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This paper is devoted to the study of the stability issue of the supercritical dissipative surface quasi-geostrophic equation with
nondecay low-regular external force. Supposing that the weak solution 𝜃(𝑥, 𝑡) of the surface quasi-geostrophic equation with the
force 𝑓 ∈ 𝐿

2
(0, 𝑇;𝐻

−𝛼/2
(R
2
)) satisfies the growth condition in the critical BMO space ∇𝜃 ∈ 𝐿1(0,∞;BMO), it is proved that every

perturbedweak solution 𝜃(𝑡) converges asymptotically to solution 𝜃(𝑡) of the original surface quasi-geostrophic equation.The initial
and external forcing perturbations are allowed to be large.

1. Introduction and Main Results

Mathematical models in fluid dynamics play an important
role in theoretical and computational studies in meteorolog-
ical and oceanographic sciences and petroleum industries,
and so forth. In this paper, we consider a simple mathemat-
ical model of large scalar ocean and atmosphere dynamics
(see Pedlosky [1])—the dissipative surface quasi-geostrophic
equation which is first introduced by Constantin et al. [2]:

𝜕𝜃

𝜕𝑡
+ 𝑢 ⋅ ∇𝜃 + 𝜅Λ

𝛼
𝜃 = 𝑓,

(𝑥, 𝑡) ∈ R
2
× (0,∞) ,

𝜃 (𝑥, 0) = 𝜃
0
, 𝑥 ∈ R

2
.

(1)

Here 𝜅 > 0 is a dissipative coefficient and Λ is the Riesz
potential operator defined by the fractional power of −Δ:

Λ = (−Δ)
1/2
, Λ̂𝛼𝑔 =

̂
(−Δ)
𝛼/2
𝑔 =

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝛼

𝑔. (2)

𝜃(𝑥, 𝑡) is an unknown scalar function representing potential
temperature. 𝑢(𝑥, 𝑡) is the velocity field determined by

𝑢 = −∇
⊥
(−Δ)
−1/2

𝜃 = −R
⊥
𝜃 = (R

2
𝜃, −R

1
𝜃) , (3)

where R
𝑗
, 𝑗 = 1, 2 is the 2D Riesz transform, 𝜃

0
(𝑥) is the

initial data, and 𝑓(𝑥, 𝑡) is the nondecay external force.

The surface quasi-geostrophic equation shares many fea-
tures with fundamental fluid motion equations. When 𝜅 = 0,
it is comparable to the formation of sharp fronts between
masses of hot and cold air (see Majda and Tabak [3]). When
𝛼 = 0 (1) can be looked to as a nonviscous wind driven
circulation equation (see Pedlosky [1]).What ismore, (1) with
𝛼 = 1 shares many similar features with three-dimensional
incompressible Navier-Stokes equations [4]. Thus 𝛼 = 1 is
therefore referred to as the critical case, while the cases 0 <

𝛼 < 1 and 1 < 𝛼 ≤ 2 are supercritical and subcritical,
respectively.

Due to the importance in mathematics, there is much
attention on the well-posedness and large time behaviors of
the surface quasi-geostrophic equation. When 1 < 𝛼 ≤ 2,
Constantin and Wu [5] proved that this equation possesses a
unique and global smooth solution for a sufficiently smooth
initial function. When 𝛼 = 1, Kiselev et al. [6] showed the
existence of global smooth solutions for smooth periodic
initial data. At the same time, Caffarelli and Vasseur [7] also
constructed a global smooth solution with 𝜃

0
∈ 𝐿
2
(R𝑛). In

the supercritical case 0 < 𝛼 < 1, however, the question of
the global regularity is still generally not clear although
many efforts have been made on the small regular solution
or regularity criteria (see [8–16]). One may also refer to
some interesting results of the generalized quasi-geostrophic
equations (see [17–21]).
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However, it is desirable to understand the asymptotic
stability issue of the supercritical dissipative surface quasi-
geostrophic equation. More precisely, we consider the per-
turbed quasi-geostrophic equation:

𝜕𝜃

𝜕𝑡
+ 𝑢 ⋅ ∇𝜃 + 𝜅Λ

𝛼
𝜃 = 𝑓 + 𝑔,

(𝑥, 𝑡) ∈ R
2
× (0,∞) ,

𝜃 (𝑥, 0) = 𝜃
0
= 𝜃
0
+ 𝑤
0
, 𝑥 ∈ R

2
,

(4)

where 𝑤
0
(𝑥) and 𝑔(𝑥, 𝑡) are the initial data and external

forcing perturbations. The stability problem of (4) has been
studied by many authors and a lot of good results have been
obtained. To go directly to the main points of the present
paper, in what follows we only review some former results
which are closely related to our main results. First, when
the surface quasi-geostrophic equations (1) has zero external
force or time-decay external force, some interesting time
decay results [22–25] have been obtained which essentially
show the asymptotic stability for the trivial solution 𝜃(𝑥, 𝑡) =
0. For the stability issue of the nontrivial solutions, Chae and
Lee [26] studied the asymptotic stability of critical quasi-
geostrophic equation in Besov space under the small initial
perturbation. The nonlinear stability and instability analysis
of the subcritical quasi-geostrophic equation is recently
investigated by Chen and Price [27]. Dong and Chen [28]
recently considered the asymptotic stability problem in the
Serrin-type critical Lebesgue space 𝐿𝑝(R2) (𝑝 < ∞) under
the 𝐿

2
(R2) external force. It is natural and interesting to

further investigate the asymptotic stability for the nontrivial
global solutions in the larger critical spaces, especially in the
margin case 𝑝 = ∞.

The main purpose of this study is to investigate the
asymptotic stability for the global solution of the supercritical
surface quasi-geostrophic equation in the critical BMO space
with nondecay low-regular external force. To state our main
results, we first give the definition of the weak solution of the
dissipative surface quasi-geostrophic equation (1).

