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We propose synchronal algorithm and cyclic algorithm based on the general iterative method for solving a hierarchical fixed
point problem. Under suitable parameters, the iterative sequence converges strongly to a common fixed point of𝑁 nonexpansive
mappings and also the unique solution of a variational inequality. The results presented in this paper improve and extend
the corresponding results reported recently by some authors. Furthermore, a numerical example is given to demonstrate the
effectiveness of our iterative schemes.

1. Introduction

Let𝐻 be a real Hilbert space with an inner product ⟨, ⟩ and its
induced norm ‖ ⋅ ‖. Let 𝐶 be a nonempty, closed, and convex
subset of𝐻.

Let 𝑇 : 𝐶 → 𝐻 be a nonlinear mapping; we denote the
set of fixed points of 𝑇 by Fix(𝑇) (i.e., Fix(𝑇) = {𝑥 ∈ 𝐶 :

𝑇𝑥 = 𝑥}). A mapping 𝑇 : 𝐶 → 𝐻 is called 𝑘-Lipschitzian
continuous if there exists a constant 𝑘 > 0 such that

𝑇𝑥 − 𝑇𝑦
 ≤ 𝑘

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (1)

In particular, 𝑇 is said to be a nonexpansive mapping if 𝑘 =

1. A mapping 𝐵 is called 𝜂-strongly monotone on 𝐶, if there
exists a constant 𝜂 > 0 such that

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
𝑥 − 𝑦
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, ∀𝑥, 𝑦 ∈ 𝐶. (2)

A variational inequality (short for VI) is formulated as
finding a point 𝑥∗ ∈ 𝐶 such that

⟨𝐵𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (3)

If 𝐵 is a monotone operator, then VI (3) is known as a
monotone variational inequality. If the set 𝐶 is replaced by
the set of Fix(𝑇) of fixed points of a mapping 𝑇, then the VI
(3) is called a hierarchical variational inequality problem.

Many practical problems in applied sciences such as
signal processing [1], beamforming [2], and power control [3]

are formulated as the monotone variational inequality with a
fixed point constrained. In recent years, several authors paid
attention toward this kind of problem. Some methods have
been proposed to solve the hierarchical fixed point problems
and variational inequalities; see for instance [4–10] and the
references therein.

In 2010, Tian [11] proposed a general iterativemethod and
revealed the inner contact of the Yamada’s algorithm [12] and
viscosity iterative algorithm; then he obtained the following
result in a real Hilbert space.

Theorem 1. Let 𝑥
𝑛

be generated by algorithm 𝑥
𝑛+1

=

𝛼
𝑛
𝛾𝑓(𝑥
𝑛
)+(𝐼−𝛼

𝑛
𝜇𝐴)𝑇𝑥

𝑛
with the sequence {𝛼

𝑛
} of parameters

satisfying conditions (C1)–(C3):

(C1) 𝛼
𝑛
→ 0,

(C2) ∑∞
𝑛=0

𝛼
𝑛
= ∞,

(C3) either∑∞
𝑛=1

|𝛼
𝑛+1

−𝛼
𝑛
| < ∞ or lim

𝑛→∞
(𝛼
𝑛+1

/𝛼
𝑛
) = 1.

Then 𝑥
𝑛
converges strongly to a fixed point 𝑥 of 𝑇 which solves

the variational inequality

⟨(𝜇𝐴 − 𝛾𝑓) 𝑥, 𝑥 − 𝑧⟩ ≤ 0, ∀𝑧 ∈ Fix (𝑇) . (4)
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Recently, Yao et al. [10] investigated an iterative method
for solving a hierarchical fixed point problem by

𝑦
𝑛
= 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
,

𝑥
𝑛+1

= 𝑃
𝐶
(𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑇𝑦
𝑛
) ,

(5)

where 𝑆,𝑇 are nonexpansivemappingwith Fix(𝑇) ̸= 0 and𝑓 is
a contraction; the sequence converges strongly to the unique
solution of the variational inequality

𝑥
∗
∈ Fix (𝑇) , ⟨(𝐼 − 𝑓) 𝑥

∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Fix (𝑇) .

(6)

Very recently, on this basis, Wang and Xu [8] introduced
a new modified iterative method for solving a hierarchical
fixed point problem. To be more precise, they proposed the
following algorithm:

𝑦
𝑛
= 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
,

𝑥
𝑛+1

= 𝑃
𝐶
(𝛼
𝑛
𝜌𝑈𝑥
𝑛
+ (𝐼 − 𝛼

𝑛
𝜇𝐹)𝑇𝑦

𝑛
) ,

(7)

where 𝑆, 𝑇 are nonexpansive mappings with Fix(𝑇) ̸= 0, 𝑈 is
a Lipschitzian mapping, and 𝐹 is a Lipschitzian and strongly
monotone operator. They proved the sequence generated by
the above algorithmconverges strongly to the unique solution
of the variational inequality

⟨(𝜌𝑈 − 𝜇𝐹) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Fix (𝑇) . (8)

On the other hand, Tian and Di [13] established a
synchronal algorithm and a cyclic algorithm for fixed point
problems and variational inequalities. In 2012, Ceng et al. [4]
proposed an iterativemethod to solve a special form ofVI (3),
where the constraint set is the set of common fixed points of
𝑁 nonexpansive mappings 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑁
.

Motivated and inspired by the above works, in this
paper, we combine the hybrid steepest descent algorithm and
hierarchical variational inequalities to propose a synchronal
algorithm and a cyclic algorithm involving finite family
of nonexpansive mappings. Under certain assumptions, we
will prove that the sequences converge strongly. Further an
example will be given to demonstrate the effectiveness of our
iterative schemes.

2. Preliminaries

Recall that given a nonempty, closed and convex subset 𝐶 of
a real Hilbert space 𝐻, for any 𝑥 ∈ 𝐻, there exists a unique
nearest point in 𝐶, denoted by 𝑃

𝐶
𝑥, such that

𝑥 − 𝑃
𝐶
𝑥
 ≤

𝑥 − 𝑦
 (9)

for all 𝑦 ∈ 𝐶. Such a 𝑃
𝐶
is called the metric (or the nearest

point) projection of𝐻 onto𝐶. As we all know, 𝑦 = 𝑃
𝐶
𝑥 if and

only if there holds the relation

⟨𝑥 − 𝑦, 𝑦 − 𝑧⟩ ≥ 0, ∀𝑧 ∈ 𝐶. (10)

In the sequel, we will make use of the following lemmas
in a real Hilbert space𝐻.

