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We show that𝐶1-generically, if a volume-preserving diffeomorphism has the orbital shadowing property, then the diffeomorphism
is Anosov.

1. Introduction

In the differentiable dynamical systems, the shadowing the-
ory is a very useful notion for the investigation of the stability
condition. In fact, Robinson [1] and Sakai [2] proved that
a diffeomorphism belongs to the 𝐶1-interior of the set of
diffeomorphisms having the shadowing property coincides
the structurally stable; that is, the diffeomorphism satisfies
both Axiom A and the strong transversality condition. In
general, if a diffeomorphism is Ω-stable, that is, a diffeomor-
phism satisfies both Axiom A and the no-cycle condition,
then there is a diffeomorphism which does not have the
shadowing property. Indeed, let a diffeomorphism 𝑓 of
the two-dimensional torus T2. The nonwandering set Ω(𝑓)
consists of 4 hyperbolic fixed points, Ω(𝑓) = {𝑝

1
, 𝑝
2
, 𝑝
3
, 𝑝
4
},

where 𝑝
1
is a sink, 𝑝

4
is a source, and 𝑝

2
and 𝑝

3
are saddles

such that𝑊𝑠(𝑝
2
) ∪ {𝑝

3
} = 𝑊

𝑢
(𝑝
3
) ∪ {𝑝

2
}. It is assumed that

the eigenvalues of 𝐷
𝑝
2

𝑓 are −𝜇, ] with 𝜇 > 1, 0 < ] < 1 and
the eigenvalues of𝐷

𝑝
3

𝑓 are −𝜆, 𝜅with 𝜅 > 1, 0 < 𝜆 < 1.Then
𝑓 does not have the shadowing property. But it has the orbital
shadowing property (see [3]).

In this paper, we study the orbital shadowing property in
which it is clear that if a diffeomorphism has the shadowing
property, then it has the orbital shadowing property, but
the converse is not true. In fact, an irrational rotation map
does not have the shadowing property, but it has the orbital
shadowing property.

The orbital shadowing property was introduced by Pilyu-
gin et al. [3]. They showed that a diffeomorphism belongs to

the 𝐶1-interior of the set of all diffeomorphisms having the
orbital shadowing property if and only if the diffeomorphism
is structurally stable.

For a conservative diffeomorphism, Bessa and Rocha
proved in [4] that if a conservative diffeomorphismbelongs to
the 𝐶1-interior of the set of all topologically stable conserva-
tive diffeomorphisms, then it is Anosov. In [5], Bessa proved
that a conservative diffeomorphism is in the𝐶1-interior of the
set of all conservative diffeomorphisms having the shadowing
property if and only if it is Anosov. K. Lee and M. Lee
[6] proved that a conservative diffeomorphism is in the 𝐶1-
interior of the set of all conservative diffeomorphisms having
the orbital shadowing property if and only if it is Anosov. Our
result is a generalization of the result in [7].

Let 𝑀 be a closed 𝐶
∞ Riemannian manifold endowed

with a volume form 𝜔. Let 𝜇 denote the Lebesgue measure
associated to 𝜔, and let 𝑑 denote the metric induced on 𝑀

by the Riemannian structure. Denote by Diff
𝜇
(𝑀) the set

of diffeomorphisms which preserves the Lebesgue measure
𝜇 endowed with the 𝐶1 Whitney topology. We know that
every volume preserving diffeomorphism satisfyingAxiom𝐴

is Anosov (for more details, see [8]).
For 𝛿 > 0, a sequence of points {𝑥

𝑖
}
𝑏

𝑖=𝑎
(−∞ ≤ 𝑎 < 𝑏 ≤ ∞)

in𝑀 is called a 𝛿-pseudo-orbit of𝑓 if 𝑑(𝑓(𝑥
𝑖
), 𝑥
𝑖+1
) < 𝛿 for all

𝑎 ≤ 𝑖 ≤ 𝑏−1. We say that 𝑓 has the shadowing property if, for
every 𝜖 > 0, there is 𝛿 > 0, such that, for any 𝛿-pseudo-orbit
{𝑥
𝑖
}
𝑖∈Z of𝑓, there is a point 𝑦 ∈ 𝑀, such that, 𝑑(𝑓𝑖(𝑦), 𝑥

