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The class of biconservative surfaces in Euclidean 3-space E3 are defined in (Caddeo et al., 2012) by the equation 𝐴(grad𝐻) =

−𝐻 grad𝐻 for the mean curvature function 𝐻 and the Weingarten operator 𝐴. In this paper, we consider the more general case
that surfaces in E3 satisfying 𝐴(grad𝐻) = 𝑘𝐻 grad𝐻 for some constant 𝑘 are called generalized bi-conservative surfaces. We
show that this class of surfaces are linear Weingarten surfaces. We also give a complete classification of generalized bi-conservative
surfaces in E3.

1. Introduction

Let 𝑥 : 𝑀
𝑛

→ E𝑚 be an isometric immersion of a subman-
ifold 𝑀

𝑛 into Euclidean (pseudo-Euclidean) space E𝑚. We
denote by 𝑥,󳨀→𝐻, andΔ the position vector, themean curvature
vector field, and the Laplace operator of 𝑀

𝑛, respectively,
with respect to the induced metric. The submanifold 𝑀

𝑛 in
E𝑚 is said to biharmonic if it satisfies the equation Δ

2
𝑥 =

0. According to the well-known Betrami’s formula Δ𝑥 =

−𝑛
󳨀→
𝐻, the biharmonic condition in Euclidean space E𝑚 is also

known as the equation Δ
󳨀→
𝐻 = 0.

There is a well-known conjecture of Chen [1].

Chen’s Conjecture. The only biharmonic submanifolds of
Euclidean spaces are the minimal ones.

This conjecture has been proved by some geometers for
some special cases. For example, Chen proved that every
biharmonic surface in the Euclidean 3-space E3 is minimal.
Hasanis and Vlachos [2] proved that every biharmonic
hypersurface in E4 is minimal, also see [3]. For the general
case, the conjecture is still open so far.

The study of biharmonic submanifolds is nowadays a
very active research subject. Many interesting results on
biharmonic maps and submanifolds have been obtained in
the last decade, see [1–13].

Very recently, Caddeo et al. introduced the notion of
biconservative submanifolds in [14], which is a natural

generalization of biharmonic submanifolds. It is interesting
that biconservative submanifolds form a much bigger family
of submanifolds including biharmonic submanifolds.

Recall a well-known result; see, for instance, [3].

TheoremA. Let𝜙 : 𝑀
𝑛

→ E𝑛+1 be a hypersurfacewithmean
curvature vector 󳨀→𝐻 = 𝐻𝜉. Then, 𝜙 is biharmonic if and only if
the following equations hold:

Δ𝐻 − 𝐻|𝐴|
2
= 0,

2𝐴 (grad𝐻) + 𝑛𝐻 grad𝐻 = 0,

(1)

where 𝐴 is the shape operator of the hypersurface with respect
to the unit normal vector 𝜉.

Following the definition of Caddeo et. al. in [14], a hyper-
surface𝑀𝑛 in an (𝑛+1)-dimensional Euclidean space E𝑛+1 is
called biconservative if

2𝐴 (grad𝐻) + 𝑛𝐻 grad𝐻 = 0. (2)

In general, a submanifold is biconservative if the divergence
of the stress bienergy tensor vanishes.

In 1995, Hasanis and Vlachos, in [2], firstly studied
biconservative hypersurfaces, which are also called 𝐻-
hypersurfaces. The authors gave a classification of bicon-
servative hypersurfaces in Euclidean 3-spaces and 4-spaces.
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Recently, Caddeo et al. [14] investigated biconservative sur-
faces in the three-dimensional Riemannian space forms.
Moreover, they proved that a biconservative surface in
Euclidean 3-space is either a CMC (constantmean curvature)
surface or a surface of revolution. This class of surfaces carry
some interesting geometry. It was proved in [14] that the
mean curvature function 𝐻 of a non-CMC biconservative
surface in a three-dimensional space form 𝑀

3
(𝑐) satisfies the

following relation:

𝐾 = −3𝐻
2
+ 𝑐, (3)

where 𝐾 and 𝐻 denote the Gaussian curvature and mean
curvature of the surfaces, respectively. Clearly, the foremen-
tioned relation implies that all the biconservative surfaces in
the Euclidean 3-space are linear Weingarten surfaces.