Definition 1. Letting 𝜃
0
∈ 𝐿
2
(R2), 𝑓 ∈ 𝐿

2
(0, 𝑇;𝐻

−𝛼/2
(R2)).

A measurable function 𝜃(𝑥, 𝑡) is said to be a global weak
solution of the surface quasi-geostrophic equation (1) if the
following conditions hold true.

(i) 𝜃(𝑥, 𝑡) ∈ 𝐿∞(0, 𝑇; 𝐿2(R2)) ∩ 𝐿2(0, 𝑇;𝐻𝛼/2(R2)) for all
𝑇 > 0.

(ii) 𝜃(𝑥, 𝑡) is continuous on [0,∞) in the weak topology
of 𝐿2(R2) and (𝜃(𝑡), 𝜙) → (𝜃

0
, 𝜙) as 𝑡 → 0 for all

𝜙 ∈ 𝐿
2
(R2).

(iii) For 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞, and any test function 𝜑 ∈

𝐶
1
([𝑠, 𝑡];𝐻

𝛼/2
(R2)),

(𝜃 (𝑡) , 𝜑 (𝑡))

+ ∫

𝑡

𝑠

{− (𝜃, 𝜕
𝜏
𝜑) + 𝜅 (Λ

𝛼/2
𝜃, Λ
𝛼/2
𝜑) − (𝜃, 𝑢 ⋅ ∇𝜑)} 𝑑𝜏

= (𝜃 (𝑠) , 𝜑 (𝑠)) + ∫

𝑡

𝑠

(𝑓, 𝜑) 𝑑𝜏,

(5)

where (⋅, ⋅) denotes the inner product of the space
𝐿
2
(R2).

(iv) Energy-type inequality

‖𝜃 (𝑡)‖
2

𝐿
2 + 2𝜅∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝜃 (𝜏)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

≤ ‖𝜃 (𝑠)‖
2

𝐿
2 + 2∫

𝑡

𝑠

(𝑓, 𝜃) 𝑑𝜏 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞.

(6)

Now our results read as the following.

Theorem 2. Letting 0 < 𝛼 < 1, 𝜃
0
∈ 𝐿
2
(R2). Assume 𝜃(𝑥, 𝑡)

is a global weak solution of the supercritical dissipative surface
quasi-geostrophic equation (1) with the nondecay low-regular
external force 𝑓 ∈ 𝐿

2
(0, 𝑇;𝐻

−𝛼/2
(R2)) and satisfies the critical

growth condition in BMO space:

∇𝜃 ∈ 𝐿
1
(0,∞;BMO) . (7)

Then, for any perturbations 𝑤
0
∈ 𝐿
2
(R2) and 𝑔 ∈ 𝐿

2
(0,∞;

𝐻
−𝛼/2

(R2)), every weak solution 𝜃(𝑥, 𝑡) of the perturbed quasi-
geostrophic equation (4) converges asymptotically to solution
𝜃(𝑡) as

󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡) − 𝜃 (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐿2
󳨀→ 0 (𝑡 󳨀→ ∞) . (8)

Remark 3. The critical space-time mixed space (7) in
Theorem 2 is scaling invariant under the scaling transfor-
mation 𝜃

𝜆
(𝑥, 𝑡) = 𝜆

𝛼−1
𝜃(𝜆𝑥, 𝜆

𝛼
𝑡). Moreover, according to

the result of Dong and Chen [29], the weak solution 𝜃(𝑥, 𝑡)

satisfying (7) is actually regular. Furthermore, our results also
show that theweak solutions 𝜃(𝑥, 𝑡) of the perturbed equation
(4) do not need to satisfy the energy-type inequality (6) and
then they do not have to be regular.

Remark 4. Onone hand, comparedwith the stability result by
Chae and Lee [26], there is no any smallness restriction on the
perturbation functions𝑤

0
and 𝑔 inTheorem 2.That is to say,

the initial and external forcing perturbations from 𝜃(𝑡) are
allowed to be large.On the other hand, our result here extends
the previous result [28] to the margin case 𝑝 = ∞ due to the
embedding relation 𝐿

∞
⫋ BMO. Moreover, in comparison

with [28], we require less regularity for the external force.

Remark 5. Although Theorem 2 shows that the decay prop-
erty of difference between the global solution and the per-
turbed solution ‖𝜃(𝑡) − 𝜃(𝑡)‖

𝐿
2 → 0, however, it is different

from the time decay issue of the zero-forced surface quasi-
geostrophic equations (see [22, 23] and references therein)
‖𝜃(𝑡)‖

𝐿
2 → 0. The latter indeed shows the asymptotic sta-

bility of the trivial solution 𝜃 = 0 for the surface quasi-
geostrophic equation with zero external force. However,
when the surface quasi-geostrophic equation (1) has the
nonzero low-regular external force 𝑓 ∈ 𝐿

2
(0, 𝑇;𝐻

−𝛼/2
(R2)),

𝜃 = 0 is obviously not a solution of (1), therefore, our result
here essentially shows the asymptotic stability of the nonzero
global solution of (1).
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Remark 6. The main idea in the proof of Theorem 2 is based
on some new observations due to the special structure in
nonlinear term 𝑢 ⋅ ∇𝜃 which is different from the classic
Navier-Stokes equations. Additionally, in order to derive an
auxiliary decay estimate in the framework of the critical
BMO space, we also need to choose a suitable test function
and derive some average decay properties. It is worth noting
that although the study of the classic incompressible Navier-
Stokes equations is beneficial to that of quasi-geostrophic
equation, compared with some asymptotic stability results
of three-dimensional Navier-Stokes equations (refer to [30–
32]), we do not know, however, whether our result in the
framework of the critical BMO space is still valid for the
Navier-Stokes equations.Wewill focus on that problem in the
future.