𝑖
) < 𝜖

for all 𝑖 ∈ Z. It is easy to see that𝑓has the shadowing property
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if and only if 𝑓𝑛 has the shadowing property for 𝑛 ∈ Z \ {0}.
For each 𝑥 ∈ 𝑀, letO

𝑓
(𝑥) be the orbit of 𝑓 through 𝑥; that is,

O
𝑓
(𝑥) = {𝑓

𝑛
(𝑥) : 𝑛 ∈ Z} . (1)

We say that 𝑓 has the orbital shadowing property if, for any
𝜖 > 0, there exists 𝛿 > 0, such that for any 𝛿-pseudo-orbit
𝜉 = {𝑥

𝑖
}
𝑖∈Z, we can find a point 𝑦 ∈ 𝑀 such that

O
𝑓
(𝑦) ⊂ 𝐵

𝜖
(𝜉) , 𝜉 ⊂ 𝐵

𝜖
(O
𝑓
(𝑦)) , (2)

where 𝐵
𝜖
(𝐴) denotes the 𝜖-neighborhood of a set 𝐴 ⊂ 𝑀. It

is easy to see that 𝑓 has the orbital shadowing property if and
only if 𝑓𝑛 has the orbital shadowing property for 𝑛 ∈ Z \ {0}.
LetΛ be a closed𝑓-invariant set.We say thatΛ is hyperbolic if
the tangent bundle 𝑇

Λ
𝑀 has a𝐷𝑓-invariant splitting 𝐸𝑠 ⊕ 𝐸𝑢

and there exist constants 𝐶 > 0 and 0 < 𝜆 < 1, such that

𝐷
𝑥
𝑓
𝑛
|
𝐸
𝑠

𝑥


≤ 𝐶𝜆
𝑛
,


𝐷
𝑥
𝑓
−𝑛
|
𝐸
𝑢

𝑥


≤ 𝐶𝜆
𝑛
, (3)

for all 𝑥 ∈ Λ and 𝑛 ≥ 0.
In [3], the authors proved that the 𝐶

1-interior of the
set of dissipative diffeomorphisms having the orbital shad-
owing property coincides with the set of structurally stable
diffeomorphisms. Note that if a diffeomorphism satisfies
structurally stable, then it is not Anosov in general, but the
converse is true.

We say that a subset G ⊂ Diff(𝑀) is residual if G
contains the intersection of a countable family of open and
dense subsets of Diff(𝑀); in this case,G is dense in Diff(𝑀).
A property “𝑃” is said to be 𝐶

1-generic if “𝑃” holds for
all diffeomorphisms which belong to some residual subset
of Diff(𝑀). We use the terminology “for 𝐶1-generic 𝑓” to
express that “there is a residual subsetG ⊂ Diff(𝑀) such that
for any 𝑓 ∈ G ⋅ ⋅ ⋅ .” The following is the main result in this
paper.

Theorem 1. For 𝐶1-generic 𝑓, if 𝑓 has the orbital shadowing
property, then 𝑓 is Anosov.

Let 𝑝 be a periodic point of 𝑓 with period 𝜋(𝑝). We
say that 𝑝 is an elementary point if 𝐷

𝑝
𝑓
𝜋(𝑝) eigenvalues are

multiplicatively independent overZ. Elementary points have
simple spectrum, and none of𝐷

𝑝
𝑓
𝜋(𝑝) eigenvalues are a root

of unity or equal to 1. For a periodic point 𝑝 of 𝑓, if we
consider dim𝑀 = 2, then we have three cases. Firstly, 𝑝
is a hyperbolic saddle, that is, real eigenvalues 𝜆