A surface is called a Weingarten surface if there exists
the Jacobi equation Ψ(𝐻,𝐾) = 0 between the Gaussian
curvature 𝐾 and the mean curvature 𝐻 on the surface.
Weingarten surfaces were introduced by Weingarten in 1861
in the context of the problem of finding all surfaces isometric
to a given surface of revolution. Along the history, they have
been of interest for geometers. There is a great amount of
literature on Weingarten surfaces, beginning with works of
Chern, Hartman, Winter, and Hopf in the fifties of the last
century. For a long time, many geometers tried to look for
examples of linearWeingarten surfaces, for example, see [10].

For surfaces in E3, the biconservative condition is equiv-
alent to the equation

𝐴 (grad𝐻) = −𝐻 grad𝐻. (4)

Observe from [14] that the forementioned equation corre-
sponds to a class of linearWeingarten surfaces, which include
CMC surfaces and a family of surfaces of revolution. From
the view of equation, a natural idea is to extend this class of
surfaces in order to search for more examples of Weingarten
surfaces of revolution. Hence, from the view of geometry, we
propose to study the surfaces in E3 satisfying a more general
equation:

𝐴 (grad𝐻) = 𝑘𝐻 grad𝐻, 𝑘 ∈ R. (5)

We would like to call this new class of surfaces is generalized
biconservative surfaces.

In this note, we focus on the equation and study this class
of surfaces in E3. Precisely, we will prove that any general-
ized biconservative surface in Euclidean 3-space is a linear
Weingarten surface satisfying a more general relation 𝐾 =

𝑐𝐻
2 for some constant 𝑐. A local classification of generalized

biconservative surfaces in E3 is also obtained. Note that our
method is slightly different from the method developed by
Caddeo et al. in [14].

2. Preliminaries

Let 𝑥 : 𝑀 → E3 be an isometric immersion of a surface
𝑀 into E3. Denote the Levi-Civita connections of 𝑀 and E3

by ∇ and ∇̃, respectively. Let 𝑋 and 𝑌 denote vector fields

tangent to𝑀, and let 𝜉 be a normal vector field.TheGauss and
Weingarten formulas are given, respectively, by (cf. [8, 15])

∇̃
𝑋
𝑌 = ∇

𝑋
𝑌 + ℎ (𝑋, 𝑌) , (6)

∇̃
𝑋
𝜉 = −𝐴

𝜉
𝑋, (7)

where ℎ, 𝐴 are the second fundamental form and the shape
operator. It is well known that the second fundamental
form ℎ and the shape operator 𝐴 are related by

⟨ℎ (𝑋, 𝑌) , 𝜉⟩ = ⟨𝐴
𝜉
𝑋,𝑌⟩ . (8)

The Gauss and Codazzi equations are given respectively by

⟨𝑅 (𝑋, 𝑌)𝑍,𝑊⟩ = ⟨ℎ (𝑌, 𝑍) , ℎ (𝑋,𝑊)⟩

− ⟨ℎ (𝑋, 𝑍) , ℎ (𝑌,𝑊)⟩ ,

(∇
𝑋
𝐴)𝑌 = (∇

𝑌
𝐴)𝑋,

(9)

where 𝑅 is the curvature tensor of the Levi-Civita connection
on 𝑀. The mean curvature vector field 󳨀→

𝐻 and the Gauss
curvature of 𝑀 are given respectively, by

󳨀→
𝐻 =

1

2
trace ℎ, 𝐾 = det𝐴. (10)

As known from the Introduction, a surface 𝑀 in E3 is
biconservative if the mean curvature function 𝐻 satisfies

𝐴 (grad𝐻) + 𝐻 grad𝐻 = 0. (11)

Motivated by the above equation for biconservative surfaces
in E3, we propose to the notion of generalized biconservative
surfaces in E3.

Definition 1. A surface 𝑀 in Euclidean 3-space E3 is called
generalized biconservative surface if the mean curvature
function 𝐻 and the Weingarten operator satisfy a equation

𝐴 (grad𝐻) = 𝑘𝐻 grad𝐻 (12)

for some 𝑘 ∈ R.