Lemma 2. Let 𝐻 be a real Hilbert space; the following
inequalities hold:

(i) ‖𝑥 + 𝑦‖
2
≤ ‖𝑥‖

2
+ 2⟨𝑦, 𝑥 + 𝑦⟩, ∀𝑥, 𝑦 ∈ 𝐻,

(ii) ‖𝑡𝑥 + (1 − 𝑡)𝑦‖
2
≤ 𝑡‖𝑥‖

2
+ (1 − 𝑡)‖𝑦‖

2, ∀𝑡 ∈ [0, 1],
∀𝑥, 𝑦 ∈ 𝐻.

Lemma 3 (see [13]). Let 𝐵 : 𝐻 → 𝐻 be a 𝑘-Lipschitzian and
𝜂-strongly monotone operator on a Hilbert space𝐻with 𝑘 > 0,
𝜂 > 0, 0 < 𝜇 < 2𝜂/𝑘

2, and 0 < 𝑡 < 1. Then 𝑆 = (𝐼 − 𝑡𝜇𝐵) :

𝐻 → 𝐻 is a contraction with contractive coefficient 1−𝑡𝜏 and
𝜏 = (1/2)𝜇(2𝜂 − 𝜇𝑘

2
).

Lemma4 (see [5]). Let𝑉 : 𝐶 → 𝐻 be an 𝑙-Lipschitzmapping
with coefficient 𝑙 ≥ 0 and 𝐵 : 𝐶 → 𝐻 a 𝑘-Lipschitzian
continuous operator and 𝜂-strongly monotone operator with
𝑘 > 0, 𝜂 > 0. Then for 0 < 𝛾 < 𝜇𝜂/𝑙,

⟨𝑥 − 𝑦, (𝜇𝐵 − 𝛾𝑉) 𝑥 − (𝜇𝐵 − 𝛾𝑉) 𝑦⟩

≥ (𝜇𝜂 − 𝛾𝑙)
𝑥 − 𝑦
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, 𝑥, 𝑦 ∈ 𝐻.

(11)

That is, 𝜇𝐵 − 𝛾𝑉 is strongly monotone with coefficient 𝜇𝜂 − 𝛾𝑙.

Lemma 5 (see [9]). Assume that {𝑎
𝑛
} is a sequence of nonneg-

ative real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛿
𝑛
, (12)

where {𝛾
𝑛
} is a sequence in (0, 1) and {𝛿

𝑛
} is a sequence such

that

(i) ∑∞
𝑛=1

𝛾
𝑛
= ∞,

(ii) lim sup
𝑛→∞

(𝛿
𝑛
/𝛾
𝑛
) ≤ 0 or ∑∞

𝑛=1
|𝛿
𝑛
| < ∞.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 6 (see [14]). Let 𝐻 be a real Hilbert, and let 𝑇
𝑖
:

𝐻 → 𝐻 (𝑖 = 1, 2, . . .) be all nonexpansive mappings with
∩
∞

𝑖=1
Fix(𝑇
𝑖
) ̸= 0. Let 𝑇 = ∑

∞

𝑖=1
𝜔
𝑖
𝑇
𝑖
(𝑖 = 1, 2, . . .), where {𝜔

𝑖
} ⊂

(0, 1) such that∑∞
𝑖=1

𝜔
𝑖
= 1.Then𝑇 is a nonexpansive mapping

with Fix(𝑇) = ∩
∞

𝑖=1
Fix(𝑇
𝑖
).

Lemma 7 (see [13]). Let 𝐻 be a Hilbert space, and let 𝐶 be
a nonempty closed convex subset of 𝐻 and 𝑇 : 𝐶 → 𝐶 a
nonexpansive mapping with Fix(𝑇) ̸= 0. If {𝑥

𝑛
} is a sequence in

𝐶 weakly converging to 𝑥 and if {(𝐼 − 𝑇)𝑥
𝑛
} converges strongly

to 𝑦, then (𝐼 − 𝑇)𝑥 = 𝑦.

We adopt the following notations:

(1) 𝑥
𝑛
⇀ 𝑥 stands for the weak convergence of {𝑥

𝑛
} to 𝑥,

(2) 𝑥
𝑛
→ 𝑥 stands for the strong convergence of {𝑥

𝑛
} to

𝑥.

3. Synchronal Algorithm

Throughout the rest of this paper, we always assume that
𝑉 : 𝐶 → 𝐻 is an 𝑙-Lipschitzian mapping with coefficient
𝑙 ≥ 0 and𝐵 : 𝐶 → 𝐻 is a 𝑘-Lipschitzian continuous operator
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and 𝜂-strongly monotone with 𝑘 > 0, 𝜂 > 0. Let 𝑁 ≥ 1

be an integer. Let, for each 1 ≤ 𝑖 ≤ 𝑁, 𝑇
𝑖
: 𝐶 → 𝐶 be a

nonexpansive mapping and 𝑆 : 𝐶 → 𝐶 also nonexpansive.
Assume that 0 < 𝜇 < 2𝜂/𝑘

2 and 0 < 𝛾 < 𝜇(𝜂−𝜇𝑘
2
/2)/𝛼 = 𝜏/𝑙.

Define a mapping 𝑈
𝑛

= 𝛽
𝑛
𝑆 + (1 − 𝛽

𝑛
)𝐼. Since 𝑆 is

nonexpansive, it is easy to get that 𝑈
𝑛
is also nonexpansive.

Consider the following mapping 𝐺
𝑛
on 𝐶 defined by

𝐺
𝑛
𝑥 = 𝑃

𝐶
(𝛼
𝑛
𝛾𝑉 (𝑥) + (𝐼 − 𝛼

𝑛
𝜇𝐵)𝑇𝑈

𝑛
𝑥) ,

∀𝑥 ∈ 𝐶, 𝑛 ∈ N,
(13)

where 𝛼
𝑛
∈ (0, 1), 𝑇 = ∑

𝑁

𝑖=1
𝜔
𝑖
𝑇
𝑖
with 𝜔

𝑖
> 0, and∑

𝑁

𝑖=1
𝜔
𝑖
= 1.

By Lemmas 2 and 3, we obtain
𝐺𝑛𝑥 − 𝐺

𝑛
𝑦
 ≤ 𝛼
𝑛
𝛾
𝑉𝑥 − 𝑉𝑦



+ (1 − 𝛼
𝑛
𝜏)

𝑇𝑈𝑛𝑥 − 𝑇𝑈
𝑛
𝑦


≤ 𝛼
𝑛
𝛾𝑙
𝑥 − 𝑦

 + (1 − 𝛼
𝑛
𝜏)

𝑥 − 𝑦


= (1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙))

𝑥 − 𝑦
 .