1
, 𝜆
2
with

𝜆
2
= 𝜆
−1

1
. Secondly, 𝑝 is an elliptic point; that is, nonreal

eigenvalues are conjugated and of norm one. Finally, 𝑝 is a
parabolic point; that is, eigenvalues equal 1 or−1. Note that the
first and second cases are robust under small perturbations.
Elementary elliptic points are associated with an irrational
rotation number. In [9], Robinson showed that if dim𝑀 = 2,
there is a residual set in Diff

𝜇
(𝑀) such that any elementary

in this residual displays all its elliptic points of elementary
type. In [10,Theorem 1.3], Newhouse showed that𝐶1-generic
volume-preserving diffeomorphisms in surfaces are Anosov,
or else the elliptical points are dense. Actually, Newhouse’s
proof is strongly supported in the symplectic structure. By

Newhouse [10] and Robinson [9], we give a problem as
follows: For 𝐶1 generic 𝑓 ∈ Diff

𝜇
(𝑀
2
), if 𝑓 has the orbital

shadowing property, then is it Anosov?

2. Proof of Theorems 1

Let𝑀 be as before, and let 𝑓 ∈ Diff
𝜇
(𝑀). Let Λ be a closed

𝑓-invariant set. We say that Λ is a transitive set if there is a
point 𝑥 ∈ Λ such that 𝑥 ∈ 𝜔

𝑓
(𝑥), where 𝜔

𝑓
(𝑥) is the omega-

limit set. If Λ = 𝑀, then we called that 𝑓 is transitive. We say
that 𝑝 ∈ 𝑃(𝑓) is a hyperbolic if 𝐷

𝑝
𝑓
𝜋(𝑝)

: 𝑇
𝑝
𝑀 → 𝑇

𝑝
𝑀 has

no eigenvalues of absolute value one. It is well known that if
𝑝 is a hyperbolic periodic point of 𝑓 with period 𝑘, then

𝑊
𝑠
(𝑝) = {𝑥 ∈ 𝑀 : 𝑓

𝑘𝑛
(𝑥) → 𝑝 as 𝑛 → ∞} ,

𝑊
𝑢
(𝑝) = {𝑥 ∈ 𝑀 : 𝑓

𝑘𝑛
(𝑥) → 𝑝 as 𝑛 → −∞}

(4)

are 𝐶1-injectively immersed submanifolds of 𝑀. Let 𝑞 be
a hyperbolic periodic point of 𝑓. We say that 𝑝 and 𝑞 are
homoclinically related if

𝑊
𝑠
(𝑝) ⋔ 𝑊

𝑢
(𝑞) ̸= 0, 𝑊

𝑢
(𝑝) ⋔ 𝑊

𝑠
(𝑞) ̸= 0. (5)

For given hyperbolic periodic points 𝑝 and 𝑞 of 𝑓, we write
𝑝 ∼ 𝑞 if 𝑝 and 𝑞 are homoclinically related. It is clear that
if 𝑝 ∼ 𝑞, then index(𝑝) = index(𝑞). The following result is
very useful to proveTheorem 1. Let𝑝 be a hyperbolic periodic
point. For 𝑥 ∈ 𝑀, we say that 𝑥 is a homoclinic point if
𝑊
𝑠
(𝑝) ⋔ 𝑊

𝑢
(𝑝). Denote by𝐻(𝑝, 𝑓) = 𝑊𝑠(𝑝) ⋔ 𝑊𝑢(𝑝).

Theorem 2 (see [11, Theorem 1.3]). There is a residual set
G
1
⊂ Diff

𝜇
(𝑀) such that, for any 𝑓 ∈ G

1
, 𝑓 is transitive.

Moreover,𝑀 is a unique homoclinic class.

We denote F
𝜇
(𝑀) by the set of diffeomorphisms 𝑓 ∈

Diff
𝜇
(𝑀) which has a 𝐶1-neighborhood U(𝑓) ⊂ Diff

𝜇
(𝑀)

such that for any 𝑔 ∈ U(𝑓), every periodic point of 𝑔 is
hyperbolic.