Note that this class of surfaces include all the biconserva-
tive surfaces as a subclass when 𝑘 = −1.

Clearly, all of the CMC surfaces in E3 are trivially gen-
eralized biconservative surfaces. This is also the case of
biconservative surfaces. We are interested in the case of non-
CMC surfaces in E3.

3. The Characterizations of Generalized
Biconservative Surfaces

In this section, let us focus on the situation of non-CMC
generalized biconservative surfaces in E3.

Suppose that grad𝐻 ̸= 0 on any point 𝑝 ∈ 𝑀. It follows
from (12) that grad𝐻 is a principal direction and 𝑘𝐻 is
the corresponding principal curvature. We can choose a
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local orthonormal frame field {𝑒
1
, 𝑒
2
} such that 𝑒

1
is paral-

lel to grad𝐻. Therefore, we have 𝑒
2
(𝐻) = 0. Since (12)

gives 𝐴𝑒
1
= 𝑘𝐻𝑒

1
, it follows that 𝐴𝑒

2
= (2 − 𝑘)𝐻𝑒

2
. Accord-

ing to the Gauss equation, the Gaussian curvature 𝐾 is given
by

𝐾 = 𝑘 (2 − 𝑘)𝐻
2
, (13)

which implies the following.

Theorem 2. The generalized biconservative surfaces in E3 are
linear Weingarten surfaces.

If we put ∇
𝑋
𝑒
1
= 𝜔(𝑋)𝑒

2
, then ∇

𝑋
𝑒
2
= −𝜔(𝑋)𝑒

1
. Using

the remark above, the Codazzi equation reduces to

2 (𝑘 − 1)𝐻𝜔 (𝑒
1
) = 0,

(2 − 𝑘) 𝑒
1
(𝐻) = 2 (𝑘 − 1)𝐻𝜔 (𝑒

2
) .

(14)

Since 𝐻 is nonconstant, from 𝑒
2
(𝐻) = 0,one has 𝑒

1
(𝐻) ̸= 0.

So, the second equation of (14) yields 𝑘 ̸= 1. Moreover, the
first equation of (14) implies that 𝜔(𝑒

1
) = 0. Without the loss

of generality, one assumes that 𝐻 > 0.
According to the second equation of (14), one divides it

into the following two cases.

Case A (𝑘 = 2). In this case, the surface is flat. Then, the
second equation of (14) yields 𝜔(𝑒

2
) = 0 as well. Choose

the local coordinates on 𝑀 as 𝜕/𝜕𝑠 = 𝑒
1
and 𝜕/𝜕𝑡 = 𝑒

2
.

By applying the Gauss and Weingarten formulas (6) and (7)
respectively, the immersion satisfies that

𝑥
𝑠𝑠

= 2𝐻𝜉,

𝑥
𝑠𝑡

= 0,

𝑥
𝑡𝑡

= 0,

(15)

(𝜉)𝑠 = −2𝐻
𝜕

𝜕𝑠
, (𝜉)𝑡 = 0. (16)

By solving the second and third equations of (15), we obtain
that

𝑥 = 𝑐
1
𝑡 + 𝛼 (𝑠) , (17)

for a constant vector 𝑐
1
and a curve 𝛼(𝑠) in E3. Substitute

(17) into the first equation of (15) and the first equation of (16),
respectively. Combining these equations, we obtain a three-
order differential equation as follows:

𝛼
󸀠󸀠󸀠

=
𝐻
󸀠

𝐻
𝛼
󸀠󸀠
− 4𝐻
2
𝛼
󸀠
. (18)

In order to solve the above equation, we introduce two
functions, 𝛽(𝑠) (vector-valued function) and 𝑢(𝑠),by
putting 𝛽 = 𝛼

