, 𝑅).

Proof. By conditions (ℎ
1
) and (ℎ

2
), the properties (𝑓

2
), (𝑓

3
),

(𝑓

7
), and (𝑓

11
) imply that there exists 𝛿 > 0 such that











ℎ (𝑥, 𝑓 (V)) 𝑓
(V)











≤









𝑓 (V)




𝑓


(V) ≤ |V| for |V| < 𝛿,











ℎ (𝑥, 𝑓 (V)) 𝑓
(V)











≤ 𝐶









𝑓 (V)




𝑝−1

𝑓


(V)

≤ 𝐶









𝑓 (V)




𝑝−2

≤ 𝐶|V|(𝑝−2)/2 for |V| ≥ 𝛿.

(24)

Hence










ℎ (𝑥, 𝑓 (V)) 𝑓
(V)











≤ 𝐶 (|V| + |V|(𝑝/2)−1) , (25)









𝐻 (𝑥, 𝑓 (V))




≤ 𝐶 (|V|2 + |V|𝑝/2) (26)

for all V ∈ 𝑅. By (26) and the continuity of the embedding
𝐸 → 𝐿

𝑠
(𝑅

𝑁
) (𝑠 ∈ [2, 2

∗
]),

∫

𝑅
𝑁

𝐻(𝑥, 𝑓 (V)) 𝑑𝑥 < +∞, ∀V ∈ 𝐸. (27)

Hence 𝐼
𝜃
is well defined in 𝐸.

Now, we prove that 𝐼
𝜃
∈ 𝐶

1
(𝐸, 𝑅). It suffices to prove that

Ψ

1
(V) := ∫

𝑅
𝑁

𝐻(𝑥, 𝑓 (V)) 𝑑𝑥 ∈ 𝐶

1
(𝐸, 𝑅) ,

Ψ

2
(V) := ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V) 𝑑𝑥 ∈ 𝐶

1
(𝐸, 𝑅) .

(28)

For any V, 𝜙 ∈ 𝐸 and 0 < |𝑡| < 1, by the mean value
theorem, (25) and (𝑓

2
)-(𝑓

3
), we have









𝐻 (𝑥, 𝑓 (V + 𝑡𝜙)) − 𝐻 (𝑥, 𝑓 (V))




|𝑡|

≤ ∫

1

0











ℎ (𝑓 (𝑥, V + 𝑠𝑡𝜙)) 𝑓


(V + 𝑠𝑡𝜙) 𝜙











𝑑𝑠

≤ 𝐶 [|V| 


𝜙









+









𝜙









2

+ |V|(𝑝−2)/2 


𝜙









+









𝜙









𝑝/2

] ,











𝑉 (𝑥) 𝑓

2
(V + 𝑡𝜙) − 𝑉 (𝑥) 𝑓

2
(V)











|𝑡|

≤ 2∫

1

0

𝑉 (𝑥)











𝑓 (V + 𝑠𝑡𝜙) 𝑓


(V + 𝑠𝑡𝜙) 𝜙











𝑑𝑠

≤ 2𝑉 (𝑥) ∫

1

0









V + 𝑠𝑡𝜙

















𝜙









𝑑𝑠

≤ 2𝑉 (𝑥) [|V| 


𝜙









+









𝜙









2

] .

(29)

The Hölder inequality implies that

𝐶[|V| 


𝜙









+









𝜙









2

+ |V|(𝑝−2)/2 


𝜙









+









𝜙









𝑝/2

] ∈ 𝐿

1
(𝑅

𝑁
) ,

2𝑉 (𝑥) [|V| 


𝜙









+









𝜙









2

] ∈ 𝐿

1
(𝑅

𝑁
) .

(30)

Hence, by the Lebesgue theorem, we have

⟨Ψ



1
(V) , 𝜙⟩ = ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V)) 𝑓
(V) 𝜙𝑑𝑥,

⟨Ψ



2
(V) , 𝜙⟩ = 2∫

𝑅
𝑁

𝑉 (𝑥) 𝑓 (V) 𝑓
(V) 𝜙𝑑𝑥

(31)

for all 𝜙 ∈ 𝐸. Now, we show that Ψ

𝑖
(⋅) : 𝐸 → 𝐸

∗, 𝑖 = 1, 2, are
continuous. Indeed, if V

𝑛
→ V in 𝐸, then V

𝑛
→ V in 𝐿

𝑠
(𝑅

𝑁
)

for all 𝑠 ∈ [2, 2

∗
].

On the space 𝐿𝑝1(𝑅𝑁
) ∩ 𝐿

𝑝
2
(𝑅

𝑁
), we define the norm

‖V‖𝑝
1
∧𝑝
2

= ‖V‖𝑝
1

+ ‖V‖𝑝
2

. (32)

Then

V
𝑛
→ V in 𝐿

2
(𝑅

𝑁
) ∩ 𝐿

(𝑝/2)−1
(𝑅

𝑁
) . (33)
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Moreover, on the space 𝐿

𝑝
1
(𝑅

𝑁
) + 𝐿

𝑝
2
(𝑅

𝑁
), we define the

norm

‖V‖𝑝
1
∨𝑝
2

= inf {‖𝑢‖𝑝
1

+ ‖𝑤‖𝑝
2

: V

= 𝑢 + 𝑤, 𝑢 ∈ 𝐿

𝑝
1
(𝑅

𝑁
) , 𝑤 ∈ 𝐿

𝑝
2
(𝑅

𝑁
) } .

(34)

By (25), we have










ℎ (𝑥, 𝑓 (V)) 𝑓
(V)











≤ 𝐶 (|V| + |V|(𝑝/2)−1)

≤ 𝐶 (|V|2/2 + |V|𝑞/𝑟) ,
(35)

where 𝑞 = 𝑝/2 and 𝑟 = 𝑝/(𝑝 − 2). ThenTheorem A.4 in [18]
implies

ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓


(V

𝑛
) − ℎ (𝑥, 𝑓 (V)) 𝑓

(V) → 0

in 𝐿2 (𝑅𝑁
) + 𝐿

𝑟
(𝑅

𝑁
)

(36)

as 𝑛 → +∞. If ℎ(𝑥, 𝑓(V
𝑛
))𝑓


(V

𝑛
) − ℎ(𝑥, 𝑓(V))𝑓

(V) = 𝑦

𝑛
+ 𝑧

𝑛

with 𝑦

𝑛
∈ 𝐿

2
(𝑅

𝑁
) and 𝑧

𝑛
∈ 𝐿

𝑟
(𝑅

𝑁
), one has

















∫

𝑅
𝑁

[ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓


(V

𝑛
) − ℎ (𝑥, 𝑓 (V)) 𝑓

(V)] 𝜙𝑑𝑥
















≤ ∫

𝑅
𝑁









𝑦

𝑛

















𝜙









+









𝑧

𝑛

















𝜙









𝑑𝑥

≤ 𝐶 (









𝑦

𝑛







2
+









𝑧

𝑛







𝑟
)









𝜙







𝐸
.

(37)

Hence
















∫

𝑅
𝑁

[ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓


(V

𝑛
) − ℎ (𝑥, 𝑓 (V)) 𝑓

(V)] 𝜙𝑑𝑥
















≤ 𝐶











ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓


(V

𝑛
) − ℎ (𝑥, 𝑓 (V)) 𝑓

(V)








2∨𝑟









𝜙







𝐸
,

(38)

and hence










Ψ



1
(V

𝑛
) − Ψ



1
(V)











→ 0 (39)

as 𝑛 → ∞. Therefore, Ψ
1
∈ 𝐶

1
(𝐸, 𝑅).

Define

𝐿

𝑠

𝑉
(𝑅

𝑁
) = {𝑢 : 𝑅

𝑁
→ 𝑅 : 𝑢 is measurable

and ∫

𝑅
𝑁

𝑉 (𝑥) 𝑢

𝑠
𝑑𝑥 < ∞}

(40)

with the norm ‖𝑢‖

𝐿
𝑠

𝑉

= (∫

𝑅
𝑁
𝑉(𝑥)𝑢

𝑠
𝑑𝑥)

1/𝑠. On the space
𝐿

𝑝
1

𝑉
(𝑅

𝑁
) ∩ 𝐿

𝑝
2

𝑉
(𝑅

𝑁
), we define the norm

‖V‖𝑝
1
∧𝑝
2

= ‖V‖
𝐿
𝑝1

𝑉

+ ‖V‖
𝐿
𝑝2

𝑉

. (41)

On the space 𝐿𝑝1
𝑉
(𝑅

𝑁
) + 𝐿

𝑝
2

𝑉
(𝑅

𝑁
), we define the norm

‖V‖𝑝
1
∨𝑝
2

= inf {‖V‖𝑝
1
∨𝑝
2

= ‖𝑢‖

𝐿
𝑝1

𝑉

+ ‖𝑤‖

𝐿
𝑝2

𝑉

:

V = 𝑢 + 𝑤, 𝑢 ∈ 𝐿

𝑝
1

𝑉
(𝑅

𝑁
) , 𝑤 ∈ 𝐿

𝑝
2

𝑉
(𝑅

𝑁
) } .