The remains of this paper are organized as follows. In
Section 2, we will investigate the global 𝐿2 estimates of the
difference between the original surface quasi-geostrophic
equation and the perturbed equation. In Section 3, we will
further derive an average decay estimates of the difference.
Finally, we will prove the asymptotic stability of large solution
to the surface quasi-geostrophic equation (1) under the large
initial perturbation in Section 4.

Let us end this section by some notations. Inwhat follows,
𝐶 stands for the abstractly positive constant. 𝐿𝑝(R2) with 1 ≤
𝑝 ≤ ∞ denotes the usual Lebesgue space.𝐻𝑠(R2) with 𝑠 ∈ R

is the fractional Sobolev space with the norm:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑠 = (∫

R2

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2𝑠󵄨󵄨󵄨󵄨󵄨
𝑓
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜉)

1/2

. (9)

BMO is the space of the bounded mean oscillation
defined by

BMO = {𝑓 ∈ 𝐿
1

loc (R
2
) ; sup
𝑥,𝑟

1
󵄨󵄨󵄨󵄨𝐵𝑟 (𝑥)

󵄨󵄨󵄨󵄨

× ∫
𝐵
𝑟
(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑦) − 𝑓

𝐵
𝑟
(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦 < ∞} ,

(10)

where

𝑓
𝐵
𝑟
(𝑥)

=
1

󵄨󵄨󵄨󵄨𝐵𝑟 (𝑥)
󵄨󵄨󵄨󵄨

∫
𝐵
𝑟
(𝑥)

𝑓 (𝑦) 𝑑𝑦 (11)

is the average of 𝑓 over 𝐵
𝑟
(𝑥). In particular, BMO is the dual

space of the Hardy spaceH1.

2. Global Estimate of 𝜃 − 𝜃

In this section, we will investigate the global 𝐿2 estimates of
the difference 𝑤 = 𝜃 − 𝜃 between the global solution 𝜃 of the
original equation (1) and the weak solution 𝜃 of the perturbed
equation (4). It is mentioned that some necessary smooth
properties of the difference 𝑤 is required in the derivation
of the global 𝐿2 estimates below. As stated in Remark 3, the
global weak solution 𝜃 of the original equation (1) satisfy-
ing the regular condition (6) is actually regular. However,

the perturbed weak solution 𝜃 is not smooth, in order to
derive the global estimates of the difference𝑤 = 𝜃−𝜃.We first
seek a smooth function to approximate the weak solution 𝜃

of the perturbed quasi-geostrophic equation (4). To do so, we
apply the standard Galerkin method to construct the smooth
approximate solutions:

𝜃
𝑚
(𝑥, 𝑡) =

𝑚

∑

𝑘=1

𝑔
𝑘𝑚

(𝑡) 𝜙
𝑘
(𝑥) , 𝑚 ∈ 𝑁 (12)

Here {𝜙
𝑘
}
∞

𝑘=1
∈ 𝐶
∞
(R2) is an orthonormal basis of 𝐿2(R2).

Instead of the perturbed quasi-geostrophic equation (4),
for any test function 𝜙 ∈ 𝑋

𝑚
= the space spanned by

𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑚
, 𝜃
𝑚
(𝑥, 𝑡) satisfy

(
𝜕𝜃
𝑚

𝜕𝑡
+ 𝑢
𝑚
⋅ ∇𝜃
𝑚
+ 𝜅Λ
𝛼
𝜃
𝑚
, 𝜙) = (𝑓

𝑚
+ 𝑔
𝑚
, 𝜙) ,

𝜃
𝑚
(𝑥, 0) =

𝑚

∑

𝑘=1

(𝜃
0
, 𝜙
𝑘
) 𝜙
𝑘
,

(13)

where

𝑓
𝑚
=

𝑚

∑

𝑘=1

(𝑓, 𝜙
𝑘
) 𝜙
𝑘
, 𝑔

𝑚
=

𝑚

∑

𝑘=1

(𝑔, 𝜙
𝑘
) 𝜙
𝑘
. (14)

It is worth noting that, for fixed integer 𝑚, equations
(13) are indeed ordinary differential equations. The theory
of existence and uniqueness for such ordinary differential
equations is standard. Therefore, we can prove that the
approximated solutions 𝜃

𝑚
exist globally and smoothly and

are uniformly bounded in the following space:

𝜃
𝑚
∈ 𝐿
∞
(0, 𝑇; 𝐿

2
(R
2
)) ∩ 𝐿

2
(0, 𝑇;𝐻

𝛼/2
(R
2
)) , ∀𝑇 > 0.

(15)

Furthermore, it allows us to prove that the approximates
smooth solutions 𝜃

𝑚
converge to the weak solution of the

perturbed quasi-geostrophic equation (4) when 𝑚 tends to
infinity. Indeed, we only need to obtain the strong conver-
gence of 𝜃

𝑚
in space 𝐿2loc(R

2
× (0,∞)). To do so, for example,

with the aid of Hölder and Sobolev embedding estimates, it
follows that

󵄨󵄨󵄨󵄨󵄨
(𝑢
𝑚
⋅ ∇𝜃
𝑚
, 𝜙)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄩󵄩󵄩󵄩𝑢𝑚
󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑚

󵄩󵄩󵄩󵄩󵄩𝐿4/(2−𝛼)
󵄩󵄩󵄩󵄩∇𝜙

󵄩󵄩󵄩󵄩𝐿4/𝛼

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢𝑚

󵄩󵄩󵄩󵄩𝐿2
󵄩󵄩󵄩󵄩󵄩
𝜃
𝑚

󵄩󵄩󵄩󵄩󵄩𝐻𝛼/2
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐻(4−𝛼)/2

(16)

for 𝜙 ∈ 𝐻(4−𝛼)/2. This implies the uniform bounds of

𝜕𝜃
𝑚

𝜕𝑡
= −𝑢
𝑚
⋅ ∇𝜃
𝑚
− 𝑘Λ
𝛼
𝜃
𝑚
+ 𝑓
𝑚
+ 𝑔
𝑚

in the space 𝐿2 (0, 𝑇;𝐻−(4−𝛼)/2 (R2)) .
(17)