(14)

Since 0 < 1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙) < 1, it follows that 𝐺

𝑛
is a

contraction. Therefore, by the Banach contraction principle,
𝐺
𝑛
has a unique fixed point 𝑥𝑉

𝑛
∈ 𝐶 such that

𝑥
𝑉

𝑛
= 𝑃
𝐶
(𝛼
𝑛
𝛾𝑉 (𝑥

𝑉

𝑛
) + (𝐼 − 𝛼

𝑛
𝜇𝐵) 𝑇𝑈

𝑛
𝑥
𝑉

𝑛
) . (15)

For simplicity, we will write 𝑥
𝑛
for 𝑥
𝑉

𝑛
provided that

no confusion occurs. Next we prove that the sequence {𝑥
𝑛
}

converges strongly to a point 𝑥∗ ∈ Ω = ∩
𝑁

𝑖=1
Fix(𝑇
𝑖
) which

solves the variational inequality

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0, ∀𝑝 ∈ Ω. (16)

By the property of the projection, we can get 𝑥∗ = 𝑃
Ω
(𝐼−𝜇𝐵+

𝛾𝑉)𝑥
∗ equivalently.

Theorem 8. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space 𝐻 and 𝑉 : 𝐶 → 𝐻 an 𝑙-Lipschitzian
mapping with 𝑙 ≥ 0. Let 𝑁 ≥ 1 be an integer. Let, for each
1 ≤ 𝑖 ≤ 𝑁, 𝑇

𝑖
: 𝐶 → 𝐶 be a nonexpansive mapping

and let 𝑆 : 𝐶 → 𝐶 be also nonexpansive. Assume the set
Ω = ⋂

𝑁

𝑖=1
Fix(𝑇
𝑖
) ̸= 0. Let 𝐵 : 𝐶 → 𝐻 be a 𝑘-Lipschitzian

continuous operator and 𝜂-strongly monotone with 𝑘 > 0,
𝜂 > 0, 0 < 𝜇 < 2𝜂/𝑘

2 and 0 < 𝛾 < 𝜇(𝜂−𝜇𝑘
2
/2)/𝑙 = 𝜏/𝑙. Given

𝑥
1
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by the following

algorithm:

𝑦
𝑛
= 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
,

𝑥
𝑛+1

= 𝑃
𝐶
(𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇𝑦
𝑛
) .

(17)

If {𝛼
𝑛
} and {𝛽

𝑛
} satisfy the following properties:

(i) {𝛼
𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞,

(ii) {𝛽
𝑛
} ⊂ [0, 1), lim

𝑛→∞
(𝛽
𝑛
/𝛼
𝑛
) = 0,

(iii) ∑∞
𝑛=1

|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞ and ∑∞

𝑛=1
|𝛽
𝑛+1

− 𝛽
𝑛
| < ∞.

Then, {𝑥
𝑛
} converges strongly to 𝑥

∗
∈ Ω, which solves the

variational inequality (16).

Proof. The proof is divided into several steps.
Step 1. Show first that {𝑥

𝑛
} is bounded.

Take any 𝑝 ∈ Ω; we have
𝑦𝑛 − 𝑝

 =
𝛽𝑛 (𝑆𝑥𝑛 − 𝑝) + (1 − 𝛽

𝑛
) (𝑥
𝑛
− 𝑝)



≤ 𝛽
𝑛

𝑆𝑥𝑛 − 𝑆𝑝
 + 𝛽
𝑛

𝑆𝑝 − 𝑝


+ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑝

 ≤
𝑥𝑛 − 𝑝

 + 𝛽
𝑛

𝑆𝑝 − 𝑝
 .

(18)

Further we get
𝑥𝑛+1 − 𝑝



=
𝑃𝐶 (𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇𝑦
𝑛
) − 𝑃
𝐶
𝑝


≤
𝛼𝑛 (𝛾𝑉𝑥𝑛 − 𝜇𝐵𝑝)

+ (𝐼 − 𝜇𝛼
𝑛
𝐵)𝑇𝑦
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐵) 𝑝



≤ 𝛼
𝑛
(
𝛾𝑉𝑥𝑛 − 𝛾𝑉𝑝

 +
𝛾𝑉𝑝 − 𝜇𝐵𝑝

)

+ (1 − 𝛼
𝑛
𝜏)

𝑇𝑦𝑛 − 𝑝


≤ 𝛼
𝑛
𝑙𝛾
𝑥𝑛 − 𝑝

 + 𝛼
𝑛

𝛾𝑉𝑝 − 𝜇𝐵𝑝


+ (1 − 𝛼
𝑛
𝜏)

𝑦𝑛 − 𝑝


= (1 − 𝛼
𝑛
(𝜏 − 𝑙𝛾))

𝑥𝑛 − 𝑝


+ 𝛼
𝑛
(𝜏 − 𝑙𝛾)

𝛾𝑉𝑝 − 𝜇𝐵𝑝
 +

𝑆𝑝 − 𝑝


𝜏 − 𝑙𝛾

≤ max{𝑥𝑛 − 𝑝
 ,

𝛾𝑉𝑝 − 𝜇𝐵𝑝
 +

𝑆𝑝 − 𝑝


𝜏 − 𝑙𝛾
} .

(19)

By induction, we obtain ‖𝑥
𝑛
−𝑝‖ ≤ max{‖𝑥

1
−𝑝‖, (‖𝛾𝑉𝑝−

𝜇𝐵𝑝‖ + ‖𝑆𝑝 − 𝑝‖)/(𝜏 − 𝑙𝛾)}, 𝑛 ≥ 1. Hence, {𝑥
𝑛
} is bounded,

so is {𝑦
𝑛
}. It follows from the Lipschitz continuity of 𝐵 and

𝑉 that {𝐵𝑥
𝑛
}, {𝐵𝑢

𝑛
}, and {𝑉𝑥

𝑛
} are also bounded. From the

nonexpansivity of 𝑇 and 𝑆, it follows that {𝑇𝑥
𝑛
}, {𝑆𝑥

𝑛
}, and

{𝐵𝑇𝑦
𝑛
} are also bounded.

