
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 271398, 12 pages
http://dx.doi.org/10.1155/2013/271398

Research Article
Attribute Reduction in Intuitionistic Fuzzy Concept Lattices

Jinzhong Pang, Xiaoyan Zhang, and Weihua Xu

School of Mathematics and Statistics, Chongqing University of Technology, Chongqing 400054, China

Correspondence should be addressed to Xiaoyan Zhang; zhangxyms@gmail.com

Received 29 March 2013; Revised 24 June 2013; Accepted 15 August 2013

Academic Editor: Jose L. Gracia

Copyright © 2013 Jinzhong Pang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As an effective tool for knowledge discovery, concept lattice has been successfully applied to various fields. And one of the key
problems of knowledge discovery is attribute reduction. In order to understand the problems better, the attribute reduction is
necessary to perfect the theory as well as expand application of concept lattice.This paper introduces the intuitionistic fuzzy theory
into the concept lattice theory and proposes a kind of intuitionistic fuzzy concept lattice. Then, an approach to attribute reduction
based on the discernibility matrix is proposed and investigated, which makes the discovery of implicit knowledge easier and the
representation simpler in data; furthermore, the theory of concept lattice is perfected. The theory of intuitionistic fuzzy concept
lattice is useful and meaningful in view of the complexity and fuzziness of information in real world, and the potential value of
dealing with information is expected in the future.

1. Introduction

Concept lattice stems from the so-called formal concept
analysis proposed byWille in 1982 [1], which can be depicted
by a Hasse diagram, where each node expresses a formal
concept. A concept lattice is an ordered hierarchical structure
of formal concepts that are defined by a binary relation
between a set of objects and a set of attributes. Concretely,
each formal concept is the pair (objects, attributes), which
consists of two parts: the extension (objects covered by the
concept) and intension (attributes describing the concept). As
an effective tool for data analysis and knowledge processing,
concept lattice has been applied to various fields, such as data
mining, information retrieval, and software engineering [2–
4].

The intuitionistic fuzzy (IF, for short) set theory initiated
by Atanassov [5, 6] is also an important mathematical
structure to cope with imprecise information. IF set, as an
extension of Zadeh’s fuzzy set [7], considers bothmembership
degree and nonmembership degree which are functions
valued in [0, 1], while a fuzzy set gives a membership degree
only.Themembership and nonmembership values induce an
indeterminacy index, which models the hesitancy degree of
how an object satisfies a particular property. So IF set theory
can present vague information better. Recently, IF set theory

has been successfully applied in decision analysis and pattern
recognition [8–11].

In recent years, many new achievements on these topics
have been achieved on theories such as construction of
concept lattice [1, 2, 12–15] and acquisition of rules [16, 17]. For
example, the paper [15] shows that an approach of creating
fuzzy concept lattices proposed by Popescu was equivalent
to the approach of Krajči called generalized concept lattices
in some way by comparing this approach with several other
approaches and give a straightforward generalization of
Popescu’s approach to nonhomogeneous cases, and Li et al.
[17] investigate the issue of rule acquisition in incomplete
decision context. And although rough set theory and formal
context analysis are different theories, they have much in
common in terms of both goals and methodologies, and a
formal context in formal concept analysis corresponds to an
information system in rough set theory [18, 19]. Formal con-
cept analysis abstracts the knowledge from a formal context
through formal concepts, while rough set theory discovers
the knowledge via lower and upper approximations, positive
boundary, and negative regions from an information system
[18, 20, 21]. In fact, there are strong connections between
formal concept analysis and rough set theory, and some
researchers have been devoted to comparing and combining
these two useful theories [18, 22–24], based on which we
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can study the concept lattice in the similar way to the rough
set. Similarly, the key to attribute reduction is to find the
minimal subsets of attributes sets in concept lattice, which can
determine a concept lattice isomorphic to the one determined
by all attributes while the object set remains unchanged.
It makes the discovery of implicit knowledge easier and
the representation simpler in data and extends the theory
of concept lattice; knowledge reduction in formal concept
analysis has attracted much attention [16, 17, 25–40]. For
instance, Ganter and Wille [27] develop a reduction method
to remove the reducible attributes and objects of a formal
context via some predefined arrow relations. The paper [25]
proposed a method to reduce the size of the concept lattice
of a formal context using 𝐾-means clustering. Reduction
approaches were presented to avoid the redundancy in the
attributes from the perspectives of extension equivalence
in the paper [39]. The paper [30] investigated the issue of
developing efficient knowledge reduction methods for real
decision formal contexts and developed a corresponding
heuristic algorithm to search for a minimal reduction.

Similarly, attribute reduction in IF concept lattice is to
find the minimum attribute set which can assign the same
concepts and hierarchy based on IF formal context keeping
the same objects. Reduction approaches in both the papers
[23, 36] are based on the equivalence relation between
the objects and attributes. In most situations, however, it
is fuzzy or intuitionistic fuzzy. At present, there are some
achievements on knowledge reduction based on fuzzy formal
context [15, 25, 28, 34], where Lifeng Li introduced and
investigated the attribute reduction in fuzzy concept lattices
based on the kind of transitive implication operator.However,
the study on attribute reduction for intuitionistic fuzzy formal
context has not been investigated perfectly, although the
discernibility matrix was proposed by using of the cuts of
IF sets and then established the method of the attribute
reduction of IF concept lattice in paper [24]. Because it leaves
out some useful information about transforming the concept
lattice based on the IF the formal context to a classical one
only by using the cuts of the IF sets.Thus, for the requirement
of knowledge-handling systems, combining IF set theory
and formal concept analysis theory directly can result in
a new hybrid mathematical structure by establishing two
appropriate operators from other views.

Actually, the IF relation is an important type of data tables
in formal concept analysis in real life. The paper combines
the IF theory with the formal concept analysis, the main
purpose of which is to study attribute reduction in IF concept
lattices by introducing a pair of implication operators, and we
establish approaches and theories of attribute reduction based
on IF formal context, which is also suitable for classical formal
context and fuzzy formal context.

The paper is organized as follows. Section 2 reviews basic
definitions in formal concept analysis.We give the definitions
and propositions in concept lattice with IF attributes in
Section 3. In the next section, we discuss the corresponding
definitions of attribute reduction in concept lattices, and
then we divide the attributes into four types and investigate
some related propositions and establish some propositions
to determine the type of an attribute. In Section 5, the

discernibility matrix and discernibility function in concept
lattice are introduced, and then we discuss the approach to
reduction aswell as the corresponding characteristics. Finally,
a simple conclusion is given in the paper.

2. Preliminaries

To make this paper self-contained, the IF set theory and
involved notions of formal concept analysis are introduced
briefly. Detailed description of them can be found in corre-
sponding references.

Definition 1 (Ganter and Wille [27]). A triple (𝑈, 𝐴, 𝐼) is
called a formal context, if 𝑈 = {𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
} is an object

set, where 𝑥
𝑖
(𝑖 ≤ 𝑛) is called an object;𝐴 = {𝑎

1
, 𝑎

2
, . . . , 𝑎

𝑚
} is

an attribute set, where 𝑎
𝑗
(𝑗 ≤ 𝑚) is called an attribute; and

𝐼 ⊆ 𝑈 × 𝐴 is a binary relation between 𝑈 and 𝐴.
In a formal context (𝑈, 𝐴, 𝐼), if (𝑥, 𝑎) ∈ 𝐼, that is, 𝑥𝐼𝑎, we

say that the object 𝑥 has the attribute 𝑎, or that 𝑎 is fulfilled by
𝑥. For convenience, we use “1” and “0” to represent (𝑥, 𝑎) ∈ 𝐼
and (𝑥, 𝑎) ∉ 𝐼, respectively. Thus, a formal context can be
represented by a table only with 0 and 1.

For a formal context (𝑈, 𝐴, 𝐼), a pair of dual operators for
𝑋 ⊆ 𝑈 and 𝐵 ⊆ 𝐴 is defined as follows:

𝑋
∗
= {𝑎 ∈ 𝐴 | (𝑥, 𝑎) ∈ 𝐼, ∀𝑥 ∈ 𝑋} ,

𝐵
∗
= {𝑥 ∈ 𝑈 | (𝑥, 𝑎) ∈ 𝐼, ∀𝑎 ∈ 𝐵} .

(1)

In fact, 𝑋∗ is the set of all the attributes shared by all the
objects in 𝑋, and 𝐵∗ is the set of all the objects that fulfill all
the attributes in 𝐵.

Meanwhile, the complement sets of 𝑋∗ and 𝐵
∗ are

denoted by ∼ 𝑋∗ and ∼ 𝐵∗, where ∼ 𝑋∗
= {𝑎 ∈ 𝐴 | (𝑥, 𝑎) ∉

𝐼, ∃𝑥 ∈ 𝑋} and ∼ 𝐵∗ = {𝑥 ∈ 𝑈 | (𝑥, 𝑎) ∉ 𝐼, ∃𝑎 ∈ 𝐵}.

Proposition 2 (Ganter and Wille [27]). Let (𝑈, 𝐴, 𝐼) be a
formal context,𝑋

1
, 𝑋

2
, 𝑋 ⊆ 𝑈 and𝐵

1
, 𝐵

2
, 𝐵 ⊆ 𝐴; the following

properties hold:
(1) 𝑋

1
⊆ 𝑋

2
⇒ 𝑋

∗

2
⊆ 𝑋

∗

1
, 𝐵

1
⊆ 𝐵

2
⇒ 𝐵

∗

2
⊆ 𝐵

∗

1
.

(2) 𝑋 ⊆ 𝑋
∗∗
, 𝐵 ⊆ 𝐵

∗∗.
(3) 𝑋∗

= 𝑋
∗∗∗
; 𝐵

∗
= 𝐵

∗∗∗.
(4) 𝑋 ⊆ 𝐵

∗
⇔ 𝐵 ⊆ 𝑋

∗.
(5) (𝑋

1
∪ 𝑋

2
)
∗
= 𝑋

∗

1
∩ 𝑋

∗

2
, (𝐵

1
∪ 𝐵

2
)
∗
= 𝐵

∗

1
∩ 𝐵

∗

2
.

(6) (𝑋
1
∩ 𝑋

2
)
∗
⊇ 𝑋

∗

1
∪ 𝑋

∗

2
, (𝐵

1
∩ 𝐵

2
)
∗
⊇ 𝐵

∗

1
∪ 𝐵

∗

2
.

Definition 3 (Ganter andWille [27]). Let (𝑈, 𝐴, 𝐼) be a formal
context. A pair (𝑋, 𝐵) is called a formal concept (in brief
a concept) if 𝑋∗

= 𝐵 and 𝑋 = 𝐵
∗ for 𝑋 ⊆ 𝑈, 𝐵 ⊆

𝐴. Furthermore, 𝑋 and 𝐵 are called the extension and the
intension of (𝑋, 𝐵), respectively.

From the above discussions, it is clear that both (𝑋∗∗
, 𝑋

∗
)

and (𝐵∗, 𝐵∗∗) are concepts.
According to [23, 27], we have the corresponding account

as follows.
For convenience, all concepts of a formal context (𝑈, 𝐴, 𝐼)

are denoted by 𝐿(𝑈, 𝐴, 𝐼), and they are ordered by

(𝑋
1
, 𝐵

1
) ≤ (𝑋

2
, 𝐵

2
) ⇐⇒ 𝑋

1
⊆ 𝑋

2
⇐⇒ 𝐵

1
⊇ 𝐵

2
, (2)
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where (𝑋
1
, 𝐵

1
) and (𝑋

2
, 𝐵

2
) are concepts. Moreover, (𝑋

1
, 𝐵

1
)

is called a subconcept of (𝑋
2
, 𝐵

2
), and (𝑋

2
, 𝐵

2
) is called a

superconcept of (𝑋
1
, 𝐵

1
). And (𝑋

1
, 𝐵

1
) < (𝑋

2
, 𝐵

2
) means

that (𝑋
1
, 𝐵

1
) ≤ (𝑋

2
, 𝐵

2
) and (𝑋

1
, 𝐵

1
) ̸= (𝑋

2
, 𝐵

2
) hold at the

same time. If (𝑋
1
, 𝐵

1
) < (𝑋

2
, 𝐵

2
) and there does not exist a

concept (𝑌, 𝐶) such that (𝑋
1
, 𝐵

1
) < (𝑌, 𝐶) < (𝑋

2
, 𝐵

2
), then

(𝑋
1
, 𝐵

1
) is called a child concept (immediate subconcept) of

(𝑋
2
, 𝐵

2
) and (𝑋

2
, 𝐵

2
) is called a parent concept (immediate

superconcept) of (𝑋
1
, 𝐵

1
), and this is denoted by (𝑋

1
, 𝐵

1
) ≺

(𝑋
2
, 𝐵

2
).