By the compactness theorem [4, Chapter 3, Theorem 2.1],
the sequence 𝜃

𝑚
admits a subsequence denoted also by 𝜃

𝑚
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converging to the weak solution of the perturbed equation
(4):

𝜃
𝑚
󳨀→ 𝜃 (𝑚 󳨀→ ∞) strongly in 𝐿

2

loc (R
2
× (0,∞)) ,

(18)

from which and uniformly bounds of ‖𝜃
𝑚
(𝑡)‖
𝐿
2 due to (15),

we have

𝜃
𝑚
(𝑡) 󳨀→ 𝜃 (𝑡) (𝑚 󳨀→ ∞) weakly in 𝐿

2
(R
2
) (19)

for almost all 𝑡 ∈ (0,∞).
Thanks to the regular solution 𝜃 ∈ 𝐿

∞
(0, 𝑇; 𝐿

2
(R2)), we

then derive from (19) that

𝜃 (𝑡) − 𝜃
𝑚
(𝑡) 󳨀→ 𝜃 (𝑡) − 𝜃 (𝑡)

(𝑚 󳨀→ ∞) weakly in 𝐿
2
(R
2
)

(20)

for almost all 𝑡 ∈ (0,∞), which implies by Fatou Lemma that

󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡) − 𝜃 (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐿2
≤ lim inf
𝑚→∞

󵄩󵄩󵄩󵄩󵄩
𝜃 (𝑡) − 𝜃

𝑚
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐿2

(21)

for almost all 𝑡 ∈ (0,∞).
Denoting by𝑤

𝑚
= 𝜃−𝜃

𝑚
the difference between solution

𝜃 of original equation (1) and approximated smooth solution
𝜃
𝑚

of the (13), with the direct computation due to the
smoothness of 𝑤

𝑚
, it is easy to examine 𝑤

𝑚
satisfying

󵄩󵄩󵄩󵄩𝑤𝑚 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐿
2 + 2𝜅∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
𝑚

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

≤
󵄩󵄩󵄩󵄩󵄩
𝜃
0
− 𝜃
𝑚
(0)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 2∫

𝑡

0

{(𝑢 ⋅ ∇𝜃, 𝜃
𝑚
) − (𝑢

𝑚
⋅ ∇𝜃
𝑚
, 𝜃)} 𝑑𝜏

+ 2∫

𝑡

0

(𝑓
𝑚
+ 𝑔
𝑚
− 𝑓,𝑤

𝑚
) 𝑑𝜏

≤
󵄩󵄩󵄩󵄩󵄩
𝜃
0
− 𝜃
𝑚
(0)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
− 2∫

𝑡

0

((𝑢 − 𝑢
𝑚
) ⋅ ∇𝜃, 𝑤

𝑚
) 𝑑𝜏

+ 2∫

𝑡

0

(𝑓
𝑚
+ 𝑔
𝑚
− 𝑓,𝑤

𝑚
) 𝑑𝜏,

(22)

where the divergence free property of the velocity is used. In
order to deal with the nonlinear term of the right hand side
of (22), we require the following important lemma.

Lemma 7 (Marchand [33]). Assume that ℎ ∈ 𝐿2(R2),R
𝑖
(𝑖 ∈

{1, 2}) is the Riesz transform, then there exists a constant𝐶 such
that

󵄩󵄩󵄩󵄩ℎR𝑖ℎ
󵄩󵄩󵄩󵄩H1 ≤ 𝐶‖ℎ‖

2

𝐿
2 (23)

is valid. HereH1 is the Hardy space.

Thus we have the following crucial estimates for the
nonlinear term of (23):

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−2∫

𝑡

0

((𝑢 − 𝑢
𝑚
) ⋅ ∇𝜃, 𝑤

𝑚
) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

∫
R2

R
⊥
𝑤
𝑚
⋅ ∇𝜃𝑤

𝑚
𝑑𝑥 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝑤𝑚R1𝑤𝑚

󵄩󵄩󵄩󵄩H1 +
󵄩󵄩󵄩󵄩𝑤𝑚R2𝑤𝑚

󵄩󵄩󵄩󵄩H1) ‖∇𝜃‖BMO𝑑𝑠

≤ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝑤𝑚
󵄩󵄩󵄩󵄩
2

𝐿
2‖∇𝜃‖BMO𝑑𝑠,

(24)

where we have also used the fact that BMO is the dual space
of the Hardy spaceH1.

With the aid of the Hölder inequality and the Young
inequality, one shows that for the external force term

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 ∫

𝑡

0

(𝑓
𝑚
+ 𝑔
𝑚
− 𝑓,𝑤

𝑚
) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝑔𝑚
󵄩󵄩󵄩󵄩𝐻−𝛼/2

󵄩󵄩󵄩󵄩𝑤𝑚
󵄩󵄩󵄩󵄩𝐻𝛼/2𝑑𝜏

+ 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝑓𝑚 − 𝑓
󵄩󵄩󵄩󵄩𝐻−𝛼/2

󵄩󵄩󵄩󵄩𝑤𝑚
󵄩󵄩󵄩󵄩𝐻𝛼/2𝑑𝜏

≤ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝑔𝑚

󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2 +

󵄩󵄩󵄩󵄩𝑓𝑚 − 𝑓
󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2) 𝑑𝜏

+ 𝜅∫

𝑡

0

󵄩󵄩󵄩󵄩𝑤𝑚
󵄩󵄩󵄩󵄩
2

𝐻
𝛼/2𝑑𝜏.

(25)

Plugging the above inequalities into (22) and taking the
Gronwall inequality into consideration, we derive the global
𝐿
2 estimate of 𝑤

𝑚
:

󵄩󵄩󵄩󵄩𝑤𝑚 (𝑡)
󵄩󵄩󵄩󵄩
2

𝐿
2 + 𝜅∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
𝑚
(𝜏)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

≤ (
󵄩󵄩󵄩󵄩󵄩
𝜃
0
− 𝜃
𝑚
(0)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝑔𝑚

󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2 +

󵄩󵄩󵄩󵄩𝑓𝑚 − 𝑓
󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2) 𝑑𝜏)

× exp{𝐶∫
𝑡

0

‖∇𝜃‖BMO𝑑𝜏} .