(42)

From V
𝑛
→ V in 𝐸, one has V

𝑛
, V ∈ 𝐿

2

𝑉
(𝑅

𝑁
) and

V
𝑛
→ V in 𝐿

2

𝑉
(𝑅

𝑁
) ∩ 𝐿

2

𝑉
(𝑅

𝑁
) (43)

as 𝑛 → ∞. Since |𝑓(V)𝑓
(V)| ≤ |V|, by the following

Lemma 2, we have

𝑓 (V
𝑛
) 𝑓


(V

𝑛
) → 𝑓 (V) 𝑓

(V) in 𝐿2
𝑉
(𝑅

𝑁
) + 𝐿

2

𝑉
(𝑅

𝑁
) .

(44)

If 𝑓(V
𝑛
)𝑓


(V

𝑛
) − 𝑓(V)𝑓

(V) = 𝑦

𝑛
+ 𝑧

𝑛
with 𝑦

𝑛
∈ 𝐿

2

𝑉
(𝑅

𝑁
) and

𝑧

𝑛
∈ 𝐿

2

𝑉
(𝑅

𝑁
), one has

















∫

𝑅
𝑁

𝑉 (𝑥) [𝑓 (V
𝑛
) 𝑓


(V

𝑛
) − 𝑓 (V) 𝑓

(V)] 𝜙𝑑𝑥
















≤ ∫

𝑅
𝑁

𝑉 (𝑥)









𝑦

𝑛

















𝜙









+ 𝑉 (𝑥)









𝑧

𝑛

















𝜙









𝑑𝑥

≤ (









𝑦

𝑛







𝐿
2

𝑉

+









𝑧

𝑛







𝐿
2

𝑉

)









𝜙







𝐸
.

(45)

Hence
















∫

𝑅
𝑁

𝑉 (𝑥) [𝑓 (V
𝑛
) 𝑓


(V

𝑛
) − 𝑓 (V) 𝑓

(V)] 𝜙𝑑𝑥
















≤











𝑓(V
𝑛
)𝑓


(V

𝑛
) − 𝑓 (V) 𝑓

(V)








2∨2









𝜙







𝐸
,

(46)

and hence










Ψ



2
(V

𝑛
) − Ψ



2
(V)











→ 0 (47)

as 𝑛 → ∞. Therefore, Ψ
2
∈ 𝐶

1
(𝐸, 𝑅). This completes the

proof.

Lemma 2. Assume that 1 ≤ 𝑝, 𝑞, 𝑟, 𝑠 < +∞, 𝑔 ∈ 𝐶(𝑅

𝑁
× 𝑅)

and









𝑔 (𝑥, V)




≤ 𝐶 (|V|𝑝/𝑟 + |V|𝑞/𝑠) . (48)

Then, for every V ∈ 𝐿

𝑝

𝑉
(𝑅

𝑁
) ∩ 𝐿

𝑞

𝑉
(𝑅

𝑁
), 𝑔(⋅, V) ∈ 𝐿

𝑟

𝑉
(𝑅

𝑁
) +

𝐿

𝑠

𝑉
(𝑅

𝑁
), and the operator

𝐴 : 𝐿

𝑝

𝑉
(𝑅

𝑁
) ∩ 𝐿

𝑞

𝑉
(𝑅

𝑁
)

→ 𝐿

𝑟

𝑉
(𝑅

𝑁
) + 𝐿

𝑠

𝑉
(𝑅

𝑁
) : V → 𝑔 (𝑥, V)

(49)

is continuous.

Proof. Let 𝜂(𝑠) be a smooth cut-off function such that 𝜂(𝑠) = 1

for |𝑠| ≤ 1 and 𝜂(𝑠) = 0 for |𝑠| ≥ 2. Define

𝑔

1
(𝑥, V) := 𝜂 (V) 𝑔 (𝑥, V) ,

𝑔

2
(𝑥, V) := (1 − 𝜂 (V)) 𝑔 (𝑥, V) .

(50)

We can assume that 𝑝/𝑟 ≤ 𝑞/𝑠. Hence









𝑔

1
(𝑥, V)





≤ 𝐶|V|𝑝/𝑟, 







𝑔

2
(𝑥, V)





≤ 𝐶|V|𝑞/𝑠 (51)
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for all (𝑥, V) ∈ 𝑅

𝑁
×𝑅. Assume V

𝑛
→ V in 𝐿𝑝

𝑉
(𝑅

𝑁
) ∩𝐿

𝑞

𝑉
(𝑅

𝑁
).

Then V
𝑛
→ V in𝐿𝑝

𝑉
(𝑅

𝑁
) and𝑔(⋅, V

𝑛
) → 𝑔(⋅, V) in𝐿𝑟

𝑉
(𝑅

𝑁
). As

in the proof of Lemma A.1 in [18], there exists a subsequence
{𝑤

𝑛
} of {V

𝑛
} and 𝛼 ∈ 𝐿

𝑝

𝑉
(𝑅

𝑁
) such that 𝑤

𝑛
(𝑥) → V(𝑥) and

|V(𝑥)|, |𝑤
𝑛
(𝑥)| ≤ 𝛼(𝑥) for a.e. 𝑥 ∈ 𝑅

𝑁. Hence, from (51), one
has









𝑔

1
(𝑥, 𝑤

𝑛
) − 𝑔

1
(𝑥, V)





𝑟

≤ 2

𝑟
𝐶|𝛼 (𝑥)|

𝑝 (52)

a.e. on 𝑅

𝑁. It follows from the Lebesgue theorem that
𝑔

1
(⋅, 𝑤

𝑛
) → 𝑔

1
(⋅, V) in 𝐿

𝑟

𝑉
(𝑅

𝑁
). Consequently, 𝑔

1
(⋅, V

𝑛
) →

𝑔

1
(⋅, V) in 𝐿

𝑟

𝑉
(𝑅

𝑁
). Similarly, we can prove 𝑔

2
(⋅, V

𝑛
) →

𝑔

2
(⋅, V) in 𝐿

𝑠

𝑉
. Since









𝑔 (⋅, V
𝑛
) − 𝑔 (⋅, V)



𝑟∨𝑠
≤









𝑔

1
(⋅, V

𝑛
) − 𝑔

1
(⋅, V)



𝐿
𝑟

𝑉

+









𝑔

2
(⋅, V

𝑛
) − 𝑔

2
(⋅, V)



𝐿
𝑠

𝑉

,

(53)

it follows that 𝑔(⋅, V
𝑛
) → 𝑔(⋅, V) in 𝐿

𝑟

𝑉
+ 𝐿

𝑠

𝑉
. This completes

the proof.

Lemma 3. Let (𝑉), (ℎ
1
), and (ℎ

2
) hold. Then every bounded

sequence {V
𝑛
} ⊂ 𝐸 with 𝐼



𝜃
(V

𝑛
) → 0 possesses a convergent

subsequence.

Proof. Since {V
𝑛
} ⊂ 𝐸 is bounded, then, by the compactness

of the embedding 𝐸 → 𝐿

𝑠
(𝑅

𝑁
) (2 ≤ 𝑠 < 2

∗), passing to a
subsequence, one has V

𝑛
⇀ V in 𝐸, V

𝑛
→ V in 𝐿

𝑠
(𝑅

𝑁
) for all

2 ≤ 𝑠 < 2

∗, and V
𝑛
(𝑥) → V(𝑥) for a.e. 𝑥 ∈ 𝑅

𝑁. By (25)
















∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓


(V

𝑛
) (V − V

𝑛
) 𝑑𝑥

















≤ ∫

𝑅
𝑁

𝐶(









V
𝑛









+









V
𝑛









(𝑝/2)−1

)









V
𝑛
− V





𝑑𝑥

≤ 𝐶 (









V
𝑛







2









V
𝑛
− V



2
+









V
𝑛









(𝑝/2)−1

𝑝/2









V
𝑛
− V



𝑝/2
)

≤ 𝐶 (









V
𝑛







𝐸









V
𝑛
− V



2
+









V
𝑛









(𝑝/2)−1

𝐸









V
𝑛
− V



𝑝/2
) → 0

(54)

as 𝑛 → ∞. Similarly, ∫
𝑅
𝑁
ℎ(𝑥, 𝑓(V))𝑓

(V)(V − V
𝑛
)𝑑𝑥 → 0 as

𝑛 → ∞. Hence, by the property of (𝑓
8
), we have

⟨𝐼



𝜃
(V

𝑛
) − 𝐼



𝜃
(V) , V

𝑛
− V⟩

= ∫

𝑅
𝑁









∇ (V
𝑛
− V)





2

𝑑𝑥 + 𝜃∫

𝑅
𝑁

𝑉 (𝑥)









V
𝑛
− V





2

𝑑𝑥

+ ∫

𝑅
𝑁

𝑉 (𝑥) [𝑓 (V
𝑛
) 𝑓


(V

𝑛
) − 𝑓 (V) 𝑓

(V)]

× (V
𝑛
− V) 𝑑𝑥

− ∫

𝑅
𝑁

[ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓


(V

𝑛
)

−ℎ (𝑥, 𝑓 (V)) 𝑓
(V)] (V

𝑛
− V) 𝑑𝑥

≥ 𝜃









V
𝑛
− V





2

𝐸
− 𝑜

𝑛
(1) ,

(55)

where 𝑜
𝑛
(1) → 0 as 𝑛 → ∞.This shows that ‖V

𝑛
− V‖2

𝐸
→ 0

as 𝑛 → ∞. This completes the proof.

