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We at first raise the so called split feasibility fixed point problem which covers the problems of split feasibility, convex feasibility,
and equilibrium as special cases and then give two types of algorithms for finding solutions of this problem and establish the
corresponding strong convergence theorems for the sequences generated by our algorithms. As a consequence, we apply them to
study the split feasibility problem, the zero point problem of maximal monotone operators, and the equilibrium problem and to
show that the unique minimum norm solutions of these problems can be obtained through our algorithms. Since the variational
inequalities, convex differentiable optimization, and Nash equilibria in noncooperative games can be formulated as equilibrium
problems, each type of our algorithms can be considered as a generalized methodology for solving the aforementioned problems.

1. Introduction

Throughout this paper, H denotes a real Hilbert space with
inner product ⟨⋅, ⋅⟩ and the norm ‖ ⋅ ‖, 𝐼 the identity mapping
on H, N the set of all natural numbers, and R the set of all
real numbers. For a self-mapping 𝑇 onH, Fix(𝑇) denotes the
set of all fixed points of 𝑇. If 𝑀 : H → 2

H is a set-valued
mapping; then D(𝑀) denotes its domain, that is, D(𝑀) =

{𝑥 ∈ H : 𝑀(𝑥) ̸= 0}.
Let 𝐶 and 𝑄 be nonempty closed convex subsets of

two Hilbert spaces H
1
and H

2
, respectively, and let 𝐴 :

H
1
→ H

2
be a bounded linearmapping.The split feasibility

problem (SFP) is the problem of finding a point with the
property

𝑥
∗
∈ 𝐶, 𝐴𝑥

∗
∈ 𝑄. (1)

The SFP was first introduced by Censor and Elfving [1] for
modeling inverse problems which arise from phase retrievals
and medical image reconstruction. Recently, it has been

found that the SFP can also be used to model the intensity-
modulated radiation therapy. For details, the readers are
referred to Xu [2] and the references therein.

Assume that the SFP has a solution. There are many
iterative methods designed to approximate its solutions. The
most popular algorithm is the 𝐶𝑄 algorithm introduced by
Byrne [3, 4].

Start with any 𝑥
1

∈ H
1
and generate a sequence {𝑥

𝑛
}

through the iteration

𝑥
𝑛+1

= 𝑃
𝐶
[𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴] 𝑥

𝑛
, (2)

where 𝛾 ∈ (0, 2/‖𝐴‖
2
),𝐴∗ the adjoint of 𝐴, and 𝑃

𝐶
and 𝑃
𝑄
are

the metric projections onto 𝐶 and 𝑄, respectively.
The sequence {𝑥

𝑛
} generated by the 𝐶𝑄 algorithm (2)

converges weakly to a solution of SFP(1), cf. [2–4]. Under the
assumption that SFP(1) has a solution, it is known that a point
𝑥
∗
∈ H
1
solves SFP(1) if and only if 𝑥∗ is a fixed point of the

operator

𝑃
𝐶
[𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴] , (3)
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cf. [2], where Xu also proposed the regularized method,

𝑥
𝑛+1

= 𝑃
𝐶
[ 𝐼 − 𝛾

𝑛
(𝐴
∗
(𝐼 − 𝑃

𝑄
) 𝐴 + 𝛼

𝑛
𝐼)] 𝑥
𝑛
, (4)

and proved that the sequence {𝑥
𝑛
} converges strongly to

the minimum norm solution of SFP(1) provided that the
parameters {𝛼

𝑛
} and {𝛾

𝑛
} verify some suitable conditions.This

regularized method was further investigated by Yao et al. [5]
and Yao et al. [6].

Putting 𝑆 = 𝑃
𝐶
and 𝑇 = 𝑃

𝑄
, SFP(1) is of the forms:

find 𝑥
∗
∈ H
1

so that 𝑥∗ ∈ Fix (𝑆) , 𝐴𝑥
∗
∈ Fix (𝑇) .

(5)

As ametric projection is firmly nonexpansive, it is reasonable
to require the 𝑆 and 𝑇 in (5) to be firmly nonexpansive only
and call it a split feasibility fixed point problem (SFFP). Many
interesting problems in the literature can be described as
SFFP.

(i) A set-valued map𝑀 : H → 2
H is called monotone if

⟨𝑥 − 𝑦, 𝑢 − V⟩ ≥ 0 (6)

for all 𝑥, 𝑦 ∈ D(𝑀) and for any 𝑢 ∈ 𝑀(𝑥), V ∈ 𝑀(𝑦). 𝑀 is
said to bemaximalmonotone if its graph {(𝑥, 𝑢) : 𝑥 ∈ H, 𝑢 ∈

𝑀(𝑥)} is not properly contained in the graph of any other
monotone operator. A point V ∈ H is called a zero point of a
maximalmonotone operator𝑀 if 0 ∈ 𝑀(V).The set of all zero
points of 𝑀 is denoted by 𝑀

−1
0, which is equal to Fix(𝐽𝑀

𝛼
)

for any 𝛼 > 0, where 𝐽𝑀
𝛼

denotes the resolvent of a monotone
operator𝑀; that is, 𝐽𝑀

𝛼
(𝑥) = (𝐼 + 𝛼𝑀)

−1
(𝑥) for any 𝑥 ∈ H. It

is known that for any 𝛼 > 0, 𝐽𝑀
𝛼

is firmly nonexpansive. Now,
let𝑀 and𝑁 be twomaximal monotone operators onH

1
and

H
2
, respectively. Replacing 𝐶 and 𝑄 with 𝑀

−1
0 = Fix(𝐽𝑀

𝛼
)

and 𝑁
−1
0 = Fix(𝐽𝑁

𝛽
), respectively, in (1), the SFP becomes a

SFFP:

find 𝑥
∗
∈ H
1

so that 𝑥∗ ∈ Fix (𝐽𝑀
𝛼
) , 𝐴𝑥

∗
∈ Fix (𝐽𝑁

𝛽
) .

(7)

Putting 𝐴 = 𝐼, the previous SFFP is reduced to the common
zero point problem of two maximal monotone operators:

find 𝑥
∗
∈ H
1

so that 𝑥∗ ∈ 𝑀
−1
0 ∩ 𝑁

−1
0. (8)

(ii) Let 𝑓 : 𝐶 × 𝐶 → R. An equilibrium problem is the
problem of finding 𝑥 ∈ 𝐶 such that

𝑓 (𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶, (9)

whose solution set is denoted by EP(𝑓). For solving an
equilibrium problem, we usually assume that the function 𝑓

satisfies the following conditions:

(A1) 𝑓(𝑥, 𝑥) = 0, for all 𝑥 ∈ 𝐶;
(A2) 𝑓 is monotone, that is, 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥) ≤ 0, for

all 𝑥 ∈ 𝐶;
(A3) for all 𝑥, 𝑦, 𝑧 ∈ 𝐶, lim sup

𝑡↓0
𝑓((1 − 𝑡)𝑥 + 𝑡𝑧, 𝑦) ≤

𝑓(𝑥, 𝑦);

(A4) for all 𝑥 ∈ 𝐶, 𝑓(𝑥, ⋅) is convex and lower semicontin-
uous.

Blum and Oettli [7] and Aoyama et al. [8] showed that there
exists a unique 𝑧 ∈ 𝐶 such that

𝑓 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (10)

Moreover, For 𝑟 > 0, define 𝐽𝑓
𝑟
: H → 𝐶 by

𝐽
𝑓

𝑟
𝑥 = {𝑧 ∈ 𝐶 : 𝑓 (𝑧, 𝑦) +

1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶}

(11)

for all 𝑥 ∈ H. Combettes andHirstoaga [9] showed that there
hold

(a) 𝐽𝑓
𝑟
is single-valued;

(b) 𝐽𝑓
𝑟
is firmly nonexpansive;

(c) Fix(𝐽𝑓
𝑟
) = EP(𝑓);

(d) EP(𝑓) is closed and convex.

Now, let 𝑓 : 𝐶 × 𝐶 → R and 𝑔 : 𝑄 × 𝑄 → R be two
functions satisfying conditions (A1)–(A4). Replacing 𝐶 and
𝑄 with EP(𝑓) = Fix(𝐽𝑓

𝛼
) and EP(𝑔) = Fix(𝐽𝑔

𝛽
), respectively, in

(1), the SFP becomes a SFFP:

find 𝑥
∗
∈ H
1

so that 𝑥∗ ∈ Fix (𝐽𝑓
𝛼
) , 𝐴𝑥

∗
∈ Fix (𝐽𝑔

𝛽
) .

(12)

Putting H
1
= H
2
, 𝐶 = 𝑄, and 𝐴 = 𝐼, the previous SFFP is

reduced to the common equilibrium problem:

find 𝑥
∗
∈ 𝐶

so that 𝑓 (𝑥
∗
, 𝑦) ≥ 0, 𝑔 (𝑥

∗
, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶.

(13)

(iii) When H
1

= H
2

= H, and the bounded linear
operator 𝐴 is the identity mapping, SFP(1) is reduced to the
convex feasibility problem (CFP):

find 𝑥
∗
∈ H so that 𝑥∗ ∈ 𝐶 ∩ 𝑄, (14)

which in turn can be described as a SFFP:

find 𝑥
∗
∈ H

so that 𝑥∗ ∈ Fix (𝑆) , 𝐴𝑥
∗
∈ Fix (𝑇) ,

(15)

where 𝑆 = 𝑃
𝐶
and 𝑇 = 𝑃

𝑄
. Although SFFP(5) contains CFP

as a special case, it cannot cover the multiple-set split convex
feasibility problem described in [10].

