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This paper considers the existence of solutions for two boundary value problems for fractional 𝑝-Laplacian equation. Under certain
nonlinear growth conditions of the nonlinearity, two new existence results are obtained by using Schaefer’s fixed point theorem. As
an application, an example to illustrate our results is given.

1. Introduction

Fractional calculus is a generalization of ordinary differen-
tiation and integration on an arbitrary order that can be
noninteger. This subject, as old as the problem of ordinary
differential calculus, can go back to the times when Leibniz
and Newton invented differential calculus. As is known to
all, the problem for fractional derivative was originally raised
by Leibniz in a letter, dated September 30, 1695. A fractional
derivative arises from many physical processes, such as a
non-Markovian diffusion process with memory [1], charge
transport in amorphous semiconductors [2], and propaga-
tions of mechanical waves in viscoelastic media [3], and so
forth. Moreover, phenomena in electromagnetics, acoustics,
viscoelasticity, electrochemistry, andmaterial science are also
described by differential equations of fractional order [4–
8]. For instance, Pereira et al. [9] considered the following
fractional Van der Pol equation:

𝐷
𝜆
𝑥 (𝑡) + 𝛼 (𝑥

2
(𝑡) − 1) 𝑥

󸀠
(𝑡) + 𝑥 (𝑡) = 0, 1 < 𝜆 < 2, (1)

where 𝐷
𝜆 is the fractional derivative of order 𝜆 and 𝛼 is

a control parameter that reflects the degree of nonlinearity
of the system. Equation (1) is obtained by substituting the
capacitance by a fractance in the nonlinear RLC circuit
model.

Recently, fractional differential equations have been of
great interest due to the intensive development of the theory
of fractional calculus itself and its applications. For example,

for fractional initial value problems, the existence and multi-
plicity of solutions (or positive solutions) were discussed in
[10–13]. On the other hand, for fractional boundary value
problems (FBVPs), Agarwal et al. [14] considered a two-
point boundary value problem at nonresonance, and Bai [15]
considered a 𝑚-point boundary value problem at resonance.
For more papers on FBVPs, see [16–21] and the references
therein.

The turbulent flow in a porous medium is a fundamental
mechanics problem. For studying this type of problems,
Leibenson [22] introduced the 𝑝-Laplacian equation as fol-
lows:

(𝜙𝑝 (𝑥
󸀠
(𝑡)))
󸀠

= 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
󸀠
(𝑡)) , (2)

where 𝜙𝑝(𝑠) = |𝑠|
𝑝−2

𝑠, 𝑝 > 1. Obviously, 𝜙𝑝 is invertible and
its inverse operator is 𝜙𝑞, where 𝑞 > 1 is a constant such that
1/𝑝 + 1/𝑞 = 1.

In the past few decades, many important results relative
to (2) with certain boundary value conditions have been
obtained. We refer the reader to [23–27] and the references
cited therein. For boundary value problems of fractional
𝑝-Laplacian equations, Chen and Liu [28] considered an
antiperiodic boundary value problem with the following
form:

𝐷
𝛽

0+
𝜙𝑝 (𝐷

𝛼

0+
𝑥 (𝑡)) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = −𝑥 (1) , 𝐷
𝛼

0+
𝑥 (0) = −𝐷

𝛼

0+
𝑥 (1) ,

(3)
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where 0 < 𝛼, 𝛽 ≤ 1, 1 < 𝛼 + 𝛽 ≤ 2, and 𝐷
𝛼

0+

is Caputo fractional derivative. Under certain nonlinear
growth conditions of the nonlinearity, an existence result was
obtained by using degree theory. In addition, Yao et al. [29]
studied a three-point boundary value problem given by

−𝐷
𝛽

𝑡
(𝜙𝑝 (𝐷

𝛼

𝑡
𝑥)) (𝑡) = ℎ (𝑡) 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥 (0) = 0, 𝐷
𝛾

𝑡
𝑥 (1) = 𝑎𝐷

𝛾

𝑡
𝑥 (𝜉) , 𝐷

𝛼

𝑡
𝑥 (0) = 0,

(4)

where 𝐷𝛼
𝑡
is the standard Riemann-Liouville derivative with

1 < 𝛼 ≤ 2, 0 < 𝛽, 𝛾 ≤ 1, 0 ≤ 𝛼 − 𝛾 − 1, 𝜉 ∈ (0, 1), and
the constant 𝑎 is a positive number satisfying 𝑎𝜉𝛼−𝛾−2 ≤ 1−𝛾.
Themonotone iterative techniquewas applied to establish the
existence results on multiple positive solutions in [29].