The following Lemma 4 has been proved in [10] (see
Proposition 2.1(3) in [10]).

Lemma 4. If V
𝑛
(𝑥) → V(𝑥) a.e. in 𝑅

𝑁 and
lim

𝑛→∞
∫

𝑅
𝑁
𝑉(𝑥)𝑓

2
(V

𝑛
)𝑑𝑥 = ∫

𝑅
𝑁
𝑉(𝑥)𝑓

2
(V)𝑑𝑥, then

∫

𝑅
𝑁
𝑉(𝑥)𝑓

2
(V

𝑛
− V)𝑑𝑥 → 0 as 𝑛 → ∞.

3. Main Results

Theorem5. Assume conditions (𝑉), (ℎ
1
)–(ℎ

3
) hold. Let {𝜃

𝑛
} ⊂

(0, 1] be such that 𝜃
𝑛
→ 0. Let V

𝑛
∈ 𝐸 be a critical point of 𝐼

𝜃
𝑛

with 𝐼
𝜃
𝑛

(V
𝑛
) ≤ 𝑐 for some constant 𝑐 independent of 𝑛. Then, up

to subsequence, one has V
𝑛
→ V in 𝐸, 𝐼

𝜃
𝑛

(V
𝑛
) → 𝐼(V) and V is

a critical point of 𝐼.

Proof. By (ℎ
2
), for 0 < 𝜀

0
< (1/4)(1/2 − 1/𝜇)𝑎

0
, there exists

𝛿

0
> 0 such that

















1

𝜇

𝑠ℎ (𝑥, 𝑠) − 𝐻 (𝑥, 𝑠)

















≤ 𝜀

0
𝑠

2
, ∀𝑠 ∈ [−𝛿

0
, 𝛿

0
] . (56)

By (ℎ

1
), for 𝛿

0
≤ |𝑠| ≤ 𝑟 (𝑟 is the constant appearing in

condition (ℎ

3
)), we have

















1

𝜇

𝑠ℎ (𝑥, 𝑠) − 𝐻 (𝑥, 𝑠)

















≤ 2𝐶(

1

𝛿

2

0

+ 𝑟

𝑝−2
) 𝑠

2
, (57)

where 𝐶 is the constant appearing in condition (ℎ

1
). Hence

















1

𝜇

𝑠ℎ (𝑥, 𝑠) − 𝐻 (𝑥, 𝑠)

















≤ 𝜀

0
𝑠

2
+ 2𝐶(

1

𝛿

2

0

+ 𝑟

𝑝−2
) 𝑠

2
,

∀𝑠 ∈ [−𝑟, 𝑟] .

(58)

Since lim
|𝑥|→∞

𝑉(𝑥) = +∞, there exists 𝜌
0
> 0 such that

1

4

(

1

2

−

1

𝜇

)𝑉 (𝑥) > 2𝐶(

1

𝛿

2

0

+ 𝑟

𝑝−2
) (59)

for all |𝑥| ≥ 𝜌

0
. Hence

(

1

2

−

1

𝜇

)∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V) 𝑑𝑥

+ ∫

{𝑥:|𝑓(V)|≤𝑟}
[

1

𝜇

𝑓 (V) ℎ (𝑥, 𝑓 (V))

−𝐻 (𝑥, 𝑓 (V)) ] 𝑑𝑥

≥

1

2

(

1

2

−

1

𝜇

)∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V) 𝑑𝑥

− 2𝐶(

1

𝛿

2

0

+ 𝑟

𝑝−2
) 𝑟

2 








𝐵

𝜌
0











.

(60)
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Since V
𝑛
is a critical point of 𝐼

𝜃
𝑛

,

⟨𝐼



𝜃
𝑛

(V
𝑛
) , 𝜙⟩ = ∫

𝑅
𝑁

∇V
𝑛
∇𝜙𝑑𝑥

+ ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓 (V
𝑛
) 𝑓


(V

𝑛
) 𝜙𝑑𝑥

+ 𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥) V
𝑛
𝜙𝑑𝑥

− ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓


(V

𝑛
) 𝜙𝑑𝑥 = 0

(61)

for all 𝜙 ∈ 𝐸. Consequently, taking 𝜙 = 𝑓(V
𝑛
)/𝑓


(V

𝑛
) ∈ 𝐸, by

(ℎ

3
) and (𝑓

6
) we have

𝑐 ≥ 𝐼

𝜃
𝑛

(V
𝑛
) = 𝐼

𝜃
𝑛

(V
𝑛
) −

1

𝜇

⟨𝐼



𝜃
𝑛

(V
𝑛
) ,

𝑓 (V
𝑛
)

𝑓


(V

𝑛
)

⟩

= ∫

𝑅
𝑁

[

1

2

−

1

𝜇

(1 +

2𝑓

2
(V

𝑛
)

1 + 2𝑓

2
(V

𝑛
)

)]









∇V
𝑛









2

𝑑𝑥

+ (

1

2

−

1

𝜇

)∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥

+

𝜃

𝑛

2

∫

𝑅
𝑁

𝑉 (𝑥) V2
𝑛
𝑑𝑥

−

𝜃

𝑛

𝜇

∫

𝑅
𝑁

𝑉 (𝑥)

V
𝑛
𝑓 (V

𝑛
)

𝑓


(V

𝑛
)

𝑑𝑥

+ ∫

𝑅
𝑁

[

1

𝜇

ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓 (V

𝑛
) − 𝐻 (𝑥, 𝑓 (V

𝑛
))] 𝑑𝑥

≥ (

1

2

−

2

𝜇

)∫

𝑅
𝑁









∇V
𝑛









2

𝑑𝑥 + (

1

2

−

1

𝜇

)∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥

+ (

1

2

−

2

𝜇

) 𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥) V2
𝑛
𝑑𝑥

+ ∫

{𝑥:|𝑓(V
𝑛
)|≤𝑟}

[

1

𝜇

ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓 (V

𝑛
)

−𝐻 (𝑥, 𝑓 (V
𝑛
)) ] 𝑑𝑥

≥ (

1

2

−

2

𝜇

)∫

𝑅
𝑁









∇V
𝑛









2

𝑑𝑥

+

1

2

(

1

2

−

1

𝜇

)∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥

+ (

1

2

−

2

𝜇

) 𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥) V2
𝑛
𝑑𝑥

− 2𝐶(

1

𝛿

2

0

+ 𝑟

𝑝−2
) 𝑟

2 








𝐵

𝜌
0











≥ (

1

2

−

2

𝜇

)∫

𝑅
𝑁









∇V
𝑛









2

𝑑𝑥

+ (

1

4

−

1

2𝜇

)∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥

+ (

1

2

−

2

𝜇

) 𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥) V2
𝑛
𝑑𝑥 − 𝐶

1
,

(62)

and hence

∫

𝑅
𝑁









∇V
𝑛









2

𝑑𝑥 + ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥

+ 𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥) V2
𝑛
𝑑𝑥 ≤ 𝐶

(63)

for some constant 𝐶 independent of 𝑛. By the boundedness
of ∫

𝑅
𝑁
|∇V

𝑛
|

2
𝑑𝑥, there exists 𝐶

2
> 0 such that

2∫

R𝑁
𝑓

2
(V

𝑛
)









∇𝑓 (V
𝑛
)









2

𝑑𝑥

≤ ∫

R𝑁
[1 + 2𝑓

2
(V

𝑛
)]









∇𝑓 (V
𝑛
)









2

𝑑𝑥

= ∫

R𝑁









∇V
𝑛









2

𝑑𝑥 ≤ 𝐶

2

(64)

for all 𝑛. Hence, by the Sobolev embedding theorem, one has









𝑓(V
𝑛
)









4

2(2
∗
)
=











𝑓

2
(V

𝑛
)











2

2
∗
≤ 𝐶

3











∇𝑓

2
(V

𝑛
)











2

2
≤ 𝐶.