Step 2. Show that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (20)

By (17), we have
𝑥𝑛+1 − 𝑥

𝑛



=
𝑃𝐶 (𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇𝑦
𝑛
)

−𝑃
𝐶
(𝛼
𝑛−1

𝛾𝑉𝑥
𝑛−1

+ (𝐼 − 𝜇𝛼
𝑛−1

𝐵)𝑇𝑦
𝑛−1

)


≤
𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇𝑦
𝑛

− (𝛼
𝑛−1

𝛾𝑉𝑥
𝑛−1

+ (𝐼 − 𝜇𝛼
𝑛−1

𝐵)𝑇𝑦
𝑛−1

)


≤ 𝛼
𝑛
𝛾
𝑉𝑥𝑛 − 𝑉𝑥

𝑛−1



+
(𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇𝑦
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇𝑦
𝑛−1



+
(𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇𝑦
𝑛−1

− (𝐼 − 𝜇𝛼
𝑛−1

𝐵)𝑇𝑦
𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1

 𝛾
𝑉𝑥𝑛−1
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≤ 𝛼
𝑛
𝛾𝑙
𝑥𝑛 − 𝑥

𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1

 (𝛾𝑙
𝑉𝑥𝑛−1

 + 𝜇
𝐵𝑇𝑦𝑛−1

)

+ (1 − 𝛼
𝑛
𝜏)

𝑦𝑛 − 𝑦
𝑛−1

 .

(21)
Observe that
𝑦𝑛 − 𝑦

𝑛−1



=
𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽

𝑛
) 𝑥
𝑛
− 𝛽
𝑛−1

𝑆𝑥
𝑛−1

− (1 − 𝛽
𝑛−1

) 𝑥
𝑛−1



≤
𝛽𝑛𝑆𝑥𝑛 − 𝛽

𝑛
𝑆𝑥
𝑛−1



+
(1 − 𝛽

𝑛
) 𝑥
𝑛
− (1 − 𝛽

𝑛
) 𝑥
𝑛−1



+
𝛽𝑛𝑆𝑥𝑛−1 − 𝛽

𝑛−1
𝑆𝑥
𝑛−1



+
(1 − 𝛽

𝑛
) 𝑥
𝑛−1

− (1 − 𝛽
𝑛−1

) 𝑥
𝑛−1



≤ 𝛽
𝑛

𝑥𝑛 − 𝑥
𝑛−1

 + (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑥

𝑛−1



+
𝛽𝑛 − 𝛽

𝑛−1



𝑆𝑥𝑛−1
 +

𝛽𝑛 − 𝛽
𝑛−1



𝑥𝑛−1


=
𝑥𝑛 − 𝑥

𝑛−1



+
𝛽𝑛 − 𝛽

𝑛−1

 (
𝑆𝑥𝑛−1

 +
𝑥𝑛−1

) .

(22)

Together with (21) and (22), we get
𝑥𝑛+1 − 𝑥

𝑛



≤ 𝛼
𝑛
𝛾𝑙
𝑥𝑛 − 𝑥

𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1

 (𝛾𝑙
𝑉𝑥𝑛−1

 + 𝜇
𝐵𝑇𝑦𝑛−1

)

+ (1 − 𝛼
𝑛
𝜏)

𝑥𝑛 − 𝑥
𝑛−1



+
𝛽𝑛 − 𝛽

𝑛−1

 (
𝑆𝑥𝑛−1

 +
𝑥𝑛−1

)

= (1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙))

𝑥𝑛 − 𝑥
𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1

 (𝛾𝑙
𝑉𝑥𝑛−1

 + 𝜇
𝐵𝑇𝑦𝑛−1

)

+
𝛽𝑛 − 𝛽

𝑛−1

 (
𝑆𝑥𝑛−1

 +
𝑥𝑛−1

)

≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙))

𝑥𝑛 − 𝑥
𝑛−1



+ (
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

)𝑀1,

(23)

where𝑀
1
= sup

𝑛
{‖𝛾𝑙𝑉𝑥

𝑛−1
‖+𝜇‖𝐵𝑇𝑦

𝑛−1
‖+‖𝑆𝑥

𝑛−1
‖+‖𝑥
𝑛−1

‖}.
By Lemma 5, we obtain

𝑥𝑛+1 − 𝑥
𝑛

 → 0. (24)
Step 3. Show that

𝑥𝑛 − 𝑇𝑥
𝑛

 → 0. (25)
Observe that
𝑥𝑛+1 − 𝑇𝑦

𝑛



=
𝑃𝐶 (𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
𝐵𝑇𝑦
𝑛
)) − 𝑃

𝐶
𝑇𝑦
𝑛



≤ 𝛼
𝑛

𝛾𝑉𝑥𝑛 − 𝜇𝐵𝑇𝑦
𝑛

 → 0.

(26)

From condition (i) and (ii), we obtain

𝑥𝑛+1 − 𝑇𝑥
𝑛



≤
𝑥𝑛+1 − 𝑇𝑦

𝑛

 +
𝑇𝑦𝑛 − 𝑇𝑥

𝑛



≤
𝑥𝑛+1 − 𝑇𝑦

𝑛

 +
𝑦𝑛 − 𝑥

𝑛



=
𝑥𝑛+1 − 𝑇𝑦

𝑛

 + 𝛽
𝑛

𝑆𝑥𝑛 − 𝑥
𝑛

 → 0.

(27)

Step 4. Show that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩ ≤ 0, (28)

where 𝑥∗ = 𝑃
Ω
(𝐼 − 𝜇𝐵 + 𝛾𝑉)𝑥

∗ is a unique solution of the
variational inequality (16).

Indeed, take a subsequence {𝑥
𝑛𝑗
} of {𝑥

𝑛
} such that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= lim
𝑗→∞

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥
𝑛𝑗
− 𝑥
∗
⟩.

(29)

Since {𝑥
𝑛𝑗
} is bounded, there exists a subsequence {𝑥

𝑛𝑗𝑘

} of
{𝑥
𝑛𝑗
}which converges weakly to 𝑥. Without loss of generality,

we can assume 𝑥
𝑛𝑗
⇀ 𝑥 and


𝑥
𝑛𝑗
− 𝑇𝑥
𝑛𝑗


→ 0. (30)

By Lemma 7, we have 𝑥 = 𝑇𝑥. From Lemma 6, we get

𝑥 ∈ Fix (𝑇) =
𝑁

⋂

𝑖=1

Fix (𝑇
𝑖
) . (31)

Since 𝑥∗ = 𝑃
Ω
(𝐼 − 𝜇𝐵 + 𝛾𝑉)𝑥

∗, it follows that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= lim
𝑗→∞

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥
𝑛𝑗
− 𝑥
∗
⟩

= ⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≤ 0.

(32)

Step 5. Show that

𝑥
𝑛
→ 𝑥
∗
. (33)

Denote 𝑧
𝑛
= 𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇𝑦
𝑛
, then 𝑥

𝑛+1
= 𝑃
𝐶
𝑧
𝑛
.