Motivated by the works mentioned previously, in this
paper, we investigate the existence of solutions for fractional
𝑝-Laplacian equation of the form

𝐷
𝛽

0+
𝜙𝑝 (𝐷

𝛼

0+
𝑥 (𝑡)) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝐷

𝛼

0+
𝑥 (𝑡)) , 𝑡 ∈ [0, 1] (5)

subject to either boundary value conditions

𝑥 (0) = 𝐷
𝛼

0+
𝑥 (1) = 0 (6)

or

𝑥 (0) = ∫

1

0

𝐷
𝛼

0+
𝑥 (𝑡) 𝑑𝑡 = 0, (7)

where 0 < 𝛼, 𝛽 ≤ 1, 1 < 𝛼 + 𝛽 ≤ 2,𝐷𝛼
0+
is a Caputo fractional

derivative, and 𝑓 : [0, 1] ×R2 → R is continuous.
Note that the nonlinear operator 𝐷𝛽

0+
𝜙𝑝(𝐷
𝛼

0+
) reduces to

the linear operator𝐷𝛽
0+
𝐷
𝛼

0+
when𝑝 = 2 and the additive index

law

𝐷
𝛽

0+
𝐷
𝛼

0+
𝑢 (𝑡) = 𝐷

𝛼+𝛽

0+
𝑢 (𝑡) (8)

holds under some reasonable constraints on the function 𝑢(𝑡)
[30].

The rest of this paper is organized as follows. Section 2
contains some necessary notations, definitions, and lemmas.
In Section 3, based on Schaefer’s fixed point theorem, we
establish two theorems on existence of solutions for FBVP
(5) and (6) (Theorem 7) and FBVP (5) and (7) (Theorem 8).
Finally, in Section 4, an explicit example is given to illustrate
the main results. Our results are different from those of
bibliographies listed in the previous texts.

2. Preliminaries

For the convenience of the reader, we present here some
necessary basic knowledge and definitions about fractional
calculus theory, which can be found, for instance, in [31, 32].

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 > 0 of a function 𝑢 : (0, +∞) → R is given
by

𝐼
𝛼

0+
𝑢 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑢 (𝑠) 𝑑𝑠, (9)

provided that the right side integral is pointwise defined on
(0, +∞).

Definition 2. The Caputo fractional derivative of order 𝛼 > 0

of a continuous function 𝑢 : (0, +∞) → R is given by

𝐷
𝛼

0+
𝑢 (𝑡) = 𝐼

𝑛−𝛼

0+

𝑑
𝑛
𝑢 (𝑡)

𝑑𝑡𝑛

=
1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑢
(𝑛)
(𝑠) 𝑑𝑠,

(10)

where 𝑛 is the smallest integer greater than or equal to 𝛼,
provided that the right side integral is pointwise defined on
(0, +∞).

Lemma3 (see [33]). Let𝛼 > 0. Assume that𝑢,𝐷𝛼
0+
𝑢 ∈ 𝐿(0, 1).

Then the following equality holds:

𝐼
𝛼

0+
𝐷
𝛼

0+
𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐0 + 𝑐1𝑡 + ⋅ ⋅ ⋅ + 𝑐𝑛−1𝑡

𝑛−1
, (11)

where 𝑐𝑖 ∈ R, 𝑖 = 0, 1, . . . , 𝑛 − 1; here 𝑛 is the smallest integer
greater than or equal to 𝛼.

Lemma 4 (see [34]). For fixed 𝑙 ∈ 𝐶[0, 1], let one define

𝐺𝑙 (𝑎) = ∫

1

0

𝜙𝑞 (𝑙 (𝑡) + 𝑎) 𝑑𝑡. (12)

Then the equation 𝐺𝑙(𝑎) = 0 has a unique solution 𝑎(𝑙).

In this paper, we take 𝑌 = 𝐶[0, 1] with the norm ‖𝑦‖
∞
=

max𝑡∈[0,1]|𝑦(𝑡)| and 𝑋 = {𝑥 | 𝑥,𝐷
𝛼

0+
𝑥 ∈ 𝑌} with the

norm ‖𝑥‖𝑋 = max{‖𝑥‖∞, ‖𝐷
𝛼

0+
𝑥‖
∞
}. By means of the linear

functional analysis theory, we can prove that 𝑋 is a Banach
space.