In this paper, we are concerned with iterative methods
for SFFP(5). We derive some weak convergence theorems for
SFFP(5) in Section 3. In Section 4, we describe SFFP(5) in a
more general form.
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Let {𝑆
𝑛
} and {𝑇

𝑛
} be two families of firmly nonexpan-

sive self-mappings on H
1

and H
2
, respectively, so that

∩
∞

𝑛=1
Fix(𝑆
𝑛
) ̸= 0 and ∩

∞

𝑛=1
Fix(𝑇
𝑛
) ̸= 0

𝑓𝑖𝑛𝑑 𝑥
∗
∈ H
1

𝑠𝑜 𝑡ℎ𝑎𝑡 𝑥
∗
∈ ∩
∞

𝑛=1
Fix (𝑆

𝑛
) , 𝐴𝑥

∗
∈ ∩
∞

𝑛=1
Fix (𝑇

𝑛
)
(16)

and obtain the following main result.
Let {𝑎

𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
}, and {𝑑

𝑛
} be sequences in [0, 1] with

𝑎
𝑛
+𝑏
𝑛
+𝑐
𝑛
+𝑑
𝑛
= 1 and 𝑎

𝑛
∈ (0, 1) for all 𝑛 ∈ N. Let {𝛾

𝑛
} be a

sequence in (0, 2/‖𝐴‖
2
) and let {𝑒

𝑛
} be a bounded sequence in

H
1
. Suppose that the solution set Ω of SFFP(16) is nonempty.

For any 𝑢 ∈ H
1
, start with an arbitrary 𝑥

1
∈ H
1
and define a

sequence {𝑥
𝑛
} by

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + 𝑏
𝑛
𝑥
𝑛
+ 𝑐
𝑛
𝑆
𝑛
[𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝑇

𝑛
) 𝐴] 𝑥

𝑛
+ 𝑑
𝑛
𝑒
𝑛
.

(17)

Then, the sequence {𝑥
𝑛
} converges strongly to𝑃

Ω
𝑢 provided that

the following conditions are satisfied:

(i) lim
𝑛→∞

𝑎
𝑛

= lim
𝑛→∞

(𝑑
𝑛
/𝑎
𝑛
) = 0, ∑∞

𝑛=1
𝑎
𝑛

= ∞,
∑
∞

𝑛=1
𝑑
𝑛
< ∞;

(ii) lim
𝑛→∞

inf 𝑐
𝑛
(2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
) > 0, lim

𝑛→∞
inf 𝑏
𝑛
𝑐
𝑛
>

0;
(iii) there are two nonnegative real-valued functions 𝜅

1
and

𝜅
2
on N with

󵄩󵄩󵄩󵄩𝑆𝑚𝑥 − 𝑥
󵄩󵄩󵄩󵄩 ≤ 𝜅
1
(𝑚)

󵄩󵄩󵄩󵄩𝑆𝑛𝑥 − 𝑥
󵄩󵄩󵄩󵄩 ,

∀𝑚 ∈ N, ∀𝑛 ≥ 𝑚, ∀𝑥 ∈ H
1
,

󵄩󵄩󵄩󵄩𝑇𝑚𝑦 − 𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜅
2
(𝑚)

󵄩󵄩󵄩󵄩𝑇𝑛𝑦 − 𝑦
󵄩󵄩󵄩󵄩 ,

∀𝑚 ∈ N, ∀𝑛 ≥ 𝑚, ∀𝑦 ∈ H
2
.

(18)

Based on the concept of using contractions to approx-
imate nonexpansive mappings, another type of algorithms
for SFFP(5) is also introduced, and the corresponding strong
convergence theorem for the sequence generated by such
algorithm is given too.

In Section 5, since resolvents of monotone operators are
firmly nonexpansive, we replace the sequences {𝑆

𝑛
} and {𝑇

𝑛
}

of firmly nonexpansive mappings in the previous condition
(iii) by two sequences of resolvents of maximal monotone
operators. Then, the proposed algorithm becomes a scheme
to approach the minimum norm solution of zero point prob-
lem of maximal monotone operators and the equilibrium
problem. It is worth noting that as Blum and Oettli [7]
showed that the variational inequalities, convex differentiable
optimization, and Nash equilibria in noncooperative games
can be formulated as equilibrium problems, the proposed
algorithm can be considered as a generalized methodology
for solving all aforementioned problems.

2. Preliminaries

In order to facilitate our investigation in this paper, we recall
some basic facts. A mapping 𝑆 : H → H is said to be

(i) nonexpansive if
󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ H; (19)

(ii) firmly nonexpansive if

󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩
2

≤ ⟨𝑥 − 𝑦, 𝑆𝑥 − 𝑆𝑦⟩ , ∀𝑥, 𝑦 ∈ H; (20)

(iii) 𝜆-averaged by 𝐺 if

𝑆 = (1 − 𝜆) 𝐼 + 𝜆𝐺, (21)

for some 𝜆 ∈ (0, 1) and some nonexpansive mapping
𝐺;

(iv) ]-inverse strongly monotone (]-ism), with ] > 0, if

⟨𝑥 − 𝑦, 𝑆𝑥 − 𝑆𝑦⟩ ≥ ]󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩
2

, ∀𝑥, 𝑦 ∈ H. (22)

If 𝑆 is nonexpansive, then the fixed point set Fix(𝑆) of 𝑆 is
closed and convex, cf. [11]. If 𝑆 = (1−𝜆)𝐼+𝜆𝐺 is averaged, then
𝑆 is nonexpansivewith Fix(𝑆) = Fix(𝐺). It is well known that 𝑆
is firmly nonexpansive if and only if it is 1/2-averaged, cf. [11],
and so is 𝐼 − 𝑆. Here we would like to mention that the term
“averagedmapping” originated in [12, 13]. In [12], Baillon el at.
showed that if 𝑆 is a 𝜆-averagedmapping by𝐺 on a nonempty
closed convex subset 𝐶 of a uniformly convex Banach space,
then Fix(𝐺) = 𝜙 if and only if lim

𝑛→∞
‖𝑆
𝑛
𝑥‖ = ∞ for all 𝑥

in 𝐶. Moreover, in [13], Bruck and Reich showed that if the
above 𝐶 satisfies 𝐶 = −𝐶 and 𝑆 is odd, then {𝑆

𝑛
𝑥} converges

strongly to a fixed point of 𝐺.
Let 𝐶 be a nonempty closed convex subset of H. The

metric projection 𝑃
𝐶
from H onto 𝐶 is the mapping that

assigns each 𝑥 ∈ H the unique point 𝑃
𝐶
𝑥 in 𝐶 with the

property
󵄩󵄩󵄩󵄩𝑥 − 𝑃

𝐶
𝑥
󵄩󵄩󵄩󵄩 = min
𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑦 − 𝑥
󵄩󵄩󵄩󵄩 . (23)

It is known that 𝑃
𝐶
is firmly nonexpansive and characterized

by the inequality: for any 𝑥 ∈ H,

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑦 − 𝑃

𝐶
𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶. (24)

We need some lemmas that will be quoted in the sequel.

Lemma 1 (see [4]). If 𝑆 is a self-mapping on H, then the
following assertions hold.

(a) 𝑆 is nonexpansive if and only if the complement 𝐼 − 𝑆 is
1/2-averaged.

(b) If 𝑆 is ]-ism and 𝛾 > 0, then 𝛾𝑆 is (]/𝛾)-ism.
(c) 𝑆 is 𝛼-averaged if and only if 𝐼 − 𝑆 is (1/2𝛼)-ism.
(d) If 𝑆 is 𝛼

1
-averaged and 𝑇 is 𝛼

2
-averaged, then the

composite 𝑆𝑇 is 𝛼
1
+ 𝛼
2
− 𝛼
1
𝛼
2
-averaged.

(e) If 𝑆 and 𝑈 are averaged on H so that Fix(𝑆) ∩

Fix(𝑈) ̸= 0, then

Fix (𝑆𝑈) = Fix (𝑆) ∩ Fix (𝑈) . (25)
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For 𝛼 > 0, the resolvent 𝐽
𝐴

𝛼
of a maximal monotone

operator 𝐴 onH has the following properties.

Lemma 2. Let 𝐴 be a maximal monotone operator on H.
Then,

(a) 𝐽𝐴
𝛼
is single-valued and firmly nonexpansive;

(b) D(𝐽
𝐴

𝛼
) = H and Fix(𝐽𝐴

𝛼
) = 𝐴
−1
0;

(c) (the resolvent identity) for 𝜇, 𝜆 > 0, the following
identity holds:

𝐽
𝐴

𝜇
𝑥 = 𝐽
𝐴

𝜆
(
𝜆

𝜇
𝑥 + (1 −

𝜆

𝜇
) 𝐽
𝐴

𝜇
𝑥) , ∀𝑥 ∈ H. (26)

We referred readers to [14–24] for maximal monotone
operators and their related algorithms.

Lemma 3. Let 𝑥, 𝑦, 𝑧 ∈ H. Then,

(a) ‖𝑥 + 𝑦‖
2
≤ ‖𝑥‖

2
+ 2⟨𝑦, 𝑥 + 𝑦⟩;

(b) for any 𝜆 ∈ R,
󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆)𝑦

󵄩󵄩󵄩󵄩
2

= 𝜆‖𝑥‖
2
+ (1 − 𝜆)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

− 𝜆 (1 − 𝜆)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

;

(27)

(c) for 𝑎, 𝑏, 𝑐 ∈ [0, 1] with 𝑎 + 𝑏 + 𝑐 = 1,
󵄩󵄩󵄩󵄩𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧

󵄩󵄩󵄩󵄩
2

= 𝑎‖𝑥‖
2
+ 𝑏

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

+ 𝑐‖𝑧‖
2

− 𝑎𝑏
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

− 𝑎𝑐‖𝑥 − 𝑧‖
2

− 𝑏𝑐
󵄩󵄩󵄩󵄩𝑦 − 𝑧

󵄩󵄩󵄩󵄩
2

.