(65)

Next, we prove that 𝑓(V
𝑛
) ∈ 𝐿

∞
(𝑅

𝑁
) and ‖𝑓(V

𝑛
)‖

𝐿
∞ ≤

𝐶, where the positive constant 𝐶 is independent of 𝑛. Setting
𝑇 > 2, 𝑟 > 0, define Ṽ𝑇

𝑛
= 𝑏(V

𝑛
), where 𝑏 : 𝑅 → 𝑅 is a smooth

function satisfying 𝑏(𝑠) = 𝑠 for |𝑠| ≤ 𝑇 − 1, 𝑏(−𝑠) = −𝑏(𝑠);
𝑏


(𝑠) = 0 for 𝑠 ≥ 𝑇, and 𝑏(𝑠) is decreasing in [𝑇 − 1, 𝑇].
This means that Ṽ𝑇

𝑛
= V

𝑛
, for |V

𝑛
| ≤ 𝑇 − 1; |Ṽ𝑇

𝑛
| = |𝑏(V

𝑛
)| ≤

|V
𝑛
|, for 𝑇 − 1 ≤ |V

𝑛
| ≤ 𝑇; |Ṽ𝑇

𝑛
| = 𝐶

𝑇
> 0, for |V

𝑛
| ≥ 𝑇, where

𝑇 − 1 ≤ 𝐶

𝑇
≤ 𝑇.

Let 𝜙 = (𝑓(V
𝑛
)/𝑓


(V

𝑛
))|𝑓(Ṽ𝑇

𝑛
)|

2𝑟; then 𝜙 ∈ 𝐸. By (61)
⟨𝐼


(V

𝑛
), 𝜙⟩ = 0. Hence

𝐼

1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
+ 𝐼

5

= ∫

R𝑁
ℎ (𝑥, 𝑓 (V

𝑛
)) 𝑓 (V

𝑛
)











𝑓 (Ṽ𝑇
𝑛
)











2𝑟

𝑑𝑥,

(66)
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where

𝐼

5
:= ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V

𝑛
)











𝑓 (Ṽ𝑇
𝑛
)











2𝑟

𝑑𝑥

+ 𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥)

V
𝑛
𝑓 (V

𝑛
)

𝑓


(V

𝑛
)











𝑓 (Ṽ𝑇
𝑛
)











2𝑟

𝑑𝑥

≥ ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V

𝑛
)











𝑓 (Ṽ𝑇
𝑛
)











2𝑟

𝑑𝑥,

𝐼

1
:= ∫

{𝑥:|V
𝑛
|≥𝑇}

[1 +

2𝑓

2
(V

𝑛
)

1 + 2𝑓

2
(V

𝑛
)

]











𝑓 (Ṽ𝑇
𝑛
)











2𝑟








∇V
𝑛









2

𝑑𝑥

≥ ∫

{𝑥:|V
𝑛
|≥𝑇}











𝑓 (Ṽ𝑇
𝑛
)











2𝑟








∇V
𝑛









2

𝑑𝑥

= ∫

{𝑥:|V
𝑛
|≥𝑇}

[1 + 2𝑓

2
(V

𝑛
)]

×









∇𝑓 (V
𝑛
)









2








𝑓 (Ṽ𝑇
𝑛
)











2𝑟

𝑑𝑥

≥ 2∫

{𝑥:|V
𝑛
|≥𝑇}

𝑓

2
(V

𝑛
)









∇𝑓 (V
𝑛
)









2








𝑓 (Ṽ𝑇
𝑛
)











2𝑟

𝑑𝑥

=

1

2

∫

{𝑥:|V
𝑛
|≥𝑇}











∇ [𝑓

2
(V

𝑛
) 𝑓

𝑟
(Ṽ𝑇

𝑛
)]











2

𝑑𝑥,

(67)

𝐼

2
:= ∫

{𝑥:|V
𝑛
|≤𝑇−1}

[2𝑟 + 1 +

2𝑓

2
(V

𝑛
)

1 + 2𝑓

2
(V

𝑛
)

]

×











𝑓 (Ṽ𝑇
𝑛
)











2𝑟








∇V
𝑛









2

𝑑𝑥

≥ ∫

{𝑥:|V
𝑛
|≤𝑇−1}

2𝑓

2
(V

𝑛
)

1 + 2𝑓

2
(V

𝑛
)











𝑓 (Ṽ𝑇
𝑛
)











2𝑟








∇V
𝑛









2

𝑑𝑥

≥ ∫

{𝑥:|V
𝑛
|≤𝑇−1}









𝑓 (V
𝑛
)









2𝑟+2








∇𝑓 (V
𝑛
)









2

𝑑𝑥

=

1

(𝑟 + 2)

2
∫

{𝑥:|V
𝑛
|≤𝑇−1}











∇𝑓

𝑟+2
(V

𝑛
)











2

𝑑𝑥

=

1

(𝑟 + 2)

2
∫

{𝑥:|V
𝑛
|≤𝑇−1}











∇ [𝑓

2
(V

𝑛
) 𝑓

𝑟
(Ṽ𝑇

𝑛
)]











2

𝑑𝑥,

𝐼

3
:= ∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

[1 +

2𝑓

2
(V

𝑛
)

1 + 2𝑓

2
(V

𝑛
)

]𝑓

2𝑟
(Ṽ𝑇

𝑛
)









∇V
𝑛









2

𝑑𝑥

≥ ∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

2𝑓

2
(V

𝑛
)

1 + 2𝑓

2
(V

𝑛
)

𝑓

2𝑟
(Ṽ𝑇

𝑛
)









∇V
𝑛









2

𝑑𝑥

=

1

2

∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

[𝑓

𝑟
(Ṽ𝑇

𝑛
) ∇𝑓

2
(V

𝑛
)]

2

𝑑𝑥,

𝐼

4
:= 2𝑟 ∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

𝑓

2𝑟−1
(Ṽ𝑇

𝑛
) 𝑓


(Ṽ𝑇

𝑛
)

× 𝑏


(V

𝑛
)

𝑓 (V
𝑛
)

𝑓


(V

𝑛
)









∇V
𝑛









2

𝑑𝑥.

(68)

For 𝑇 − 1 ≤ |V
𝑛
| ≤ 𝑇, |Ṽ𝑇

𝑛
| = |𝑏(V

𝑛
)| ≤ |V

𝑛
|. By the properties

of 𝑓 and 𝑏, the mean value theorem implies









𝑓 (𝑏 (V
𝑛
))









≥ 𝑓


(𝑏 (V

𝑛
)) 𝑏


(V

𝑛
)









V
𝑛









≥

1

√

2

𝑓


(𝑏 (V

𝑛
)) 𝑏


(V

𝑛
) 𝑓

2
(V

𝑛
) .

(69)

Hence

𝐼

4
= 2𝑟∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

𝑓

2𝑟−1
(Ṽ𝑇

𝑛
) 𝑓


(Ṽ𝑇

𝑛
)

× 𝑏


(V

𝑛
)

𝑓 (V
𝑛
)

𝑓


(V

𝑛
)









∇V
𝑛









2

𝑑𝑥

= 2𝑟∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

𝑓

2𝑟−1
(𝑏 (V

𝑛
)) 𝑓


(𝑏 (V

𝑛
))

× 𝑏


(V

𝑛
) 𝑓 (V

𝑛
)

×

√

1 + 2𝑓

2
(V

𝑛
)









∇V
𝑛









2

𝑑𝑥

≥ 2𝑟∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

[𝑓

𝑟−1
(𝑏 (V

𝑛
)) 𝑓


(𝑏 (V

𝑛
)) 𝑏


(V

𝑛
)]

2

× 𝑓 (V
𝑛
) V

𝑛
√

2𝑓

2
(V

𝑛
)









∇V
𝑛









2

𝑑𝑥

≥ 2𝑟∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

[𝑓

𝑟−1
(𝑏 (V

𝑛
)) 𝑓


(𝑏 (V

𝑛
)) 𝑏


(V

𝑛
)]

2

× 𝑓

4
(V

𝑛
)









∇V
𝑛









2

𝑑𝑥

= 2𝑟∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

𝑓

4
(V

𝑛
)

× [𝑓

𝑟−1
(𝑏 (V

𝑛
)) ∇𝑓 (𝑏 (V

𝑛
))]

2

𝑑𝑥

=

2

𝑟

∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

[𝑓

2
(V

𝑛
) ∇𝑓

𝑟
(Ṽ𝑇

𝑛
)]

2

𝑑𝑥.