󸀠 and 𝑢
󸀠

= 2𝐻. Note that 𝑢󸀠 is the nonzero
principal curvature and 𝑢

󸀠 is not constant.
Denote by “⋅” the derivative with respect to the new

variable 𝑢. With these symbols, (18) becomes

𝛽
⋅⋅
+ 𝛽 = 0, (19)

whose solution is given by

𝛽 (𝑠) = 𝑐
2
cos 𝑢 + 𝑐

3
sin 𝑢, (20)

where 𝑐
2
and 𝑐
3
are constant vectors in E3. Consequently, by

a suitable translation, the immersion 𝑥 is given by

𝑥 = 𝑐
1
𝑡 + 𝑐
2
∫

𝑠

cos 𝑢 𝑑𝑠 + 𝑐
3
∫

𝑠

sin 𝑢 𝑑𝑠. (21)

Considering the metric of surfaces, we may choose that

𝑐
1
= (1, 0, 0) , 𝑐

2
= (0, 1, 0) , 𝑐

3
= (0, 0, 1) . (22)

Hence, the surface can be expressed as

𝑥 (𝑠, 𝑡) = (𝑡, ∫

𝑠

cos 𝑢 (𝑠) 𝑑𝑠, ∫

𝑠

sin 𝑢 (𝑠) 𝑑𝑠) . (23)

Remark that the surface (23) is a cylinder, but not a circular
cylinder, since the curvature of the curve 𝛼 is not constant.

Case B (𝑘 ̸= 2, 1). Let 𝑢 = 𝐻
(2−𝑘)/(2𝑘−2). Since 𝜔(𝑒

1
) = 0,

it follows from the second equation of (14) that [𝑒
1
, 𝑢𝑒
2
] =

0. Therefore, there exist local coordinates (𝑠, 𝑡) on 𝑀 such
that 𝜕/𝜕𝑠 = 𝑒

1
and 𝜕/𝜕𝑡 = 𝑢𝑒

2
. Then, the metric tensor

of 𝑀 is given by

𝑔 = 𝑑𝑠
2
+ 𝑢
2
𝑑𝑡
2
. (24)

Since 𝑒
2
(𝐻) = 0, we have that 𝑢 = 𝐻

(2−𝑘)/(2𝑘−2) is a function
depending only on the variable 𝑠. Consequently, the Levi-
Civita connection ∇ is given by the expressions

∇
𝜕/𝜕𝑠

𝜕

𝜕𝑠
= 0, ∇

𝜕/𝜕𝑡

𝜕

𝜕𝑠
=

𝑢
󸀠

𝑢

𝜕

𝜕𝑡
, ∇

𝜕/𝜕𝑡

𝜕

𝜕𝑡
= −𝑢𝑢

󸀠 𝜕

𝜕𝑠
,

(25)

and the second fundamental form is given by

ℎ(
𝜕

𝜕𝑠
,
𝜕

𝜕𝑠
) = 𝑘𝑢

(2𝑘−2)/(2−𝑘)
𝜉, ℎ (

𝜕

𝜕𝑠
,
𝜕

𝜕𝑡
) = 0,

ℎ (
𝜕

𝜕𝑡
,
𝜕

𝜕𝑡
) = (2 − 𝑘) 𝑢

2/(2−𝑘)
𝜉.

(26)

Moreover, it follows from (25) and second fund form that the
Gauss andWeingarten formulas (6) and (7) yield, respectively

𝑥
𝑠𝑠

= 𝑘𝑢
(2𝑘−2)/(2−𝑘)

𝜉,

𝑥
𝑠𝑡

=
𝑢
󸀠

𝑢
𝑥
𝑡
,

𝑥
𝑡𝑡

= −𝑢𝑢
󸀠
𝑥
𝑠
+ (2 − 𝑘) 𝑢

2/(2−𝑘)
𝜉,

(27)

(𝜉)
𝑠
= −𝑘𝑢

(2𝑘−2)/(2−𝑘) 𝜕

𝜕𝑠
,

(𝜉)
𝑡
= − (2 − 𝑘) 𝑢

(2𝑘−2)/(2−𝑘) 𝜕

𝜕𝑡
.