From (17), we have

𝑥𝑛+1 − 𝑥
∗

2

=
𝑃𝐶𝑧𝑛 − 𝑥

∗

2

= ⟨𝑃
𝐶
𝑧
𝑛
− 𝑧
𝑛
, 𝑃
𝐶
𝑧
𝑛
− 𝑥
∗
⟩

+ ⟨𝑧
𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ ≤ ⟨𝑧

𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩
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= ⟨(𝐼 − 𝜇𝛼
𝑛
𝐵)𝑇𝑦
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇𝑥

∗

+𝛼
𝑛
(𝛾𝑉𝑥
𝑛
− 𝜇𝐵𝑥

∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
𝜏)

𝑦𝑛 − 𝑥
∗

𝑥𝑛+1 − 𝑥
∗

+ 𝛼
𝑛
⟨𝛾𝑉𝑥
𝑛
− 𝛾𝑉𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
𝜏) (

𝑥𝑛 − 𝑥
∗ + 𝛽

𝑛

𝑆𝑥
∗
− 𝑥
∗)

𝑥𝑛+1 − 𝑥
∗

+ 𝛼
𝑛
𝛾𝑙
𝑥𝑛 − 𝑥

∗

𝑥𝑛+1 − 𝑥
∗

+ 𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤
1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙)

2
(
𝑥𝑛 − 𝑥

∗

2

+
𝑥𝑛+1 − 𝑥

∗

2

)

+ 𝛽
𝑛

𝑥𝑛+1 − 𝑥
∗

𝑆𝑥
∗
− 𝑥
∗

+ 𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩.

(34)

This implies that

𝑥𝑛+1 − 𝑥
∗

2

≤
1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙)

1 + 𝛼
𝑛
(𝜏 − 𝑙𝛾)

𝑥𝑛 − 𝑥
∗

2

+
2

1 + 𝛼
𝑛
(𝜏 − 𝛾𝑙)

× (𝛽
𝑛

𝑥𝑛+1 − 𝑥
∗

𝑆𝑥
∗
− 𝑥
∗

+𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩)

≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙))

𝑥𝑛 − 𝑥
∗

2

+ 2𝛽
𝑛
𝑀
2
+ 2𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩,

(35)

where 𝑀
2
= sup

𝑛
‖𝑥
𝑛+1

− 𝑥
∗
‖‖𝑆𝑥
∗
− 𝑥
∗
‖, 𝑛 ≥ 1. Put 𝛾

𝑛
=

𝛼
𝑛
(𝜏 − 𝑙𝛾), 𝛿

𝑛
= 2𝛽
𝑛
𝑀
2
+ 2𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩. It is

easy to see that lim sup
𝑛→∞

𝛿
𝑛
/𝛾
𝑛
≤ 0. Hence by Lemma 5,

the sequence {𝑥
𝑛
} converges strongly to 𝑥∗.

Remark 9. Let 𝑁 = 1 in Theorem 8; we can get Theorem 3.1
of [8].

Remark 10. Let 𝑁 = 1, 𝛾 = 1, 𝜇 = 1, 𝐵 = 𝐼 and 𝑉, be a
contraction inTheorem 8; it is easy to get the theorem of [10].

4. Cyclic Algorithm

In this section, we consider the cyclic algorithm of 𝑁

nonexpansive mappings 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑁
. Similarly, we can get

that the mapping 𝐺
𝑛
on 𝐶 defined by

𝐺
𝑛
𝑥 = 𝑃

𝐶
(𝛼
𝑛
𝛾𝑉 (𝑥) + (𝐼 − 𝛼

𝑛
𝜇𝐵)𝑇

[𝑛]
𝑈
𝑛
𝑥) ,

∀𝑥 ∈ 𝐶, 𝑛 ∈ N,
(36)

is a contraction, where 𝑇
[𝑛]

= 𝑇
𝑖
with 𝑖 = 𝑛(mod)𝑁 taking

values in {1, 2, . . . , 𝑁}.

Theorem 11. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space 𝐻, and let 𝑉 : 𝐶 → 𝐻 be an 𝑙-
Lipschitzian mapping with 𝑙 ≥ 0. Let 𝑁 ≥ 1 be an integer.
Let, for each 1 ≤ 𝑖 ≤ 𝑁, 𝑇

𝑖
: 𝐶 → 𝐶 be a nonexpansive

mapping and let 𝑆 : 𝐶 → 𝐶 be also nonexpansive. Assume the
set Ω = ⋂

𝑁

𝑖=1
Fix(𝑇
𝑖
) ̸= 0. Let 𝐵 : 𝐶 → 𝐻 be a 𝑘-Lipschitzian

continuous operator and 𝜂-strongly monotone with 𝑘 > 0,
𝜂 > 0, 0 < 𝜇 < 2𝜂/𝑘

2, and 0 < 𝛾 < 𝜇(𝜂−𝜇𝑘
2
/2)/𝑙 = 𝜏/𝑙. Given

𝑥
1
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by the following

algorithm:

𝑦
𝑛
= 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑥
𝑛
,

𝑥
𝑛+1

= 𝑃
𝐶
(𝛼
𝑛
𝛾𝑉𝑥
𝑛
+ (𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇
[𝑛]
𝑦
𝑛
) .

(37)

If {𝛼
𝑛
} and {𝛽

𝑛
} satisfy the following properties:

(i) {𝛼
𝑛
} ⊂ (0, 1), lim

𝑛→∞
𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞,

(ii) {𝛽
𝑛
} ⊂ [0, 1), lim

𝑛→∞
(𝛽
𝑛
/𝛼
𝑛
) = 0,

(iii) ∑∞
𝑛=1

|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞ and ∑∞

𝑛=1
|𝛽
𝑛+1

− 𝛽
𝑛
| < ∞.

Assume in addition that

𝑁

⋂

𝑖=1

Fix (𝑇
𝑖
) = Fix (𝑇

𝑁
𝑇
𝑁−1

⋅ ⋅ ⋅ 𝑇
2
𝑇
1
)

= Fix (𝑇
1
𝑇
𝑁
𝑇
𝑁−1

⋅ ⋅ ⋅ 𝑇
2
)

= ⋅ ⋅ ⋅ = Fix (𝑇
2
𝑇
1
𝑇
𝑁
⋅ ⋅ ⋅ 𝑇
3
) .

(38)

Then, {𝑥
𝑛
} converges strongly to 𝑥

∗
∈ Ω, which solves the

variational inequality (16).

Proof. The proof is divided into several steps.
Step 1. Show first that {𝑥

𝑛
} is bounded.