(26)

Passing the limit𝑚 → ∞ in the above inequality and apply-
ing (21), we have



Abstract and Applied Analysis 5

‖𝑤 (𝑡)‖
2

𝐿
2 + 𝜅∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤 (𝜏)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

≤ lim inf
𝑚→∞

{
󵄩󵄩󵄩󵄩𝑤𝑚 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐿
2 + 𝜅∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
𝑚
(𝜏)

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏}

≤ (
󵄩󵄩󵄩󵄩𝑤0

󵄩󵄩󵄩󵄩
2

𝐿
2 + 𝐶∫

𝑡

0

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2𝑑𝜏) exp{𝐶∫

𝑡

0

‖∇𝜃‖BMO𝑑𝜏}

≤ (
󵄩󵄩󵄩󵄩𝑤0

󵄩󵄩󵄩󵄩
2

𝐿
2 + 𝐶∫

∞

0

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2𝑑𝜏)

× exp{𝐶∫
∞

0

‖∇𝜃‖BMO𝑑𝜏}

=: 𝐸
0
< ∞

(27)

for the constant 𝐸
0
independent of 𝑡 > 0.

Moreover, by the slight modification of the derivation of
(22) and (27), it is not difficult to derive the following global
estimates of 𝑤:

‖𝑤 (𝑡)‖
2

𝐿
2 + 𝜅∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

≤ ‖𝑤 (𝑠)‖
2

𝐿
2 + 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2𝑑𝜏 + 𝐶∫

𝑡

𝑠

‖∇𝜃‖BMO𝑑𝜏

(28)

for 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞.

3. Average Decay of 𝜃 − 𝜃

In this section, we are devoted to investigating the average
decay of the difference𝑤 = 𝜃−𝜃which will play an important
role in the proof of Theorem 2.

It is worth noting that Kozono [30] and Zhou [32] have
investigated the average decay properties of the classic
Navier-Stokes equation. For the surface quasi-geostrophic
equation considered here, however, the fractional dissipative
operators Λ𝛼 = (−Δ)

𝛼/2 are nonlocal singular integral oper-
ators. the new difficulty on the uniformly estimates of 𝑤 will
rise if we directly follow the similar argument of the classic
Navier-Stokes equations [30, 32].

Fortunately, we can avoid those additional difficulties
with the aid of the theory of the analytic semigroup (see
Pazy [34]). Since the Laplacian operator −Δ in whole space
R2 generates a bounded analytic semigroup in each 𝐿𝑝(R2)
(1 < 𝑝 < ∞), thus the fractional power Λ𝛼 = (−Δ)

𝛼/2 can be
redefined with the aid of the spectral decomposition:

Λ
𝛼
= ∫

∞

0

𝜆
𝛼/2
𝑑𝐸 (𝜆) , (29)

where 𝐸(𝜆) is a family of projection operators and 𝜆 (0 < 𝜆 <

∞) is the spectral of the Laplacian operator −Δ. Namely, the
analytic semigroup 𝑒−𝑡Λ

𝛼

generated by the nonlocal singular
integral operators Λ𝛼 is also defined in a satisfactory form:

𝑒
−𝑡Λ
𝛼

= ∫

∞

0

𝑒
−𝑡𝜆
𝛼/2

𝑑𝐸 (𝜆) . (30)

Furthermore, we may derive the embedding relation in a
natural form

‖𝜃‖𝐿𝑝 ≤ 𝐶‖𝜃‖𝐻𝛼 = 𝐶
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝛼

𝜃
󵄩󵄩󵄩󵄩󵄩𝐿2

= 𝐶
󵄩󵄩󵄩󵄩Λ
𝛼
𝜃
󵄩󵄩󵄩󵄩𝐿2 ,

with 1

𝑝
=
1

2
−
𝛼

2
,

(31)

where Parseval equality is used in the last two equalities.
Now we carry out to study the average decay of the

difference 𝑤 = 𝜃 − 𝜃. Firstly, according to the definitions of
the weak solutions in Definition 1, we choose a special test
function 𝜑

𝜀
as

𝜑
𝜀
(𝜏) = ∫

𝑡

𝑠

𝜂
𝜀
(𝜏 − 𝜎) (1 + Λ

2
)
−(3−𝛼)/2

𝑒
−𝜅(2𝑡−𝜏−𝜎)Λ

𝛼

× 𝑤 (𝜎) 𝑑𝜎, 𝜀 > 0,

(32)

where 𝜂
𝜀
(𝑡) = (1/𝜀)𝜂(|𝑡/𝜀|) > 0 is the standard mollifier func-

tion with 𝜂(𝑡) ∈ 𝐶
∞

0
(−1, 1) and ∫1

−1
𝜂(𝑡)𝑑𝑡 = 1. Thus 𝑤(𝑥, 𝑡)

satisfies the following weak formation

∫

𝑡

𝑠

(𝜕
𝜏
𝑤 + 𝜅Λ

𝛼
𝑤, 𝜑
𝜀
) 𝑑𝜏 + ∫

𝑡

𝑠

(𝑢 ⋅ ∇𝜃 − 𝑢 ⋅ ∇𝜃, 𝜑
𝜀
) 𝑑𝜏

+ ∫

𝑡

𝑠

(𝑔, 𝜑
𝜀
) 𝑑𝜏 = 0

(33)

for 0 ≤ 𝑠 ≤ 𝑡 < ∞.
We now give the estimates of (33) by passing the limit

𝜀 → 0. More precisely, we will prove the following lemma.