Very recently, Arbieto and Catalan [8] proved that every
volume preserving diffeomorphism inF

𝜇
(𝑀) is Anosov.

Theorem 3 (see [8, Theorem 1]). Every volume preserving
diffeomorphism inF

𝜇
(𝑀) is Anosov.

To prove Theorem 1, it is enough to show that 𝑓 ∈

F
𝜇
(𝑀). Let𝑝 be a hyperbolic periodic point of𝑓; there exists

𝜖(𝑝) > 0 such that, for any 𝑥 ∈ 𝑊𝑠
𝜖(𝑝)

(𝑝) and 𝑥 ∈ 𝑊𝑢
𝜖(𝑝)

(𝑝), we
know that

𝑑 (𝑓
𝑖
(𝑥) , 𝑓

𝑖
(𝑝)) ≤ 𝜖 (𝑝) , 𝑑 (𝑓

−𝑖
(𝑥) , 𝑓

−𝑖
(𝑝)) ≤ 𝜖 (𝑝) ,

(6)

for all 𝑖 ≥ 0. Then𝑊𝑠
𝜖(𝑝)

(𝑝) is called the local stable manifold
of𝑝, and𝑊𝑢

𝜖(𝑝)
(𝑝) is the local unstablemanifold of𝑝. It is clear

that𝑊𝑠
𝜖(𝑝)

(𝑝) ⊂ 𝑊
𝑠
(𝑝), and𝑊𝑢

𝜖(𝑝)
(𝑝) ⊂ 𝑊

𝑢
(𝑝).
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Lemma 4. Let 𝑓 ∈ G
1
, and let 𝑝, 𝑞 ∈ 𝑃

ℎ
(𝑓). If 𝑓 has the

orbital shadowing property, then

𝑊
𝑠
(𝑝) ∩ 𝑊

𝑢
(𝑞) ̸= 0, 𝑊

𝑢
(𝑝) ∩𝑊

𝑠
(𝑞) ̸= 0, (7)

where 𝑃
ℎ
(𝑓) is the set of all hyperbolic periodic points of 𝑓.

Proof. Let 𝑓 ∈ G
1
, and let 𝑝, 𝑞 ∈ 𝑃

ℎ
(𝑓) be hyperbolic

periodic points of 𝑓. Take 𝜖(𝑝) > 0 and 𝜖(𝑞) > 0 as before
with respect to 𝑝 and 𝑞. For simplicity, we may assume that
𝑓(𝑝) = 𝑝 and 𝑓(𝑞) = 𝑞. Take 𝜖 = min{𝜖(𝑝), 𝜖(𝑞)}. Let
0 < 𝛿 = 𝛿(𝜖) < 𝜖 be the number of the orbital shadowing
property of 𝑓 for 𝜖. Since 𝑓 is transitive, there exists 𝑥 ∈ 𝑀

such that 𝜔(𝑥) = 𝑀. Then there exist 𝑙
1
> 0 and 𝑙

2
> 0 such

that 𝑑(𝑓𝑙1(𝑥), 𝑝) < 𝛿 and 𝑑(𝑓𝑙2(𝑥), 𝑞) < 𝛿. We may assume
that 𝑙
2
= 𝑙
1
+ 𝑘 for some 𝑘 > 0. Then we get a finite 𝛿-pseudo-

orbit {𝑝, 𝑓𝑙1(𝑥), 𝑓𝑙1+1(𝑥), . . . , 𝑓𝑙2−1(𝑥), 𝑞}. Now we construct a
𝛿-pseudo orbit as follows: put (i) 𝑓𝑖(𝑝) = 𝑥

𝑖
for 𝑖 ≤ 0, (ii)