The proof of Step 1 is similar to that of Theorem 8.
Step 2. Show that

lim
𝑛→∞

𝑥𝑛+𝑁 − 𝑥
𝑛

 = 0. (39)

By (37), we have

𝑥𝑛+𝑁+1 − 𝑥
𝑛+1



≤
𝛼𝑛+𝑁𝛾𝑉𝑥𝑛+𝑁 + (𝐼 − 𝜇𝛼

𝑛+𝑁
𝐵)𝑇
[𝑛]
𝑦
𝑛+𝑁

−𝛼
𝑛
𝛾𝑉𝑥
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇
[𝑛]
𝑦
𝑛



≤ 𝛼
𝑛+𝑁

𝛾
𝑉𝑥𝑛+𝑁 − 𝑉𝑥

𝑛



+
(𝐼 − 𝜇𝛼

𝑛+𝑁
𝐵)𝑇
[𝑛]
𝑦
𝑛+𝑁

− (𝐼 − 𝜇𝛼
𝑛+𝑁

𝐵)𝑇
[𝑛]
𝑦
𝑛



+
(𝐼 − 𝜇𝛼

𝑛+𝑁
𝐵)𝑇
[𝑛]
𝑦
𝑛

− (𝐼 − 𝜇𝛼
𝑛
𝐵)𝑇
[𝑛]
𝑦
𝑛



+
𝛼𝑛+𝑁 − 𝛼

𝑛

 𝛾
𝑉𝑥𝑛
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≤ 𝛼
𝑛+𝑁

𝛾𝑙
𝑥𝑛+𝑁 − 𝑥

𝑛



+ (1 − 𝛼
𝑛+𝑁

𝜏)
𝑦𝑛+𝑁 − 𝑦

𝑛



+
𝛼𝑛+𝑁 − 𝛼

𝑛

 (𝛾𝑙
𝑉𝑥𝑛

 + 𝜇
𝐵𝑇[𝑛]𝑦𝑛

) .

(40)

Observe that
𝑦𝑛+𝑁 − 𝑦

𝑛



=
𝛽𝑛+𝑁𝑆𝑥𝑛+𝑁 + (1 − 𝛽

𝑛+𝑁
) 𝑥
𝑛+𝑁

−𝛽
𝑛
𝑆𝑥
𝑛
− (1 − 𝛽

𝑛
) 𝑥
𝑛



≤
𝛽𝑛+𝑁𝑆𝑥𝑛+𝑁 − 𝛽

𝑛+𝑁
𝑆𝑥
𝑛



+
(1 − 𝛽

𝑛+𝑁
) 𝑥
𝑛+𝑁

− (1 − 𝛽
𝑛+𝑁

) 𝑥
𝑛



+
𝛽𝑛+𝑁𝑆𝑥𝑛 − 𝛽

𝑛
𝑆𝑥
𝑛



+
(1 − 𝛽

𝑛+𝑁
) 𝑥
𝑛
− (1 − 𝛽

𝑛
) 𝑥
𝑛



≤ 𝛽
𝑛+𝑁

𝑥𝑛+𝑁 − 𝑥
𝑛



+ (1 − 𝛽
𝑛+𝑁

)
𝑥𝑛+𝑁 − 𝑥

𝑛



+
𝛽𝑛+𝑁 − 𝛽

𝑛



𝑆𝑥𝑛
 +

𝛽𝑛+𝑁 − 𝛽
𝑛



𝑥𝑛


=
𝑥𝑛+𝑁 − 𝑥

𝑛



+
𝛽𝑛+𝑁 − 𝛽

𝑛

 (
𝑆𝑥𝑛

 +
𝑥𝑛

) .

(41)

Together with (40) and (41), we have

𝑥𝑛+𝑁+1 − 𝑥
𝑛+1



≤ 𝛼
𝑛+𝑁

𝛾𝑙
𝑥𝑛+𝑁 − 𝑥

𝑛



+
𝛼𝑛+𝑁 − 𝛼

𝑛

 (𝛾𝑙
𝑉𝑥𝑛

 + 𝜇
𝐵𝑇[𝑛]𝑦𝑛

)

+ (1 − 𝛼
𝑛+𝑁

𝜏)
𝑥𝑛+𝑁 − 𝑥

𝑛



+
𝛽𝑛+𝑁 − 𝛽

𝑛

 (
𝑆𝑥𝑛

 +
𝑥𝑛

)

= (1 − 𝛼
𝑛+𝑁

(𝜏 − 𝛾𝑙))
𝑥𝑛+𝑁 − 𝑥

𝑛



+
𝛼𝑛+𝑁 − 𝛼

𝑛

 (𝛾𝑙
𝑉𝑥𝑛

 + 𝜇
𝐵𝑇[𝑛]𝑦𝑛

)

+
𝛽𝑛+𝑁 − 𝛽

𝑛

 (
𝑆𝑥𝑛

 +
𝑥𝑛

)

≤ (1 − 𝛼
𝑛+𝑁

(𝜏 − 𝛾𝑙))
𝑥𝑛+𝑁 − 𝑥

𝑛



+ (
𝛼𝑛+𝑁 − 𝛼

𝑛

 +
𝛽𝑛+𝑁 − 𝛽

𝑛

)𝑀3,

(42)

where𝑀
3
= sup

𝑛
{‖𝛾𝑙𝑉𝑥

𝑛
‖ + 𝜇‖𝐵𝑇

[𝑛]
𝑦
𝑛
‖ + ‖𝑆𝑥

𝑛
‖ + ‖𝑥

𝑛
‖}.

By Lemma 5, we get

𝑥𝑛+𝑁 − 𝑥
𝑛

 → 0. (43)

Step 3. Show that

𝑥𝑛 − 𝑇
[𝑛+𝑁−1]

𝑇
[𝑛+𝑁−2]

⋅ ⋅ ⋅ 𝑇
[𝑛]
𝑥
𝑛

 → 0. (44)

Observe that
𝑥𝑛+1 − 𝑇

[𝑛]
𝑦
𝑛



=
𝑃𝐶 (𝛼𝑛𝛾𝑉𝑥𝑛 + (𝐼 − 𝜇𝛼

𝑛
) 𝐵𝑇
[𝑛]
𝑦
𝑛
) − 𝑃
𝐶
𝑇
[𝑛]
𝑦
𝑛



≤ 𝛼
𝑛

𝛾𝑉𝑥𝑛 − 𝜇𝐵𝑇
[𝑛]
𝑦
𝑛

 → 0.

(45)

From conditions (i) and (ii) of Theorem 11, we obtain
𝑥𝑛+1 − 𝑇

[𝑛]
𝑥
𝑛



≤
𝑥𝑛+1 − 𝑇

[𝑛]
𝑦
𝑛

 +
𝑇[𝑛]𝑦𝑛 − 𝑇

[𝑛]
𝑥
𝑛



≤
𝑥𝑛+1 − 𝑇

[𝑛]
𝑦
𝑛

 +
𝑦𝑛 − 𝑥

𝑛



=
𝑥𝑛+1 − 𝑇

[𝑛]
𝑦
𝑛

 + 𝛽
𝑛

𝑆𝑥𝑛 − 𝑥
𝑛

 → 0.