3. Existence Results

In this section, two theorems on existence of solutions for
FBVP (5) and (6) and FBVP (5) and (7) will be given under
nonlinear growth restriction of 𝑓.

As a consequence of Lemma 3, we have the following
results that are useful in what follows.

Lemma 5. Given ℎ ∈ 𝑌, the unique solution of

𝐷
𝛽

0+
𝜙𝑝 (𝐷

𝛼

0+
𝑥 (𝑡)) = ℎ (𝑡) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = 𝐷
𝛼

0+
𝑥 (1) = 0

(13)

is

𝑥 (𝑡) = 𝐼
𝛼

0+
𝜙𝑞 (𝐼
𝛽

0+
ℎ (𝑡) + 𝐴ℎ (𝑡))

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜙𝑞 (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

ℎ (𝜏) 𝑑𝜏

+𝐴ℎ (𝑠) ) 𝑑𝑠,

(14)
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where

𝐴ℎ (𝑡) = −𝐼
𝛽

0+
ℎ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

= −
1

Γ (𝛽)
∫

1

0

(1 − 𝑠)
𝛽−1

ℎ (𝑠) 𝑑𝑠.

(15)

Proof. Assume that 𝑥(𝑡) satisfies the equation of FBVP (13);
then Lemma 3 implies that

𝜙𝑝 (𝐷
𝛼

0+
𝑥 (𝑡)) = 𝐼

𝛽

0+
ℎ (𝑡) + 𝑐0, 𝑐0 ∈ R. (16)

From the boundary value condition𝐷𝛼
0+
𝑥(1) = 0, one has

𝑐0 = −𝐼
𝛽

0+
ℎ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1
= 𝐴ℎ (𝑡) . (17)

Thus, we have

𝑥 (𝑡) = 𝐼
𝛼

0+
𝜙𝑞 (𝐼
𝛽

0+
ℎ (𝑡) + 𝐴ℎ (𝑡)) + 𝑐1, 𝑐1 ∈ R. (18)

By condition 𝑥(0) = 0, we get 𝑐1 = 0. The proof is complete.

Define the operator 𝐹 : 𝑋 → 𝑋 by

𝐹𝑥 (𝑡)

= 𝐼
𝛼

0+
𝜙𝑞 (𝐼
𝛽

0+
𝑁𝑥 (𝑡) + 𝐴𝑁𝑥 (𝑡))

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× 𝜙𝑞 (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

× 𝑓 (𝜏, 𝑥 (𝜏) , 𝐷
𝛼

0+
𝑥 (𝜏)) 𝑑𝜏

−
1

Γ (𝛽)
∫

1

0

(1 − 𝜏)
𝛽−1

×𝑓 (𝜏, 𝑥 (𝜏) , 𝐷
𝛼

0+
𝑥 (𝜏)) 𝑑𝜏)𝑑𝑠,

∀𝑡 ∈ [0, 1] ,

(19)

where𝑁 : 𝑋 → 𝑌 is the Nemytskii operator defined by

𝑁𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝐷
𝛼

0+
𝑥 (𝑡)) , ∀𝑡 ∈ [0, 1] . (20)

Clearly, the fixed points of the operator 𝐹 are solutions of
FBVP (5) and (6).

Lemma 6. Given ℎ ∈ 𝑌, the unique solution of

𝐷
𝛽

0+
𝜙𝑝 (𝐷

𝛼

0+
𝑥 (𝑡)) = ℎ (𝑡) , 𝑡 ∈ [0, 1] ,

𝑥 (0) = ∫

1

0

𝐷
𝛼

0+
𝑥 (𝑡) 𝑑𝑡 = 0

(21)

is

𝑥 (𝑡) = 𝐼
𝛼

0+
𝜙𝑞 (𝐼
𝛽

0+
ℎ (𝑡) + 𝐵ℎ (𝑡))

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝜙𝑞 (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

ℎ (𝜏) 𝑑𝜏

+𝐵ℎ (𝑠) ) 𝑑𝑠,

(22)

where

𝐵ℎ (𝑡) = −𝐼
𝛽

0+
ℎ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝜂(ℎ)

= −
1

Γ (𝛽)
∫

𝜂(ℎ)

0

(𝜂 (ℎ) − 𝑠)
𝛽−1

ℎ (𝑠) 𝑑𝑠,

(23)

here 𝜂(ℎ) ∈ (0, 1) is a constant dependent on ℎ(𝑡).