Lemma 8. Under the same condition in Theorem 2, we have
the following uniform estimates of the difference 𝑤:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜅(𝑡−𝑠)Λ

𝛼

(1 + Λ
2
)
−(3−𝛼)/4

𝑤 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏 + 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

+ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2𝑑𝜏.

(34)

We will give the proof at the end of this section. Once the
crucial uniform estimates (34) is obtained, we can obtain the
average decay of the difference 𝑤. In fact, letting 𝑡 → ∞ in
(34), since

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜅(𝑡−𝑠)Λ

𝛼

(1 + Λ
2
)
−(3−𝛼)/4

𝑤 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

= 0, (35)

then one shows that for (34)

lim sup
𝑡→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

≤ 𝐶∫

∞

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏 + 𝐶∫

∞

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

+ 𝐶∫

∞

𝑠

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2𝑑𝜏,

(36)
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and then letting 𝑠 → ∞, we have

lim sup
𝑡→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

= 0. (37)

Furthermore, employing the Parseval equality and the
Hölder inequality, we obtain that for ‖𝑤‖

𝐿
2

‖𝑤‖
2

𝐿
2 = 𝐶∫

R2
|𝑤|
2
𝑑𝜉

= 𝐶∫
R2
(1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

)
(𝛼
2
−3𝛼)/6

|𝑤|
2𝛼/3

× (1 +
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

)
(3𝛼−𝛼

2
)/6

|𝑤|
(6−2𝛼)/3

𝑑𝜉

≤ 𝐶(∫
R2
(1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

)
−(3−𝛼)/2

|𝑤|
2
𝑑𝜉)

𝛼/3

× (∫
R2
(1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

)
𝛼/2

|𝑤|
2
𝑑𝜉)

(3−𝛼)/3

≤ 𝐶(∫
R2
(1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

)
−(3−𝛼)/2

|𝑤|
2
𝑑𝜉)

𝛼/3

× (∫
R2
(|𝑤|
2
+
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝛼

|𝑤|
2
) 𝑑𝜉)

(3−𝛼)/3

≤ 𝐶

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝛼/3

𝐿
2

× (‖𝑤‖
2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
)

1−(𝛼/3)

.

(38)

Integrating in time from 𝑡/2 to 𝑡 yields

1

𝑡
∫

𝑡

𝑡/2

‖𝑤 (𝜏)‖
2

𝐿
2𝑑𝜏

≤
𝐶

𝑡
∫

𝑡

𝑡/2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2𝛼/3

𝐿
2

× (‖𝑤‖
2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
)

1−(𝛼/3)

𝑑𝜏

≤ 𝐶(
1

𝑡
∫

𝑡

𝑡/2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

𝑑𝜏)

𝛼/3

× (
1

𝑡
∫

𝑡

𝑡/2

(‖𝑤‖
2

𝐿
2 +

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
) 𝑑𝜏)

1−(𝛼/3)

≤ 𝐶(
1

𝑡
∫

𝑡

𝑡/2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

𝑑𝜏)

𝛼/3

(1 +
1

𝑡
)

1−(𝛼/3)

≤ 𝐶 lim sup
𝑡/2<𝜏<𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤 (𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

.

(39)

Together with (37) we derive the desired average decay of
the difference 𝑤 = 𝜃 − 𝜃 between the global solution 𝜃

of the original quasi-geostrophic equation (1) and the weak
solution 𝜃 of the perturbed quasi-geostrophic equation (4):

lim
𝑡→∞

1

𝑡
∫

𝑡

𝑡/2

‖𝑤 (𝜏)‖
2

𝐿
2𝑑𝜏 = 0. (40)

Now it remains to prove Lemma 8.

Proof of Lemma 8. For convenience, the three terms of the
left hand side of (33) are denoted by 𝐼, 𝐽, and𝐾, respectively.
For 𝐼, we have

𝐼 = ∫

𝑡

𝑠

(𝜕
𝜏
𝑤 + 𝜅Λ

𝛼
𝑤, 𝜑
𝜀
) 𝑑𝜏

= ∫

𝑡

𝑠

𝑑

𝑑𝜏
(∫

R2
𝑤𝜑
𝜀
𝑑𝑥) 𝑑𝜏

+ ∫

𝑡

𝑠

∫
R2
(−𝑤𝜕
𝜏
𝜑
𝜀
+ 𝜅𝑤Λ

𝛼
𝜑
𝜀
) 𝑑𝑥 𝑑𝜏

= ∫
R2
(𝑤𝜑
𝜀
) (𝑡) 𝑑𝑥 − ∫

R2
(𝑤𝜑
𝜀
) (𝑠) 𝑑𝑥

+ ∫

𝑡

𝑠

∫
R2
𝑤 (𝜏) (−𝜕

𝜏
𝜑
𝜀
+ 𝜅Λ
𝛼
𝜑
𝜀
) (𝜏) 𝑑𝑥 𝑑𝜏

= ∫
R2
(𝑤𝜑
𝜀
) (𝑡) 𝑑𝑥 − ∫

R2
(𝑤𝜑
𝜀
) (𝑠) 𝑑𝑥

− ∫

𝑡

𝑠

∫
R2
∫

𝑡

𝑠

𝜕
𝜏
𝜂
𝜀
(𝜏 − 𝜎) (1 + Λ

2
)
−(3−𝛼)/2

× 𝑒
−𝜅(2𝑡−𝜏−𝜎)Λ

𝛼

𝑤 (𝜎)𝑤 (𝜏) 𝑑𝜎 𝑑𝑥 𝑑𝜏

= 𝐼
1
+ 𝐼
2
.