𝑓
𝑙
1
+𝑖
(𝑥) = 𝑥

1+𝑖
for 0 ≤ 𝑖 ≤ 𝑘 − 1, and (iii) 𝑓𝑙2+𝑖(𝑞) = 𝑥

𝑘+𝑖
for

𝑖 ≥ 0. Then

𝜉 = {. . . , 𝑝, 𝑝, 𝑥
0
(= 𝑝) , 𝑓

𝑙
1
(𝑥) , 𝑓

𝑙
1
+1
(𝑥) , . . . ,

𝑓
𝑙
1
+𝑘−1

(𝑥) , 𝑓
𝑙
2
(𝑥) (= 𝑞) , 𝑞, 𝑞, . . .}

= {. . . , 𝑥
−2
, 𝑥
−1
, 𝑥
0
(= 𝑝) , 𝑥

1
, 𝑥
2
, . . . ,

𝑥
𝑘−1

, 𝑥
𝑘
(= 𝑞) , 𝑥

𝑘+1
, . . . , } .

(8)

Since 𝑓 has the orbital shadowing property, there are points
𝑦 ∈ 𝑀 and 𝑗 ≥ 0, 𝑛 > 0 such that (i) 𝑓𝑗(𝑦) ∈ 𝐵

𝜖
(𝑥
0
) and

𝑓
−𝑖
(𝑓
𝑗
(𝑦)) ∈ 𝐵

𝜖
(𝑥
−𝑖
) for all 𝑖 ≥ 0; (ii) 𝑓𝑛(𝑦) ∈ 𝐵

𝜖
(𝑥
𝑘
) and

𝑓
𝑖
(𝑓
𝑛
(𝑦)) ∈ 𝐵

𝜖
(𝑥
𝑘+𝑖
) for all 𝑖 ≥ 0. Then

O
𝑓
(𝑦) ⊂ 𝐵

𝜖
(𝜉) , 𝜉 ⊂ 𝐵

𝜖
(O
𝑓
(𝑦)) , (9)

𝑓
𝑗
(𝑦) ∈ 𝑊

𝑢

𝜖
(𝑝), and 𝑓𝑛(𝑦) ∈ 𝑊𝑠

𝜖
(𝑞). Thus, O

𝑓
(𝑦) ∩ 𝑊

𝑢
(𝑝) ∩

𝑊
𝑠
(𝑞) ̸= 0.

The study of the Kupka-Smale systems within volume
preserving maps was developed by Robinson (see [1]).
We say that 𝑓 is Kupka-Smale if every periodic point
is hyperbolic and each invariant manifold has transverse
intersections. Denote by KS(𝑀) the set of Kupka-Smale
volume-preserving diffeomorphisms. It is well-known that
theKS(𝑀) is residual in Diff

𝜇
(𝑀).

Lemma 5. There is a residual set G
2
⊂ Diff

𝜇
(𝑀) such that,

for any 𝑓 ∈ G
2
, if 𝑓 has the orbital shadowing property, then

for any 𝑝, 𝑞 ∈ 𝑃
ℎ
(𝑓), index(p) = index(q).

Proof. Let G
2
= G
1
∩ KS(𝑀), and let 𝑓 ∈ G

2
. Suppose

that 𝑓 has the orbital shadowing property. Let 𝑝 and 𝑞 be
hyperbolic periodic points of 𝑓. To derive a contradiction,
we may assume that index(𝑝) ̸= index(𝑞). Then we know
that dim𝑊

𝑠
(𝑝) + dim𝑊

𝑢
(𝑞) < dim𝑀 or dim𝑊

𝑢
(𝑝) +

dim𝑊
𝑠
(𝑞) < dim𝑀. Assume that dim𝑊

𝑠
(𝑝)+dim𝑊

𝑢
(𝑞) <

dim𝑀. Since𝑓 is Kupka-Smale, we have𝑊𝑠(𝑝)∩𝑊𝑢(𝑞) = 0.
This is a contradiction by Lemma 4.

Remark 6. In dim(𝑀) = 2, the index is always constant, and
so these arguments cannot used in this low-dimensional case.