(46)

Recursively,
𝑥𝑛+𝑁 − 𝑇

[𝑛+𝑁−1]
𝑥
𝑛+𝑁−1

 → 0,

𝑥𝑛+𝑁−1 − 𝑇
[𝑛+𝑁−2]

𝑥
𝑛+𝑁−2

 → 0.

(47)

Since every 𝑇
[𝑛]

is nonexpansive, it is easy to get
𝑇[𝑛+𝑁−1]𝑥𝑛+𝑁−1 − 𝑇

[𝑛+𝑁−1]
𝑇
[𝑛+𝑁−2]

𝑥
𝑛+𝑁−2

 → 0. (48)

Similarly, we obtain
𝑇[𝑛+𝑁−1]𝑇[𝑛+𝑁−2]𝑥𝑛+𝑁−2

−𝑇
[𝑛+𝑁−1]

𝑇
[𝑛+𝑁−2]

𝑇
[𝑛+𝑁−3]

𝑥
𝑛+𝑁−3

 → 0

...
𝑇[𝑛+𝑁−1]𝑇[𝑛+𝑁−2] ⋅ ⋅ ⋅ 𝑇[𝑛+1]𝑥𝑛+1

−𝑇
[𝑛+𝑁−1]

𝑇
[𝑛+𝑁−2]

⋅ ⋅ ⋅ 𝑇
[𝑛]
𝑥
𝑛

 → 0.

(49)

Thus we get
𝑥𝑛+𝑁 − 𝑇

[𝑛+𝑁−1]
⋅ ⋅ ⋅ 𝑇
[𝑛]
𝑥
𝑛



≤
𝑥𝑛+𝑁 − 𝑇

[𝑛+𝑁−1]
𝑥
𝑛+𝑁−1



+
𝑇[𝑛+𝑁−1]𝑥𝑛+𝑁−1

−𝑇
[𝑛+𝑁−1]

𝑇
[𝑛+𝑁−2]

𝑥
𝑛+𝑁−2



+ ⋅ ⋅ ⋅ +
𝑇[𝑛+𝑁−1]𝑇[𝑛+𝑁−2] ⋅ ⋅ ⋅ 𝑇[𝑛+1]𝑥𝑛+1

−𝑇
[𝑛+𝑁−1]

⋅ ⋅ ⋅ 𝑇
[𝑛]
𝑥
𝑛

 → 0.

(50)

Since
𝑥𝑛 − 𝑇

[𝑛+𝑁−1]
𝑇
[𝑛+𝑁−2]

⋅ ⋅ ⋅ 𝑇
[𝑛]
𝑥
𝑛



≤
𝑥𝑛 − 𝑥

𝑛+𝑁

 +
𝑥𝑛+𝑁 − 𝑇

[𝑛+𝑁−1]
⋅ ⋅ ⋅ 𝑇
[𝑛]
𝑥
𝑛

 ,

(51)

we obtain (44).

Step 4. Show that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩ ≤ 0, (52)
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where 𝑥∗ = 𝑃
Ω
(𝐼 − 𝜇𝐵 + 𝛾𝑉)𝑥

∗ is a unique solution of the
variational inequality (16).

Indeed, take a subsequence {𝑥
𝑛𝑗
} of {𝑥

𝑛
} such that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= lim
𝑗→∞

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥
𝑛𝑗
− 𝑥
∗
⟩.

(53)

Since {𝑥
𝑛𝑗
} is bounded, there exists a subsequence {𝑥

𝑛𝑗𝑘

} of
{𝑥
𝑛𝑗
}which converges weakly to 𝑥. Without loss of generality,

we can assume 𝑥
𝑛𝑗
⇀ 𝑥 and


𝑥
𝑛𝑗
− 𝑇
[𝑛𝑗+𝑁−1]

𝑇
[𝑛𝑗+𝑁−2]

⋅ ⋅ ⋅ 𝑇
[𝑛𝑗]

𝑥
𝑛𝑗


→ 0. (54)

Notice that, for each 𝑛
𝑗
,𝑇
[𝑛𝑗+𝑁−1]

𝑇
[𝑛𝑗+𝑁−2]

⋅ ⋅ ⋅ 𝑇
[𝑛𝑗]

is some
permutation of the mappings 𝑇

1
𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑁
. Since 𝑇

1
𝑇
2
⋅ ⋅ ⋅ 𝑇
𝑁

are finite, all the finite permutations are 𝑁!; there must be
some permutation that appears infinite times.Without loss of
generality, we can assume this permutation is 𝑇

𝑁
𝑇
𝑁−1

⋅ ⋅ ⋅ 𝑇
1
.

We obtain

𝑥
𝑛𝑗
− 𝑇
𝑁
𝑇
𝑁−1

⋅ ⋅ ⋅ 𝑇
1
𝑥
𝑛𝑗


→ 0. (55)

Obviously, 𝑇
𝑁
𝑇
𝑁−1

⋅ ⋅ ⋅ 𝑇
1
is nonexpansive. By Lemma 7,

we have 𝑥 = 𝑇
𝑁
𝑇
𝑁−1

⋅ ⋅ ⋅ 𝑇
1
𝑥. Further by the assumption in

Theorem 11, we get

𝑥 ∈ Fix (𝑇
𝑁
𝑇
𝑁−1

⋅ ⋅ ⋅ 𝑇
1
) =

𝑁

⋂

𝑖=1

Fix (𝑇
𝑖
) . (56)

Since 𝑥∗ = 𝑃
Ω
(𝐼 − 𝜇𝐵 + 𝛾𝑉)𝑥

∗, it follows that

lim sup
𝑛→∞

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

= lim
𝑗→∞

⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥
𝑛𝑗
− 𝑥
∗
⟩

= ⟨(𝛾𝑉 − 𝜇𝐵) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≤ 0.

(57)

Step 5. Show that

𝑥
𝑛
→ 𝑥
∗
. (58)

Denote 𝑧
𝑛
= 𝛼
𝑛
𝛾𝑉𝑥
𝑛
+(𝐼−𝜇𝛼

𝑛
𝐵)𝑇
[𝑛]
𝑦
𝑛
; then 𝑥

𝑛+1
= 𝑃
𝐶
𝑧
𝑛
.