(41)

Applying the Fubini theorem, it is not difficult to obtain

lim
𝜀→0

∫
R2
(𝑤𝜑
𝜀
) (𝑡) 𝑑𝑥

= lim
𝜀→0

∫
R2
∫

𝑡

𝑠

𝜂
𝜀
(𝑡 − 𝜎) (1 + Λ

2
)
−(3−𝛼)/2

𝑒
−𝜅(𝑡−𝜎)Λ

𝛼

× 𝑤 (𝜎)𝑤 (𝑡) 𝑑𝜎 𝑑𝑥

=
1

2
∫
R2
(1 + Λ

2
)
−(3−𝛼)/2

𝑤 (𝑡) 𝑤 (𝑡) 𝑑𝑥

=
1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

(42)

and similarly

lim
𝜀→0

∫
R2
(𝑤𝜑
𝜀
) (𝑠) 𝑑𝑥 =

1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜅(𝑡−𝑠)Λ

𝛼

(1 + Λ
2
)
−(3−𝛼)/4

𝑤 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

,

(43)

thus we have for 𝐼
1

lim
𝜀→0

𝐼
1
=
1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

−
1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜅(𝑡−𝑠)Λ

𝛼

(1 + Λ
2
)
−(3−𝛼)/4

𝑤 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

.

(44)
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For 𝐼
2
we have

𝐼
2
= −∫

𝑡

𝑠

∫
R2
∫

𝑡

𝑠

𝜕
𝜏
𝜂
𝜀
(𝜏 − 𝜎) (1 + Λ

2
)
−(3−𝛼)/2

𝑒
−𝜅(2𝑡−𝜏−𝜎)Λ

𝛼

× 𝑤 (𝜎)𝑤 (𝜏) 𝑑𝜎 𝑑𝑥 𝑑𝜏

= −
1

𝜀
∫

𝑡

𝑠

∫
R2
∫

𝑡

𝑠

𝜕
𝜏
𝜂 (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏 − 𝜎

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) (1 + Λ

2
)
−(3−𝛼)/2

× 𝑒
−𝜅(2𝑡−𝜏−𝜎)Λ

𝛼

𝑤 (𝜎)𝑤 (𝜏) 𝑑𝜎 𝑑𝑥 𝑑𝜏

=
1

𝜀
∫

𝑡

𝑠

∫
R2
∫

𝑡

𝑠

𝜕
𝜎
𝜂 (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏 − 𝜎

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) (1 + Λ

2
)
−(3−𝛼)/2

× 𝑒
−𝜅(2𝑡−𝜏−𝜎)Λ

𝛼

𝑤 (𝜎)𝑤 (𝜏) 𝑑𝜎 𝑑𝑥 𝑑𝜏

=
1

𝜀
∫

𝑡

𝑠

∫
R2
∫

𝑡

𝑠

𝜕
𝜎
𝜂 (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎 − 𝜏

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) (1 + Λ

2
)
−(3−𝛼)/2

× 𝑒
−𝜅(2𝑡−𝜏−𝜎)Λ

𝛼

𝑤 (𝜎)𝑤 (𝜏) 𝑑𝜎 𝑑𝑥 𝑑𝜏

= −𝐼
2

(45)

which implies 𝐼
2
= 0.

Hence, combining the above inequalities, one derives the
estimates of 𝐼:

lim
𝜀→0

𝐼 =
1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

−
1

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜅(𝑡−𝑠)Λ

𝛼

(1 + Λ
2
)
−(3−𝛼)/4

𝑤 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

.

(46)

For 𝐽, employing integrating by parts gives

𝐽 = ∫

𝑡

𝑠

(𝑢 ⋅ ∇𝜃 − 𝑢 ⋅ ∇𝜃, 𝜑
𝜀
) 𝑑𝜏

= ∫

𝑡

𝑠

∫
R2
(𝑢 − 𝑢) ⋅ ∇𝜑

𝜀
𝑤𝑑𝑥𝑑𝜏 − ∫

𝑡

𝑠

∫
R2
𝑢 ⋅ ∇𝜑

𝜀
𝑤𝑑𝑥𝑑𝜏

− ∫

𝑡

𝑠

∫
R2
(𝑢 − 𝑢) ⋅ ∇𝜑

𝜀
𝜃𝑑𝑥 𝑑𝜏

=: 𝐽
1
+ 𝐽
2
+ 𝐽
3
.

(47)

For 𝐽
1
, applying the Hölder inequality and the Gagliardo-

Nirenberg inequality and (27) gives

𝐽
1
= ∫

𝑡

𝑠

∫
R2
(𝑢 − 𝑢) ⋅ ∇𝜑

𝜀
𝑤𝑑𝑥𝑑𝜏

≤ ∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
R
⊥
𝑤
󵄩󵄩󵄩󵄩󵄩𝐿8/(4−𝛼)

󵄩󵄩󵄩󵄩∇𝜑𝜀
󵄩󵄩󵄩󵄩𝐿4/𝛼‖𝑤‖𝐿8/(4−𝛼)𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩∇𝜑𝜀
󵄩󵄩󵄩󵄩𝐿4/𝛼‖𝑤‖𝐿2

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩𝐿2

𝑑𝜏

≤ 𝐶( sup
0<𝜏<∞

‖𝑤‖𝐿2)(∫

𝑡

𝑠

󵄩󵄩󵄩󵄩∇𝜑𝜀
󵄩󵄩󵄩󵄩
2

𝐿
4/𝛼𝑑𝜏)

1/2

× (∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏)

1/2

≤ 𝐸
1/2

0
∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏,

(48)

where we have used the following estimates:

∫

𝑡

𝑠

󵄩󵄩󵄩󵄩∇𝜑𝜀 (𝜏)
󵄩󵄩󵄩󵄩
2

𝐿
4/𝛼𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩∇𝜑𝜀 (𝜏)
󵄩󵄩󵄩󵄩
2

𝐻
1−(𝛼/2)𝑑𝜏

= 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
1−(𝛼/2)

𝑖𝜉𝜑
𝜀
(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2−(𝛼/2)

𝜑
𝜀
(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2−𝛼

∫

𝑡

𝑠

𝜂
𝜀
(𝜏 − 𝜎) (1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

)
−(3−𝛼)/2

× 𝑒
−𝜅(2𝑡−𝜏−𝜎)|𝜉|

𝛼 󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝛼/2

𝑤 (𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

𝑠

𝜂
𝜀
(𝜏 − 𝜎)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝛼/2

𝑤 (𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏.