(28)
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By (28), the compatibility condition of PDE system (27) is
given by

𝑢
󸀠󸀠
= −𝑘 (2 − 𝑘) 𝑢

(3𝑘−2)/(2−𝑘)
. (29)

Integrating on (29), we obtain

𝑢
󸀠2

+ (2 − 𝑘)
2
𝑢
2𝑘/(2−𝑘)

= 𝐶 (30)

for some integral constant 𝐶. Clearly, we have 𝐶 > 0 for
nonconstant function 𝑢. Solving the second equation of (27),
the immersion 𝑥 is given by

𝑥 = 𝑢 (𝑠) 𝑎 (𝑡) + 𝑏 (𝑠) (31)

for two vector-valued functions 𝑎(𝑡) and 𝑏(𝑠) in E3.

Case B.1 (𝑘 = 0). In this case, (27) and (28) become

𝑥
𝑠𝑠

= 0,

𝑥
𝑠𝑡

=
𝑢
󸀠

𝑢
𝑥
𝑡
,

𝑥
𝑡𝑡

= −𝑢𝑢
󸀠
𝑥
𝑠
+ 2𝑢𝜉,

(32)

(𝜉)𝑠 = 0, (𝜉)𝑡 = −2𝑢
−1 𝜕

𝜕𝑡
. (33)

It follows from (30) that

𝑢 = √𝐶 − 4𝑠 + 𝐶
1

(34)

for some constant 𝐶
1
, and 𝐶 > 4. Substituting (31) into the

first equation of (32), after a suitable translation, we obtain
the immersion

𝑥 (𝑠, 𝑡) = 𝑢 (𝑠) 𝑎 (𝑡) + 𝑐
1
𝑢 (𝑠) = 𝑢 (𝑠) 𝑎 (𝑡) , (35)

where 𝑎(𝑡) is another curve in E3. Substituting (35) into
the third equation of (32) and applying (33), we have the
following three-order differential equation:

𝑎
󸀠󸀠󸀠

(𝑡) + (𝑢
󸀠2

+ 4) 𝑎
󸀠
(𝑡) = 0. (36)

By (30), the solution of (36) is given by

𝑎 (𝑡) = 𝑐
2
cos (√𝐶𝑡) + 𝑐

3
sin (√𝐶𝑡) + 𝑐

4
(37)

for constant vector 𝑐
𝑖
, 𝑖 = 2, 3, 4 in E3. Hence, the immersion

becomes

𝑥 (𝑠, 𝑡) = 𝑢 (𝑠) 𝑎 (𝑡) + 𝑐
1
𝑢 (𝑠)

= 𝑢 (𝑠) (𝑐
2
cos (√𝐶𝑡) + 𝑐

3
sin (√𝐶𝑡) + 𝑐

4
) .

(38)

In view of the metric (24), one can obtain that 𝑐
2
, 𝑐
3
, 𝑐
4
are

mutual orthonormal and

⟨𝑐
2
, 𝑐
2
⟩ = ⟨𝑐

3
, 𝑐
3
⟩ =

1

𝐶
, ⟨𝑐

4
, 𝑐
4
⟩ =

4

𝐶 (𝐶 − 4)
. (39)

After choosing 𝑐
2
, 𝑐
3
, and 𝑐

4
as

𝑐
2
=

1

√𝐶
(1, 0, 0) , 𝑐

3
=

1

√𝐶
(0, 1, 0) ,

𝑐
4
=

2

√𝐶 (𝐶 − 4)

(0, 0, 1) ,

(40)

the immersion can be expressed as

𝑥 (𝑢, 𝑡) =
𝑢

√𝐶
(cos√𝐶𝑡, sin√𝐶𝑡,

2

√𝐶 − 4
) . (41)

Note that this surface is a cone.

Case B.2 (𝑘 ̸= 0, 1, 2). Substituting (31) into the first and third
equations of (27), we have

𝑢𝑎
󸀠󸀠
(𝑡) = − 𝑢𝑢

󸀠
(𝑢
󸀠
𝑎 (𝑡) + 𝑏

󸀠
(𝑠))

+
2 − 𝑘

𝑘
𝑢
2
(𝑢
󸀠󸀠
𝑎 (𝑡) + 𝑏

󸀠󸀠
(𝑠)) ,

(42)

which is equivalent to

𝑎
󸀠󸀠
(𝑡) = (−𝑢

󸀠2

+
2 − 𝑘

𝑘
𝑢𝑢
󸀠󸀠
)𝑎 (𝑡) − 𝑢

󸀠
𝑏
󸀠
(𝑠) +

2 − 𝑘

𝑘
𝑢𝑏
󸀠󸀠
(𝑠) .