(70)

Consequently,

𝐼

3
+ 𝐼

4
=

1

2

∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

[𝑓

𝑟
(Ṽ𝑇

𝑛
) ∇𝑓

2
(V

𝑛
)]

2

𝑑𝑥

+

2

𝑟

∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

[𝑓

2
(V

𝑛
) ∇𝑓

𝑟
(Ṽ𝑇

𝑛
)]

2

𝑑𝑥

≥

1

(𝑟 + 2)

2
∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}

2[𝑓

𝑟
(Ṽ𝑇

𝑛
) ∇𝑓

2
(V

𝑛
)]

2

+ 2[𝑓

2
(V

𝑛
) ∇𝑓

𝑟
(Ṽ𝑇

𝑛
)]

2

𝑑𝑥

≥

1

(𝑟 + 2)

2
∫

{𝑥:𝑇−1≤|V
𝑛
|≤𝑇}











∇ [𝑓

2
(V

𝑛
) 𝑓

𝑟
(Ṽ𝑇

𝑛
)]











2

𝑑𝑥.

(71)



8 Abstract and Applied Analysis

Combining (67) and (68), we have

𝐼

1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
≥

1

(𝑟 + 2)

2
∫

R𝑁











∇ [𝑓

2
(V

𝑛
) 𝑓

𝑟
(Ṽ𝑇

𝑛
)]











2

𝑑𝑥.

(72)

For any 𝜀 > 0, by (ℎ
1
) and (ℎ

2
), there exists𝐶(𝜀) > 0 such that

|ℎ (𝑥, 𝑠)| ≤ 𝜀 |𝑠| + 𝐶 (𝜀) |𝑠|

𝑝−1
.

(73)

Combining (66), (72), and (73), one has

1

(𝑟 + 2)

2
∫

𝑅
𝑁











∇ [𝑓

2
(V

𝑛
) 𝑓

𝑟
(Ṽ𝑇

𝑛
)]











2

𝑑𝑥

≤ 𝐶 (𝜀) ∫

𝑅
𝑁









𝑓 (V
𝑛
)









𝑝








𝑓 (Ṽ𝑇
𝑛
)











2𝑟

𝑑𝑥.

(74)

By the Hölder inequality and (65),

∫

𝑅
𝑁









𝑓 (V
𝑛
)









𝑝








𝑓 (Ṽ𝑇
𝑛
)











2𝑟

𝑑𝑥

= ∫

𝑅
𝑁









𝑓 (V
𝑛
)









𝑝−4








𝑓 (Ṽ𝑇
𝑛
)











2𝑟

𝑓

4
(V

𝑛
) 𝑑𝑥

≤ (∫

𝑅
𝑁









𝑓 (V
𝑛
)









(𝑝−4)⋅(4𝑁/(𝑝−4)(𝑁−2))

𝑑𝑥)

(𝑝−4)(𝑁−2)/4𝑁

⋅ (∫

𝑅
𝑁

[











𝑓 (Ṽ𝑇
𝑛
)











2𝑟

×𝑓

4
(V

𝑛
)]

4𝑁/(4𝑁−(𝑝−4)(𝑁−2))

𝑑𝑥)

(4𝑁−(𝑝−4)(𝑁−2))/4𝑁

= (∫

𝑅
𝑁









𝑓 (V
𝑛
)









22
∗

𝑑𝑥)

((𝑝−4)(𝑁−2))/4𝑁

⋅ (∫

𝑅
𝑁

[











𝑓 (Ṽ𝑇
𝑛
)











𝑟

×𝑓

2
(V

𝑛
)]

8𝑁/(4𝑁−(𝑝−4)(𝑁−2))

𝑑𝑥)

(4𝑁−(𝑝−4)(𝑁−2))/4𝑁

≤ 𝐶(∫

𝑅
𝑁

[











𝑓 (Ṽ𝑇
𝑛
)











𝑟

×𝑓

2
(V

𝑛
)]

8𝑁/(4𝑁−(𝑝−4)(𝑁−2))

𝑑𝑥)

(4𝑁−(𝑝−4)(𝑁−2))/4𝑁

.

(75)

Moreover,

1

(𝑟 + 2)

2
∫

𝑅
𝑁











∇ [𝑓

2
(V

𝑛
) 𝑓

𝑟
(Ṽ𝑇

𝑛
)]











2

𝑑𝑥

≥

𝐶

(𝑟 + 2)

2
(∫

𝑅
𝑁

[𝑓

2
(V

𝑛
)











𝑓 (Ṽ𝑇
𝑛
)











𝑟

]

2
∗

𝑑𝑥)

2/2
∗

.

(76)

Hence

(∫

𝑅
𝑁

[𝑓

2
(V

𝑛
)











𝑓 (Ṽ𝑇
𝑛
)











𝑟

]

2
∗

𝑑𝑥)

2/2
∗

≤ 𝐶(𝑟 + 2)

2

× (∫

𝑅
𝑁

[











𝑓 (Ṽ𝑇
𝑛
)











𝑟

×𝑓

2
(V

𝑛
) ]

8𝑁/(4𝑁−(𝑝−4)(𝑁−2))

𝑑𝑥)

(4𝑁−(𝑝−4)(𝑁−2))/4𝑁

.

(77)

Since 4 < 𝑝 < 2(2

∗
), 𝑑 = 2

∗
/(8𝑁/(4𝑁 − (𝑝 − 4)(𝑁 − 2))) =

2

∗
/2 − 𝑝/4 + 1 > 1. Set 𝑞 = 8𝑁/(4𝑁 − (𝑝 − 4)(𝑁 − 2)). Then

(∫

𝑅
𝑁

[𝑓

2
(V

𝑛
)











𝑓 (Ṽ𝑇
𝑛
)











𝑟

]

𝑞𝑑

𝑑𝑥)

1/𝑞𝑑(𝑟+2)

≤ [𝐶(𝑟 + 2)

2
]

1/2(𝑟+2)

×(∫

𝑅
𝑁

[











𝑓 (Ṽ𝑇
𝑛
)











𝑟

𝑓

2
(V

𝑛
)]

𝑞

𝑑𝑥)

1/𝑞(𝑟+2)

.

(78)

Take 𝑟 = 𝑟

0
such that (2 + 𝑟

0
)𝑞 = 2(2

∗
). Since |Ṽ𝑇

𝑛
| = |𝑏(V

𝑛
)| ≤

|V
𝑛
|, |𝑓(Ṽ𝑇

𝑛
)| ≤ |𝑓(V

𝑛
)|. Hence, from (65), we have

∫

𝑅
𝑁

[











𝑓 (Ṽ𝑇
𝑛
)











𝑟
0

𝑓

2
(V

𝑛
)]

𝑞

𝑑𝑥 ≤ ∫

𝑅
𝑁









𝑓 (V
𝑛
)









(2+𝑟
0
)𝑞

𝑑𝑥 < 𝐶.

(79)

Since 𝑓(Ṽ𝑇
𝑛
) → 𝑓(V

𝑛
) as 𝑇 → +∞, taking 𝑇 → +∞ in (78)

with 𝑟 = 𝑟

0
, we have

(∫

𝑅
𝑁









𝑓 (V
𝑛
)









(2+𝑟
0
)𝑞𝑑

𝑑𝑥)

1/𝑞𝑑(𝑟
0
+2)

≤ [𝐶(𝑟

0
+ 2)

2

]

1/2(𝑟
0
+2)

× (∫

𝑅
𝑁









𝑓 (V
𝑛
)









(2+𝑟
0
)𝑞

𝑑𝑥)

1/𝑞(𝑟
0
+2)

.

(80)

Set 2 + 𝑟

1
= (2 + 𝑟

0
)𝑑. Then

(∫

𝑅
𝑁









𝑓 (V
𝑛
)









(2+𝑟
1
)𝑞

𝑑𝑥)

1/𝑞(𝑟
1
+2)

≤ [𝐶(𝑟

0
+ 2)

2

]

1/2(𝑟
0
+2)

× (∫

𝑅
𝑁









𝑓 (V
𝑛
)









(2+𝑟
0
)𝑞

𝑑𝑥)

1/𝑞(𝑟
0
+2)

.

(81)
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Inductively, we have

(∫

𝑅
𝑁









𝑓 (V
𝑛
)









(2+𝑟
𝑘+1

)𝑞

𝑑𝑥)

1/𝑞(𝑟
𝑘+1

+2)

≤ [𝐶(𝑟

𝑘
+ 2)

2

]

1/2(𝑟
𝑘
+2)

× (∫

𝑅
𝑁









𝑓 (V
𝑛
)









(2+𝑟
𝑘
)𝑞

𝑑𝑥)

1/𝑞(𝑟
𝑘
+2)

≤

𝑘

∏

𝑖=0

[𝐶(𝑟

𝑖
+ 2)

2

]

1/2(𝑟
𝑖
+2)

× (∫

𝑅
𝑁









𝑓 (V
𝑛
)









(2+𝑟
0
)𝑞

𝑑𝑥)

1/𝑞(𝑟
0
+2)

,

(82)

where (2 + 𝑟

𝑖
) = 𝑑

𝑖
(2 + 𝑟

0
) (𝑖 = 0, 1, . . . , 𝑘), and

𝑘

∏

𝑖=0

[𝐶(𝑟

𝑖
+ 2)

2

]

1

2(𝑟

𝑖
+ 2)

= exp{
𝑘

∑

𝑖=0

ln√𝐶𝑑

𝑖
(𝑟

0
+ 2)

𝑑

𝑖
(𝑟

0
+ 2)

}

= exp{
𝑘

∑

𝑖=0

[

ln√𝐶 (𝑟

0
+ 2)

𝑑

𝑖
(𝑟

0
+ 2)

+

𝑖 ln 𝑑
𝑑

𝑖
(𝑟

0
+ 2)

]}

(83)

is convergent as 𝑘 → ∞. Let 𝐶
𝑘
= ∏

𝑘

𝑖=0
[𝐶(𝑟

𝑖
+ 2)

2
]

1/2(𝑟
𝑖
+2).