To prove our result, we use Franks’ lemmawhich is proved
in [12, Proposition 7.4].

Lemma 7. Let 𝑓 ∈ Diff1
𝜇
(𝑀), and let U(𝑓) be a 𝐶

1-
neighborhood of 𝑓 in Diff1

𝜇
(𝑀). Then there exist a 𝐶

1-
neighborhood U

0
(𝑓) ⊂ U(𝑓) of 𝑓 and 𝜖 > 0 such that if

𝑔 ∈ U
0
(𝑓), any finite 𝑓-invariant set 𝐸 = {𝑥

1
, . . . , 𝑥

𝑚
}, any

neighborhood 𝑈 of 𝐸, and any volume-preserving linear maps
𝐿
𝑗
: 𝑇
𝑥
𝑗

𝑀 → 𝑇
𝑔(𝑥
𝑗
)
𝑀 with ‖𝐿

𝑗
− 𝐷
𝑥
𝑗

𝑔‖ ≤ 𝜖 for all 𝑗 =

1, . . . , 𝑚, there is a conservative diffeomorphism 𝑔
1
∈ U(𝑓)

coinciding with 𝑓 on 𝐸 and out of 𝑈, and 𝐷
𝑥
𝑗

𝑔
1
= 𝐿
𝑗
for all

𝑗 = 1, . . . , 𝑚.

Denote by 𝑃(𝑓) the set of all periodic points of 𝑓. The
following was proved by [7]. Since the paper is still not
published yet, we give the proof for completeness.

Lemma 8. Let dim𝑀 ≥ 3, and let U(𝑓) be a 𝐶
1-

neighborhood of 𝑓. If 𝑝 ∈ 𝑃(𝑓) is not hyperbolic, then there
is 𝑔 ∈ U(𝑓) such that 𝑔 has two periodic points 𝑝

1
, 𝑝
2
∈ 𝑃
ℎ
(𝑓)

with different indices.

Proof. Let 𝑝 ∈ 𝑃(𝑓) be the nonhyperbolic periodic orbit of
period 𝜋 and 𝜖 > 0. By Pugh-Robinson’s closing lemma [13]
there is 𝑓

1
∈ Diff

𝜇
(𝑀), such that 𝑓

1
is arbitrarily 𝐶1-close to

𝑓, with 𝑞
1
∈ 𝑃(𝑓

1
) close to 𝑝 by closing some recurrent orbit,

since Poincaré recurrence almost every point is recurrent.
Moreover, since hyperbolicity holds open and is densely even
in the volume-preserving setting, 𝑝

2
can be chosen to be

hyperbolic. Let index(𝑝
2
) = 𝑖. After this perturbation (away

from the orbit of 𝑝
2
), we get 𝑓

1
∈ Diff

𝜇
(𝑀) such that 𝑓

1
has a

periodic orbit𝑝
1
close to𝑝, with period𝜋.We observe that𝑝

1

may not be the analytic continuation of 𝑝 and this is precisely
the case when 1 is an eigenvalue of the tangent map 𝐷𝑓𝜋(𝑝).
If 𝑝
1
is not hyperbolic take 𝑓

2
= 𝑓
1
. If 𝑝
1
is hyperbolic

for 𝐷𝑓𝜋
1
(𝑝
1
), then, since 𝑓

1
is arbitrarily 𝐶1-close to 𝑓, the

distance between the spectrum of 𝐷𝑓𝜋
1
(𝑝
1
) and the unitary

circle can be taken arbitrarily close to zero. This means that
we are in the presence of a veryweak hyperbolicity, that is, of a
𝛿-weak eigenvalue thus in a position to apply [12, Proposition
7.4] to obtain 𝑓

2
∈ Diff

𝜇
(𝑀), such that 𝑝

1
is a non-hyperbolic

periodic orbit. Moreover, this local perturbation can be done
far from the periodic point 𝑝

2
. Once again, we use [12,

Proposition 7.4] in order to obtain 𝑔 ∈ Diff
𝜇
(𝑀), such that

𝑝
1
∈ 𝑃(𝑔) is hyperbolic and index(𝑝

1
) ̸= 𝑖.