For any two concepts (𝑋
1
, 𝐵

1
) and (𝑋

2
, 𝐵

2
) of a formal

context (𝑈, 𝐴, 𝐼), it is easy to prove that both (𝑋
1
∩ 𝑋

2
, (𝐵

1
∪

𝐵
2
)
∗∗
) and ((𝑋

1
∪𝑋

2
)
∗∗
, 𝐵

1
∩𝐵

2
) are also concepts. Hence, if

the meet and join are given by (Ganter and Wille [27]):

(𝑋
1
, 𝐵

1
) ∧ (𝑋

2
, 𝐵

2
) = (𝑋

1
∩ 𝑋

2
, (𝐵

1
∪ 𝐵

2
)
∗∗

) ,

(𝑋
1
, 𝐵

1
) ∨ (𝑋

2
, 𝐵

2
) = ((𝑋

1
∪ 𝑋

2
)
∗∗

, 𝐵
1
∩ 𝐵

2
) ,

(3)

then the concept lattice 𝐿(𝑈, 𝐴, 𝐼) is complete lattice.

Definition 4 (Atanassov [5]). Let𝑈 be a finite and non-empty
set called universe. An IF set 𝐴 of 𝑈 has the following form:

𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥) , 𝛾

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑈} , (4)

where 𝜇
𝐴
: 𝑈 → [0, 1] and 𝛾

𝐴
: 𝑈 → [0, 1] and 𝜇

𝐴
(𝑥)

and 𝛾
𝐴
(𝑥) are, respectively, called the membership degree

and nonmembership degree to 𝐴 of the object 𝑥 ∈ 𝑈.
Furthermore, they satisfy 0 ≤ 𝜇

𝐴
(𝑥) + 𝛾

𝐴
(𝑥) ≤ 1 for any

𝑥 ∈ 𝑈. In general, we use IF(𝑈) to denote all IF sets in
the universe 𝑈.

Definition 5 (Atanassov [6]). Let 𝐴, 𝐵 ∈ IF(𝑈), 𝐴 ⊆ 𝐵 ⇔

𝜇
𝐴
(𝑥) ≤ 𝜇

𝐵
(𝑥), and 𝛾

𝐴
(𝑥) ≥ 𝛾

𝐵
(𝑥) for any 𝑥 ∈ 𝑈. If both

𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, then we say 𝐴 is equal to 𝐵, denoted by
𝐴 = 𝐵.The universe set and empty set are special IF set, where
𝑈̃ = {⟨𝑥, 1, 0⟩ | 𝑥 ∈ 𝑈} and 0̃ = {⟨𝑥, 0, 1⟩ | 𝑥 ∈ 𝑈}.

Let us denote intersection and union of𝐴 and 𝐵 by𝐴∩𝐵
and 𝐴 ∪ 𝐵, respectively. Moreover, we denote complement of
𝐴 by ∼ 𝐴.

Definition 6 (Atanassov [6]). Let 𝐴, 𝐵 ∈ IF(𝑈); then

𝐴 ∩ 𝐵={⟨𝑥, ∧ {𝜇
𝐴
(𝑥) , 𝜇

𝐵
(𝑥)} , ∨ {𝛾

𝐴
(𝑥) , 𝛾

𝐵
(𝑥)}⟩ |𝑥 ∈ 𝑈} ,

𝐴 ∪ 𝐵={⟨𝑥, ∨ {𝜇
𝐴
(𝑥) , 𝜇

𝐵
(𝑥)} , ∧ {𝛾

𝐴
(𝑥) , 𝛾

𝐵
(𝑥)}⟩ |𝑥 ∈ 𝑈} ,

∼ 𝐴 = {⟨𝑥, 𝛾
𝐴
(𝑥) , 𝜇

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑈} .

(5)

Many properties of these operators in IF set theory are
similar to fuzzy set theory. Detailed description can be found
easily in the corresponding references.

3. IF Concept Lattice

The definition of concept lattice with IF attributes is intro-
duced, and some important properties are discussed in this
section.

Table 1

𝑎 𝑏 𝑐 𝑑 𝑒

𝑥
1

⟨0.9, 0.0⟩ ⟨0.7, 0.2⟩ ⟨0.2, 0.5⟩ ⟨0.9, 0.1⟩ ⟨0.8, 0.1⟩

𝑥
2

⟨0.8, 0.1⟩ ⟨0.8, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0.3, 0.5⟩ ⟨0.2, 0.7⟩

𝑥
3

⟨0.1, 0.8⟩ ⟨0.2, 0.6⟩ ⟨0.1, 0.9⟩ ⟨0.8, 0.2⟩ ⟨0.2, 0.6⟩

𝑥
4

⟨0.7, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0.7, 0.1⟩ ⟨0.2, 0.6⟩ ⟨0.2, 0.8⟩

Definition 7. A triple (𝑈, 𝐴, 𝐼) is called an IF formal context,
if 𝑈 = {𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
} is an object set, where 𝑥

𝑖
(𝑖 ≤ 𝑛) is

called an object;𝐴 = {𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑚
} is an attribute set, where

𝑎
𝑗
(𝑗 ≤ 𝑚) is called an attribute; and 𝐼 is an IF set of 𝑈 × 𝐴,

where 𝐼 = {⟨(𝑥, 𝑎), 𝜇
𝐼
(𝑥, 𝑎), 𝛾

𝐼
(𝑥, 𝑎)⟩ | (𝑥, 𝑎) ∈ 𝑈 × 𝐴}, 𝜇

𝐼
:

𝑈 × 𝐴 → [0, 1], and 𝛾
𝐼
: 𝑈 × 𝐴 → [0, 1].

The complement of 𝐼 is denoted by ∼ 𝐼 =

{⟨(𝑥, 𝑎), 𝛾
𝐼
(𝑥, 𝑎), 𝜇

𝐼
(𝑥, 𝑎)⟩ | (𝑥, 𝑎) ∈ 𝑈 × 𝐴}.

We denote 𝐼(𝑥, 𝑎) = ⟨𝜇
𝐼
(𝑥, 𝑎), 𝛾

𝐼
(𝑥, 𝑎)⟩; then the set of

𝐼(𝑥, 𝑎)(𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴) is denoted by

𝑉 = {𝐼 (𝑥, 𝑎) | 𝑥 ∈ 𝑈, 𝑎 ∈ 𝐴} . (6)

Let 𝐼(𝑥, 𝑎), 𝐼(𝑦, 𝑎) ∈ 𝑉; then

𝐼 (𝑥, 𝑎) ≥ 𝐼 (𝑦, 𝑎) ⇐⇒ 𝜇
𝐼
(𝑥, 𝑎)

≥ 𝜇
𝐼
(𝑦, 𝑎) ∧ 𝛾

𝐼
(𝑥, 𝑎) ≤ 𝛾

𝐼
(𝑦, 𝑎) .

(7)

With respect to an IF formal context (𝑈, 𝐴, 𝐼), for𝑋 ⊆ 𝑈,
𝐵 ⊆ 𝐴 and 𝐴, 𝐵 ∈ IF (𝑈), where ∀𝐵(𝑏), 𝐴(𝑏) ∈ {𝐼(𝑥, 𝑏) |
∀𝑥 ∈ 𝑈}.

A pair of operators is defined by

𝑋
∗
= 𝐴 = {⟨𝑎, 𝜇

𝑋
∗ (𝑎) , 𝛾

𝑋
∗ (𝑎)⟩ | 𝑎 ∈ 𝐴} , (8)

where 𝐴(𝑎) = ⟨∧
∀𝑥∈𝑋

𝜇
𝐼
(𝑥, 𝑎), ∨

∀𝑥∈𝑋
𝛾
𝐼
(𝑥, 𝑎)⟩(𝑎 ∈ 𝐴) and

denote 0∗ = 𝐴 = {⟨𝑎, 1, 0⟩ | 𝑎 ∈ 𝐴}.

𝐵
∗
= {𝑥 ∈ 𝑈 | 𝐼 (𝑥, 𝑏) ≥ 𝐵 (𝑏) , ∀𝑏 ∈ 𝐵} , (9)

where 𝐼(𝑥, 𝑏) ∈ 𝑉 and denote 𝐵(𝑏) = ⟨0, 1⟩, if 𝑏 ∉ 𝐵.
Similarly, ∀𝑥 ∈ 𝑈, we use 𝑥∗ and 𝑎∗ instead of {𝑥}∗ and

{𝑎}
∗, respectively, and for any 𝐵 ⊆ 𝐴 denote

𝑈
𝐵
= {𝐵 | 𝐵 (𝑏) = 𝐼 (𝑥, 𝑏) , 𝑥 ∈ 𝑈, 𝑏 ∈ 𝐵} . (10)

Example 8. An IF formal context is shown as in Table 1.
In this context, let 𝑋 = {𝑥

1
, 𝑥

2
, 𝑥

4
} and 𝐵 =

{(𝑎, 0.7, 0.3),(𝑏, 0.8, 0.2),(𝑐, 0.7, 0.1),(𝑑, 0.1, 0.8)} ∈ IF(𝐵),
where 𝐵 = {𝑎, 𝑏, 𝑐, 𝑑} ⊂ 𝐴; then from the definition we can
obtain that

𝑋
∗
= 𝐴 = {(𝑎, 0.7, 0.2) , (𝑏, 0.7, 0.2) , (𝑐, 0.2, 0.5) ,

(𝑑, 0.2, 0.6) , (𝑒, 0.2, 0.8)} ,

𝐵
∗
= {𝑥

2
, 𝑥

4
} .

(11)
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Proposition 9. Let (𝑈, 𝐴, 𝐼) be an IF formal context,
𝑋
1
, 𝑋

2
, 𝑋 ⊆ 𝑈, 𝐵

1
, 𝐵

2
, 𝐵 ⊆ 𝐴; then the above operators have

the following properties:

(1) 𝑋
1
⊆ 𝑋

2
⇒ 𝑋

∗

2
⊆ 𝑋

∗

1
, 𝐵

1
⊆ 𝐵

2
⇒ 𝐵

∗

2
⊆ 𝐵

∗

1
.

(2) 𝑋 ⊆ 𝑋
∗∗
, 𝐵 ⊆ 𝐵

∗∗.
(3) 𝑋∗

= 𝑋
∗∗∗
, 𝐵

∗
= 𝐵

∗∗∗.
(4) 𝑋 ⊆ 𝐵

∗
⇔ 𝐵 ⊆ 𝑋

∗.
(5) (𝑋

1
∪ 𝑋

2
)
∗
= 𝑋

∗

1
∩ 𝑋

∗

2
, (𝐵

1
∪ 𝐵

2
)
∗
= 𝐵

∗

1
∩ 𝐵

∗

2
.

(6) (𝑋
1
∩ 𝑋

2
)
∗
⊇ 𝑋

∗

1
∪ 𝑋

∗

2
, (𝐵

1
∩ 𝐵

2
)
∗
⊇ 𝐵

∗

1
∪ 𝐵

∗

2
.

Proof.

(1) Denote that 𝑋∗

1
= 𝐴

1
and 𝑋∗

2
= 𝐴

2
, so it can be

known for any 𝑎 ∈ 𝐴

𝐴
1
(𝑎) = ⟨ ∧

∀𝑥∈𝑋
1

𝜇
𝐼
(𝑥, 𝑎) , ∨

∀𝑥∈𝑋
1

𝛾
𝐼
(𝑥, 𝑎)⟩ ,

𝐴
2
(𝑎) = ⟨ ∧

∀𝑥∈𝑋
2

𝜇
𝐼
(𝑥, 𝑎) , ∨

∀𝑥∈𝑋
2

𝛾
𝐼
(𝑥, 𝑎)⟩ ,

(12)

Since𝑋
1
⊆ 𝑋

2
, it is true that𝐴

1
(𝑎) ≥ 𝐴

2
(𝑎). It follows

that 𝐴
2
⊆ 𝐴

1
; that is,𝑋∗

2
⊆ 𝑋

∗

1
.

In addition, from the above definitions, we can obtain
that if 𝑎 ∈ 𝐵

𝑖
(𝑖 = 1, 2), 𝐵

𝑖
(𝑎) = 𝐴(𝑎), otherwise

𝐵
𝑖
(𝑎) = ⟨0, 1⟩. So

𝐵
∗

1
={𝑥 ∈ 𝑈|𝐼 (𝑥, 𝑏)≥𝐵

1
(𝑏) , ∀𝑏 ∈ 𝐴} , where 𝐼 (𝑥, 𝑏) ∈ 𝑉,

𝐵
∗

2
={𝑥 ∈ 𝑈|𝐼 (𝑥, 𝑏)≥𝐵

2
(𝑏) , ∀𝑏 ∈ 𝐴} , where 𝐼 (𝑥, 𝑏) ∈ 𝑉.