(28)

Lemma 4 (see [11] (demiclosedness principle)). Let 𝑆 be a
nonexpansive self-mapping on H and suppose that {𝑥

𝑛
} is a

sequence inH such that {𝑥
𝑛
} converges weakly to some 𝑧 ∈ H

and lim
𝑛→∞

‖𝑥
𝑛
− 𝑆𝑥
𝑛
‖ = 0. Then, 𝑆𝑧 = 𝑧.

Lemma 5 (see [23]). Let {𝑠
𝑛
} be a sequence of nonnegative real

numbers satisfying

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑠
𝑛
+ 𝛼
𝑛
𝜇
𝑛
+ ]
𝑛
, 𝑛 ∈ N, (29)

where {𝛼
𝑛
}, {𝜇
𝑛
}, and {]

𝑛
} verify the following conditions:

(i) {𝛼
𝑛
} ⊆ [0, 1], ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝜇
𝑛
≤ 0;

(iii) {]
𝑛
} ⊆ [0,∞) and ∑

∞

𝑛=1
]
𝑛
< ∞.

Then, lim
𝑛→∞

𝑠
𝑛
= 0.

Lemma 6 (see [25]). Let {𝑠
𝑛
} be a sequence inR that does not

decrease at infinity in the sense that there exists a subsequence
{𝑠
𝑛𝑖
} such that

𝑠
𝑛𝑖
< 𝑠
𝑛𝑖+1

, ∀𝑖 ∈ N. (30)

For any 𝑘 ∈ N, define 𝑚
𝑘
= max{𝑗 ≤ 𝑘 : 𝑠

𝑗
< 𝑠
𝑗+1

}. Then,
𝑚
𝑘
→ ∞ as 𝑘 → ∞ andmax{𝑠

𝑚𝑘
, 𝑠
𝑘
} ≤ 𝑠
𝑚𝑘+1

, for all 𝑘 ∈ N.

3. Weak Convergence Theorems

In this section, we at first transform SFFP(5) into a fixed point
problem for the operator 𝑆(𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴), where 𝛾 is any

positive real number. And then use fixed point algorithms to
solve SFFP(5). Fromnowon until the end of this paper, unless
we state specifically, 𝑆 and 𝑆

𝑛
, 𝑛 ∈ N (resp., 𝑇 and 𝑇

𝑛
, 𝑛 ∈

N) are firmly nonexpansive self-mappings onH
1
(resp.,H

2
),

and 𝐴 denotes a bounded linear operator from H
1
into H

2

with adjoint 𝐴∗.

Lemma 7. Let 𝑆 be a firmly nonexpansive self-mapping onH
with Fix(𝑆) ̸= 0. Then, for any 𝑥 ∈ H, one has

⟨𝑥 − 𝑆𝑥, V − 𝑆𝑥⟩ ≤ 0, ∀V ∈ Fix (𝑆) . (31)

Proof. Since V ∈ Fix(𝑆) and 𝑆 is firmly nonexpansive, we have

‖𝑆𝑥 − V‖2 = ‖𝑆𝑥 − 𝑆V‖2

≤ ⟨𝑥 − V, 𝑆𝑥 − 𝑆V⟩

= ⟨𝑥 − V, 𝑆𝑥 − V⟩ ,

(32)

and hence,

⟨𝑥 − 𝑆𝑥, V − 𝑆𝑥⟩ = ⟨𝑥 − V, V − 𝑆𝑥⟩

+ ⟨V − 𝑆𝑥, V − 𝑆𝑥⟩

= ‖V − 𝑆𝑥‖
2
− ⟨𝑥 − V, 𝑆𝑥 − V⟩

≤ ‖V − 𝑆𝑥‖
2
− ‖𝑆𝑥 − V‖2 = 0.

(33)

Although ⟨𝑥−𝑆𝑥, V−𝑆𝑥⟩ ≤ 0, for all V ∈ Fix(𝑆) is similar to
the characterization inequality (24) for the metric projection
𝑃Fix(𝑆), as 𝑆𝑥 needs not to be in Fix(𝑆), it is in general different
from 𝑃Fix(𝑆)(𝑥). For example, let 𝑆𝑥 = 3𝑥/4 for all 𝑥 ∈ R,
which is obviously firmly nonexpansive with Fix(𝑆) = {0}.
Thus, 𝑃Fix(𝑆)(𝑥) = 0 for all 𝑥 ∈ R, while 𝑆𝑥 ̸= 0 for all 𝑥 ̸= 0.

Proposition 8. For any 𝛾 ∈ (0, 2/‖𝐴‖
2
), the operator 𝐼 −

𝛾𝐴
∗
(𝐼 − 𝑇)𝐴 is 𝛾‖𝐴‖

2
/2-averaged and 𝑆[𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴] is

(2 + 𝛾‖𝐴‖
2
)/4-averaged.

Proof. Using the fact that 𝑇 is firmly nonexpansive, it is
routine to show that𝐴∗(𝐼−𝑇)𝐴 is 1/‖𝐴‖

2-ism, and so 𝛾𝐴
∗
(𝐼−

𝑇)𝐴 is 1/𝛾‖𝐴‖
2-ism by Lemma 1(b).Thus, Lemma 1(c) shows

that 𝐼 − 𝛾𝐴
∗
(𝐼 − 𝑇)𝐴 is 𝛾‖𝐴‖

2
/2-averaged. As 𝑆 is firmly

nonexpansive, it is 1/2-averaged.Therefore, 𝑆[𝐼−𝛾𝐴∗(𝐼−𝑇)𝐴]

is (1/2) + (𝛾‖𝐴‖
2
/2) − (𝛾‖𝐴‖

2
/4) = ((2 + 𝛾‖𝐴‖

2
)/4)-averaged

by Lemma 1(d).

Proposition 9. Let Ω be the solution set of SFFP(5); that is,
Ω = Fix(𝑆) ∩ 𝐴

−1
(Fix(𝑇)). For any 𝛾 ∈ (0, 2/‖𝐴‖

2
), let 𝑈 =

𝐼−𝛾𝐴
∗
(𝐼−𝑇)𝐴. Suppose thatΩ ̸= 0. Then, Fix(𝑆𝑈) = Fix(𝑆)∩

Fix(𝑈) = Ω.
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Proof. If 𝑥∗ solves SFFP(5), we have 𝑥
∗
∈ Fix(𝑆) and 𝐴𝑥

∗
∈

Fix(𝑇). Now, note that 𝐴𝑥
∗
∈ Fix(𝑇) implies

(𝐼 − 𝑇)𝐴𝑥
∗
= 0, (34)

and so

(𝐼 − 𝛾𝐴
∗
(𝐼 − 𝑇)𝐴) 𝑥

∗
= 𝑥
∗
, (35)

which means that 𝑥∗ ∈ Fix(𝑈). Consequently, 𝑥∗ ∈ Fix(𝑆) ∩
Fix(𝑈). This shows thatΩ ⊆ Fix(𝑆) ∩ Fix(𝑈).

For the inverse inclusion, let 𝑥
∗ be any member of

Fix(𝑆) ∩ Fix(𝑈) and pick V ∈ Ω. It is readily seen from
𝑥
∗
∈ Fix(𝑈) that

𝐴
∗
(𝐼 − 𝑇)𝐴𝑥

∗
= 0. (36)

Since 𝐴V ∈ Fix(𝑇), an application of Lemma 7 yields

⟨(𝐼 − 𝑇)𝐴𝑥
∗
, 𝐴V − 𝑇𝐴𝑥

∗
⟩ ≤ 0, (37)

which together with (36) implies that
󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴𝑥

∗󵄩󵄩󵄩󵄩
2

= ⟨(𝐼 − 𝑇)𝐴𝑥
∗
, 𝐴𝑥
∗
− 𝐴V⟩

+ ⟨(𝐼 − 𝑇)𝐴𝑥
∗
, 𝐴V − 𝑇𝐴𝑥

∗
⟩

≤ ⟨(𝐼 − 𝑇)𝐴𝑥
∗
, 𝐴𝑥
∗
− 𝐴V⟩

= ⟨𝐴
∗
(𝐼 − 𝑇)𝐴𝑥, 𝑥

∗
− V⟩ = 0.

(38)

This comes to conclude that 𝐴𝑥
∗
∈ Fix(𝑇), and hence 𝑥

∗
∈

Ω once we note that 𝑥
∗

∈ Fix(𝑆). Finally, since Ω ̸= 0 by
assumption, we have Fix(𝑆)∩Fix(𝑈) = Ω ̸= 0.Thus, Fix(𝑆𝑈) =

Fix(𝑆) ∩ Fix(𝑈) follows from Lemma 1(e).

Proposition 10 (see [2, 4]). If 𝐺 is an averaged self-mapping
onHwith Fix(𝐺) ̸= 0, then for any 𝑥 ∈ H, the sequence {𝐺𝑛𝑥}
converges weakly to a fixed point of 𝐺.

An immediate consequence of Propositions 8, 9, and 10 is
the following convergence result.

Theorem 11. Assume that SFFP(5) has a solution. Then, for
any 𝛾 ∈ (0, 2/‖𝐴‖

2
) and starting with any point 𝑥

1
∈ H, the

sequence {𝑥
𝑛
} generated by

𝑥
𝑛+1

= 𝑆 [𝐼 − 𝛾𝐴
∗
(𝐼 − 𝑇)𝐴] 𝑥

𝑛 (39)

converges weakly to a solution of SFFP(5).

Proposition 12 (see [2]). Let 𝐺 be a 𝛼-averaged self-mapping
on H with Fix(𝐺) ̸= 0 and assume that {𝛼

𝑛
} is a sequence in

[0, 1/𝛼] such that
∞

∑
𝑛=1

𝛼
𝑛
(
1

𝛼
− 𝛼
𝑛
) = ∞. (40)

Then, for any 𝑥
1

∈ H, the sequence {𝑥
𝑛
} generated by the

Mann’s algorithm

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝐺𝑥
𝑛 (41)

converges weakly to a fixed point of 𝐺.