Proof. Assume that 𝑥(𝑡) satisfies the equation of FBVP (21);
then Lemma 3 implies that

𝐷
𝛼

0+
𝑥 (𝑡) = 𝜙𝑞 (𝐼

𝛽

0+
ℎ (𝑡) + 𝑐0) , 𝑐0 ∈ R. (24)

From condition ∫1
0
𝐷
𝛼

0+
𝑥(𝑡)𝑑𝑡 = 0, one has

∫

1

0

𝜙𝑞 (𝐼
𝛽

0+
ℎ (𝑡) + 𝑐0) 𝑑𝑡 = 0. (25)

Based on Lemma 4, we know that (25) has a unique solution
𝑐0(ℎ). Moreover, by the integral mean value theorem, there
exists a constant 𝜂(ℎ) ∈ (0, 1) such that 𝜙𝑞(𝐼

𝛽

0+
ℎ(𝑡) +

𝑐0(ℎ))|𝑡=𝜂(ℎ) = 0, which implies that (𝐼𝛽
0+
ℎ(𝑡)+𝑐0(ℎ))|𝑡=𝜂(ℎ) = 0.

Thus, we have

𝑐0 (ℎ) = −𝐼
𝛽

0+
ℎ (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝜂(ℎ)
= 𝐵ℎ (𝑡) . (26)

Hence

𝑥 (𝑡) = 𝐼
𝛼

0+
𝜙𝑞 (𝐼
𝛽

0+
ℎ (𝑡) + 𝐵ℎ (𝑡)) + 𝑐1, 𝑐1 ∈ R. (27)

Fromcondition𝑥(0) = 0, we get 𝑐1 = 0.Theproof is complete.
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Define the operator 𝑃 : 𝑋 → 𝑋 by

𝑃𝑥 (𝑡)

= 𝐼
𝛼

0+
𝜙𝑞 (𝐼
𝛽

0+
𝑁𝑥 (𝑡) + 𝐵𝑁𝑥 (𝑡))

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× 𝜙𝑞 (
1

Γ (𝛽)
∫

𝑠

0

(𝑠 − 𝜏)
𝛽−1

× 𝑓 (𝜏, 𝑥 (𝜏) , 𝐷
𝛼

0+
𝑥 (𝜏)) 𝑑𝜏

−
1

Γ (𝛽)
∫

𝜂(𝑥)

0

(𝜂 (𝑥) − 𝜏)
𝛽−1

×𝑓 (𝜏, 𝑥 (𝜏) , 𝐷
𝛼

0+
𝑥 (𝜏)) 𝑑𝜏)𝑑𝑠,

∀𝑡 ∈ [0, 1] ,

(28)

where 𝜂(𝑥) ∈ (0, 1) and 𝑁 is the Nemytskii operator
defined by (20). Clearly, the fixed points of the operator 𝑃 are
solutions of FBVP (5) and (7).

Our first result, based on Schaefer’s fixed point theorem
and Lemma 5, is stated as follows.

Theorem 7. Let 𝑓 : [0, 1] × R2 → R be continuous. Assume
that

(𝐻) there exist nonnegative functions 𝑎, 𝑏, 𝑐 ∈ 𝑌 such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢, V)
󵄨󵄨󵄨󵄨 ≤ 𝑎 (𝑡) + 𝑏 (𝑡) |𝑢|

𝑝−1

+ 𝑐 (𝑡) |V|𝑝−1, ∀𝑡 ∈ [0, 1] , (𝑢, V) ∈ R
2
.

(29)

Then FBVP (5) and (6) has at least one solution, provided that

2

Γ (𝛽 + 1)
(

‖𝑏‖∞

(Γ (𝛼 + 1))
𝑝−1

+ ‖𝑐‖∞) < 1. (30)

Proof. We will use Schaefer’s fixed point theorem to prove
that 𝐹 has a fixed point. The proof will be given in the
following two steps.