(13)

Since 𝐵
1
⊆ 𝐵

2
, we can obtain that 𝐵

1
(𝑏) ≤ 𝐵

2
(𝑏). It

follows that 𝐼(𝑥, 𝑏) ≥ 𝐵
2
(𝑏) implies 𝐼(𝑥, 𝑏) ≥ 𝐵

1
(𝑏) for

any 𝐼(𝑥, 𝑏) ∈ 𝑉. Hence, if 𝑥 ∈ 𝐵∗
2
, then 𝑥 ∈ 𝐵∗

1
; that is,

𝐵
∗

2
⊆ 𝐵

∗

1
.

(2) On one hand, assume that𝑋∗
= 𝐴; then𝑋∗∗

= 𝐴
∗
=

{𝑥 ∈ 𝑈 | 𝐼(𝑥, 𝑎) ≥ 𝐴(𝑎), ∀𝑎 ∈ 𝐴}, where 𝐴(𝑎) =
∧{𝐼(𝑥, 𝑎)∀𝑥 ∈ 𝑋} = ⟨∧𝜇

𝐼
(𝑥, 𝑎), ∨𝛾

𝐼
(𝑥, 𝑎)⟩, ∀𝑥 ∈ 𝑋,

according to Definition 7. If 𝑥 ∈ 𝑋, then 𝐼(𝑥, 𝑎) ≥
⟨∧𝜇

𝐼
(𝑥, 𝑎), ∨𝛾

𝐼
(𝑥, 𝑎)⟩, ∀𝑥 ∈ 𝑋 = 𝐴(𝑎).Thus, 𝑥 ∈ 𝑋∗∗;

that is,𝑋 ⊆ 𝑋
∗∗.

On the other hand, assume that 𝐵 ⊆ 𝑈𝐵; then we can
denote𝐵 = {⟨𝜇

𝐼
(𝑥, 𝑏), 𝛾

𝐼
(𝑥, 𝑏)⟩ | 𝑏 ∈ 𝐴}, where𝐵(𝑏) =

⟨0, 1⟩, if 𝑏 ∈ 𝐴 − 𝐵. And we can obtain that 𝐵∗ = {𝑥 ∈
𝑈 | 𝐼(𝑥, 𝑏) ≥ 𝐵(𝑏), ∀𝑏 ∈ 𝐴}, which follows that for
any 𝑥 ∈ 𝐵∗ and 𝑏 ∈ 𝐵, 𝐼(𝑥, 𝑏) ≥ 𝐵(𝑏) holds. So, we
can obtain that 𝐵∗∗(𝑏) = ⟨∧𝜇

𝐼
(𝑥, 𝑏), ∨𝛾

𝐼
(𝑥, 𝑏)⟩, ∀𝑥 ∈

𝐵
∗
≥ 𝐵(𝑏). Hence, 𝐵 ⊆ 𝐵∗∗.

(3) It is obvious from (1) and (2).
(4) From (1) we can have𝑋 ⊆ 𝐵

∗
⇒ 𝐵

∗∗
⊆ 𝑋

∗, and from
(2) we conclude 𝐵 ⊆ 𝐵∗∗ ⇒ 𝐵 ⊆ 𝑋

∗.

(5) It is obvious that (𝐵
1
∪ 𝐵

2
)
∗
⊆ 𝐵

∗

1
∩ 𝐵

∗

2
. Furthermore,

∀𝑥 ∈ 𝐵
∗

1
∩ 𝐵

∗

2
⇔ 𝑥 ∈ 𝐵

∗

1
∧ 𝑥 ∈ 𝐵

∗

2
⇔ 𝐼(𝑥, 𝑏) ≥

𝐵(𝑏), ∀𝑏 ∈ 𝐵
1
and 𝐼(𝑥, 𝑏) ≥ 𝐵(𝑏), ∀𝑏 ∈ 𝐵

2
⇔

𝐼(𝑥, 𝑏) ≥ 𝐵(𝑏), ∀𝑏 ∈ 𝐵
1
∪ 𝐵

2
⇔ 𝑥 ∈ (𝐵

1
∪ 𝐵

2
)
∗

⇒

𝐵
∗

1
∩ 𝐵

∗

2
⊆ (𝐵

1
∪ 𝐵

2
)
∗. Hence, (𝐵

1
∪ 𝐵

2
)
∗
= 𝐵

∗

1
∩ 𝐵

∗

2
.

(𝑋
1
∪ 𝑋

2
)
∗
= 𝑋

∗

1
∩ 𝑋

∗

2
can be obtained similarly.

(6) It can be easily proved from (1).

Definition 10. Let (𝑈, 𝐴, 𝐼) be an IF formal context. A pair
(𝑋, 𝐵) is called an IF formal concept (in brief a concept) if
𝑋
∗
= 𝐵 and𝑋 = 𝐵

∗ for𝑋 ⊆ 𝑈, 𝐵 ⊆ 𝐴.𝑋 and 𝐵 are called the
extension and the intension of (𝑋, 𝐵), respectively.

From the above, it is clear that both (𝑋
∗∗
, 𝑋

∗
) and

(𝐵
∗
, 𝐵

∗∗
) are concepts.

IF concept lattice 𝐿(𝑈, 𝐴, 𝐼) is referred to as all concepts
of an IF formal context (𝑈, 𝐴, 𝐼), and they are ordered by

(𝑋
1
, 𝐵

1
) ≤ (𝑋

2
, 𝐵

2
) ⇐⇒ 𝑋

1
⊆ 𝑋

2
⇐⇒ 𝐵

1
⊇ 𝐵

2
, (14)

where (𝑋
1
, 𝐵

1
) and (𝑋

2
, 𝐵

2
) are concepts. (𝑋

1
, 𝐵

1
) is called a

subconcept of (𝑋
2
, 𝐵

2
), and (𝑋

2
, 𝐵

2
) is called a superconcept

of (𝑋
1
, 𝐵

1
).

Andwe denote the family of all IF concept lattices byL =

{𝐿(𝑈, 𝐴, 𝐼) | (𝑈, 𝐴, 𝐼) is an IF formal context}.

Proposition 11. If (𝑋
1
, 𝐵

1
) and (𝑋

2
, 𝐵

2
) are two concepts of an

IF formal context (𝑈, 𝐴, 𝐼), then both (𝑋
1
∩ 𝑋

2
, (𝐵

1
∪ 𝐵

2
)
∗∗
)

and ((𝑋
1
∪ 𝑋

2
)
∗∗
, 𝐵

1
∩ 𝐵

2
) are also concepts.

Proof. It is straight from the definition and Proposition 9.

Hence, from the above, if the meet and join are given by

(𝑋
1
, 𝐵

1
) ∧ (𝑋

2
, 𝐵

2
) = (𝑋

1
∩ 𝑋

2
, (𝐵

1
∪ 𝐵

2
)
∗∗

) ,

(𝑋
1
, 𝐵

1
) ∨ (𝑋

2
, 𝐵

2
) = ((𝑋

1
∪ 𝑋

2
)
∗∗

, 𝐵
1
∩ 𝐵

2
) ,

(15)

then the IF concept lattice 𝐿(𝑈, 𝐴, 𝐼) is complete lattice.

Example 12. In Example 8, we can find all concepts of the IF
formal context by the definition, which are (1, 𝐴

1
), (2, 𝐴

2
),

(4, 𝐴
3
), (12, 𝐴

4
), (13, 𝐴

5
), (24, 𝐴

6
), (123, 𝐴

7
), (124, 𝐴

8
),

(𝑈, 𝐴
9
), (0, 𝐴), respectively, and we denote objects set {𝑥

𝑖
, 𝑥

𝑗
}

by 𝑖𝑗 (𝑖, 𝑗 = 1, 2, 3, 4) which is same to others, where

𝐴
1
= {(𝑎, 0.9, 0.0) , (𝑏, 0.7, 0.2) , (𝑐, 0.2, 0.5) ,

(𝑑, 0.9, 0.1) , (𝑒, 0.8, 0.1)} ,

𝐴
2
= {(𝑎, 0.8, 0.1) , (𝑏, 0.8, 0.2) , (𝑐, 0.8, 0.1) ,

(𝑑, 0.3, 0.5) , (𝑒, 0.2, 0.7)} ,

𝐴
3
= {(𝑎, 0.7, 0.2) , (𝑏, 0.8, 0.1) , (𝑐, 0.7, 0.1) ,

(𝑑, 0.2, 0.6) , (𝑒, 0.2, 0.8)} ,



Abstract and Applied Analysis 5

 (123, Ã8)

(1, Ã1)

(2, Ã2)(13, Ã5) (12, Ã4)

(124, Ã9)

(U, Ã9)

(24, Ã7)

(4, Ã3)

(∅, Ã)

Figure 1: Concept lattice of the IF formal context (𝑈, 𝐴, 𝐼).

𝐴
4
= {(𝑎, 0.8, 0.1) , (𝑏, 0.7, 0.2) , (𝑐, 0.2, 0.5) ,

(𝑑, 0.3, 0.5) , (𝑒, 0.2, 0.7)} ,

𝐴
5
= {(𝑎, 0.1, 0.8) , (𝑏, 0.2, 0.6) , (𝑐, 0.1, 0.9) ,

(𝑑, 0.8, 0.2) , (𝑒, 0.2, 0.6)} ,

𝐴
6
= {(𝑎, 0.7, 0.2) , (𝑏, 0.8, 0.2) , (𝑐, 0.7, 0.1) ,

(𝑑, 0.2, 0.6) , (𝑒, 0.2, 0.8)} ,

𝐴
7
= {(𝑎, 0.1, 0.8) , (𝑏, 0.2, 0.6) , (𝑐, 0.1, 0.9) ,

(𝑑, 0.3, 0.5) , (𝑒, 0.2, 0.7)} ,

𝐴
8
= {(𝑎, 0.7, 0.2) , (𝑏, 0.7, 0.2) , (𝑐, 0.2, 0.5) ,

(𝑑, 0.2, 0.6) , (𝑒, 0.2, 0.8)} ,

𝐴
9
= {(𝑎, 0.1, 0.8) , (𝑏, 0.2, 0.6) , (𝑐, 0.1, 0.9) ,

(𝑑, 0.2, 0.6) , (𝑒, 0.2, 0.8)} ,

𝐴 = {(𝑎, 1, 0) , (𝑏, 1, 0) , (𝑐, 1, 0) ,

(𝑑, 1, 0) , (𝑒, 1, 0)} .

(16)

Furthermore, we can obtain the following IF concept
lattice of the IF context (Figure 1).

4. Attribute Reduction in IF Concept Lattices

In this section, we discuss attribute reduction in IF concept
lattices and obtain some propositions in a similar way to
Zhang et al. [40] and Li and Zhang [28].

Definition 13. Let 𝐿(𝑈, 𝐴
1
, 𝐼
1
) and 𝐿(𝑈, 𝐴

2
, 𝐼
2
) be two IF

concept lattices. If for any (𝑋, 𝐵) ∈ 𝐿(𝑈, 𝐴
2
, 𝐼
2
), there exists

(𝑋
󸀠
, 𝐵

󸀠
) ∈ 𝐿(𝑈, 𝐴

1
, 𝐼
1
) such that 𝑋 = 𝑋

󸀠, then we say

that 𝐿(𝑈, 𝐴
2
, 𝐼
2
) is coarser than 𝐿(𝑈, 𝐴

1
, 𝐼
1
) or 𝐿(𝑈, 𝐴

1
, 𝐼
1
) is

thinner than 𝐿(𝑈, 𝐴
2
, 𝐼
2
), denoted by

𝐿 (𝑈,𝐴
1
, 𝐼
1
) ≤ 𝐿 (𝑈,𝐴

2
, 𝐼
2
) . (17)

If 𝐿(𝑈, 𝐴
1
, 𝐼
1
) ≤ 𝐿(𝑈, 𝐴

2
, 𝐼
2
) and 𝐿(𝑈, 𝐴

2
, 𝐼
2
) ≤

𝐿(𝑈, 𝐴
1
, 𝐼
1
), we say that 𝐿(𝑈, 𝐴

1
, 𝐼
1
) and 𝐿(𝑈, 𝐴

2
, 𝐼
2
) are

isomorphic with each other and denoted by 𝐿(𝑈, 𝐴
1
, 𝐼
1
) ≅

𝐿(𝑈, 𝐴
2
, 𝐼
2
).