Then 𝐶

𝑘
→ 𝐶

∞
> 0 as 𝑘 → ∞. Hence









𝑓(V
𝑛
)







𝐿
(2+𝑟0)𝑞𝑑

𝑘+1 ≤ 𝐶

𝑘









𝑓 (V
𝑛
)







𝐿
2(2
∗
) . (84)

Let 𝑘 → ∞; by (65), we have








𝑓(V
𝑛
)







𝐿
∞ ≤ 𝐶

∞









𝑓(V
𝑛
)







𝐿
2(2
∗
) ≤ 𝐶,









𝑓(V)


𝐿
∞ ≤ 𝐶. (85)

Hence, by (𝑓
9
) and (85), we have

∫

𝑅
𝑁

𝑉 (𝑥) V2
𝑛
𝑑𝑥

= ∫

{𝑥:|V
𝑛
(𝑥)|≤1}

𝑉 (𝑥) V2
𝑛
𝑑𝑥

+ ∫

{𝑥:|V
𝑛
(𝑥)|>1}

𝑉 (𝑥) V2
𝑛
𝑑𝑥

≤

1

𝐶

∫

{𝑥:|V
𝑛
(𝑥)|≤1}

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥

+

1

𝐶

∫

{𝑥:|V
𝑛
(𝑥)|>1}

𝑉 (𝑥) 𝑓

4
(V

𝑛
) 𝑑𝑥

≤

1

𝐶

∫

{𝑥:|V
𝑛
(𝑥)|≤1}

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥

+ 𝐶∫

{𝑥:|V
𝑛
(𝑥)|≥1}

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥

≤ 𝐶∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥.

(86)

By (63) we know that ∫
𝑅
𝑁
𝑉(𝑥)V2

𝑛
𝑑𝑥 is bounded, and hence

{V
𝑛
} is bounded in 𝐸. Up to subsequence, one has V

𝑛
⇀ V in

𝐸, V
𝑛
→ V in 𝐿

𝑠
(𝑅

𝑁
) for 𝑠 ∈ [2, 2

∗
), and V

𝑛
(𝑥) → V(𝑥) a.e.

𝑥 ∈ 𝑅

𝑁.
Now, we show that V is a critical point of 𝐼. For any

𝜓 ∈ 𝐶

∞

0
(𝑅

𝑁
) with 𝜓 ≥ 0, by (85), we know that 𝜙 =

𝜓 exp(−𝑓(V
𝑛
)) ∈ 𝐸. Take 𝜙 = 𝜓 exp(−𝑓(V

𝑛
)) as the test

function in (61); we have

0 = ∫

𝑅
𝑁

exp (−𝑓 (V
𝑛
)) ∇V

𝑛
⋅ ∇𝜓𝑑𝑥

− ∫

𝑅
𝑁









∇V
𝑛









2

𝜓 exp (−𝑓 (V
𝑛
)) 𝑓


(V

𝑛
) 𝑑𝑥

+ 𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥) V
𝑛
𝜓 exp (−𝑓 (V

𝑛
)) 𝑑𝑥

+ ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓 (V
𝑛
) 𝑓


(V

𝑛
) 𝜓 exp (−𝑓 (V

𝑛
)) 𝑑𝑥

− ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓


(V

𝑛
) 𝜓 exp (−𝑓 (V

𝑛
)) 𝑑𝑥.

(87)

By |∇(V
𝑛
− V)|2𝜓 exp(−𝑓(V

𝑛
))𝑓


(V

𝑛
) ≥ 0, one has

lim sup
𝑛→∞

∫

𝑅
𝑁

−









∇V
𝑛









2

𝜓 exp (−𝑓 (V
𝑛
)) 𝑓


(V

𝑛
) 𝑑𝑥

≤ −∫

𝑅
𝑁

|∇V|2𝜓 exp (−𝑓 (V)) 𝑓
(V) 𝑑𝑥.

(88)

Since 𝜃
𝑛
→ 0, by (63)

𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥) V
𝑛
𝜓 exp (−𝑓 (V

𝑛
)) 𝑑𝑥 → 0 (89)

as 𝑛 → ∞. Moreover, notice that V
𝑛
⇀ V in 𝐸, V

𝑛
→ V in

𝐿

𝑠
(𝑅

𝑁
) for 𝑠 ∈ [2, 2

∗
), and V

𝑛
(𝑥) → V(𝑥) a.e. 𝑥 ∈ 𝑅

𝑁; by
Hölder inequality and Lebesgue theorem, we have

∫

𝑅
𝑁

exp (−𝑓 (V
𝑛
)) ∇V

𝑛
⋅ ∇𝜓𝑑𝑥

→ ∫

𝑅
𝑁

exp (−𝑓 (V)) ∇V ⋅ ∇𝜓𝑑𝑥,

∫

𝑅
𝑁

𝑉 (𝑥) 𝑓 (V
𝑛
) 𝑓


(V

𝑛
) 𝜓 exp (−𝑓 (V

𝑛
)) 𝑑𝑥

→ ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓 (V) 𝑓
(V) 𝜓 exp (−𝑓 (V)) 𝑑𝑥,

∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓


(V

𝑛
) 𝜓 exp (−𝑓 (V

𝑛
)) 𝑑𝑥

→ ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V)) 𝑓
(V) 𝜓 exp (−𝑓 (V)) 𝑑𝑥.

(90)
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Hence, from (87), we have

0 ≤ ∫

𝑅
𝑁

exp (−𝑓 (V)) ∇V ⋅ ∇𝜓𝑑𝑥

− ∫

𝑅
𝑁

|∇V|2𝜓 exp (−𝑓 (V)) 𝑓
(V) 𝑑𝑥

+ 𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥) V𝜓 exp (−𝑓 (V)) 𝑑𝑥

+ ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓 (V) 𝑓
(V) 𝜓 exp (−𝑓 (V)) 𝑑𝑥

− ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V)) 𝑓
(V) 𝜓 exp (−𝑓 (V)) 𝑑𝑥

= ∫

𝑅
𝑁

∇V ⋅ ∇ (𝜓 exp (−𝑓 (V))) 𝑑𝑥

+ ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓 (V) 𝑓
(V) 𝜓 exp (−𝑓 (V)) 𝑑𝑥

− ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V)) 𝑓
(V) 𝜓 exp (−𝑓 (V)) 𝑑𝑥.

(91)

For any 𝜑 ∈ 𝐸 with 𝜑 ≥ 0, by (85) we know that 𝜁 :=

𝜑 exp(𝑓(V)) ∈ 𝐸. By Theorem 2.8 in [19], there exists a
sequence {𝜓

𝑛
} ⊂ 𝐶

∞

0
(𝑅

𝑁
) such that 𝜓

𝑛
≥ 0 and 𝜓

𝑛
→ 𝜁

and 𝜓

𝑛
(𝑥) → 𝜁(𝑥) for a.e. 𝑥 ∈ 𝑅

𝑁. Take 𝜓 = 𝜓

𝑛
in (91), and

let 𝑛 → ∞; we have

0 ≤ ∫

𝑅
𝑁

∇V ⋅ ∇𝜑𝑑𝑥 + ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓 (V) 𝑓
(V) 𝜑𝑑𝑥

− ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V)) 𝑓
(V) 𝜑𝑑𝑥.

(92)

The opposite inequality can be obtained by taking 𝜙 =

𝜓 exp(𝑓(V
𝑛
)) and 𝜁 = 𝜑 exp(−𝑓(V)). Consequently,

∫

𝑅
𝑁

∇V ⋅ ∇𝜑𝑑𝑥 + ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓 (V) 𝑓
(V) 𝜑𝑑𝑥

− ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V)) 𝑓
(V) 𝜑𝑑𝑥 = 0, ∀𝜑 ∈ 𝐸.