(49)

Similarly, for 𝐽
2
, 𝐽
3
, it follows that

𝐽
2
+ 𝐽
3

= −∫

𝑡

𝑠

∫
R2
𝑢 ⋅ ∇𝜑

𝜀
𝑤𝑑𝑥𝑑𝜏

− ∫

𝑡

𝑠

∫
R2
(𝑢 − 𝑢) ⋅ ∇𝜑

𝜀
𝜃𝑑𝑥 𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
R
⊥
𝜃
󵄩󵄩󵄩󵄩󵄩𝐿4/(2−𝛼)

󵄩󵄩󵄩󵄩∇𝜑𝜀
󵄩󵄩󵄩󵄩𝐿4/𝛼‖𝑤‖𝐿2𝑑𝜏

+ ∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
R
⊥
𝑤
󵄩󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩∇𝜑𝜀
󵄩󵄩󵄩󵄩𝐿4/𝛼‖𝜃‖𝐿4/(2−𝛼)𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝜃
󵄩󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩∇𝜑𝜀
󵄩󵄩󵄩󵄩𝐿4/𝛼‖𝑤‖𝐿2𝑑𝜏

≤ 𝐶( sup
0<𝜏<∞

‖𝑤‖𝐿2)(∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏)

1/2

× (∫

𝑡

𝑠

󵄩󵄩󵄩󵄩∇𝜑𝜀
󵄩󵄩󵄩󵄩
2

𝐿
4/𝛼𝑑𝜏)

1/2
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≤ 𝐸
1/2

0
(∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏)

1/2

(∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏)

1/2

≤ 𝐸
1/2

0
∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏 + 𝐸

1/2

0
∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏.

(50)
Plugging the estimates of 𝐽

𝑖
(𝑖 = 1, 2, 3) into (47) yields

|𝐽| ≤ 𝐸
1/2

0
∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏 + 𝐸

1/2

0
∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏. (51)

In order to estimate𝐾, thanks to

∫

𝑡

𝑠

󵄩󵄩󵄩󵄩𝜑𝜀 (𝜏)
󵄩󵄩󵄩󵄩
2

𝐻
𝛼/2𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝛼/2

𝜑
𝜀
(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

𝑠

𝜂
𝜀
(𝜏 − 𝜎) (1 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
2

)
−(3−𝛼)/2

× 𝑒
−𝜅(2𝑡−𝜏−𝜎)|𝜉|

𝛼 󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝛼/2

𝑤 (𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

𝑠

𝜂
𝜀
(𝜏 − 𝜎)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨
𝛼/2

𝑤 (𝜎) 𝑑𝜎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏,

(52)
together with the Hölder inequality and the Young inequality
gives that

𝐾 = −∫

𝑡

𝑠

(𝑔, 𝜑
𝜀
) 𝑑𝜏 ≤ ∫

𝑡

𝑠

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐻−𝛼/2

󵄩󵄩󵄩󵄩𝜑𝜀
󵄩󵄩󵄩󵄩𝐻𝛼/2𝑑𝜏

≤ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2𝑑𝜏 + 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏.

(53)

Inserting (46), (51), and (53) into (33), we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(1 + Λ

2
)
−(3−𝛼)/4

𝑤 (𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝜅(𝑡−𝑠)Λ

𝛼

(1 + Λ
2
)
−(3−𝛼)/4

𝑤 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

≤ |𝐽| + |𝐾|

≤ 𝐸
1/2

0
∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏 + (𝐶 + 𝐸

1/2

0
)∫

𝑡

𝑠

󵄩󵄩󵄩󵄩󵄩
Λ
𝛼/2
𝑤
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
𝑑𝜏

+ 𝐶∫

𝑡

𝑠

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝐻
−𝛼/2𝑑𝜏

(54)
which completes the proof of Lemma 8.

4. Proof of Theorem 2

With the aid of the global estimates and average decay of the
difference 𝑤 = 𝜃 − 𝜃 between the original surface quasi-
geostrophic equation (1) and the perturbed surface quasi-
geostrophic equation, the proof of stability is straight forward.

The integration of (28) with respect to 𝑠 on the interval
((𝑡/2), 𝑡) gives

‖𝑤 (𝑡)‖
2

𝐿
2 ≤

2

𝑡
∫

𝑡

𝑡/2

‖𝑤 (𝑠)‖
2

𝐿
2𝑑𝑠

+
𝐶

𝑡
∫

𝑡

𝑡/2

∫

𝑡

𝑠

‖∇𝜃‖BMO𝑑𝜏 𝑑𝑠.

(55)

From the average decay property of 𝑤 in Section 3, the first
term of the right hand side of the above inequality tends to
zero as 𝑡 → ∞. For the second term of the right hand side,
we have

1

𝑡
∫

𝑡

𝑡/2

∫

𝑡

𝑠

‖∇𝜃‖BMO𝑑𝜏 𝑑𝑠

≤
𝐶

𝑡
∫

𝑡

𝑡/2

(𝜏 −
𝑡

2
) ‖∇𝜃‖BMO𝑑𝜏

≤ 𝐶∫

𝑡

𝑡/2

‖∇𝜃‖BMO𝑑𝜏,

(56)

according to the regular condition on 𝜃 in Theorem 2, the
second term also tends to zero as 𝑡 → ∞. Hence, we derive
the following stability property:

‖𝑤 (𝑡)‖𝐿2 󳨀→ 0 as 𝑡 󳨀→ ∞ (57)

which completes the proof of Theorem 2.
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180, 2009.

[12] B.-Q. Dong and Z.-M. Chen, “On the weak-strong uniqueness
of the dissipative surface quasi-geostrophic equation,” Nonlin-
earity, vol. 25, no. 5, pp. 1513–1524, 2012.
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