Definition 14. Let (𝑈, 𝐴, 𝐼) be an IF formal context.The set of
all extensions of 𝐿(𝑈, 𝐴, 𝐼) is defined to be

𝐿
𝑈
(𝑈, 𝐴, 𝐼) = {𝑋 | (𝑋, 𝐵) ∈ 𝐿 (𝑈,𝐴, 𝐼)} . (18)

Let (𝑈, 𝐴, 𝐼) be an IF formal context and 𝐷 ⊆ 𝐴. We
denote 𝐼

𝐷
= 𝐼 ∩ 𝐼

󸀠, where 𝐼󸀠 is an IF set of 𝑈 × 𝐷; that
is, 𝐼

𝐷
= {⟨(𝑥, 𝑎), 𝜇

𝐼
𝐷

(𝑥, 𝑎), 𝛾
𝐼
𝐷

(𝑥, 𝑎)⟩ | (𝑥, 𝑎) ∈ 𝑈 × 𝐷}.
Obviously, (𝑈,𝐷, 𝐼

𝐷
) is also an IF formal context, we denote

all concepts of (𝑈,𝐷, 𝐼
𝐷
) by 𝐿(𝑈,𝐷, 𝐼

𝐷
) similarly. For any

(𝑋, 𝐵) ∈ 𝐿(𝑈,𝐷, 𝐼
𝐷
), it satisfies that if 𝑎 ∈ 𝐷,𝑋∗

𝐷(𝑎) = 𝑋
∗
(𝑎),

otherwise 𝑋∗
𝐷(𝑎) = ⟨0, 1⟩, and 𝐵∗𝐷 = {𝑥 ∈ 𝑈 | 𝐼(𝑥, 𝑏) ≥

𝐵(𝑏), ∀𝑏 ∈ 𝐷}.

Proposition 15. Let (𝑈, 𝐴, 𝐼) be an IF formal context. If 𝑋 ⊆

𝑈, 𝐷 ⊆ 𝐴 and 𝐵 ∈ IF(𝑈), then 𝑋∗
𝐷 ⊆ 𝑋

∗and 𝐵∗ ⊆ 𝐵
∗
𝐷

hold.

Proof. They can be easily obtained from Proposition 9 and
Definition 14.

Proposition 16. Let (𝑈, 𝐴, 𝐼) be an IF formal context. If𝐷 ⊆ 𝐴

and 𝐷 ̸= 0, then there must exist the following relation:

𝐿 (𝑈,𝐴, 𝐼) ≤ 𝐿 (𝑈,𝐷, 𝐼
𝐷
) . (19)

Proof. For any (𝑋, 𝐵) ∈ 𝐿(𝑈,𝐷, 𝐼
𝐷
), 𝑋∗

𝐷 = 𝐵 and 𝐵∗𝐷 =

𝑋. From the above discussions, we know that (𝑋∗∗
, 𝑋

∗
) ∈

𝐿(𝑈, 𝐴, 𝐼) is concept; thus we only need to verify𝑋∗∗
= 𝑋.

According to Proposition 9 (2), we can obtain that𝑋∗∗
⊇

𝑋. In addition to Proposition 15, 𝐵 = 𝑋
∗
𝐷 ⊆ 𝑋

∗
⇒ 𝑋

∗∗
⊆

𝐵
∗
⊆ 𝐵

∗
𝐷 = 𝑋. Therefore, 𝐿(𝑈, 𝐴, 𝐼) ≤ 𝐿(𝑈,𝐷, 𝐼

𝐷
).

Corollary 17. Let (𝑈, 𝐴, 𝐼) be an IF formal context. If 𝐷 ⊆ 𝐴,
𝐷 ̸= 0, then 𝐿

𝑈
(𝑈,𝐷, 𝐼

𝐷
) ⊆ 𝐿

𝑈
(𝑈, 𝐴, 𝐼).

Definition 18. Let (𝑈, 𝐴, 𝐼) be an IF formal context, 𝐷 ⊆ 𝐴.
We say that𝐷 is a consistent set of 𝐿(𝑈, 𝐴, 𝐼), if 𝐿(𝑈,𝐷, 𝐼

𝐷
) ≅

𝐿(𝑈, 𝐴, 𝐼). If 𝐷 is a consistent set, and for any 𝑑 ∈ 𝐷, there
exists 𝐿(𝑈,𝐷 − 𝑑, 𝐼

𝐷−𝑑
) ≇ 𝐿(𝑈, 𝐴, 𝐼), then 𝐷 is called an

attribute reduction of 𝐿(𝑈, 𝐴, 𝐼). The intersection set of all
reductions is called the core of 𝐿(𝑈, 𝐴, 𝐼).

Obviously, we can obtain the following propositions by
the above definition.

Proposition 19. For any 𝐿(𝑈, 𝐴, 𝐼), there must exist a reduc-
tion of it.
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Proof. This proposition is immediately obtained in a similar
way to the 𝐿(𝑈, 𝐴, 𝐼).

Proposition 20. Let (𝑈, 𝐴, 𝐼) be an IF formal context. If 𝐷 ⊆

𝐴 and 𝐷 ̸= 0, then

𝐷 is a consistent set⇐⇒ 𝐿(𝑈,𝐷, 𝐼
𝐷
) ≤ 𝐿 (𝑈,𝐴, 𝐼) . (20)

Proof. According to Proposition 15 and Definition 18, the
conclusion can be obtained easily.

Definition 21. Let (𝑈, 𝐴, 𝐼) be an IF formal context and
suppose that 𝜏 is an index set and all the reductions are
denoted by {𝐷𝑖

| 𝐷
𝑖 is a reduction, 𝑖 ∈ 𝜏}. Then, attributes

can be divided into four types as follows:

(1) absolutely necessary attribute (core attribute) 𝑏 : 𝑏 ∈
∩
𝑖∈𝜏
𝐷
𝑖;

(2) relatively necessary attribute 𝑐 : 𝑐 ∈ ∪
𝑖∈𝜏
𝐷
𝑖
− ∩

𝑖∈𝜏
𝐷
𝑖;

(3) absolutely unnecessary attribute 𝑑 : 𝑑 ∈ 𝐴 − ∪
𝑖∈𝜏
𝐷
𝑖;

(4) unnecessary attribute 𝑒 : 𝑒 ∈ 𝐴 − ∩
𝑖∈𝜏
𝐷
𝑖.

In general, the reduction of (𝑈, 𝐴, 𝐼) is not unique. An
example will be used to illustrate the above discussions as
follows.

Example 22. For the IF formal context in Table 1, if we
take out {𝑎, 𝑐} from the attributes set 𝐴, then we can
obtain a new IF formal context (𝑈,𝐷1

, 𝐼
𝐷
1), where 𝐷1

=

𝐴 − {𝑎, 𝑐, 𝑑}. And we can get all concepts of (𝑈,𝐷1
, 𝐼
𝐷
1),

they are (1, 𝐷1

1
), (2, 𝐷1

2
), (4, 𝐷1

3
), (12, 𝐷1

4
), (13, 𝐷1

5
), (24, 𝐷1

6
),

(123, 𝐷
1

7
), (124, 𝐷1

8
), (𝑈,𝐷1

9
), and (0, 𝐷1

) marked by IFC1󸀠,
IFC2󸀠, FC3󸀠, IFC4󸀠, IFC5󸀠, IFC6󸀠, IFC7󸀠, IFC8󸀠, IFC9󸀠, and
IFC10󸀠, respectively, where

𝐷
1

1
= {(𝑏, 0.7, 0.2) , (𝑒, 0.8, 0.1)} ,

𝐷
1

2
= {(𝑏, 0.8, 0.2) , (𝑒, 0.2, 0.7)} ,

𝐷
1

3
= {(𝑏, 0.8, 0.1) , (𝑒, 0.2, 0.8)} ,

𝐷
1

4
= {(𝑏, 0.7, 0.2) , (𝑒, 0.2, 0.7)} ,

𝐷
1

5
= {(𝑏, 0.2, 0.6) , (𝑒, 0.2, 0.6)} ,

𝐷
1

6
= {(𝑏, 0.7, 0.2) , (𝑒, 0.2, 0.8)} ,

𝐷
1

7
= {(𝑏, 0.8, 0.2) , (𝑒, 0.2, 0.8)} ,

𝐷
1

8
= {(𝑏, 0.2, 0.6) , (𝑒, 0.2, 0.7)} ,

𝐷
1

9
= {(𝑏, 0.7, 0.2) , (𝑒, 0.2, 0.8)} ,

𝐷
1
= {(𝑏, 1, 0) , (𝑒, 1, 0)} .

(21)

In addition, we can obtain concept lattice of context
𝐿(𝑈,𝐷

1
, 𝐼

1

𝐷
), as shown in Figure 2.

From Figures 1 and 2, we can find easily that 𝐿(𝑈,𝐷1
, 𝐼
𝐷
1)

and 𝐿(𝑈, 𝐴, 𝐼) are isomorphic. So, 𝐷1 is a consistent set of

(1, D̃11

(13, D̃15 ) (12, D̃14 )

(124, D̃18 )(123, D̃17 )

(4, D̃13 )

(2, D̃12 )

, D̃16 )

(∅, D̃1)

, )

(U, D̃19 )

(24

Figure 2: Concept lattice of the IF formal context (𝑈, 𝐴, 𝐼).

(𝑈, 𝐴, 𝐼). In fact, we can find that 𝐿(𝑈,𝐷1
− 𝑏, 𝐼

𝐷
1
−𝑏
) ≇

𝐿(𝑈, 𝐴, 𝐼), 𝐿(𝑈,𝐷1
− 𝑒, 𝐼

𝐷
1
−𝑒
) ≇ 𝐿(𝑈, 𝐴, 𝐼) by calculation.

Hence,𝐷1 is a reduction of (𝑈, 𝐴, 𝐼).
If we take out {𝑎, 𝑐, 𝑒} from the attributes set 𝐴, then

we can obtain a new IF formal context (𝑈,𝐷2
, 𝐼
𝐷
2), where

𝐷
2
= 𝐴 − {𝑎, 𝑐, 𝑒}. And we can get all concepts of (𝑈,𝐷2

, 𝐼
𝐷
2),

which are (1, 𝐷2

1
), (2, 𝐷2

2
), (4, 𝐷2

3
), (12, 𝐷2

4
), (13, 𝐷2

5
), (24, 𝐷2

6
),

(123, 𝐷
2

7
), (124, 𝐷2

8
), (𝑈,𝐷2

9
), and (0, 𝐷2

), respectively, where

𝐷
2

1
= {(𝑏, 0.7, 0.2) , (𝑑, 0.9, 0.1)} ,

𝐷
2

2
= {(𝑏, 0.8, 0.2) , (𝑑, 0.3, 0.5)} ,

𝐷
2

3
= {(𝑏, 0.8, 0.1) , (𝑑, 0.2, 0.6)} ,

𝐷
2

4
= {(𝑏, 0.7, 0.2) , (𝑑, 0.3, 0.5)} ,

𝐷
2

5
= {(𝑏, 0.2, 0.6) , (𝑑, 0.8, 0.2)} ,

𝐷
2

6
= {(𝑏, 0.8, 0.2) , (𝑑, 0.2, 0.6)} ,

𝐷
2

7
= {(𝑏, 0.2, 0.6) , (𝑑, 0.3, 0.5)} ,

𝐷
2

8
= {(𝑏, 0.7, 0.2) , (𝑑, 0.2, 0.6)} ,

𝐷
2

9
= {(𝑏, 0.2, 0.6) , (𝑑, 0.2, 0.6)} ,

𝐷
2
= {(𝑏, 1, 0) , (𝑑, 1, 0)} .

(22)

Obviously, 𝐿(𝑈,𝐷2
, 𝐼
𝐷
2) is isomorphic with 𝐿(𝑈, 𝐴, 𝐼).

Corollary 23. The core is the reduction ⇔ The reduction is
only one.

Proof. ⇐Obviously.
⇒Assume that the core is the reduction, and the reduc-

tion is not unique; that is, there are two reductions:𝐷𝑖
̸= 𝐷

𝑗 at
least. Hence, the core of the reductions ∩𝐷𝑡

⊆ 𝐷
𝑖
∩ 𝐷

𝑗
⊂ 𝐷

𝑖.
For 𝐷𝑖 is the reduction, the proper subset of it (where it is
the core of the reductions) must not be the reduction. This
clearly contradicts the known conditions. So, if the core is the
reduction, the reduction is only one.
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Obviously, the following corollaries can be obtained by
the above definitions and propositions.

Corollary 24. Let (𝑈, 𝐴, 𝐼) be an IF formal context; 𝑎 ∈ 𝐴 is
a core attribute⇔ 𝐴 − {𝑎} is not a consistent set.

Corollary 25. Let (𝑈, 𝐴, 𝐼) be an IF formal context, 𝑎 ∈ 𝐴 is
an unnecessary attribute⇔ 𝐴 − {𝑎} is a consistent set.