Step 1. 𝐹 : 𝑋 → 𝑋 is completely continuous.
LetΩ ⊂ 𝑋 be an open bounded subset. By the continuity

of 𝑓, we can get that 𝐹 is continuous and 𝐹(Ω) is bounded.
Moreover, there exists a constant 𝑇 > 0 such that |𝐼𝛽

0+
𝑁𝑥 +

𝐴𝑁𝑥| ≤ 𝑇, for all 𝑥 ∈ Ω, 𝑡 ∈ [0, 1]. Thus, in view of the
Arzelà-Ascoli theorem, we need only to prove that 𝐹(Ω) ⊂ 𝑋

is equicontinuous.

For 0 ≤ 𝑡1 < 𝑡2 ≤ 1 and 𝑥 ∈ Ω, we have

󵄨󵄨󵄨󵄨𝐹𝑥 (𝑡2) − 𝐹𝑥 (𝑡1)
󵄨󵄨󵄨󵄨

=
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡
2

0

(𝑡2 − 𝑠)
𝛼−1

𝜙𝑞 (𝐼
𝛽

0+
𝑁𝑥 (𝑠) + 𝐴𝑁𝑥 (𝑠)) 𝑑𝑠

−∫

𝑡
1

0

(𝑡1 − 𝑠)
𝛼−1

𝜙𝑞 (𝐼
𝛽

0+
𝑁𝑥 (𝑠) + 𝐴𝑁𝑥 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑇
𝑞−1

Γ (𝛼)
{∫

𝑡
1

0

[(𝑡1 − 𝑠)
𝛼−1

− (𝑡2 − 𝑠)
𝛼−1

] 𝑑𝑠

+∫

𝑡
2

𝑡
1

(𝑡2 − 𝑠)
𝛼−1

𝑑𝑠}

=
𝑇
𝑞−1

Γ (𝛼 + 1)
[𝑡
𝛼

1
− 𝑡
𝛼

2
+ 2(𝑡2 − 𝑡1)

𝛼
]

≤
𝑇
𝑞−1

Γ (𝛼 + 1)
[𝑡
𝛼

2
− 𝑡
𝛼

1
+ 2(𝑡2 − 𝑡1)

𝛼
] .

(31)

Since 𝑡
𝛼 is uniformly continuous on [0, 1], we can obtain

that 𝐹(Ω) ⊂ 𝑌 is equicontinuous. A similar proof can show
that (𝐼𝛽

0+
𝑁 + 𝐴𝑁)(Ω) ⊂ 𝑌 is equicontinuous. This, together

with the uniform continuity of 𝜙𝑞(𝑠) on [−𝑇, 𝑇], yields that
𝐷
𝛼

0+
𝐹(Ω)(= 𝜙𝑞(𝐼

𝛽

0+
𝑁 + 𝐴𝑁)(Ω)) ⊂ 𝑌 is also equicontinuous.

Step 2 (priori bounds). Set

Ω = {𝑥 ∈ 𝑋 | 𝑥 = 𝜆
𝑞−1

𝐹𝑥, 𝜆 ∈ (0, 1)} . (32)

Now it remains to show that the setΩ is bounded.
From Lemma 3 and boundary value condition 𝑥(0) = 0,

one has

𝑥 (𝑡) = 𝐼
𝛼

0+
𝐷
𝛼

0+
𝑥 (𝑡)

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐷
𝛼

0+
𝑥 (𝑠) 𝑑𝑠.

(33)

Thus, we get

|𝑥 (𝑡)| ≤
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 󵄨󵄨󵄨󵄨𝐷

𝛼

0+
𝑥 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

≤
1

Γ (𝛼)

󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩∞ ⋅

1

𝛼
𝑡
𝛼

≤
1

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩∞, ∀𝑡 ∈ [0, 1] .

(34)

That is,

‖𝑥‖∞ ≤
1

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩∞. (35)
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For 𝑥 ∈ Ω, we have

𝜙𝑝 (𝐷
𝛼

0+
𝑥 (𝑡)) = 𝜆 (𝐼

𝛽

0+
𝑁𝑥 (𝑡) + 𝐴𝑁𝑥 (𝑡))

=
𝜆

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝐷
𝛼

0+
𝑥 (𝑠)) 𝑑𝑠

−
𝜆

Γ (𝛽)
∫

1

0

(1 − 𝑠)
𝛽−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝐷
𝛼

0+
𝑥 (𝑠)) 𝑑𝑠.