Applying Propositions 8, 9, and 12, we have the following
result.

Theorem 13. Assume that SFFP(5) has a solution and 𝛾 ∈

(0, 2/‖𝐴‖
2
). Let {𝛼

𝑛
} be a sequence in [0, 4/(2 + 𝛾‖𝐴‖

2
)] with

∞

∑
𝑛=1

𝛼
𝑛
(

4

2 + ‖𝐴‖
2
− 𝛼
𝑛
) = ∞. (42)

Then, for any 𝑥
1

∈ H, the sequence {𝑥
𝑛
} generated by the

Mann’s algorithm

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑆 [𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴] 𝑥

𝑛 (43)

converges weakly to a solution of SFFP(5).

4. Strong Convergence Theorems

In this section, we devise two algorithms, one for SFFP(16)
and the other for SFFP(5). We deal with SFFP(16) firstly. To
begin with, we need a lemma.

Lemma 14. For any 𝛾 ∈ (0, 2/‖𝐴‖
2
) and all 𝑥, 𝑦 ∈ H

1
, one

has
󵄩󵄩󵄩󵄩[𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴]𝑥 − [𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴]𝑦

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

− (2𝛾 − 𝛾
2
‖𝐴‖
2
)

×
󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴𝑥 − (𝐼 − 𝑇)𝐴𝑦

󵄩󵄩󵄩󵄩
2

.

(44)

Proof. Since 𝑇 is firmly nonexpansive, so is 𝐼 − 𝑇. Hence, for
all 𝑥, 𝑦 ∈ H

1
, we have

󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴𝑥 − (𝐼 − 𝑇)𝐴𝑦
󵄩󵄩󵄩󵄩
2

≤ ⟨𝐴𝑥 − 𝐴𝑦, (𝐼 − 𝑇)𝐴𝑥 − (𝐼 − 𝑇)𝐴𝑦⟩ .

(45)

Consequently,
󵄩󵄩󵄩󵄩[𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴]𝑥 − [𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴]𝑦

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

− 2𝛾

× ⟨𝑥 − 𝑦, 𝐴
∗
(𝐼 − 𝑇)𝐴𝑥 − 𝐴

∗
(𝐼 − 𝑇)𝐴𝑦⟩

+ 𝛾
2󵄩󵄩󵄩󵄩𝐴
∗
(𝐼 − 𝑇)𝐴𝑥 − 𝐴

∗
(𝐼 − 𝑇)𝐴𝑦

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

− 2𝛾

× ⟨𝐴𝑥 − 𝐴𝑦, (𝐼 − 𝑇)𝐴𝑥 − (𝐼 − 𝑇)𝐴𝑦⟩

+ 𝛾
2󵄩󵄩󵄩󵄩𝐴
∗
(𝐼 − 𝑇)𝐴𝑥 − 𝐴

∗
(𝐼 − 𝑇)𝐴𝑦

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

− 2𝛾
󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴𝑥 − (𝐼 − 𝑇)𝐴𝑦

󵄩󵄩󵄩󵄩
2

+ 𝛾
2
‖𝐴‖
2󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴𝑥 − (𝐼 − 𝑇)𝐴𝑦

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
2

− (2𝛾 − 𝛾
2
‖𝐴‖
2
)

×
󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴𝑥 − (𝐼 − 𝑇)𝐴𝑦

󵄩󵄩󵄩󵄩
2

.

(46)



6 Abstract and Applied Analysis

Theorem 15. Let {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
}, and {𝑑

𝑛
} be sequences in [0, 1]

with 𝑎
𝑛
+𝑏
𝑛
+𝑐
𝑛
+𝑑
𝑛
= 1 and 𝑎

𝑛
∈ (0, 1) for all 𝑛 ∈ N. Let {𝛾

𝑛
} be

a sequence in (0, 2/‖𝐴‖
2
) and let {𝑒

𝑛
} be a bounded sequence in

H
1
. Suppose that the solution set Ω of SFFP(16) is nonempty.

For any 𝑢 ∈ H
1
, start with any 𝑥

1
∈ H
1
and define a sequence

{𝑥
𝑛
} by

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + 𝑏
𝑛
𝑥
𝑛
+ 𝑐
𝑛
𝑆
𝑛
[𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝑇

𝑛
) 𝐴] 𝑥

𝑛
+ 𝑑
𝑛
𝑒
𝑛
.

(47)

Then the sequence {𝑥
𝑛
} converges strongly to 𝑃

Ω
𝑢 provided that

the following conditions are satisfied:

(i) lim
𝑛→∞

𝑎
𝑛

= lim
𝑛→∞

(𝑑
𝑛
/𝑎
𝑛
) = 0, ∑∞

𝑛=1
𝑎
𝑛

= ∞,
∑
∞

𝑛=1
𝑑
𝑛
< ∞;

(ii) lim
𝑛→∞

inf 𝑐
𝑛
(2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
) > 0, lim

𝑛→∞
inf 𝑏
𝑛
𝑐
𝑛
>

0;
(iii) there are two nonnegative real-valued functions 𝜅

1
and

𝜅
2
on N with

󵄩󵄩󵄩󵄩𝑆𝑚𝑥 − 𝑥
󵄩󵄩󵄩󵄩 ≤ 𝜅
1
(𝑚)

󵄩󵄩󵄩󵄩𝑆𝑛𝑥 − 𝑥
󵄩󵄩󵄩󵄩 ,

∀𝑚 ∈ N, ∀𝑛 ≥ 𝑚, ∀𝑥 ∈ H
1
,

󵄩󵄩󵄩󵄩𝑇𝑚𝑦 − 𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜅
2
(𝑚)

󵄩󵄩󵄩󵄩𝑇𝑛𝑦 − 𝑦
󵄩󵄩󵄩󵄩 ,

∀𝑚 ∈ N, ∀𝑛 ≥ 𝑚, ∀𝑦 ∈ H
2
.

(48)

Proof. Put 𝑝 = 𝑃
Ω
𝑢. For simplicity, put 𝐺

𝑛
= 𝑆
𝑛
(𝐼 − 𝛾
𝑛
𝐴
∗
(𝐼 −

𝑇
𝑛
)𝐴). In view of Proposition 9, 𝐺

𝑛
is nonexpansive, so

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑎𝑛 (𝑢 − 𝑝) + 𝑏

𝑛
(𝑥
𝑛
− 𝑝)

+𝑐
𝑛
(𝐺
𝑛
𝑥
𝑛
− 𝑝) + 𝑑

𝑛
(𝑒
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

≤ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑝
󵄩󵄩󵄩󵄩 + (𝑏
𝑛
+ 𝑐
𝑛
)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑑
𝑛

󵄩󵄩󵄩󵄩𝑒𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(49)

from which follows that {𝑥
𝑛
} is a bounded sequence. Taking

into account Lemma 3, we get

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑎𝑛 (𝑢 − 𝑝) + 𝑏

𝑛
(𝑥
𝑛
− 𝑝)

+𝑐
𝑛
(𝐺
𝑛
𝑥
𝑛
− 𝑝) + 𝑑

𝑛
(𝑒
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑏𝑛(𝑥𝑛 − 𝑝) + 𝑐

𝑛
(𝐺
𝑛
𝑥
𝑛
− 𝑝) + 𝑑

𝑛
(𝑒
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩
2

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

= (1 − 𝑎
𝑛
)
2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
𝑛

1 − 𝑎
𝑛

(𝑥
𝑛
− 𝑝)

+
𝑐
𝑛

1 − 𝑎
𝑛

(𝐺
𝑛
𝑥
𝑛
− 𝑝)

+
𝑑
𝑛

1 − 𝑎
𝑛

(𝑒
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

≤ (1 − 𝑎
𝑛
)
2

(
𝑏
𝑛

1 − 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+
𝑐
𝑛

1 − 𝑎
𝑛

×
󵄩󵄩󵄩󵄩𝐺𝑛𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+
𝑑
𝑛

1 − 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑒𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

)

− 𝑏
𝑛
𝑐
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

≤ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+ 𝑐
𝑛

󵄩󵄩󵄩󵄩𝐺𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩𝑒𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

− 𝑏
𝑛
𝑐
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩ .

(50)

Meanwhile, we have by Lemma 14 that

󵄩󵄩󵄩󵄩𝐺𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑆𝑛 (𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝑇

𝑛
) 𝐴) 𝑥

𝑛

− 𝑆
𝑛
(𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝑇

𝑛
) 𝐴) 𝑝

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝑇

𝑛
) 𝐴) 𝑥

𝑛

− (𝐼 − 𝛾
𝑛
𝐴
∗
(𝐼 − 𝑇

𝑛
) 𝐴) 𝑝

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− (2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
)

×
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛
)𝐴𝑥
𝑛
− (𝐼 − 𝑇

𝑛
)𝐴𝑝

󵄩󵄩󵄩󵄩
2

.

(51)

Therefore, we deduce that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2

≤ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+ 𝑐
𝑛
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− (2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
)

×
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛
)𝐴𝑥
𝑛
− (𝐼 − 𝑇

𝑛
)𝐴𝑝

󵄩󵄩󵄩󵄩
2

]

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩𝑒𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

− 𝑏
𝑛
𝑐
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

= (𝑏
𝑛
+ 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩𝑒𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

− 𝑐
𝑛
(2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
)
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛
)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩
2

− 𝑏
𝑛
𝑐
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

.