From (37), we have
𝑥𝑛+1 − 𝑥

∗

2

=
𝑃𝐶𝑧𝑛 − 𝑥

∗

2

= ⟨𝑃
𝐶
𝑧
𝑛
− 𝑧
𝑛
, 𝑃
𝐶
𝑧
𝑛
− 𝑥
∗
⟩

+ ⟨𝑧
𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ ≤ ⟨𝑧

𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= ⟨(𝐼 − 𝜇𝛼
𝑛
𝐵)𝑇
[𝑛]
𝑦
𝑛
− (𝐼 − 𝜇𝛼

𝑛
𝐵)𝑇
[𝑛]
𝑥
∗

+𝛼
𝑛
(𝛾𝑉𝑥
𝑛
− 𝜇𝐵𝑥

∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
𝜏)

𝑦𝑛 − 𝑥
∗

𝑥𝑛+1 − 𝑥
∗

+ 𝛼
𝑛
⟨𝛾𝑉𝑥
𝑛
− 𝛾𝑉𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
𝜏) (

𝑥𝑛 − 𝑥
∗ + 𝛽

𝑛

𝑆𝑥
∗
− 𝑥
∗)

×
𝑥𝑛+1 − 𝑥

∗ + 𝛼
𝑛
𝛾𝑙
𝑥𝑛 − 𝑥

∗

𝑥𝑛+1 − 𝑥
∗

+ 𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤
1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙)

2
(
𝑥𝑛 − 𝑥

∗

2

+
𝑥𝑛+1 − 𝑥

∗

2

)

+ 𝛽
𝑛

𝑥𝑛 − 𝑥
∗

𝑆𝑥
∗
− 𝑥
∗

+ 𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩.

(59)

This implies that
𝑥𝑛+1 − 𝑥

∗

2

≤
1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙)

1 + 𝛼
𝑛
(𝜏 − 𝛾𝑙)

𝑥𝑛 − 𝑥
∗

2

+
2

1 + 𝛼
𝑛
(𝜏 − 𝛾𝑙)

× (𝛽
𝑛

𝑥𝑛 − 𝑥
∗

𝑆𝑥
∗
− 𝑥
∗

+𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩)

≤ (1 − 𝛼
𝑛
(𝜏 − 𝛾𝑙))

𝑥𝑛 − 𝑥
∗

2

+ 2𝛽
𝑛
𝑀
1
+ 2𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩,

(60)

where𝑀
1
= sup

𝑛
‖𝑥
𝑛
−𝑥
∗
‖‖𝑆𝑥
∗
−𝑥
∗
‖, 𝑛 ≥ 1. Put 𝛾

𝑛
= 𝛼
𝑛
(𝜏 −

𝑙𝛾), 𝛿
𝑛
= 2𝛽
𝑛
𝑀
1
+ 2𝛼
𝑛
⟨𝛾𝑉𝑥
∗
− 𝜇𝐵𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩. It is easy

to see that lim sup
𝑛→∞

𝛿
𝑛
/𝛾
𝑛
≤ 0. Hence, by Lemma 6, the

sequence {𝑥
𝑛
} converges strongly to 𝑥∗.

5. Numerical Result

In this section, we consider the following simple example to
demonstrate the effectiveness, realization, and convergence of
the algorithms inTheorems 8 and 11.

Example 12. Let𝐻 = R,𝐶 = [1/4, +∞). Define𝑇
1
: 𝑥 → √𝑥,

𝑇
2
: 𝑥 → 𝑥 + 𝜋/4 − arctan𝑥, 𝑆 : 𝑥 → sin𝑥. Take 𝐵 = 𝐼 with

Lipschitz constant 𝑘 = 1 and strongly monotone constant 𝜂 =

1, 𝑉𝑥 = 2𝑥, ∀𝑥 ∈ 𝐻, with Lipschitz coefficient 𝑙 = 2. Give the
parameters 𝛼

𝑛
= 1/2𝑛; 𝛽

𝑛
= 1/𝑛

2 for every 𝑛 ≥ 1; fix 𝜇 = 1

and 𝛾 = 1/4. Then by Theorems 8 and 11, respectively, the
sequence {𝑥

𝑛
} is generated by

𝑦
𝑛
=

1

𝑛2
sin (𝑥

𝑛
) + (1 −

1

𝑛2
)𝑥
𝑛
,

𝑥
𝑛+1

= 𝑃
𝐶
(
1

4𝑛
𝑥
𝑛
+ (1 −

1

2𝑛
)𝑇𝑦
𝑛
) ,

(61)

𝑦
𝑛
=

1

𝑛2
sin (𝑥

𝑛
) + (1 −

1

𝑛2
)𝑥
𝑛
,

𝑥
𝑛+1

= 𝑃
𝐶
(
1

4𝑛
𝑥
𝑛
+ (1 −

1

2𝑛
)𝑇
[𝑛]
𝑦
𝑛
) .

(62)

As 𝑛 → ∞, we have {𝑥
𝑛
} → 𝑥

∗
= 1.
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Table 1: 𝑥
1
= 2.

𝑛 (iterative number) 𝑥
𝑛
(iterative point) Errors (𝑛)

50 0.9901 9.9 × 10−3

500 0.9990 9.9852 × 10−4

2000 0.9999 9.9985 × 10−5

Table 2: 𝑥
1
= 2.

𝑛 (iterative number) 𝑥
𝑛
(iterative point) Errors (𝑛)

50 0.9902 9.8 × 10−3

500 0.9990 9.9814 × 10−4

2000 0.9999 9.9981 × 10−5

Let 𝜔
𝑖
= 1/2, 𝑖 = 1, 2; then we have 𝑇𝑥 = (1/2)(√𝑥 + 𝑥 +

𝜋/4 − arctan𝑥), 𝑇
[𝑛]
𝑥 = √𝑥 if 𝑛 is odd and 𝑇

[𝑛]
𝑥 = 𝑥 + 𝜋/4 −

arctan𝑥 if 𝑛 is even. Put 𝑧
𝑛
= (1/4𝑛)𝑥

𝑛
+ (1 − 1/2𝑛)𝑇𝑦

𝑛
; then

(61) is equivalent to

𝑥
𝑛+1

=

{{

{{

{

𝑧
𝑛
, if 𝑧

𝑛
∈ 𝐶,

1

4
, if 𝑧

𝑛
∈𝐶.

(63)

Using the same method to treat (62), we can get similar
equation as the above formula.

Now we turn to numerical simulation using the algo-
rithms (17) and (37), respectively. Take the initial guess 𝑥

1
=

2; using software Matlab R2012, we obtain the numerical
experiment results in Tables 1 and 2.

From the computer programming point of view, the
algorithms are easier to implement in this paper.
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