(93)

This shows that V ∈ 𝐸 is a critical point of 𝐼, and by taking
𝜑 = 𝑓(V)/𝑓

(V) ∈ 𝐸, one has

∫

𝑅
𝑁

[1 +

2𝑓

2
(V)

1 + 2𝑓

2
(V)

] |∇V|2𝑑𝑥 + ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V) 𝑑𝑥

− ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V)) 𝑓 (V) 𝑑𝑥 = 0.

(94)

Finally, taking 𝜙 = 𝑓(V
𝑛
)/𝑓


(V

𝑛
) as the test function in

(61), we have

∫

𝑅
𝑁

[1 +

2𝑓

2
(V

𝑛
)

1 + 2𝑓

2
(V

𝑛
)

]









∇V
𝑛









2

𝑑𝑥 + 𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥)

V
𝑛
𝑓 (V

𝑛
)

𝑓


(V

𝑛
)

𝑑𝑥

+ ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥

− ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓 (V

𝑛
) 𝑑𝑥 = 0.

(95)

Since

∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V
𝑛
)) 𝑓 (V

𝑛
) 𝑑𝑥 → ∫

𝑅
𝑁

ℎ (𝑥, 𝑓 (V)) 𝑓 (V) d𝑥,

∫

𝑅
𝑁

[1 +

2𝑓

2
(V

𝑛
)

1 + 2𝑓

2
(V

𝑛
)

]









∇ (V
𝑛
− V)





2

𝑑𝑥 ≥ 0,

(96)

by Fatou’s Lemma, (63), (94), (95), up to subsequence, one has

𝜃

𝑛
∫

𝑅
𝑁

𝑉 (𝑥)

V
𝑛
𝑓 (V

𝑛
)

𝑓


(V

𝑛
)

𝑑𝑥 → 0,

∫

𝑅
𝑁









∇V
𝑛









2

𝑑𝑥 → ∫

𝑅
𝑁

|∇V|2𝑑𝑥,

∫

𝑅
𝑁

2𝑓

2
(V

𝑛
)

1 + 2𝑓

2
(V

𝑛
)









∇V
𝑛









2

𝑑𝑥 → ∫

𝑅
𝑁

2𝑓

2
(V)

1 + 2𝑓

2
(V)

|∇V|2𝑑𝑥,

(97)

∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V

𝑛
) 𝑑𝑥 → ∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(V) 𝑑𝑥. (98)

Hence 𝐼
𝜃
𝑛

(V
𝑛
) → 𝐼(V) as 𝑛 → ∞. Set 𝑤

𝑛
:= V

𝑛
− V ∈ 𝐸. By

(𝑓

8
), (𝑓

12
), and (85), one has

𝑓

2
(𝑤

𝑛
) = 𝑓

2
(2 ⋅

𝑤

𝑛

2

) ≤ 𝐶 [

1

2

𝑓

2
(V

𝑛
) +

1

2

𝑓

2
(V)]

≤ 𝐶 [𝑓

2
(V

𝑛
) + 𝑓

2
(V)] ≤ 𝐶.

(99)

Consequently, by (𝑓
9
), (98), and Lemma 4, one has

∫

𝑅
𝑁

𝑉 (𝑥)









𝑤

𝑛









2

𝑑𝑥

= ∫

{𝑥:|𝑤
𝑛
|≤1}

𝑉 (𝑥)









𝑤

𝑛









2

𝑑𝑥

+ ∫

{𝑥:|𝑤
𝑛
|≥1}

𝑉 (𝑥)









𝑤

𝑛









2

𝑑𝑥

≤ 𝐶∫

{𝑥:|𝑤
𝑛
|≤1}

𝑉 (𝑥) 𝑓

2
(𝑤

𝑛
) 𝑑𝑥

+ 𝐶∫

{𝑥:|𝑤
𝑛
|≥1}

𝑉 (𝑥) 𝑓

4
(𝑤

𝑛
) 𝑑𝑥
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≤ 𝐶∫

{𝑥:|𝑤
𝑛
|≤1}

𝑉 (𝑥) 𝑓

2
(𝑤

𝑛
) 𝑑𝑥

+ 𝐶∫

{𝑥:|𝑤
𝑛
|≥1}

𝑉 (𝑥) 𝑓

2
(𝑤

𝑛
) 𝑑𝑥

= 𝐶∫

𝑅
𝑁

𝑉 (𝑥) 𝑓

2
(𝑤

𝑛
) 𝑑𝑥 → 0

(100)

as 𝑛 → ∞.Therefore, V
𝑛
→ V in𝐸.This completes the proof.

Theorem 6. Assume conditions (𝑉), (ℎ
1
)–(ℎ

3
) hold; then (1)

has a weak solution.

Proof. First, we prove that, for each 𝜃 ∈ (0, 1], 𝐼
𝜃
satisfy the

Cerami condition. Indeed, let {V
𝑛
} ⊂ 𝐸 be an arbitraryCerami

sequence of 𝐼
𝜃
. Set 𝜙 = 𝑓(V

𝑛
)/𝑓


(V

𝑛
). Then ‖𝜙‖

𝐸
≤ 𝐶‖V

𝑛
‖

𝐸
.

Similar to the proof of (63), we can prove that {V
𝑛
} is bounded

in 𝐸. Hence, by Lemma 3, the sequence {V
𝑛
} possesses a

convergent subsequence in 𝐸. This shows that 𝐼
𝜃
satisfy the

Cerami condition.
Next, for any 𝜀 > 0, by (ℎ

1
), (ℎ

2
), (𝑓

3
), and (𝑓

7
), there

exists 𝐶(𝜀) > 0 such that

𝐻(𝑥, 𝑓 (𝑡)) ≤ 𝜀𝑡

2
+ 𝐶 (𝜀) |𝑡|

𝑝/2 (101)

for all (𝑥, 𝑡) ∈ 𝑅

𝑁
× 𝑅. For small 0 < 𝜌 ≪ 1, set

𝑆

𝜌
= {V ∈ 𝐸 : ‖V‖𝐸 = 𝜌} . (102)

Then, from (101), for V ∈ 𝑆

𝜌
,

𝐼

𝜃
(V) =

1

2

∫

𝑅
𝑁

[|∇V|2 + 𝑉 (𝑥) 𝑓

2
(V)] 𝑑𝑥

+

𝜃

2

∫

𝑅
𝑁

𝑉 (𝑥) V2𝑑𝑥 − ∫

𝑅
𝑁

𝐻(𝑥, 𝑓 (V)) 𝑑𝑥

≥

𝜃

2

∫

𝑅
𝑁

[|∇V|2 + 𝑉 (𝑥) V2] 𝑑𝑥

− 𝜀∫

𝑅
𝑁

V2𝑑𝑥 − 𝐶 (𝜀) ∫

𝑅
𝑁

|V|𝑝/2𝑑𝑥

≥

𝜃

2

‖V‖2
𝐸
− 𝜀𝑎

2

2
‖V‖2

𝐸
− 𝐶 (𝜀) 𝑎

𝑝/2

𝑝/2
‖V‖

𝑝/2

𝐸

≥ 𝜌

2
(

𝜃

4

− 𝐶𝜌

(𝑝−4)/2
) ≥ 𝛿 > 0

(103)

for small 𝜀 > 0 and 𝜌 > 0. Moreover, by (ℎ
3
), for any (𝑥, 𝑧) ∈

𝑅

𝑁
× 𝑅 with |𝑧| ≥ 𝑟, one has

𝐻(𝑥, 𝑧) ≥ 𝑐

0|
𝑧|

𝜇
. (104)

Since 𝜇 > 4, there exists a constant 4 < 𝛼 < min{𝜇, 2(2∗)}.
Hence, by (𝑓

5
), we have

lim
|𝑡|→∞

𝐻(𝑥, 𝑓 (𝑡))

|𝑡|

𝛼/2
= lim

|𝑡|→∞

𝐻(𝑥, 𝑓 (𝑡))









𝑓 (𝑡)









𝛼
⋅









𝑓 (𝑡)









𝛼

|𝑡|

𝛼/2
= +∞

(105)

uniformly in 𝑥 ∈ 𝑅

𝑁. Consequently, there exist constants 𝜏 >

1 such that

𝐻(𝑥, 𝑓 (𝑡)) ≥ |𝑡|

𝛼/2
, ∀ |𝑡| ≥ 𝜏,

(106)

for all 𝑥 ∈ 𝑅

𝑁. For any finite-dimensional subspace ̃

𝐸 ⊂ 𝐸, by
the equivalency of all norms in the finite-dimensional space,
there is a constant 𝑎 > 0 such that

‖V‖𝛼/2 ≥ 𝑎‖V‖𝐸, ∀V ∈ ̃

𝐸. (107)

By (ℎ
1
), (ℎ

2
), and (106), there exists a positive constant 𝐶 > 0

such that

𝐻(𝑥, 𝑓 (𝑡)) ≥ |𝑡|

𝛼/2
− 𝐶𝑡

2
, ∀ (𝑥, 𝑡) ∈ 𝑅

𝑁
× 𝑅.