(52)

We now carry on with the proof by considering the following
two cases: (I) {‖𝑥

𝑛
−𝑝‖} is eventually decreasing and (II) {‖𝑥

𝑛
−

𝑝‖} is not eventually decreasing.
Case I. Suppose that {‖𝑥

𝑛
−𝑝‖} is eventually decreasing; that is,

there is 𝑛
0
∈ N such that {‖𝑥

𝑛
− 𝑝‖}
𝑛≥𝑛0

is decreasing. In this
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case, lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ exists in R. From inequality (52) we

have

𝑐
𝑛
(2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
)
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

𝑛
)𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩
2

+ 𝑏
𝑛
𝑐
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩
2

≤ (𝑏
𝑛
+ 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩𝑒𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩ −

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2

,

(53)

which together with the boundedness of {𝑥
𝑛
} and conditions

(i) and (ii) implies

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝑇
𝑛
𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0.
(54)

Then, an application of condition (iii) follows that for all𝑚 ∈

N,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺
𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝑇
𝑚
𝐴𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (55)

Since {𝑥
𝑛
} is bounded, it has a subsequence {𝑥

𝑛𝑘
} such that

{𝑥
𝑛𝑘
} converges weakly to some 𝑧 ∈ H and

lim sup
𝑛→∞

⟨𝑢 − 𝑝, 𝑥
𝑛+1

− 𝑝⟩

= lim
𝑘→∞

⟨𝑢 − 𝑝, 𝑥
𝑛𝑘

− 𝑝⟩

= ⟨𝑢 − 𝑝, 𝑧 − 𝑝⟩ ≤ 0,

(56)

where the last inequality follows from (24) since 𝑧 ∈ Ω by
Lemma 4. Choose 𝑀 > 0 so that sup{‖𝑒

𝑛
− 𝑝‖
2
+ 2‖𝑢 −

𝑝‖‖𝑥
𝑛+1

− 𝑝‖ : 𝑛 ∈ N} ≤ 𝑀. From (52) we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2

≤ (1 − (𝑎
𝑛
+ 𝑑
𝑛
))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+ (𝑎
𝑛
+ 𝑑
𝑛
) ⋅ 2 ⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

+ 𝑑
𝑛
(
󵄩󵄩󵄩󵄩𝑒𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 2
󵄩󵄩󵄩󵄩𝑢 − 𝑝

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩)

≤ (1 − (𝑎
𝑛
+ 𝑑
𝑛
))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩
2

+ (𝑎
𝑛
+ 𝑑
𝑛
) ⋅ 2 ⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩ + 𝑑

𝑛
𝑀.

(57)

Accordingly, because of (56) and condition (i), we can apply
Lemma 5 to inequality (57) with 𝑠

𝑛
= ‖𝑥
𝑛
− 𝑝‖
2, 𝛼
𝑛
= 𝑎
𝑛
+ 𝑏
𝑛
,

𝜇
𝑛
= 2⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩, and ]

𝑛
= 𝑑
𝑛
𝑀 to conclude that

lim
𝑛→∞

𝑥
𝑛
= 𝑝. (58)

Case II. Suppose that {‖𝑥
𝑛
− 𝑝‖} is not eventually decreasing.

In this case, by Lemma 6, there exists a nondecreasing
sequence {𝑚

𝑘
} in N such that𝑚

𝑘
→ ∞ and

max {󵄩󵄩󵄩󵄩󵄩𝑥𝑚𝑘 − 𝑝
󵄩󵄩󵄩󵄩󵄩
,
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑝

󵄩󵄩󵄩󵄩}

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩
, ∀𝑘 ∈ N.

(59)

Then, it follows from (52) and (59) that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ (𝑏
𝑚𝑘

+ 𝑐
𝑚𝑘

)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑎
𝑚𝑘

⟨𝑢 − 𝑝, 𝑥
𝑚𝑘+1

− 𝑝⟩

− 𝑐
𝑚𝑘

(2𝛾
𝑚𝑘

− 𝛾
2

𝑚𝑘
‖𝐴‖
2
)

×
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑇

𝑚𝑘
)𝐴𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩

2

− 𝑏
𝑚𝑘

𝑐
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝐺
𝑚𝑘

𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩

2

.

(60)

Therefore,

0 ≤ 𝑐
𝑚𝑘

(2𝛾
𝑚𝑘

+ 𝛾
2

𝑚𝑘
‖𝐴‖
2
)
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝑇

𝑚𝑘
)𝐴𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑏
𝑚𝑘

𝑐
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝐺
𝑚𝑘

𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩

2

≤ − (1 − (𝑏
𝑚𝑘

+ 𝑐
𝑚𝑘

))
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑎
𝑚𝑘

⟨𝑢 − 𝑝, 𝑥
𝑚𝑘+1

− 𝑝⟩

= − (𝑎
𝑚𝑘

+ 𝑑
𝑚𝑘

)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑎
𝑚𝑘

⟨𝑢 − 𝑝, 𝑥
𝑚𝑘+1

− 𝑝⟩ ,

(61)

and then proceeding just as in the proof in Case I, we obtain

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝐺
𝑚𝑘

𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩

= lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑚𝑘

− 𝑇
𝑚𝑘

𝐴𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
= 0,

(62)

which in conjunction with condition (iii) shows that for all
𝑚
𝑗

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝐺
𝑚𝑗
𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩󵄩

= lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑚𝑘

− 𝑇
𝑚𝑗
𝐴𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
= 0,

(63)

and then follows that

lim sup
𝑘→∞

⟨𝑢 − 𝑝, 𝑥
𝑚𝑘+1

− 𝑝⟩ ≤ 0. (64)

From (60) we have

(1 − (𝑏
𝑚𝑘

+ 𝑐
𝑚𝑘

))
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑑
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑎
𝑚𝑘

⟨𝑢 − 𝑝, 𝑥
𝑚𝑘+1

− 𝑝⟩ ,

(65)
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and thus,

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
𝑑
𝑚𝑘

𝑎
𝑚𝑘

+ 𝑑
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+
2𝑎
𝑚𝑘

𝑎
𝑚𝑘

+ 𝑑
𝑚𝑘

⟨𝑢 − 𝑝, 𝑥
𝑚𝑘+1

− 𝑝⟩

≤
𝑑
𝑚𝑘

𝑎
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑢 − 𝑝, 𝑥
𝑚𝑘+1

− 𝑝⟩ .

(66)

Letting 𝑘 → ∞ and using (64) and condition (i), we obtain

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘

− 𝑝
󵄩󵄩󵄩󵄩󵄩
= 0. (67)

Also, since
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘+1

− 𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩

≤ 𝑎
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
+ 𝑐
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑚𝑘

𝑥
𝑚𝑘

− 𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩

+ 𝑑
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑚𝑘

− 𝑥
𝑚𝑘

󵄩󵄩󵄩󵄩󵄩
,

(68)

which together with (62) and condition (i) implies that
lim
𝑘→∞

‖𝑥
𝑚𝑘+1

− 𝑥
𝑚𝑘

‖ = 0, and so

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚𝑘+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩
= 0 (69)

by virtue of (67). Consequently, we conclude that
lim
𝑘→∞

‖𝑥
𝑘
− 𝑝‖ = 0 via (59) and (69). This completes

the proof.

This theorem says that the sequence {𝑥
𝑛
} converges

strongly to a point ofΩwhich is the nearest to 𝑢. In particular,
if 𝑢 is taken to be 0, then the limit point V of the sequence {𝑥

𝑛
}

is the unique minimum solution of SFFP(16).

Corollary 16. Let {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝑐

𝑛
} be sequences in [0, 1]

with 𝑎
𝑛
+ 𝑏
𝑛
+ 𝑐
𝑛
= 1 and 𝑎

𝑛
∈ (0, 1) for all 𝑛 ∈ N. Let {𝛾

𝑛
} be a

sequence in (0, 2/‖𝐴‖
2
) and let {𝑒

𝑛
} be a bounded sequence in

H
1
. Suppose that the solution set Ω of SFFP(16) is nonempty.

For any 𝑢 ∈ H
1
, start with any 𝑥

1
∈ H
1
and define a sequence

{𝑥
𝑛
} by

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + 𝑏
𝑛
𝑥
𝑛
+ 𝑐
𝑛
𝑆
𝑛
[𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝑇

𝑛
) 𝐴] 𝑥

𝑛
+ 𝑒
𝑛
.

(70)

Then, the sequence {𝑥
𝑛
} converges strongly to𝑃

Ω
𝑢 provided that

the following conditions are satisfied:

(i) lim
𝑛→∞

𝑎
𝑛

= lim
𝑛→∞

(𝑑
𝑛
/𝑎
𝑛
) = 0, ∑∞

𝑛=1
𝑎
𝑛

= ∞,
∑
∞

𝑛=1
𝑑
𝑛

< ∞;

(ii) lim
𝑛→∞

inf 𝑐
𝑛
(2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
) > 0, lim

𝑛→∞
inf 𝑏
𝑛
𝑐
𝑛
>

0;

(iii) there are two nonnegative real-valued functions 𝜅
1
and

𝜅
2
on N with

󵄩󵄩󵄩󵄩𝑆𝑚𝑥 − 𝑥
󵄩󵄩󵄩󵄩 ≤ 𝜅
1
(𝑚)

󵄩󵄩󵄩󵄩𝑆𝑛𝑥 − 𝑥
󵄩󵄩󵄩󵄩 ,

∀𝑚 ∈ N, ∀𝑛 ≥ 𝑚, ∀𝑥 ∈ H
1
,

(71)

󵄩󵄩󵄩󵄩𝑇𝑚𝑦 − 𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜅
2
(𝑚)

󵄩󵄩󵄩󵄩𝑇𝑛𝑦 − 𝑦
󵄩󵄩󵄩󵄩 ,

∀𝑚 ∈ N, ∀𝑛 ≥ 𝑚, ∀𝑦 ∈ H
2
;

(72)

(iv) either lim
𝑛→∞

(‖𝑒
𝑛
‖/𝑎
𝑛
) = 0 or ∑∞

𝑛=1
‖𝑒
𝑛
‖ < ∞.