Since the reduction 𝐷 of an IF formal context satisfies the
following conditions: (1)𝐷 ⊆ 𝐴 a consistent set; (2)∀𝑑 ∈ 𝐷,𝐷\
{𝑑} is not a consistent set; it is helpful to give the necessary and
sufficient conditions of consistent sets in order to get reductions
more easily.

Proposition 26. Let (𝑈, 𝐴, 𝐼) be an IF formal context, 𝐷 ⊆

𝐴,𝐷 ̸= 0.

Then 𝐷 is a consistent set of (𝑈, 𝐴, 𝐼)

⇐⇒ 𝐵
∗∗
𝐷
∗
𝐷 = 𝐵

∗ for any 𝐵 ∈ 𝑈𝐴
.

(23)

Proof. Assume that 𝐷 is a consistent set; then we have
𝐿(𝑈,𝐷, 𝐼

𝐷
) ≤ 𝐿(𝑈, 𝐴, 𝐼) according to Proposition 20. For any

𝐵 ∈ 𝑈
𝐴, it is easy to see that (𝐵∗, 𝐵∗∗) ∈ 𝐿(𝑈, 𝐴, 𝐼). Thus,

by Definition 13, there exists 𝐵󸀠 ∈ 𝑈
𝐷 such that (𝐵∗, 𝐵󸀠) ∈

𝐿(𝑈,𝐷, 𝐼
𝐷
). Hence, 𝐵󸀠 = 𝐵

∗∗
𝐷 and 𝐵

∗
= 𝐵

󸀠∗
𝐷 , which

concludes 𝐵∗∗𝐷∗𝐷 = 𝐵∗.
Conversely, suppose that 𝐵∗∗𝐷∗𝐷 = 𝐵

∗ for any 𝐵 ∈ 𝑈
𝐴.

To prove that𝐷 is a consistent set of (𝑈, 𝐴, 𝐼), then it suffices
to show that for any (𝑋, 𝐵) ∈ 𝐿(𝑈, 𝐴, 𝐼), there exists 𝐵󸀠 ∈ 𝑈𝐷

such that (𝑋, 𝐵󸀠) ∈ 𝐿(𝑈,𝐷, 𝐼
𝐷
). Thus, suppose that (𝑋, 𝐵) ∈

𝐿(𝑈, 𝐴, 𝐼); then we can get that 𝑋∗
= 𝐵 and 𝑋 = 𝐵

∗. Taking
𝐵
󸀠
= 𝐵

∗∗
𝐷 , then we can obtain that 𝐵󸀠∗𝐷 = 𝐵∗∗𝐷∗𝐷 = 𝐵∗ = 𝑋,

and so (𝑋, 𝐵󸀠) ∈ 𝐿(𝑈,𝐷, 𝐼
𝐷
).

Corollary 27. Let (𝑈, 𝐴, 𝐼) be an IF formal context, 𝐷 ⊆

𝐴, and 𝐷 ̸= 0. Then 𝐷 is a consistent set of (𝑈, 𝐴, 𝐼) ⇔ ∀𝐵 ∈

𝑈
𝐴, ∃𝐵󸀠 ∈ 𝑈𝐷 such that 𝐵󸀠∗𝐷 = 𝐵∗.

Proof. It can be certified easily by Proposition 20.

Proposition 28. Let (𝑈, 𝐴, 𝐼) be an IF formal context, 𝐷 ⊆

𝐴, 𝐷 ̸= 0, and𝐸 = 𝐴−𝐷.Then,𝐷 is a consistent set of (𝑈, 𝐴, 𝐼)
if and only if ∀𝐵 ∈ 𝑈𝐸, ∃𝐵󸀠 ∈ 𝑈𝐷 such that 𝐵󸀠∗𝐷 = 𝐵∗𝐸 .

Proof. Suppose that 𝐷 is a consistent set; then 𝐵∗
1
= 𝐵

∗
𝐷

1
for

any 𝐵
1
∈ 𝑈

𝐴. For any 𝐵 ∈ 𝑈𝐸, let 𝐵
2
= 𝐵 ∪ 𝐵

1
, with 𝐵

1
∈ 𝑈

𝐷,
𝐵
1
(𝑎) = ⟨∧

∀𝑥∈𝑈
𝜇
𝐼
(𝑥, 𝑎), ∨

∀𝑥∈𝑈
𝛾
𝐼
(𝑥, 𝑎)⟩, for 𝑎 ∈ 𝐷; then 𝐵∗

1
=

𝐵
∗
𝐸 . Thus, there exists 𝐵󸀠 ∈ 𝑈𝐷 such that then 𝐵󸀠∗𝐷 = 𝐵∗𝐸 by

Corollary 25.
Suppose that there exists𝐵󸀠 ∈ 𝑈𝐷 such that𝐵󸀠∗𝐷 = 𝐵∗𝐸 for

any 𝐵 ∈ 𝑈𝐸. Let (𝑋, 𝐵
2
) ∈ 𝐿(𝑈, 𝐴, 𝐼); then 𝑋∗

= 𝐵
2
and 𝑋 =

𝐵
∗

2
. Let 𝐵

2
= 𝐵∪𝐵

1
with 𝐵 ∈ 𝑈𝐸 and 𝐵

1
∈ 𝑈

𝐷, then 𝐵∗
2
= (𝐵∪

𝐵
1
)
∗
= 𝐵

∗
∩𝐵

∗

1
= 𝐵

∗
𝐷 ∩𝐵

∗
𝐸

1
. Hence, there exists 𝐵󸀠 ∈ 𝑈𝐷 such

that 𝐵󸀠∗𝐷 = 𝐵∗𝐸
1
, so 𝐵∗𝐷 ∩𝐵∗𝐸

1
= 𝐵

∗
𝐷

1
∩𝐵

󸀠∗
𝐷 = (𝐵

1
∪𝐵

󸀠
)
∗
𝐷 = 𝑋.

Now it follows from Proposition 9 (3) and Definition 10 that

((𝐵
1
∪𝐵

󸀠
)
∗
𝐷 , (𝐵

1
∪𝐵

󸀠
)
∗
𝐷
∗
𝐷) ∈ 𝐿(𝑈,𝐷, 𝐼

𝐷
), and so𝐿(𝑈,𝐷, 𝐼

𝐷
) ≤

𝐿(𝑈, 𝐴, 𝐼), which means that𝐷 is a consistent set.

The functions of attributes, which are closely related
to consistent sets, vary from one to another. So, sufficient
conditions to determine the type of attributes are useful in
attribute reduction.

Proposition 29. Let (𝑈, 𝐴, 𝐼) be an IF formal context. Then, a
is an absolutely necessary attribute if there exists 𝑥

𝑖
, 𝑥

𝑗
∈ 𝑈

such that 𝐼(𝑥
𝑖
, 𝑎) > 𝐼(𝑥

𝑗
, 𝑎), and for any 𝑏 ̸= 𝑎 𝐼(𝑥

𝑖
, 𝑏) ≤

𝐼(𝑥
𝑗
, 𝑏).

Proof. Suppose that 𝑎 is an unnecessary attribute, then 𝐷 =

𝐴 − {𝑎} is a consistent set; that is, 𝐿(𝑈,𝐷, 𝐼
𝐷
) ≅ 𝐿(𝑈, 𝐴, 𝐼).

Let 𝐵 = 𝑥
∗

𝑖
, then (𝐵∗, 𝐵∗∗) ∈ 𝐿(𝑈, 𝐴, 𝐼). Since 𝐼(𝑥

𝑖
, 𝑎) >

𝐼(𝑥
𝑗
, 𝑎), we know that 𝑥

𝑖
∈ 𝐵

∗ and 𝑥
𝑗
∉ 𝐵

∗. Assume that
(𝑋, 𝐵

󸀠
) ∈ 𝐿(𝑈,𝐷, 𝐼

𝐷
) and 𝑥

𝑖
∈ 𝑋, then 𝑋∗

𝐷 = 𝐵
󸀠, 𝐵󸀠∗𝐷 = 𝑋.

From 𝑥
𝑖
∈ 𝑋, we know that 𝐵󸀠 = 𝑋

∗
𝐷 ⊆ 𝑥

∗
𝐷

𝑖
. But since

for any 𝑏 ̸= 𝑎, 𝐼(𝑥
𝑖
, 𝑏) ≤ 𝐼(𝑥

𝑗
, 𝑏). It follows that 𝐵󸀠(𝑏) ≤

𝐼(𝑥
𝑗
, 𝑏) and so 𝑥

𝑗
∈ 𝑋. That is to say, in IF formal context

(𝑈,𝐷, 𝐼
𝐷
), every concept which contains 𝑥

𝑖
also contains 𝑥

𝑗
.

But 𝐼(𝑥
𝑖
, 𝑎) > 𝐼(𝑥

𝑗
, 𝑎). Consistently, there is no concept in

𝐿(𝑈,𝐷, 𝐼
𝐷
) whose extent is equal to 𝐵∗. Thus, 𝐷 is not a

consistent set, which gets a contradiction. Therefore, 𝑎 is an
absolutely necessary attribute.

Proposition 30. Let (𝑈, 𝐴, 𝐼) be an IF formal context. Then,
a is an unnecessary attribute if the following conditions hold:
for any 𝑥

𝑖
, 𝑥

𝑗
∈ 𝑈, if 𝐼(𝑥

𝑖
, 𝑎) > 𝐼(𝑥

𝑗
, 𝑎), then there exists 𝑏 ̸= 𝑎

such that 𝐼(𝑥
𝑖
, 𝑏) > 𝐼(𝑥

𝑗
, 𝑏). Moreover, if there exists 𝑥

𝑘
∈ 𝐴

such that 𝐼(𝑥
𝑘
, 𝑎) ≥ 𝐼(𝑥

𝑖
, 𝑎), then 𝐼(𝑥

𝑘
, 𝑏) ≥ 𝐼(𝑥

𝑗
, 𝑏).

Proof. Suppose that 𝑎 = 𝑎
𝑙
, 𝐷 = 𝐴 − {𝑎

𝑙
}. It suffices to prove

that 𝐷 is consistent set. By Corollary 27, it remains to prove
that for any 𝐵 ∈ 𝑈

𝐴, there exists 𝐵󸀠 ∈ 𝑈𝐷 such that 𝐵󸀠∗𝐷 =
𝐵
∗. So suppose that 𝐵 = {𝐼(𝑥

𝑠1
, 𝑎

1
), 𝐼(𝑥

𝑠2
, 𝑎

2
), . . . , 𝐼(𝑥

𝑠𝑚
, 𝑎

𝑚
)},

where 𝑥
𝑠𝑡
∈ 𝑈𝑎

𝑡
∈ 𝐴, 1 ≤ 𝑠 ≤ |𝑈|, 1 ≤ 𝑡 ≤ 𝑚.

If for any 𝑥 ∈ 𝑈, 𝐼(𝑥, 𝑎
𝑙
) ≥ 𝐼(𝑥

𝑠𝑙
, 𝑎

𝑙
), then let 𝐵󸀠 = {𝐼(𝑥

𝑠1
,

𝑎
1
), 𝐼(𝑥

𝑠2
, 𝑎

2
), . . ., 𝐼(𝑥

𝑠𝑙−1
, 𝑎

𝑙−1
), 𝐼(𝑥

𝑠𝑙+1
, 𝑎

𝑙+1
), . . . , 𝐼(𝑥

𝑠𝑚
, 𝑎

𝑚
)},

and so we can get that 𝐵󸀠∗𝐷 = 𝐵∗.
Otherwise, assume that there are {𝑥

𝑡1
, 𝑥

𝑡2
, . . . , 𝑥

𝑡𝛼
} ⊆ 𝑈,

such that 𝐼(𝑥
𝑠𝑙
, 𝑎

𝑙
) > 𝐼(𝑥

𝑡𝛽
, 𝑎

𝑙
) (1 ≤ 𝛽 ≤ 𝛼); then there exist,

according the condition, 𝑎
𝑞1
, 𝑎

𝑞2
, . . . , 𝑎

𝑞𝜂
∈ 𝐴 − {𝑎

𝑙
} such that

𝐼(𝑥
𝑠𝑙
, 𝑎

𝑞𝜎
) > 𝐼(𝑥

𝑡𝛽
, 𝑎

𝑞𝜎
) (1 ≤ 𝜎 ≤ 𝜂). Moreover, if there exists

𝑥
𝑘
such that 𝐼(𝑥

𝑘
, 𝑎

𝑙
) ≥ 𝐼(𝑥

𝑠𝑙
, 𝑎

𝑙
), then 𝐼(𝑥

𝑘
, 𝑎

𝑞𝜎
) ≥ 𝐼(𝑥

𝑠𝑙
, 𝑎

𝑞𝜎
).