(43)

Substituting (29) and (30) into the previous equation in
succession, we have

𝑎
󸀠󸀠
(𝑡) + 𝐶𝑎 (𝑡) = −𝑢

󸀠
𝑏
󸀠
(𝑠) +

2 − 𝑘

𝑘
𝑢𝑏
󸀠󸀠
(𝑠) . (44)

In view of (44), the two sides of the equation have different
variables, respectively. Hence, we have

𝑎
󸀠󸀠
(𝑡) + 𝐶𝑎 (𝑡) = 𝑐, (45)

−𝑢
󸀠
𝑏
󸀠
(𝑠) +

2 − 𝑘

𝑘
𝑢𝑏
󸀠󸀠
(𝑠) = 𝑐 (46)

for some constant vector 𝑐 in E3. Solving (45) gives

𝑎 (𝑡) = 𝑐
1
cos (√𝐶𝑡) + 𝑐

2
sin (√𝐶𝑡) +

1

𝐶
𝑐 (47)

for two constant vectors 𝑐
1
and 𝑐
2
in E3. Looking at (31), we

may assume that 𝑐 = 0. In fact, the immersion can be
rewritten as

𝑥 = 𝑢 (𝑠) 𝑎 (𝑡) + 𝑏 (𝑠) , (48)

where 𝑎(𝑡) = 𝑐
1
cos(√𝐶𝑡) + 𝑐

2
sin(√𝐶𝑡) and 𝑏(𝑠) = (1/

𝐶)𝑢(𝑠)𝑐 + 𝑏(𝑠). Hence, the immersion becomes

𝑥 = 𝑢 (𝑠) (𝑐
1
cos (√𝐶𝑡) + 𝑐

2
sin (√𝐶𝑡)) + 𝑏 (𝑠) . (49)

Solving (46) gives

𝑏
󸀠
(𝑠) = 𝑢

𝑘/(𝑘−2)
𝑐
3

(50)

for a constant vector 𝑐
3
.
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One can compute from (49) that

𝑥
𝑠
= 𝑢
󸀠
(𝑐
1
cos (√𝐶𝑡) + 𝑐

2
sin (√𝐶𝑡)) + 𝑢

𝑘/(𝑘−2)
𝑐
3
,

𝑥
𝑡
= √𝐶𝑢 (𝑠) (−𝑐1 sin (√𝐶𝑡) + 𝑐

2
cos (√𝐶𝑡)) .

(51)

It follows from the above expressions and themetric (24) that

⟨𝑐
1
, 𝑐
1
⟩ = ⟨𝑐

2
, 𝑐
2
⟩ =

1

𝐶
,

⟨𝑐
1
, 𝑐
2
⟩ = ⟨𝑐

1
, 𝑐
3
⟩ = ⟨𝑐

2
, 𝑐
3
⟩ = 0,

1

𝐶
𝑢
󸀠2

+ 𝑢
2𝑘/(𝑘−2)

⟨𝑐
3
, 𝑐
3
⟩ = 1.

(52)

Combining the previous expression (52) with (30) gives

⟨𝑐
3
, 𝑐
3
⟩ =

(2 − 𝑘)
2

𝐶
. (53)

After a change of the variable 𝑡, we can assume 𝐶 = 1. Hence,
the three vectors 𝑐

1
, 𝑐
2
, 𝑐
3
in E3 can be chosen as

𝑐
1
= (1, 0, 0) , 𝑐

2
= (0, 1, 0) , 𝑐

3
= (0, 0, 2 − 𝑘) .

(54)

Now, let us consider (50), which can be rewritten as

𝑏̇ (𝑢) 𝑢
󸀠
(𝑠) = 𝑢

𝑘/(𝑘−2)
𝑐
3
, (55)

where 𝑏̇ is the derivative of 𝑏 with respect to 𝑢. By applying
(30), (55) becomes

𝑏̇ (𝑢) = ±
1

√𝑢2𝑘/(𝑘−2) − (2 − 𝑘)
2

𝑐
3
. (56)

By solving (56)

𝑏 (𝑢) = ±𝑐
3
∫

𝑢
1

√𝑢2𝑘/(𝑘−2) − (2 − 𝑘)
2

𝑑𝑢 + 𝑐
4 (57)

for some constant vector 𝑐
4
in E3.