Proof. Put 𝑝 = 𝑃
Ω
𝑢 and 𝐺

𝑛
= 𝑆
𝑛
[𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝑇

𝑛
)𝐴]. Let

𝑧
1
= 𝑥
1
and define a sequence {𝑧

𝑛
} iteratively by

𝑧
𝑛+1

= 𝑎
𝑛
𝑢 + 𝑏
𝑛
𝑧
𝑛
+ 𝑐
𝑛
𝐺
𝑛
𝑧
𝑛
. (73)

We have lim
𝑛→∞

𝑧
𝑛
= 𝑝 byTheorem 15. Since

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
𝑛+1

󵄩󵄩󵄩󵄩 ≤ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩

+ 𝑐
𝑛

󵄩󵄩󵄩󵄩𝐺𝑛𝑥𝑛 − 𝐺
𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩

≤ (𝑏
𝑛
+ 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩

= (1 − 𝑎
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩 ,

(74)

the limit lim
𝑛→∞

‖𝑥
𝑛
− 𝑧
𝑛
‖ = 0 follows by applying Lemma 5

to (74), and thus,

lim
𝑛→∞

𝑥
𝑛
= 𝑝. (75)

If the sequence {𝑆
𝑛
} (resp., {𝑇

𝑛
}) of firmly nonexpansive

mappings consists of a single mapping 𝑆 (resp., 𝑇), then {𝑆
𝑛
}

and {𝑇
𝑛
} obviously verify condition (iii), and hence, we have

the following corollary.

Corollary 17. Let {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
}, and {𝑑

𝑛
} be sequences in

[0, 1] with 𝑎
𝑛
+ 𝑏
𝑛
+ 𝑐
𝑛
+ 𝑑
𝑛
= 1 and 𝑎

𝑛
∈ (0, 1) for all 𝑛 ∈ N.

Let {𝛾
𝑛
} be a sequence in (0, 2/‖𝐴‖

2
) and let {𝑒

𝑛
} be a bounded

sequences inH
1
. Assume that the solution set Ω of SFFP(5) is

nonempty. For any 𝑢 ∈ H
1
, start with an arbitrary 𝑥

1
∈ H
1

and define the sequence {𝑥
𝑛
} by

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + 𝑏
𝑛
𝑥
𝑛
+ 𝑐
𝑛
𝑆 [𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝑇)𝐴] 𝑥

𝑛
+ 𝑑
𝑛
𝑒
𝑛
.

(76)

Then, {𝑥
𝑛
} converges strongly to 𝑃

Ω
𝑢 provided that the follow-

ing conditions are satisfied:

(i) lim
𝑛→∞

𝑎
𝑛

= lim
𝑛→∞

(𝑑
𝑛
/𝑎
𝑛
) = 0, ∑∞

𝑛=1
𝑎
𝑛

= ∞,
∑
∞

𝑛=1
𝑑
𝑛
< ∞;

(ii) lim
𝑛→∞

inf 𝑐
𝑛
(2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
) > 0, lim

𝑛→∞
inf 𝑏
𝑛
𝑐
𝑛
>

0.

When the sequence {𝛾
𝑛
} is taken to be a constant 𝛾 ∈

(0, 2/‖𝐴‖
2
), then because 𝑆[𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝑇)𝐴] is an averaged

mapping, we can apply Corollary 3.4 of Huang andHong [26]
to obtain the following result.
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Theorem 18. Let {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
}, and {𝑑

𝑛
} be sequences in

[0, 1] with 𝑎
𝑛
+ 𝑏
𝑛
+ 𝑐
𝑛
+ 𝑑
𝑛

= 1 and 𝑎
𝑛

∈ (0, 1) for all
𝑛 ∈ N. Suppose that 𝛾 ∈ (0, 2/‖𝐴‖

2
) and suppose that {𝑒

𝑛
}

is a bounded sequence inH
1
. Assume that the solution setΩ of

SFFP(5) is nonempty. For any 𝑢 ∈ H
1
, start with an arbitrary

𝑥
1
∈ H
1
and define the sequence {𝑥

𝑛
} by

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + 𝑏
𝑛
𝑥
𝑛
+ 𝑐
𝑛
𝑆 [𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴] 𝑥

𝑛
+ 𝑑
𝑛
𝑒
𝑛
.

(77)

Then, {𝑥
𝑛
} converges strongly to 𝑃

Ω
𝑢 provided that the follow-

ing conditions are satisfied:

(i) lim
𝑛→∞

𝑎
𝑛

= lim
𝑛→∞

(𝑑
𝑛
/𝑎
𝑛
) = 0, ∑∞

𝑛=1
𝑎
𝑛

= ∞,
∑
∞

𝑛=1
𝑑
𝑛
< ∞;

(ii) lim
𝑛→∞

inf 𝑏
𝑛
> 0, lim

𝑛→∞
inf 𝑐
𝑛
> 0.

Since both condition (ii) of Corollary 17 and Theorem 18
are equivalent provided that 𝛾

𝑛
= 𝛾 for every 𝑛 ∈ N,

Theorem 18 also follows from Corollary 17.
We now turn to SFFP(5) for another algorithm, which

essentially follows the argument of Wang and Xu [27]. For
the sake of completeness, we still give a detailed proof.

Theorem 19. Let {𝑎
𝑛
} be a sequence in (0, 1). Suppose that 𝛾 ∈

(0, 2/‖𝐴‖
2
) and assume that the solution set Ω of SFFP(5) is

nonempty. Start with any 𝑥
1
∈ H
1
and define a sequence {𝑥

𝑛
}

by

𝑥
𝑛+1

= 𝑆 [(1 − 𝑎
𝑛
) (𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴)] 𝑥

𝑛
. (78)

Then, the sequence {𝑥
𝑛
} converges strongly to the minimum

norm solution of SFFP(5) provided that the following condi-
tions are satisfied:

(i) lim
𝑛→∞

𝑎
𝑛
= 0;

(ii) ∑∞
𝑛=1

𝑎
𝑛
= ∞;

(iii) either ∑
∞

𝑛=1
|𝑎
𝑛+1

− 𝑎
𝑛
| < ∞ or lim

𝑛→∞
(|𝑎
𝑛+1

−

𝑎
𝑛
|/𝑎
𝑛
) = 0.

Proof. Put 𝑈 = 𝐼 − 𝛾𝐴
∗
(𝐼 − 𝑇)𝐴, 𝐺 = 𝑆𝑈, and 𝐺

𝑛
= 𝑆[(1 −

𝑎
𝑛
)]𝑈 for all 𝑛 ∈ N. Then,

𝑥
𝑛+1

= 𝐺
𝑛
𝑥
𝑛
= 𝑆 [(1 − 𝑎

𝑛
)𝑈] 𝑥

𝑛
,

󵄩󵄩󵄩󵄩𝐺𝑛𝑥 − 𝐺
𝑛
𝑦
󵄩󵄩󵄩󵄩 ≤ (1 − 𝑎

𝑛
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ H
1
.

(79)

Take 𝑝 ∈ Ω. From Proposition 9, we have
󵄩󵄩󵄩󵄩𝐺𝑛𝑝 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑆 [(1 − 𝑎

𝑛
) 𝑈] 𝑝 − 𝑆𝑈𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(1 − 𝑎

𝑛
) 𝑈𝑝 − 𝑈𝑝

󵄩󵄩󵄩󵄩

= 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑈𝑝
󵄩󵄩󵄩󵄩 = 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 .

(80)

Hence,
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝐺𝑛𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝐺𝑛𝑥𝑛 − 𝐺

𝑛
𝑝
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐺𝑛𝑝 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 ,

(81)

from which follows that {𝑥
𝑛
} is bounded and so is {𝑈𝑥

𝑛
}.

Choose𝑀 > 0 so that ‖𝑈𝑥
𝑛
‖ ≤ 𝑀 for all 𝑛 ∈ N. We have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝐺𝑛𝑥𝑛 − 𝐺

𝑛−1
𝑥
𝑛−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝐺𝑛𝑥𝑛 − 𝐺

𝑛
𝑥
𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐺𝑛𝑥𝑛−1 − 𝐺

𝑛−1
𝑥
𝑛−1

󵄩󵄩󵄩󵄩

= (1 − 𝑎
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆 [(1 − 𝑎

𝑛
) 𝑈𝑥
𝑛−1

]

− 𝑆 [(1 − 𝑎
𝑛−1

) 𝑈𝑥
𝑛−1

]
󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(1 − 𝑎

𝑛
) 𝑈𝑥
𝑛−1

− (1 − 𝑎
𝑛−1

) 𝑈𝑥
𝑛−1

󵄩󵄩󵄩󵄩

= (1 − 𝑎
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝑎𝑛 − 𝑎

𝑛−1

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑈𝑥𝑛−1

󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛−1

󵄩󵄩󵄩󵄩

+ 𝑀
󵄨󵄨󵄨󵄨𝑎𝑛 − 𝑎

𝑛−1

󵄨󵄨󵄨󵄨 .

(82)

In view of conditions (i), (ii), and (iii), we can apply Lemma 5
to (82) to get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0, (83)

and then from

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺𝑛𝑥𝑛 − 𝐺𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(1 − 𝑎

𝑛
) 𝑈𝑥
𝑛
− 𝑈𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 + 𝑀
󵄩󵄩󵄩󵄩𝑈𝑥𝑛

󵄩󵄩󵄩󵄩 ,

(84)

we see that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (85)

Consequently, the demiclosedness principle ensures that each
weak limit point of {𝑥

𝑛
} is a fixed point of the averaged

mapping 𝑆𝑈. And then we conclude from Proposition 9 that
each weak limit point of {𝑥

𝑛
} lies in Ω.