(36)

So, from (𝐻), we obtain that
󵄨󵄨󵄨󵄨󵄨
𝜙𝑝 (𝐷

𝛼

0+
𝑥 (𝑡))

󵄨󵄨󵄨󵄨󵄨

≤
2

Γ (𝛽)
∫

1

0

(1 − 𝑠)
𝛽−1 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠) , 𝐷

𝛼

0+
𝑥 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

≤
2

Γ (𝛽)
∫

1

0

(1 − 𝑠)
𝛽−1

× (𝑎 (𝑠) + 𝑏 (𝑠) |𝑥 (𝑠)|
𝑝−1

+ 𝑐 (𝑠)
󵄨󵄨󵄨󵄨𝐷
𝛼

0+
𝑥 (𝑠)

󵄨󵄨󵄨󵄨
𝑝−1

) 𝑑𝑠

≤
2

Γ (𝛽)
(‖𝑎‖∞ + ‖𝑏‖∞‖𝑥‖

𝑝−1

∞
+ ‖𝑐‖∞

󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩
𝑝−1

∞
) ⋅

1

𝛽

=
2

Γ (𝛽 + 1)
(‖𝑎‖∞ + ‖𝑏‖∞‖𝑥‖

𝑝−1

∞
+ ‖𝑐‖∞

󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩
𝑝−1

∞
) ,

∀𝑡 ∈ [0, 1] ,

(37)

which, together with |𝜙𝑝(𝐷
𝛼

0+
𝑥(𝑡))| = |𝐷

𝛼

0+
𝑥(𝑡)|
𝑝−1 and (35),

yields that

󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩
𝑝−1

∞
≤

2

Γ (𝛽 + 1)

× [‖𝑎‖∞ +
‖𝑏‖∞

(Γ (𝛼 + 1))
𝑝−1

󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩
𝑝−1

∞

+‖𝑐‖∞
󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩
𝑝−1

∞
] .

(38)

In view of (30), from (38), we can see that there exists a
constant𝑀1 > 0 such that

󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩∞ ≤ 𝑀1. (39)

Thus, from (35), we get

‖𝑥‖∞ ≤
𝑀1

Γ (𝛼 + 1)
:= 𝑀2. (40)

Combining (39) with (40), we have

‖𝑥‖𝑋 = max {‖𝑥‖∞,
󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩∞} ≤ max {𝑀1,𝑀2} . (41)

As a consequence of Schaefer’s fixed point theorem, we
deduce that 𝐹 has a fixed point which is the solution of FBVP
(5) and (6). The proof is complete.

Our second result, based on Schaefer’s fixed point theo-
rem and Lemma 6, is stated as follows.

Theorem 8. Let 𝑓 : [0, 1] × R2 → R be continuous. Suppose
that (𝐻) holds; then FBVP (5) and (7) has at least one solution,
provided that (30) is satisfied.

Proof. The proof work is similar to the proof of Theorem 7,
so we omit the details.

4. An Example

In this section, we will give an example to illustrate our main
results.

Example 1. Consider the following fractional 𝑝-Laplacian
equation:

𝐷
3/4

0+
𝜙3 (𝐷

1/2

0+
𝑥 (𝑡))

= −
49

6
+
1

6
𝑥
2
(𝑡) + 𝑡𝑒

−|𝐷
1/2

0
+
𝑥(𝑡)|

, 𝑡 ∈ [0, 1] .

(42)

Corresponding to (5), we get that 𝑝 = 3, 𝛼 = 1/2, 𝛽 = 3/4,
and

𝑓 (𝑡, 𝑢, V) = −
49

6
+
1

6
𝑢
2
+ 𝑡𝑒
−|V|

. (43)

Choose 𝑎(𝑡) = 10, 𝑏(𝑡) = 1/6, and 𝑐(𝑡) = 0. By a simple
calculation, we can obtain that ‖𝑏‖∞ = 1/6, ‖𝑐‖∞ = 0 and

2

Γ (3/4 + 1)
(

1/6

(Γ (1/2 + 1))
2
+ 0) < 1. (44)

Obviously, (42) subject to boundary value conditions (6) (or
(7)) satisfies all assumptions of Theorem 7 (or Theorem 8).
Hence, FBVP (42) and (6) (or FBVP (42) and (7)) has at least
one solution.
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