Let 𝐵󸀠 = 𝐵
1
∪ 𝐵

2
, where

𝐵
1
= {𝐼 (𝑥

𝑠1
, 𝑎

1
) , 𝐼 (𝑥

𝑠2
, 𝑎

2
) , . . . , 𝐼 (𝑥

𝑠𝑙−1
, 𝑎

𝑙−1
) ,

𝐼 (𝑥
𝑠𝑙+1
, 𝑎

𝑙+1
) , . . . , 𝐼 (𝑥

𝑠𝑚
, 𝑎

𝑚
)} ,

𝐵
2
= {𝐼 (𝑥

𝑠𝑙
, 𝑎

𝑞1
) , 𝐼 (𝑥

𝑠𝑙
, 𝑎

𝑞2
) , . . . , 𝐼 (𝑥

𝑠𝑙
, 𝑎

𝑞𝜂
)} ;

(24)
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then it follows that 𝐵󸀠∗𝐷 = 𝐵
∗
𝐷

1
∩ 𝐵

∗
𝐷

2
. So we know that if

𝑥 ∈ 𝐵
∗, that is, 𝐼(𝑥, 𝑎

𝑡
) ≥ 𝐼(𝑥

𝑠𝑡
, 𝑎

𝑡
), then 𝐼(𝑥, 𝑎

𝑞𝜎
) ≥ 𝐼(𝑥

𝑠𝑙
, 𝑎

𝑞𝜎
).

Then, 𝑥 ∈ 𝐵
∗

1
and 𝑥 ∈ 𝐵

∗

2
. It follows that 𝑥 ∈ 𝐵

󸀠∗
𝐷 and so

𝐵
∗
⊆ 𝐵

󸀠∗
𝐷 . If 𝑥 ∉ 𝐵∗, that is, there exists 𝑎

𝑡
0

∈ 𝐴 such that
𝐼(𝑥

𝑠𝑡
, 𝑎

𝑡
0

) > 𝐼(𝑥, 𝑎
𝑡
0

). If 𝑎
𝑡
0

= 𝑎
𝑙
, that is, 𝑥 ∈ {𝑥

𝑡1
, 𝑥

𝑡2
, . . . , 𝑥

𝑡𝛼
},

then 𝐼(𝑥
𝑠𝑙
, 𝑎

𝑞𝜎
) > 𝐼(𝑥, 𝑎

𝑞𝜎
); that is, 𝑥 ∉ 𝐵∗𝐷

2
, and so 𝑥 ∉ 𝐵󸀠∗𝐷 .

If 𝑎
𝑡
0

̸= 𝑎
𝑙
, that is, then 𝐼(𝑥

𝑠𝑡
0

, 𝑎
𝑡
0

) > 𝐼(𝑥, 𝑎
𝑡
0

); that is, 𝑥 ∉ 𝐵∗𝐷
1
,

and so 𝑥 ∉ 𝐵
󸀠∗
𝐷 . Hence, we conclude that for any 𝐵 ∈ 𝑈

𝐴

there exists 𝐵󸀠 ∈ 𝑈𝐷 such that 𝐵󸀠∗𝐷 = 𝐵∗.

Proposition 31. Let (𝑈, 𝐴, 𝐼) be an IF formal context.Then a is
an unnecessary attribute if there exists 𝑏 ∈ 𝐴 such that for any
𝑥
𝑖
, 𝑥

𝑗
∈ 𝑈, 𝐼(𝑥

𝑖
, 𝑎) > 𝐼(𝑥

𝑗
, 𝑎) implies that 𝐼(𝑥

𝑖
, 𝑏) > 𝐼(𝑥

𝑗
, 𝑏).

Moreover, if 𝑏 is an absolutely necessary attribute, then a is an
absolutely unnecessary attribute.

Proof. We denote 𝑎 = 𝑎
𝑙
, 𝑏 = 𝑎

𝑙−1
, and 𝐷 = 𝐴 − {𝑎

𝑙
}.

It suffices to prove that 𝐷 is consistent set. By Corollary 27,
it remains to prove that for any 𝐵 ∈ 𝑈

𝐴, there exists
𝐵
󸀠
∈ 𝑈

𝐷, such that 𝐵󸀠∗𝐷 = 𝐵
∗. So suppose that 𝐵 =

{𝐼(𝑥
𝑠1
, 𝑎

1
), 𝐼(𝑥

𝑠2
, 𝑎

2
), . . . , 𝐼(𝑥

𝑠𝑚
, 𝑎

𝑚
)}, where 𝑥

𝑠𝑡
∈ 𝑈, 𝑎

𝑡
∈ 𝐴,

1 ≤ 𝑠 ≤ |𝑈|, 1 ≤ 𝑡 ≤ 𝑚.
If for any 𝑥 ∈ 𝑈, 𝐼(𝑥, 𝑎

𝑙
) ≥ 𝐼(𝑥

𝑠𝑙
, 𝑎

𝑙
), then let 𝐵󸀠 = {𝐼(𝑥

𝑠1
,

𝑎
1
), 𝐼(𝑥

𝑠2
, 𝑎

2
), . . . , 𝐼(𝑥

𝑠𝑙−1
, 𝑎

𝑙−1
), 𝐼(𝑥

𝑠𝑙+1
, 𝑎

𝑙+1
), . . . , 𝐼(𝑥

𝑠𝑚
, 𝑎

𝑚
)},

and it follows that 𝐵󸀠∗𝐷 = 𝐵∗.
Otherwise, there exists 𝑥

𝑘
such that 𝐼(𝑥

𝑠𝑙
, 𝑎

𝑙
) > 𝐼(𝑥

𝑘
, 𝑎

𝑙
);

then 𝐼(𝑥
𝑠𝑙
, 𝑎

𝑙−1
) > 𝐼(𝑥

𝑘
, 𝑎

𝑙−1
). Denote {𝑥

𝑡1
, 𝑥

𝑡2
, . . . , 𝑥

𝑡𝛼
} ⊆

𝑈 to be the set whose elements satisfy the condition that
𝐼(𝑥

𝑡𝛽
, 𝑎

𝑙
) ≥ 𝐼(𝑥

𝑠𝑙
, 𝑎

𝑙
) (1 ≤ 𝛽 ≤ 𝛼). Then, 𝐼(𝑥

𝑡𝛽
, 𝑎

𝑙
) > 𝐼(𝑥

𝑘
, 𝑎

𝑙
)

and thus 𝐼(𝑥
𝑡𝛽
, 𝑎

𝑙−1
) > 𝐼(𝑥

𝑘
, 𝑎

𝑙−1
). Let 𝐵󸀠 = 𝐵

1
∪ 𝐵

2
, where

𝐵
1
= {𝐼 (𝑥

𝑠1
, 𝑎

1
) , 𝐼 (𝑥

𝑠2
, 𝑎

2
) , . . . , 𝐼 (𝑥

𝑠𝑙−1
, 𝑎

𝑙−1
) ,

𝐼 (𝑥
𝑠𝑙+1
, 𝑎

𝑙+1
) , . . . , 𝐼 (𝑥

𝑠𝑚
, 𝑎

𝑚
)} ,

𝐵
2
= {𝐼 (𝑥

𝑠1
, 𝑎

1
) , 𝐼 (𝑥

𝑠2
, 𝑎

2
) , . . . , 𝐼 (𝑥

𝑠𝑙−2
, 𝑎

𝑙−2
) ,

∧
1≤𝛽≤𝛼

𝐼 (𝑥
𝑡𝛽
, 𝑎

𝑙−1
) , 𝐼 (𝑥

𝑠𝑙+1
, 𝑎

𝑙+1
) , . . . , 𝐼 (𝑥

𝑠𝑚
, 𝑎

𝑚
)} ,

(25)

then it follows that 𝐵󸀠∗𝐷 = 𝐵
∗
𝐷

1
∩ 𝐵

∗
𝐷

2
. So we know that if

𝑥 ∈ 𝐵
∗, that is, for all 𝑎

𝑡
∈ 𝐴, 𝐼(𝑥, 𝑎

𝑡
) ≥ 𝐼(𝑥

𝑠𝑡
, 𝑎

𝑡
), then 𝑥 ∈

𝐵
∗
𝐷

1
and 𝑥 ∈ {𝑥

𝑡1
, 𝑥

𝑡2
, . . . , 𝑥

𝑡𝛼
}. Then, 𝑥 ∈ 𝐵

∗

1
and 𝑥 ∈ 𝐵

∗

2
.

It follows that 𝑥 ∈ 𝐵
󸀠∗
𝐷 and so 𝐵∗ ⊆ 𝐵

󸀠∗
𝐷 . If 𝑥 ∉ 𝐵

∗, then
𝑥 ∉ 𝐵

∗
𝐷

1
or 𝐼(𝑥

𝑠𝑙
, 𝑎

𝑙
) > 𝐼(𝑥, 𝑎

𝑙
). If 𝑥 ∉ 𝐵∗𝐷

1
, then 𝑥 ∈ 𝐵󸀠∗𝐷 . If

𝐼(𝑥
𝑠𝑙
, 𝑎

𝑙
) > 𝐼(𝑥, 𝑎

𝑙
), then 𝐼(𝑥

𝑡𝛽
, 𝑎

𝑙−1
) > 𝐼(𝑥, 𝑎

𝑙−1
), and so, there

exists 𝑎
𝑡
0

∈ 𝐴 such that 𝐼(𝑥
𝑠𝑡
, 𝑎

𝑡
0

) > 𝐼(𝑥, 𝑎
𝑡
0

). If 𝑎
𝑡
0

= 𝑎
𝑙
, that

is, 𝑥 ∈ {𝑥
𝑡1
, 𝑥

𝑡2
, . . . , 𝑥

𝑡𝛼
}, then 𝐼(𝑥

𝑠𝑙
, 𝑎

𝑞𝜎
) > 𝐼(𝑥, 𝑎

𝑞𝜎
); that is,

𝑥 ∉ 𝐵
∗
𝐷

2
, and so∧

1≤𝛽≤𝛼
𝐼(𝑥

𝑡𝛽
, 𝑎

𝑙−1
) > 𝐼(𝑥, 𝑎

𝑙−1
) that is, 𝑥 ∉ 𝐵∗𝐷

2

and so 𝑥 ∉ 𝐵
󸀠∗
𝐷 . Thus, we conclude that for any 𝐵 ∈ 𝑈

𝐴

there exists 𝐵󸀠 ∈ 𝑈𝐷 such that 𝐵󸀠∗𝐷 = 𝐵∗. Therefore 𝑎
𝑙
is an

unnecessary attribute.

Moreover, suppose that 𝑎
𝑙−1

is an absolutely necessary
attribute and 𝐷 is a consistent set which contains 𝑎

𝑙−1
. Since

𝑎
𝑙−1

is an absolutely necessary attribute, we have 𝑎
𝑙−1

∈

𝐷; thus 𝐷 − {𝑎
𝑙
} is also a consistent set, that is, 𝐷 is

not a reduction. Therefore, 𝑎
𝑙
is an absolutely unnecessary

attribute.

Corollary 32. Let (𝑈, 𝐴, 𝐼) be an IF formal context. Then, 𝑎 ∈
𝐴 is an absolutely unnecessary attribute if for any 𝑥

𝑖
, 𝑥

𝑗
∈ 𝑈,

𝐼(𝑥
𝑗
, 𝑎) ≥ 𝐼(𝑥

𝑖
, 𝑎).

5. Approach to Reduction

In this section, discernibility matrix and discernibility func-
tion [18, 41] are introduced to compute all reductions for
an IF formal context based on the conclusions discussed in
Section 4, and we discuss the approach to reduction as well as
the corresponding characteristics. Furthermore, we also show
corresponding reduction algorithm.

Definition 33. Let (𝑈, 𝐴, 𝐼) be an IF formal context and
𝑋
𝑖
, 𝑋

𝑗
∈ 𝐿

𝑈
(𝑈, 𝐴, 𝐼) ∪ {{𝑥

𝑗
} | 𝑥

𝑗
∈ 𝑈}, we define

D
∗
(𝑋

𝑖
, 𝑋

𝑗
)

=

{{{{{

{{{{{

{

{𝑎 ∈ 𝐴 | 𝜇
𝑋
∗

𝑖

(𝑎) > 𝜇
𝑋
∗

𝑗

(𝑎)

or 𝛾
𝑋
∗

𝑖

(𝑎) < 𝛾
𝑋
∗

𝑗

(𝑎)} 𝑋
𝑖
∈ 𝐿

𝑈
(𝑈, 𝐴, 𝐼) ,

𝑋
𝑗
= {𝑥

𝑗
} ̸⊂ 𝑋

𝑖

0 otherwise,

D
∗
={D

∗
(𝑋

𝑖
, 𝑋

𝑗
) |𝑋

𝑖
, 𝑋

𝑗
∈ 𝐿

𝑈
(𝑈, 𝐴, 𝐼)∪{{𝑥

𝑗
} |𝑥

𝑗
∈ 𝑈}}

= (D
∗
(𝑋

𝑖
, 𝑋

𝑗
))

|𝐿
𝑈
(𝑈,𝐴,𝐼)∪{{𝑥

𝑗
}|𝑥
𝑗
∈𝑈}|
2 .