Let 𝑥 be the minimum norm element of Ω; that is, 𝑥 =

𝑃
Ω
(0). We shall show that {𝑥

𝑛
} converges strongly to 𝑥. To see
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this, we compute ‖𝑥
𝑛+1

− 𝑥‖
2 as follows:

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑆 [(1 − 𝑎

𝑛
) 𝑈𝑥
𝑛
] − 𝑆𝑈𝑥

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩(1 − 𝑎

𝑛
)𝑈𝑥
𝑛
− 𝑈𝑥

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 𝑎

𝑛
) 𝑈𝑥
𝑛
− 𝑥

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 𝑎

𝑛
) (𝑈𝑥
𝑛
− 𝑥) − 𝑎

𝑛
𝑥
󵄩󵄩󵄩󵄩
2

= (1 − 𝑎
𝑛
)
2󵄩󵄩󵄩󵄩𝑈𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩
2

+ 2𝑎
𝑛
(1 − 𝑎

𝑛
) ⟨𝑈𝑥
𝑛
− 𝑥, −𝑥⟩ + 𝑎

2

𝑛
‖𝑥‖
2

≤ (1 − 𝑎
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩
2

+ 𝑎
𝑛
[2 (1 − 𝑎

𝑛
) ⟨𝑈𝑥
𝑛
− 𝑥, −𝑥⟩ + 𝑎

𝑛‖𝑥‖
2
] .

(86)

If lim sup
𝑛→∞

2(1 − 𝑎
𝑛
)⟨𝑈𝑥
𝑛
− 𝑥, −𝑥⟩ + 𝑎

𝑛
‖𝑥‖
2

≤ 0, then
an application of Lemma 5 to (86) yields that lim

𝑛→∞
𝑥
𝑛
=

𝑥. Hence, to complete the proof, it suffices to show that
lim sup

𝑛→∞
2(1 − 𝑎

𝑛
)⟨𝑈𝑥
𝑛
− 𝑥, −𝑥⟩ + 𝑎

𝑛
‖𝑥‖
2
≤ 0. For this,

taking into account Proposition 8, we canwrite𝑈 = (1−𝛽)𝐼+

𝛽𝑉 for some 𝛽 ∈ (0, 1) and some nonexpansive mapping 𝑉.
Then, from

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑆 [(1 − 𝑎

𝑛
)𝑈] 𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩(1 − 𝑎

𝑛
)𝑈𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 𝑎

𝑛
) (𝑈𝑥
𝑛
− 𝑝) − 𝑎

𝑛
𝑝
󵄩󵄩󵄩󵄩
2

≤ (1 − 𝑎
𝑛
)
󵄩󵄩󵄩󵄩𝑈𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩(1 − 𝛽) (𝑥

𝑛
− 𝑝)

+ 𝛽 (𝑉𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩
2

+ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

= (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩𝑉𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− 𝛽 (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑉𝑥

𝑛

󵄩󵄩󵄩󵄩
2

+ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

− 𝛽 (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑉𝑥

𝑛

󵄩󵄩󵄩󵄩
2

+ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

,

(87)

we obtain

𝛽 (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑉𝑥

𝑛

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩
2

+ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
2

,

(88)

which ensures that lim
𝑛→∞

‖𝑥
𝑛
− 𝑉𝑥
𝑛
‖ = 0, and hence,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑈𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0 (89)

once we note that 𝐼−𝑈 = 𝛽(𝐼−𝑉). Since {𝑥
𝑛
} is bounded, we

can take a subsequence {𝑥
𝑛𝑖
} so that it is weakly convergent to

𝑥
∗
∈ Ω and

lim sup
𝑛→∞

⟨𝑥
𝑛
− 𝑥, −𝑥⟩ = lim

𝑖→∞

⟨𝑥
𝑛𝑖
, −𝑥⟩

= ⟨𝑥
∗
− 𝑥, −𝑥⟩ ≤ 0,

(90)

where the last inequality comes from the characterization
inequality of ametric projection. Now, applying (89) and (90)
to the equality

⟨𝑈𝑥
𝑛
− 𝑥, −𝑥⟩ = ⟨𝑈𝑥

𝑛
− 𝑥
𝑛
, −𝑥⟩ + ⟨𝑥

𝑛
− 𝑥, −𝑥⟩ , (91)

we obtain

lim sup
𝑛→∞

⟨𝑈𝑥
𝑛
− 𝑥, −𝑥⟩ ≤ 0, (92)

and thus,

lim sup
𝑛→∞

2 (1 − 𝑎
𝑛
) ⟨𝑈𝑥
𝑛
− 𝑥, −𝑥⟩ + 𝑎

𝑛‖𝑥‖
2
≤ 0. (93)

This completes the proof.

5. Applications

In this section, we shall apply the results in Section 4 to ap-
proximate zeros of maximal monotone operators and solu-
tions of equilibrium problems.

Theorem 20. Suppose that𝑀 and𝑁 are two maximal mono-
tone operators on H

1
and H

2
, respectively, and suppose that

𝐴 : H
1
→ H

2
is a bounded linear operator with adjoint 𝐴∗.

Suppose further that {𝑎
𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
}, and {𝑑

𝑛
} are sequences in

[0, 1] with 𝑎
𝑛
+ 𝑏
𝑛
+ 𝑐
𝑛
+ 𝑑
𝑛
= 1 and 𝑎

𝑛
∈ (0, 1) for all 𝑛 ∈ N.

Let {𝛼
𝑛
} and {𝛽

𝑛
} be sequences in (0,∞), {𝛾

𝑛
} a sequence in

(0, 2/‖𝐴‖
2
), and {𝑒

𝑛
} a bounded sequence inH

1
. Assume that

the solution setΩ of the problem

𝑓𝑖𝑛𝑑 𝑥
∗
∈ H
1

𝑠𝑜 𝑡ℎ𝑎𝑡 𝑥
∗
∈ 𝑀
−1
0, 𝐴𝑥

∗
∈ 𝑁
−1
0

(94)

is nonempty. For any 𝑢 ∈ H
1
, start with an arbitrary 𝑥

1
∈ H

and define a sequence {𝑥
𝑛
} by

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + 𝑏
𝑛
𝑥
𝑛
+ 𝑐
𝑛
𝐽
𝑀

𝛼𝑛
[𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝐽

𝑁

𝛽𝑛
)] 𝑥
𝑛

+ 𝑑
𝑛
𝑒
𝑛
.

(95)

Then, the sequence {𝑥
𝑛
} converges strongly to𝑃

Ω
𝑢 provided that

the following conditions are satisfied:

(i) lim
𝑛→∞

𝑎
𝑛

= lim
𝑛→∞

(𝑑
𝑛
/𝑎
𝑛
) = 0, ∑∞

𝑛=1
𝑎
𝑛

= ∞,
∑
∞

𝑛=1
𝑑
𝑛
< ∞;

(ii) lim
𝑛→∞

inf 𝑐
𝑛
(2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
) > 0, lim

𝑛→∞
inf 𝑏
𝑛
𝑐
𝑛
>

0;
(iii) lim

𝑛→∞
inf 𝛼
𝑛
> 0, lim

𝑛→∞
inf 𝛽
𝑛
> 0.
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Proof. For any 𝑛 ∈ N, letting 𝑆
𝑛

= 𝐽
𝑀

𝛼𝑛
and 𝑇

𝑛
= 𝐽
𝑁

𝛽𝑛
, then

we have by Lemma 2(b) that 𝑀−10 = Fix(𝑆
𝑛
) and 𝑁

−1
0 =

Fix(𝑇
𝑛
) for all 𝑛 ∈ N, and hence, as shown in Section 1,

the problem (94) becomes SFFP(16). Since all the require-
ments of Theorem 15 are satisfied except condition (iii), we
have to check this condition. Because lim inf

𝑛→∞
𝛼
𝑛

= 0,
lim inf

𝑛→∞
𝛽
𝑛
= 0 by assumption, we may assume that there

is 𝜏 ∈ (0, 1) so that 𝜏 < 𝛼
𝑛
and 𝜏 < 𝛽

𝑛
for all 𝑛 ∈ N. Let

𝜅
1
(𝑛) = 2 + (𝛼

𝑛
/𝜏) and 𝜅

2
(𝑛) = 2 + (𝛽

𝑛
/𝜏). Then, by virtue of

the resolvent identity and the nonexpansiveness of 𝐽𝑀
𝛼𝑚
, one

has for all𝑚 ∈ N that
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀

𝛼𝑛
𝑥 − 𝐽
𝑀

𝛼𝑚
𝑥
󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀

𝛼𝑚
(
𝛼
𝑚

𝛼
𝑛

𝑥 + (1 −
𝛼
𝑚

𝛼
𝑛

) 𝐽
𝑀

𝛼𝑛
𝑥) − 𝐽

𝑀

𝛼𝑚
𝑥
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 −

𝛼
𝑚

𝛼
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀

𝛼𝑛
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩

≤ (1 +
𝛼
𝑚

𝛼
𝑛

)
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀

𝛼𝑛
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩
,

(96)

and thus,
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀

𝛼𝑚
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀

𝛼𝑚
𝑥 − 𝐽
𝑀

𝛼𝑛
𝑥
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀

𝛼𝑛
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩

≤ (1 +
𝛼
𝑚

𝛼
𝑛

+ 1)
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀

𝛼𝑛
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩

≤ (2 +
𝛼
𝑚

𝜏
)
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀

𝛼𝑛
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩

= 𝜅
1
(𝑚)

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑀

𝛼𝑛
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩
,

∀𝑛 ≥ 𝑚, ∀𝑥 ∈ H.

(97)

The same argument shows for all𝑚 ∈ N that
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑁

𝛽𝑚
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩
≤ 𝜅
2
(𝑚)

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑁

𝛽𝑛
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩
,

∀𝑛 ≥ 𝑚, ∀𝑥 ∈ H.

(98)

Therefore, condition (iii) of Theorem 15 is true for {𝐽
𝑀

𝛼𝑛
}

and {𝐽
𝑁

𝛽𝑛
}, and then the desired conclusion follows from

Theorem 15.