Combining (49) with (54) and (57), and by a suitable
translation, we obtain the immersion

𝑥 (𝑢, 𝑡) = (𝑢 cos 𝑡, 𝑢 sin 𝑡, 𝑓 (𝑢)) , (58)

where

𝑓 (𝑢) = ∫

𝑢
1

√(1/(2 − 𝑘)
2
) 𝑢2𝑘/(𝑘−2) − 1

𝑑𝑢. (59)

In this case, the immersion is a surface of revolution with
non-constant mean curvature.

In summary, we have the following classification result.

Theorem 3. Let 𝑥 : 𝑀 → E3 be a nondegenerate gener-
alized biconservative surface immersed in the 3-dimensional
Euclidean spaceE3.Then, the immersion 𝑥(𝑀) is either a CMC
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Figure 1: The non-CMC biconservative surfaces.

surface or locally given by one of the following three surfaces:
(1) a cylinder given by

𝑥 (𝑠, 𝑡) = (𝑡, ∫

𝑠

cos 𝑢 (𝑠) 𝑑𝑠, ∫

𝑠

sin 𝑢 (𝑠) 𝑑𝑠) , (60)

where the function 𝑢 satisfies 𝑢󸀠󸀠(𝑠) ̸= 0;
(2) a cone given by

𝑥 (𝑢, 𝑡) =
𝑢

√𝐶
(cos√𝐶𝑡, sin√𝐶𝑡,

2

√𝐶 − 4
) , (61)

where 𝐶 ∈ (4, +∞);
(3) a surface of revolution given by

𝑥 (𝑢, 𝑡) = (𝑢 cos 𝑡, 𝑢 sin 𝑡, 𝑓 (𝑢)) , (62)

where 𝑓 is defined as

𝑓 (𝑢) = ∫

𝑢
1

√(1/(2 − 𝑘)
2
) 𝑢2𝑘/(𝑘−2) − 1

𝑑𝑢 (63)

for 𝑘 ∈ (−∞, 0) ∪ (0, 1) ∪ (1, 2) ∪ (2, +∞).

4. Some Examples of Generalized
Biconservative Surfaces

In this section, we give some examples of generalized bicon-
servative surfaces (3) in Theorem 3, depending on different
values for 𝑘.

Example 1. In the case 𝑘 = −1, the function 𝑓(𝑢) can be
integrated as

𝑓 (𝑢) = ∫

𝑢
1

√(1/9) 𝑢
2/3 − 1

𝑑𝑢

=
9

2
(𝑢
1/3√𝑢2/3 − 9 + 9 ln (𝑢

1/3
+ √𝑢2/3 − 9)) + 𝐶

0

(64)
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for some integral constant 𝐶
0
. Hence, by a suitable trans-

lation, the non-CMC biconservative surface in E3 (see also
[14]) is given by

𝑥 (𝑢, 𝑡) = (𝑢 cos 𝑡, 𝑢 sin 𝑡, 𝑓 (𝑢)) , (65)

where 𝑓 is defined as

𝑓 (𝑢) =
9

2
(𝑢
1/3√𝑢2/3 − 9 + 9 ln (𝑢

1/3
+ √𝑢2/3 − 9)) . (66)

See Figure 1.

Example 2. For 𝑘 = −2, the function 𝑓(𝑢) can be integrated
as

𝑓 (𝑢) = ∫

𝑢
1

√(1/16) 𝑢 − 1

𝑑𝑢 = 8√𝑢 − 16 + 𝐶
1 (67)

for some integral constant 𝐶
1
and 𝑢 > 16. We have a

non-CMC generalized biconservative surface (after a suitable
translation) in E3, given by

𝑥 (𝑢, 𝑡) = (𝑢 cos 𝑡, 𝑢 sin 𝑡, 8√𝑢 − 16) . (68)
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