(26)

Then, D∗
(𝑋

𝑖
, 𝑋

𝑗
) is called discernibility attributes set

between 𝑋
𝑖
and 𝑋

𝑗
. And D∗ is referred to as discernibility

matrix of the IF formal context (𝑈, 𝐴, 𝐼).

Proposition 34. Let (𝑈, 𝐴, 𝐼) be an IF formal context and𝐷 ⊆

𝐴,𝐷 ̸= 0. Then, the following two propositions are equivalent.

(1) 𝐷 is a consistent set of (𝑈, 𝐴, 𝐼).
(2) If D∗

(𝑋
𝑖
, 𝑋

𝑗
) ̸= 0, then 𝐷 ∩ D∗

(𝑋
𝑖
, 𝑋

𝑗
) ̸= 0, for all

D∗
(𝑋

𝑖
, 𝑋

𝑗
) ∈ D∗.

Proof. (1) ⇒ (2)We assume that property (2) does not hold.
That is, ∃D∗

(𝑋
𝑖
, 𝑋

𝑗
) ̸= 0 ∈ D∗, 𝑋

𝑗
= {𝑥

𝑗
} ̸⊂ 𝑋

𝑖
such that

𝐷 ∩ D∗
(𝑋

𝑖
, 𝑋

𝑗
) = 0. That is to say for all 𝑎 ∈ 𝐷 such that

𝜇
𝑋
∗

𝑖

(𝑎) ≤ 𝜇
𝑋
∗

𝑗

(𝑎) and 𝛾
𝑋
∗

𝑖

(𝑎) ≥ 𝛾
𝑋
∗

𝑗

(𝑎); hence 𝑥
𝑗
∈ 𝑋

∗
𝐷
∗
𝐷

𝑖
. In

other words, (𝑋
𝑖
, 𝑋

∗
𝐷

𝑖

) ∉ 𝐿(𝑈,𝐷, 𝐼
𝐷
). It is paradoxical that𝐷

is a consistent set of (𝑈, 𝐴, 𝐼).
(2) ⇒ (1) If for allD∗

(𝑋
𝑖
, 𝑋

𝑗
) ̸= 0 ∈ D∗, then for all 𝑎 ∈

𝐷 ∩D∗
(𝑋

𝑖
, 𝑋

𝑗
) ̸= 0 such that 𝜇

𝑋
∗

𝑖

(𝑎) > 𝜇
𝑋
∗

𝑗

(𝑎) or 𝛾
𝑋
∗
𝑇

𝑖

(𝑎) <

𝛾
𝑋
∗
𝑇

𝑗

(𝑎) and ⇒ 𝜇
𝑋
∗
𝐷

𝑖

(𝑎) > 𝜇
𝑋
∗
𝐷

𝑗

(𝑎) or 𝛾
𝑋
∗
𝐷

𝑖

(𝑎) < 𝛾
𝑋
∗
𝐷

𝑗

(𝑎).
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Table 2: Discernibility matrix in Example 22.

𝑋
𝑖
/𝑋

𝑗
𝑥
1

𝑥
2

𝑥
3

𝑥
4

1 2 4 12 13 24 123 124 𝑈 0

𝑥
1

0 𝑎𝑑𝑒 𝐴 𝑎𝑑𝑒 0 𝑎𝑑𝑒 𝑎𝑑𝑒 0 0 0 0 0 0 0

𝑥
2

𝑏𝑐 0 𝑎𝑏𝑐 𝑎𝑐𝑑𝑒 𝑏𝑐 0 𝑎𝑐𝑑𝑒 0 0 0 0 0 0 0

𝑥
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑥
4

𝑏𝑐 𝑏 𝑎𝑏𝑐 0 𝑏𝑐 𝑏 0 0 0 0 0 0 0 0

1 0 𝑎𝑑𝑒 𝐴 𝑎𝑑𝑒 0 𝑎𝑑𝑒 𝑎𝑑𝑒 0 0 0 0 0 0 0

2 𝑏𝑐 0 𝑎𝑏𝑐 𝑎𝑐𝑑𝑒 𝑏𝑐 0 𝑎𝑐𝑑𝑒 0 0 0 0 0 0 0

4 𝑏𝑐 𝑏 𝑎𝑏𝑐 0 𝑏𝑐 𝑏 0 0 0 0 0 0 0 0

12 0 0 𝑎𝑏𝑐 𝑎𝑑𝑒 0 0 𝑎𝑑𝑒 0 0 0 0 0 0 0

13 0 𝑑𝑒 0 𝑑𝑒 0 𝑑𝑒 𝑑𝑒 0 0 0 0 0 0 0

24 𝑏𝑐 0 𝑎𝑏𝑐 0 𝑏𝑐 0 0 0 0 0 0 0 0 0

123 0 0 0 𝑑𝑒 0 0 𝑑𝑒 0 0 0 0 0 0 0

124 0 0 𝑎𝑏𝑐 0 0 0 0 0 0 0 0 0 0 0

𝑈 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Hence, for all 𝑋
𝑖
∈ 𝐿

𝑈
(𝑈, 𝐴, 𝐼), 𝑋

𝑗
= {𝑥

𝑗
} ̸⊂ 𝑋

𝑖
such that

𝑥
𝑗
∉ 𝑋

∗
𝐷
∗
𝐷

𝑖
⇒ 𝑋

𝑖
= 𝑋

∗
𝐷
∗
𝐷

𝑖
. So, there exists (𝑋

𝑖
, 𝑋

∗
𝐷

𝑖
) ∈

𝐿(𝑈,𝐷, 𝐼
𝐷
). Thus,𝐷 is a consistent set of (𝑈, 𝐴, 𝐼).

Definition 35. Let (𝑈, 𝐴, 𝐼) be an IF formal context and D∗

be discernibility matrix of (𝑈, 𝐴, 𝐼). We define

M
∗
= ∧

D∗(𝑋
𝑖
,𝑋
𝑗
)∈D∗

{ ∨
𝑎
𝑘
∈D∗(𝑋

𝑖
,𝑋
𝑗
)

𝑎
𝑘
} ,

D
∗
(𝑋

𝑖
, 𝑋

𝑗
) ̸= 0.

(27)

Then,M∗ is called discernibility function of the IF formal
context (𝑈, 𝐴, 𝐼).

Proposition 36. Let (𝑈, 𝐴, 𝐼) be an IF formal context. The
minimal disjunctive normal form of discernibility function is
defined as

M
∗
=

𝑝

∨
𝑘=1

(
𝑞
𝑘

∧𝑎
𝑠

𝑠=1

) . (28)

Denote 𝐵
𝑘
= {𝑎

𝑠
| 𝑠 = 1, 2, . . . , 𝑞

𝑘
}, then {𝐵

𝑘
| 𝑘 = 1, 2, . . . , 𝑝}

are all reductions of the IF formal context (𝑈, 𝐴, 𝐼).

Proof. It can be easily verified by Proposition 34,
Definition 35, and the definition of minimal disjunctive
normal of discernibility function.

From above discussion, we know that to get the attribute
reductions in the IF concept lattices is equal to find the
minimum consistent set𝐷which satisfies𝐷∩D∗

(𝑋
𝑖
, 𝑋

𝑗
) ̸= 0

for anyD∗
(𝑋

𝑖
, 𝑋

𝑗
) ̸= 0.

Similarly, for any 𝑋
𝑖
∈ 𝐿

𝑈
(𝑈, 𝐴, 𝐼) and D∗

(𝑋
𝑖
, 𝑋

𝑗
) ̸= 0,

the discernibility function of𝑋
𝑖
is defined as

M
∗
(𝑋

𝑖
) = ∧

𝑋
𝑗
={𝑥
𝑗
} ̸⊂𝑋
𝑖

{ ∨
𝑎
𝑘
∈D∗(𝑋

𝑖
,𝑋
𝑗
)

𝑎
𝑘
} =

𝑝

∨
𝑘=1

(
𝑞
𝑘

∧𝑎
𝑠

𝑠=1

) . (29)

Corollary 37. 𝐷 is a consistent set of (𝑈, 𝐴, 𝐼) ⇔ 𝑋
∗∗
𝐷 ⊆

𝑋
∗∗.

In the following, we investigate how to get IF attributes
reductions from all attributes in concept lattices by illustrat-
ing an example.

Example 38 (renewal Example 22). All the reductions can be
computed by discernibilitymatrix and discernibility function
in Example 22.

By the definition of discernibility matrix, the results are
presented in Table 2.

Hence, we can get that

M
∗
= (𝑎 ∨ 𝑑 ∨ 𝑒) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑑 ∨ 𝑒) ∧ (𝑏 ∨ 𝑐)

∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑎 ∨ 𝑐 ∨ 𝑑 ∨ 𝑒) ∧ (𝑑 ∨ 𝑒) ∧ 𝑏

= 𝑏 ∧ (𝑑 ∨ 𝑒) = (𝑏 ∧ 𝑑) ∨ (𝑏 ∧ 𝑒) .

(30)

Through calculation and analysis, there are two reduc-
tions which are𝐷1

= {𝑏, 𝑑} and𝐷2
= {𝑏, 𝑒}, for the IF formal

context in Table 1. The core attribute of the IF formal context
is 𝑏. 𝑑, 𝑒 are relatively necessary attributes; 𝑎, 𝑐 are absolutely
unnecessary attributes.

Algorithm 39. Discernibility functions are monotonic
Boolean functions, and we obtain that the minimal
disjunctive normal form of the discernibility function
determine all the reductions. Algorithm of attribute
reduction of concept based on the IF formal context is
described as follows, and the flow chart of the algorithm is
shown in Figure 3. Consider
Input: An IF formal context 𝐾 = (𝑈,𝐴, 𝐼), where 𝑈 =

{𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
}, 𝐴 = {𝑎

1
, 𝑎

2
, . . . , 𝑎

𝑚
}.

Output: RED(𝐾) // All reductions of the IF formal context.
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Yes 

Yes 

Yes 

No 

No 

No 

Setting data table K

Read data and preprocess data

Compute X∗i and X∗∗i

Xi ∈P(U)

i < 2|U|

X∗∗i =Xi?

Compute 𝒟∗(X∗∗
i , Xj )

Save (X∗∗
i , X∗i )

j < |U|

Save 𝒟∗(X∗∗
i , Xj ) in 𝒟∗

Compute ℳ∗

L(U, A, Ĩ), 𝒟∗
Output RED (K) ={B𝜅|k ≤ p}

Figure 3: The flow chart of Algorithm 39.

Step 1: Initialized setting. We denote the initialized informa-
tion by 𝐾 and read data table.

Step 2: Compute𝑋∗

𝑖
for𝑋

𝑖
∈ 𝑃(𝑈).

Step 3: Compute 𝑋∗∗

𝑖
, the corresponding extension of 𝑋∗

𝑖
,

according to Definitions 7 and 10. And remove duplicates.

Step 4: Compute the set of discernibility attributes
D∗

(𝑋
∗∗

𝑖
, 𝑋

𝑗
) for according to Definition 33.

Step 5: Compute M∗
= ∧D∗(𝑋

𝑖
,𝑋
𝑗
)∈D∗ {∨{𝑎𝑘 | 𝑎

𝑘
∈

D∗
(𝑋

∗∗

𝑖
, 𝑋

𝑗
)}}.

Step 6: ComputeM∗
= ∨

𝑝

𝑘=1
(∧𝑎

𝑠

𝑞
𝑘

𝑠=1
).

Step 7: Let 𝐵
𝑘
= {𝑎

𝑠
| 𝑠 ≤ 𝑞

𝑘
} and RED(𝐾) = {𝐵

𝑘
| 𝑘 ≤ 𝑝}.

Step 8: Output 𝐿(𝑈, 𝐴, 𝐼),D∗ and RED(𝐾).

Table 3: The target IF formal context 𝐾.