Replacing 𝑆 and 𝑇 with 𝐽
𝑀

𝛼
and 𝐽

𝑁

𝛽
, respectively, in

Theorem 19, we obtain the following result.

Theorem 21. Suppose that 𝑀 and 𝑁 are two maximal
monotone operators onH

1
andH

2
, respectively, and suppose

that 𝐴 : H
1
→ H

2
is a bounded linear operator with adjoint

𝐴
∗. Let {𝑎

𝑛
} be a sequence in (0, 1), 𝛾 ∈ (0, 2/‖𝐴‖

2
), and 𝛼, 𝛽 ∈

(0,∞) and assume that the solution set Ω of problem (94) is
nonempty. Start with any 𝑥

1
∈ H
1
and define a sequence {𝑥

𝑛
}

by

𝑥
𝑛+1

= 𝐽
𝑀

𝛼
[(1 − 𝑎

𝑛
) (𝐼 − 𝛾𝐴

∗
(𝐼 − 𝐽

𝑁

𝛽
)𝐴)] 𝑥

𝑛
. (99)

Then, the sequence {𝑥
𝑛
} converges strongly to the minimum

norm solution of problem (94) provided that the following
conditions are satisfied:

(i) lim
𝑛→∞

𝑎
𝑛
= 0;

(ii) ∑∞
𝑛=1

𝑎
𝑛
= ∞;

(iii) either ∑
∞

𝑛=1
|𝑎
𝑛+1

− 𝑎
𝑛
| < ∞ or lim

𝑛→∞
(|𝑎
𝑛+1

−

𝑎
𝑛
|/𝑎
𝑛
) = 0.

Recall some facts in Section 1. For a nonempty closed
convex subset 𝐶 of H, let 𝑓 : 𝐶 × 𝐶 → R be a function
satisfying conditions (A1)–(A4), which are described in
Section 1. The solution set of the equilibrium problem

find 𝑥
∗
∈ 𝐶 such that 𝑓 (𝑥

∗
, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶 (100)

is denoted by EP(𝑓), which is equal to Fix(𝐽𝑓
𝛼
) for any 𝛼 > 0,

where 𝐽𝑓
𝛼
is a function onH into 𝐶 defined by

𝐽
𝑓

𝛼
𝑥 = {𝑧 ∈ 𝐶 : 𝑓 (𝑧, 𝑦) +

1

𝛼
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩

≥ 0, ∀𝑦 ∈ 𝐶}

(101)

for all 𝑥 ∈ H. 𝐽𝑓
𝛼
is a single-valued firmly nonexpansive

mapping.

Theorem 22. Suppose that 𝐶 and 𝑄 are two nonempty closed
convex subsets of H

1
and H

2
, respectively, and suppose that

𝐴 : H
1

→ H
2
is a bounded linear operator with adjoint

𝐴
∗. Let 𝑓 : 𝐶 × 𝐶 → R and 𝑔 : 𝑄 × 𝑄 → R be functions

satisfying conditions (A1)–(A4). Suppose further that {𝑎
𝑛
}, {𝑏
𝑛
},

{𝑐
𝑛
}, and {𝑑

𝑛
} are sequences in [0, 1] with 𝑎

𝑛
+ 𝑏
𝑛
+ 𝑐
𝑛
+ 𝑑
𝑛
= 1

and 𝑎
𝑛
∈ (0, 1) for all 𝑛 ∈ N. Let {𝛼

𝑛
} and {𝛽

𝑛
} be sequences

in (0,∞), {𝛾
𝑛
} a sequence in (0, 2/‖𝐴‖

2
), and {𝑒

𝑛
} a bounded

sequence inH
1
. Assume that the solution setΩ of the problem

𝑓𝑖𝑛𝑑 𝑥
∗
∈ H
1

𝑠𝑜 𝑡ℎ𝑎𝑡 𝑥
∗
∈ 𝐸𝑃 (𝑓) , 𝐴𝑥

∗
∈ 𝐸𝑃 (𝑔)

(102)

is nonempty. For any 𝑢 ∈ H
1
, start with an arbitrary 𝑥

1
∈ H

and define a sequence {𝑥
𝑛
} by

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + 𝑏
𝑛
𝑥
𝑛
+ 𝑐
𝑛
𝐽
𝑓

𝛼𝑛
(𝐼 − 𝛾

𝑛
𝐴
∗
(𝐼 − 𝐽

𝑔

𝛽𝑛
)𝐴) 𝑥

𝑛
+ 𝑑
𝑛
𝑒
𝑛
.

(103)

Then, the sequence {𝑥
𝑛
} converges strongly to𝑃

Ω
𝑢 provided that

the following conditions are satisfied:

(i) lim
𝑛→∞

𝑎
𝑛

= lim
𝑛→∞

(𝑑
𝑛
/𝑎
𝑛
) = 0, ∑∞

𝑛=1
𝑎
𝑛

= ∞,
∑
∞

𝑛=1
𝑑
𝑛
< ∞;

(ii) lim
𝑛→∞

inf 𝑐
𝑛
(2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
) > 0, lim

𝑛→∞
inf 𝑏
𝑛
𝑐
𝑛
>

0;

(iii) lim
𝑛→∞

inf 𝛼
𝑛
> 0, lim

𝑛→∞
inf 𝛽
𝑛
> 0.
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Proof. Define two set-valued mappings 𝑀
𝑓
and 𝑁

𝑔
on H

1

andH
2
, respectively, by

𝑀
𝑓
(𝑥) =

{{

{{

{

{𝑧 ∈ H
1
: 𝑓 (𝑥, 𝑦)

≥ ⟨𝑦 − 𝑥, 𝑧⟩ , ∀𝑦 ∈ 𝐶} , ∀𝑥 ∈ 𝐶,

0, ∀𝑥 ∉ 𝐶;

𝑁
𝑔
(𝑢) =

{{

{{

{

{𝑤 ∈ H
2
: 𝑔 (𝑢, V)

≥ ⟨V − 𝑢, 𝑤⟩ , ∀V ∈ 𝑄} , ∀𝑢 ∈ 𝑄,

0, ∀𝑢 ∉ 𝑄.

(104)

As shown in Takahashi et al. [21], the set-valuedmapping𝑀
𝑓

(resp.,𝑁
𝑔
) is amaximalmonotone operator withD(𝑀

𝑓
) ⊆ 𝐶

(resp., D(𝑁
𝑔
) ⊆ 𝑄), and 𝐽

𝑀𝑓

𝛼 = 𝐽
𝑓

𝛼
= EP(𝑓) for any 𝛼 > 0

(resp., 𝐽𝑁𝑔
𝛽

= 𝐽
𝑔

𝛽
= EP(𝑔) for any 𝛽 > 0). With 𝑀 = 𝑀

𝑓
and

𝑁 = 𝑁
𝑔
in Theorem 20, the desired conclusion follows.

If H
1
= H
2
= H, 𝐶 = 𝑄, 𝑓 = 𝑔, and 𝐴 is the identity

transformation on H, then (102) is reduced to the usual
equilibrium problem, and we have the following corollary.

Corollary 23. Suppose that 𝐶 is a nonempty closed convex
subsets of H and 𝑓 : 𝐶 × 𝐶 → R is a function satisfying
conditions (A1)–(A4). Let {𝑎

𝑛
}, {𝑏
𝑛
}, {𝑐
𝑛
}, and {𝑑

𝑛
} be sequences

in [0, 1]with 𝑎
𝑛
+𝑏
𝑛
+𝑐
𝑛
+𝑑
𝑛
= 1 and 𝑎

𝑛
∈ (0, 1) for all 𝑛 ∈ N. Let

{𝛼
𝑛
} and {𝛽

𝑛
} be sequences in (0,∞), and let {𝛾

𝑛
} be a sequence

in (0, 2/‖𝐴‖
2
) and suppose that {𝑒

𝑛
} is a bounded sequence in

H
1
. Assume that the solution setΩ of the problem

𝑓𝑖𝑛𝑑 𝑥
∗
∈ H 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑥

∗
∈ 𝐸𝑃 (𝑓) (105)

is nonempty. For any 𝑢 ∈ H
1
, start with an arbitrary 𝑥

1
∈ H

and define a sequence {𝑥
𝑛
} by

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + 𝑏
𝑛
𝑥
𝑛
+ 𝑐
𝑛
𝐽
𝑓

𝛼𝑛
[𝐼 − 𝛾

𝑛
(𝐼 − 𝐽

𝑓

𝛽𝑛
)] 𝑥
𝑛
+ 𝑑
𝑛
𝑒
𝑛
.

(106)

Then, the sequence {𝑥
𝑛
} converges strongly to𝑃

Ω
𝑢 provided that

the following conditions are satisfied:

(i) lim
𝑛→∞

𝑎
𝑛

= lim
𝑛→∞

(𝑑
𝑛
/𝑎
𝑛
) = 0, ∑∞

𝑛=1
𝑎
𝑛

= ∞,
∑
∞

𝑛=1
𝑑
𝑛
< ∞;

(ii) lim
𝑛→∞

inf 𝑐
𝑛
(2𝛾
𝑛
− 𝛾
2

𝑛
‖𝐴‖
2
) > 0, lim

𝑛→∞
inf 𝑏
𝑛
𝑐
𝑛
>

0;
(iii) lim

𝑛→∞
inf 𝛼
𝑛
> 0, lim

𝑛→∞
inf 𝛽
𝑛
> 0.

As shown in Blum and Oettli [7] that the variational
inequalities, convex differentiable optimization, Nash equi-
libria in noncooperative games and so on can be formulated
as equilibrium problems, we see that the pervious corollary
may be applied to approximate solutions of all aforemen-
tioned problems. The readers may readily write down the
details.

Just asTheorem 21 toTheorem 20, there are similar results
corresponding toTheorem 22 and Corollary 23. We leave the
work to readers.
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