The following is a volume-preserving diffeomorphism
version of [14, Lemma 2.2].

Lemma 9. There is a residual set G
3
⊂ Diff

𝜇
(𝑀) such that,

for any 𝑓 ∈ G
3
, if for any 𝐶1-neighborhood U(𝑓) of 𝑓 there

is 𝑔 ∈ U(𝑓) such that 𝑔 has two hyperbolic periodic points
𝑝
𝑔
, 𝑞
𝑔
∈ 𝑃
ℎ
(𝑔)with different indices, then𝑓 has two hyperbolic

periodic points 𝑝, 𝑞 ∈ 𝑃
ℎ
(𝑓) with different indices.
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For any 𝛿 > 0, we say that 𝑝 ∈ 𝑃(𝑓) has a 𝛿-weak
eigenvalue if there is an eigenvalue 𝜆 of 𝐷𝑓𝜋(𝑝)(𝑝), such that,
(1 − 𝛿)

𝜋(𝑝)
< |𝜆| < (1 + 𝛿)

𝜋(𝑝), where 𝜋(𝑝) is the period of 𝑝.

Lemma 10. There is a residual set G
4
⊂ Diff

𝜇
(𝑀) such that

for any 𝑓 ∈ G
4
, if 𝑓 has the orbital shadowing property then

there is 𝛿 > 0 such that for any 𝑝 ∈ 𝑃(𝑓), 𝑝 does not have a
𝛿-weak eigenvalue.

Proof. Let G
4

= G
2
∩ G
3
, and let 𝑓 ∈ G

4
have the

orbital shadowing property. To derive a contradiction, we
may assume that there is 𝑝 ∈ 𝑃(𝑓) such that, for any 𝛿 > 0,
𝑝 has a 𝛿-weak eigenvalue. Then by Lemma 7, we can find ℎ
𝐶
1-close to 𝑓, such that 𝑝

ℎ
is not hyperbolic, where 𝑝

ℎ
is the

continuation of 𝑝. By Lemma 8, again using the Lemma 7,
we take 𝑔 𝐶

1-close to ℎ and also 𝐶
1-close to 𝑓 such that

𝑔 has two hyperbolic periodic points 𝑝
𝑔
, 𝑞
𝑔
∈ 𝑃
ℎ
(𝑔) with

index(𝑝
𝑔
) ̸= index(𝑞

𝑔
). Since 𝑓 ∈ G

6
, by Lemma 9, 𝑓 has two

hyperbolic periodic points, 𝑝, 𝑞, with index(𝑝) ̸= index(𝑞).
This is a contradiction by Lemma 5.

Lemma 11 (see [15, Lemma 5.1]). There is a residual set G
5
⊂

Diff
𝜇
(𝑀) such that, for any 𝑓 ∈ G

5
, for any 𝛿 > 0, if for any

𝐶
1-neighborhood U(𝑓), there is 𝑔 ∈ U(𝑓), such that for any

𝑝
𝑔
∈ 𝑃
ℎ
(𝑔), 𝑝

𝑔
has a 𝛿-weak eigenvalue, then 𝑝 ∈ 𝑃

ℎ
(𝑓) has a

2𝛿-weak eigenvalue.

Proof of Theorem 1. Let G
6
= G
4
∩ G
5
, and let 𝑓 ∈ G

6

have the orbital shadowing property. The proof is by a
contradiction; we may assume that 𝑓 ∉ F(𝑀). Then there
is a non-hyperbolic periodic point 𝑝

𝑔
for some 𝑔 𝐶

1-nearby
𝑓, such that 𝑝

𝑔
is 𝛿/2-weak eigenvalue. Then by Lemma 11,

𝑝 ∈ 𝑃(𝑓) has 𝛿-weak eigenvalue. This is a contradiction by
Lemma 10.
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