𝑎 𝑏 𝑐 𝑑 𝑒

𝑥
1

⟨0.9, 0.0⟩ ⟨0.8, 0.1⟩ ⟨0.2, 0.8⟩ ⟨0.2, 0.5⟩ ⟨0.9, 0.0⟩

𝑥
2

⟨0.8, 0.0⟩ ⟨0.8, 0.1⟩ ⟨0.8, 0.1⟩ ⟨0.3, 0.5⟩ ⟨0.0, 0.8⟩

𝑥
3

⟨0.0, 0.8⟩ ⟨0.0, 0.6⟩ ⟨0.1, 0.9⟩ ⟨0.8, 0.2⟩ ⟨0.0, 0.8⟩

𝑥
4

⟨0.7, 0.2⟩ ⟨0.8, 0.1⟩ ⟨0.7, 0.1⟩ ⟨0.2, 0.6⟩ ⟨0.0, 0.8⟩

𝑥
5

⟨0.0, 0.0⟩ ⟨0.1, 0.0⟩ ⟨0.0, 0.0⟩ ⟨0.9, 0.1⟩ ⟨0.0, 0.8⟩

𝑥
6

⟨0.6, 0.4⟩ ⟨0.9, 0.0⟩ ⟨0.0, 0.9⟩ ⟨0.8, 0.2⟩ ⟨0.0, 0.8⟩

𝑥
7

⟨0.9, 0.1⟩ ⟨0.8, 0.1⟩ ⟨0.2, 0.8⟩ ⟨0.2, 0.6⟩ ⟨0.0, 0.8⟩

In the worst case, the time complexity of the proposed
algorithm is𝑂(2|𝑈||𝑈||𝐴|), where |𝑈| is the number of objects
and |𝐴| is the number of attributes. If the number of attributes
has an upper bound, as usually happens, the cost of time
grows geometrically with the number of objects.

Experimental computing program can be designed and
carried out so as to apply the algorithm studied more directly
and applicably. The main process of the program will be
introduced by the flow chart. According to Algorithm 39, the
process of the program can be designed and listed in Figure 3:
the flow chart of the program.

Furthermore, the program has been employed to com-
pute all concepts and reductions of the IF formal context in
Example 8, which are consistent with the results obtained in
Example 38. The test shows that the program is effective.

Example 40. Let 𝐾 = (𝑈,𝐴, 𝐼) be an IF formal context about
some emerging viruses presented in Table 3, where 𝑈 =

{𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑥

4
, 𝑥

5
, 𝑥

6
, 𝑥

7
} is the set of emerging viruses and

𝐴 = {𝑎
1
, 𝑎

2
, 𝑎

3
, 𝑎

4
, 𝑎

5
} is the set of some important character-

istics about viruses. The interpretations of the attributes are
listed as follows.

(𝑎
1
) The type of genome’s nucleic acids, where member-
ship degree is referred to as DNA; nonmembership
degree is referred to as RNA.

(𝑎
2
) Envelope.

(𝑎
3
) Strand: membership degree is referred to as single
strand; nonmembership degree is referred to as dou-
ble strand.

(𝑎
4
) The heredity of protein.

(𝑎
5
) Pathogenicity: membership degree is referred to as
pathogenicit; nonmembership degree is referred to as
opposite.

We can obtain one reduction RED(𝐾) = {𝑎
1
, 𝑎

3
, 𝑎

4
} and

thirty concepts of𝐾, of which detailed description are shown
in Table 4.

The results obtained above presented the relations
between these new viruses which may be useful to find
their ancestors and evolution mechanism for the viruses’
researchers. In a way, the approach to construction and
attribute reduction of IF concept lattice, presented in the
paper, can be used to prune the redundancies and process the
information.
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Table 4: The results of Example 40.

Concept Extension Intension Discernibility function of𝑋
𝑖

1 𝑥
1

{⟨0.9, 0.0⟩, ⟨0.8, 0.1⟩, ⟨0.2, 0.8⟩, ⟨0.2, 0.5⟩, ⟨0.9, 0.0⟩} 𝑎
1
∨ 𝑎

5

2 𝑥
2

{⟨0.8, 0.0⟩, ⟨0.8, 0.1⟩, ⟨0.8, 0.1⟩, ⟨0.3, 0.5⟩, ⟨0.0, 0.8⟩} (𝑎
1
∧ 𝑎

4
) ∨ 𝑎

3

3 𝑥
3

{⟨0.0, 0.8⟩, ⟨0.0, 0.6⟩, ⟨0.1, 0.9⟩, ⟨0.8, 0.2⟩, ⟨0.0, 0.8⟩} 𝑎
3
∧ 𝑎

4

4 𝑥
5

{⟨0.0, 0.0⟩, ⟨0.1, 0.0⟩, ⟨0.0, 0.0⟩, ⟨0.9, 0.1⟩, ⟨0.0, 0.8⟩} (𝑎
1
∧ 𝑎

2
) ∨ 𝑎

3
∨ 𝑎

4

5 𝑥
6

{⟨0.6, 0.4⟩, ⟨0.9, 0.0⟩, ⟨0.0, 0.9⟩, ⟨0.8, 0.2⟩, ⟨0.0, 0.8⟩} (𝑎
1
∧ 𝑎

4
) ∨ 𝑎

2

6 𝑥
1
, 𝑥

2
{⟨0.8, 0.0⟩, ⟨0.8, 0.1⟩, ⟨0.2, 0.8⟩, ⟨0.2, 0.5⟩, ⟨0.0, 0.8⟩} 𝑎

1
∨ (𝑎

3
∧ 𝑎

4
)

7 𝑥
1
, 𝑥

7
{⟨0.9, 0.1⟩, ⟨0.8, 0.1⟩, ⟨0.2, 0.8⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} 𝑎

1

8 𝑥
2
, 𝑥

3
{⟨0.0, 0.8⟩, ⟨0.0, 0.6⟩, ⟨0.1, 0.9⟩, ⟨0.3, 0.5⟩, ⟨0.0, 0.8⟩} 𝑎

3
∧ 𝑎

4

9 𝑥
2
, 𝑥

4
{⟨0.7, 0.2⟩, ⟨0.8, 0.1⟩, ⟨0.7, 0.1⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} 𝑎

3

10 𝑥
2
, 𝑥

5
{⟨0.0, 0.0⟩, ⟨0.1, 0.0⟩, ⟨0.0, 0.1⟩, ⟨0.3, 0.5⟩, ⟨0.0, 0.8⟩} (𝑎

1
∧ 𝑎

3
) ∨ (𝑎

1
∧ 𝑎

4
) ∨ (𝑎

3
∧ 𝑎

4
)

11 𝑥
2
, 𝑥

6
{⟨0.6, 0.4⟩, ⟨0.8, 0.1⟩, ⟨0.0, 0.9⟩, ⟨0.3, 0.5⟩, ⟨0.0, 0.8⟩} (𝑎

1
∧ 𝑎

4
) ∨ (𝑎

2
∧ 𝑎

4
)

12 𝑥
5
, 𝑥

6
{⟨0.0, 0.4⟩, ⟨0.1, 0.0⟩, ⟨0.0, 0.9⟩, ⟨0.8, 0.2⟩, ⟨0.0, 0.8⟩} (𝑎

1
∧ 𝑎

4
) ∨ 𝑎

2

13 𝑥
1
, 𝑥

2
, 𝑥

3
{⟨0.0, 0.8⟩, ⟨0.0, 0.6⟩, ⟨0.1, 0.9⟩, ⟨0.2, 0.5⟩, ⟨0.0, 0.8⟩} 𝑎

3
∧ 𝑎

4

14 𝑥
1
, 𝑥

2
, 𝑥

5
{⟨0.0, 0.0⟩, ⟨0.1, 0.1⟩, ⟨0.0, 0.8⟩, ⟨0.2, 0.5⟩, ⟨0.0, 0.8⟩} 𝑎

1
∨ (𝑎

3
, 𝑎

4
)

15 𝑥
1
, 𝑥

2
, 𝑥

6
{⟨0.6, 0.4⟩, ⟨0.8, 0.1⟩, ⟨0.0, 0.9⟩, ⟨0.2, 0.5⟩, ⟨0.0, 0.8⟩} (𝑎

1
∧ 𝑎

4
) ∨ (𝑎

2
∧ 𝑎

4
)

16 𝑥
1
, 𝑥

2
, 𝑥

7
{⟨0.8, 0.1⟩, ⟨0.8, 0.1⟩, ⟨0.2, 0.8⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} 𝑎

1

17 𝑥
2
, 𝑥

4
, 𝑥

5
{⟨0.0, 0.2⟩, ⟨0.1, 0.1⟩, ⟨0.0, 0.1⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} 𝑎

3

18 𝑥
2
, 𝑥

5
, 𝑥

6
{⟨0.0, 0.4⟩, ⟨0.1, 0.0⟩, ⟨0.0, 0.9⟩, ⟨0.3, 0.5⟩, ⟨0.0, 0.8⟩} (𝑎

1
∧ 𝑎

4
) ∨ (𝑎

2
∧ 𝑎

4
)

19 𝑥
3
, 𝑥

5
, 𝑥

6
{⟨0.0, 0.8⟩, ⟨0.0, 0.6⟩, ⟨0.0, 0.9⟩, ⟨0.8, 0.2⟩, ⟨0.0, 0.8⟩} 𝑎

4

20 𝑥
1
, 𝑥

2
, 𝑥

4
, 𝑥

7
{⟨0.7, 0.2⟩, ⟨0.8, 0.1⟩, ⟨0.2, 0.8⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} 𝑎

1
∨ 𝑎

3

21 𝑥
1
, 𝑥

2
, 𝑥

5
, 𝑥

6
{⟨0.0, 0.4⟩, ⟨0.1, 0.1⟩, ⟨0.0, 0.9⟩, ⟨0.2, 0.5⟩, ⟨0.0, 0.8⟩} (𝑎

1
∧ 𝑎

4
) ∨ (𝑎

2
∧ 𝑎

4
)

22 𝑥
1
, 𝑥

2
, 𝑥

5
, 𝑥

7
{⟨0.0, 0.1⟩, ⟨0.1, 0.1⟩, ⟨0.0, 0.8⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} 𝑎

1

23 𝑥
2
, 𝑥

3
, 𝑥

5
, 𝑥

6
{⟨0.0, 0.8⟩, ⟨0.0, 0.6⟩, ⟨0.0, 0.9⟩, ⟨0.3, 0.5⟩, ⟨0.0, 0.8⟩} 𝑎

4

24 𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑥

4
, 𝑥

7
{⟨0.0, 0.8⟩, ⟨0.0, 0.6⟩, ⟨0.1, 0.9⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} 𝑎

3

25 𝑥
1
, 𝑥

2
, 𝑥

3
, 𝑥

5
, 𝑥

6
{⟨0.0, 0.8⟩, ⟨0.0, 0.6⟩, ⟨0.0, 0.9⟩, ⟨0.2, 0.5⟩, ⟨0.0, 0.8⟩} 𝑎

4

26 𝑥
1
, 𝑥

2
, 𝑥

4
, 𝑥

5
, 𝑥

7
{⟨0.0, 0.2⟩, ⟨0.1, 0.1⟩, ⟨0.0, 0.8⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} 𝑎

1
∨ 𝑎

3

27 𝑥
1
, 𝑥

2
, 𝑥

4
, 𝑥

6
, 𝑥

7
{⟨0.6, 0.4⟩, ⟨0.8, 0.1⟩, ⟨0.0, 0.9⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} 𝑎

1
∨ 𝑎

2

28 𝑥
1
, 𝑥

2
, 𝑥

4
, 𝑥

5
, 𝑥

6
, 𝑥

7
{⟨0.0, 0.4⟩, ⟨0.1, 0.1⟩, ⟨0.0, 0.9⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} 𝑎

1
∨ 𝑎

2

29 𝑈 {⟨0.0, 0.8⟩, ⟨0.0, 0.6⟩, ⟨0.0, 0.9⟩, ⟨0.2, 0.6⟩, ⟨0.0, 0.8⟩} —
30 0 {⟨1.0, 0.0⟩, ⟨1.0, 0.0⟩, ⟨1.0, 0.0⟩, ⟨1.0, 0.0⟩, ⟨1.0, 0.0⟩} ∨

7

𝑖=1
𝑎
𝑖

RED(𝐾) {𝑎
1
, 𝑎

3
, 𝑎

4
}

6. Conclusion

This paper introduced the intuitionistic fuzzy set into the
concept lattice theory firstly. Then, we offered the related
definitions and propositions of attribute reduction in concept
lattices which were examined by some examples. What is
more, the discernibility matrix and discernibility function in
concept lattice were defined which presented an approach
to attribute reduction of concept lattice based on the intu-
itionistic fuzzy context. The attribute reduction of IF concept
latticemade the representation of implicit knowledge simpler
in IF formal context. In fact, an approach to reduction was
introduced based on the discernibility matrix of IF concept
lattice. The results of this paper extended the theory of
concept lattice, although there were some problems in the
applications.
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