(108)

Since 4 < 𝛼 < 2(2

∗
), by (𝑓

3
), (107), and (108), we have

𝐼

𝜃
(V) =

1

2

∫

𝑅
𝑁

[|∇V|2 + 𝑉 (𝑥) 𝑓

2
(V)] 𝑑𝑥

+

𝜃

2

∫

𝑅
𝑁

𝑉 (𝑥) V2𝑑𝑥 − ∫

𝑅
𝑁

𝐻(𝑥, 𝑓 (V)) 𝑑𝑥

≤ ‖V‖2
𝐸
− ‖V‖𝛼/2

𝛼/2
+ 𝐶‖V‖2

2

≤ 𝐶‖V‖2
𝐸
− 𝑎

𝛼/2
‖V‖𝛼/2

𝐸

(109)

for all V ∈ ̃

𝐸. Hence there exists a large 𝑅 > 0 such that 𝐼
𝜃
< 0

on ̃

𝐸\𝐵

𝑅
. Set a fixed 𝑒 ∈ ̃

𝐸with ‖𝑒‖
𝐸
= 1. For any fixed𝑇 > 𝜌,

define the path ℎ

𝑇
: [0, 1] →

̃

𝐸 ⊂ 𝐸 by ℎ
𝑇
(𝑡) = 𝑡𝑇𝑒. Then for

large 𝑇 > 0, by (109), one has

𝐼

𝜃
(ℎ

𝑇
(1)) ≤ 𝐶𝑇

2
− 𝑎

𝛼/2
𝑇

𝛼/2
< 0,









ℎ

𝑇
(1)







𝐸
= 𝑇 > 𝜌,

sup
𝑡∈[0,1]

𝐼

𝜃
(ℎ

𝑇
(𝑡)) ≤ 𝐶𝑇

2
< +∞.

(110)

Hence by Theorem 2.2 with the Cerami condition in [20], 𝐼
𝜃

possesses a critical value

𝑐

𝜃
:= inf

𝛾∈Γ

max
𝑡∈[0,1]

𝐼

𝜃
(𝛾 (𝑡)) ≥ 𝛿 > 0,

𝑐

𝜃
≤ sup

𝑡∈[0,1]

𝐼

𝜃
(ℎ

𝑇
(𝑡)) ≤ 𝐶𝑇

2
,

(111)

where

Γ = {𝛾 ∈ 𝐶 ([0, 1] , 𝐸) : 𝛾 (0) = 0, 𝛾 (1) = ℎ

𝑇
(1)} . (112)

Consequently, by Theorem 5, we know that (1) has a weak
solution. This completes the proof of Theorem 6.

Remark 7. Let V+ = max{V, 0} and V− = max{−V, 0}. Set

𝐼

±
(𝑢) =

1

2

∫

𝑅
𝑁

[|∇V|2 + 𝑉 (𝑥) 𝑓

2
(V)] 𝑑𝑥

− ∫

𝑅
𝑁

𝐻(𝑥, 𝑓 (V±)) 𝑑𝑥,

𝐼

±

𝜃
(V) =

1

2

𝜃∫

𝑅
𝑁

𝑉 (𝑥) V2𝑑𝑥 + 𝐼

±
(V)

(113)

instead of 𝐼(𝑢) and 𝐼

𝜃
(𝑢), respectively. Then, under the

conditions of Theorem 6, we can obtain the existence of a
positive solution and a negative solution for (1).
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Theorem 8. Assume conditions (𝑉), (ℎ
1
)–(ℎ

3
) hold. If ℎ(𝑥, 𝑠)

is odd in 𝑠, then (1) has a sequence {V
𝑚
} of solutions such that

𝐼(V
𝑚
) → +∞.

Proof. Consider the eigenvalue of the operate 𝐿 = −Δ + 𝑉.
By assumption (𝑉) and the compactness of the embedding
𝐸 → 𝐿

2
(𝑅

𝑁
), we know that the spectrum 𝜎(𝐿) =

{𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑛
⋅ ⋅ ⋅ } of 𝐿 with

0 < 𝜆

1
< 𝜆

2
< ⋅ ⋅ ⋅ < 𝜆

𝑛
< ⋅ ⋅ ⋅ (114)

and 𝜆

𝑛
→ +∞ as 𝑛 → +∞ (see page 3820 in [21]). Let

𝜑

𝑛
be the eigenfunction corresponding to 𝜆

𝑛
. By regularity

argument we know that𝜑
𝑛
∈ 𝐸. Set𝐸

𝑛
= span{𝜑

1
, 𝜑

2
, . . . , 𝜑

𝑛
}.

Then we can decompose the space 𝐸 as 𝐸 = 𝐸

𝑛
⊕ 𝑊

𝑛
for 𝑛 =

1, 2, . . ., where𝑊
𝑛
is orthogonal to 𝐸

𝑛
in 𝐸. For 𝜌 > 0, set

𝑄

𝜌
= {V ∈ 𝐸 : ∫

𝑅
𝑁

[|∇V|2 + 𝑉 (𝑥) 𝑓

2
(V)] 𝑑𝑥 ≤ 𝜌

2
} . (115)

By (109) there exists 𝑟
𝑛
> 0 independent of 𝜃 such that

𝐼

𝜃
(V) < 0, ∀V ∈ 𝐸

𝑛
\ 𝑄

𝑟
𝑛

. (116)

Set

𝐷

𝑛
= 𝐸

𝑛
∩ 𝑄

𝑟
𝑛

,

𝐺

𝑛
= {𝜑 ∈ 𝐶 (𝐷

𝑛
, 𝐸) : 𝜑 is odd and𝜑|

𝜕𝑄
𝑟𝑛
∩𝐸
𝑛

= 𝑖𝑑} ,

Γ

𝑗
= {𝜑 (𝐷

𝑛
\ 𝑄

𝑟
𝑛

) : 𝜑 ∈ 𝐺

𝑛
, 𝑛 ≥ 𝑗,

𝐴 = −𝐴 ⊂ 𝐸

𝑛
∩ 𝑄

𝑟
𝑛

is closed and 𝛾 (𝐴) ≤ 𝑛 − 𝑗} ,

(117)

where 𝛾(⋅) is the genus. Let

𝑐

𝑗
(𝜃) = inf

𝐵∈Γ
𝑗

sup
V∈𝐵

𝐼

𝜃
, 𝑗 = 1, 2 . . . . (118)

We have the following three facts (we refer the reader to [16]
for their proofs).

Fact (1). For each 𝐵 ∈ Γ

𝑗
, if 0 < 𝜌 < 𝑟

𝑛
for all 𝑛 ≥ 𝑗,

then 𝐵 ∩ 𝜕𝑄

𝜌
∩𝑊

𝑗−1
̸= 0.

Fact (2). There exist constants 𝛼

𝑗
≤ 𝛽

𝑗
such that

𝑐

𝑗
(𝜃) ∈ [𝛼

𝑗
, 𝛽

𝑗
] and 𝛼

𝑗
→ +∞ as 𝑗 → +∞.

Fact (3). 𝑐
𝑗
(𝜃), 𝑗 = 1, 2, . . . are critical values of 𝐼

𝜃
.

Consequently, Theorem 8 follows from Theorem 5 and the
above Facts (2)-(3). This completes the proof.

Corollary 9. If the following conditions (ℎ
4
) and (ℎ

5
) are used

in place of (ℎ
3
); then the conclusions of Theorem 5, Theorem 6,

and Theorem 8 hold:

(ℎ

4
) lim

|𝑠|→+∞
inf 𝐻(𝑥, 𝑠) > 0 uniformly in 𝑥 ∈ R𝑁,

(ℎ

5
) there exist 𝜇 > 4 and 𝜏 > 0 such that

𝜇𝐻 (𝑥, 𝑠) ≤ ℎ (𝑥, 𝑠) 𝑠 (119)

for all 𝑥 ∈ R𝑁 and |𝑠| ≥ 𝜏.

Proof. By (ℎ
4
), there are constants 𝜆 > 0 and 𝑟

1
> 0 such that

whenever |𝑠| ≥ 𝑟

1
, one has

𝐻(𝑥, 𝑠) > 𝜆, ∀𝑥 ∈ R
𝑁
.

(120)

Set 𝑟 = max{𝜏, 𝑟
1
}. Then, by (ℎ

5
),

𝑐

0
:= inf

𝑥∈R𝑁,|𝑠|=𝑟
𝐻(𝑥, 𝑠) ≥ 𝜆 > 0,

𝜇𝐻 (𝑥, 𝑠) ≤ ℎ (𝑥, 𝑠) 𝑠

(121)

for all 𝑥 ∈ R𝑁 and |𝑠| ≥ 𝑟. Therefore, condition (ℎ

3
) holds.

This completes the proof.
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