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Alternating direction implicit (ADI) schemes are proposed for the solution of the two-dimensional coupled nonlinear Schrödinger
equation.These schemes are of second- and fourth-order accuracy in space and second order in time.The resulting schemes in each
ADI computation step correspond to a block tridiagonal system which can be solved by using one-dimensional block tridiagonal
algorithm with a considerable saving in computational time. These schemes are very well suited for parallel implementation on
a high performance system with many processors due to the nature of the computation that involves solving the same block
tridiagonal systems with many right hand sides. Numerical experiments on one processor system are conducted to demonstrate
the efficiency and accuracy of these schemes by comparing them with the analytic solutions. The results show that the proposed
schemes give highly accurate results.

1. Introduction

In this paper, we consider the coupled nonlinear Schrödinger
equation
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with initial conditions
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and Dirichlet boundary conditions
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where Ω is a rectangular domain in R2. We assume that
Ω = [𝑎, 𝑏] × [𝑐, 𝑑], 𝜕Ω is the boundary ofΩ, (0, 𝑇] is the time
interval, and 𝑓
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are given sufficiently smooth functions. The two functions
𝜓(𝑥, 𝑦, 𝑡), 𝜙(𝑥, 𝑦, 𝑡) are representing the amplitudes of the two
circularly polarized waves. The values of 𝛼 vary over a wide
range; that is, 𝛼 ≥ 2/3 and 𝛼 ≤ 7 correspond to kerr
type electronic nonlinearity [1]. The physical significance of
system (1) can be seen in the transverse effects in nonlinear
optics. Since solitons interact like particles, the studies for
the interactions of solitons have been of both experimental
and theoretical interest. Many numerical methods have been
developed for solving the coupled nonlinear Schrödinger [2–
6]. Many published works for solving the two-dimensional
nonlinear Schrödinger equation are given in [7–11]. In this
work, we are going to derive an ADI method for solving the
two-dimensional coupled nonlinear Schrödinger equation.

In this paper, we derive two ADI schemes for solving the
two-dimensional coupled nonlinear Schrödinger system, one
is of second order in space and time directions, and the other
one is of fourth order in space and second order in time.
Both methods are producing a block nonlinear tridiagonal
system; a fixed point method has been developed to solve
this system.The proposed schemes are unconditionally stable
using Fourier stability analysis.

The ADI method [8–15], which replaces the solution
of multidimensional problems by sequences of one-dimen-
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sional cases, only needs to solve tridiagonal linear system
or block tridiagonal systems, and the resulting schemes are
unconditionally stable and received much attention in recent
years.

Following Biswas [16], we derive the soliton solution of
the system (1) which can be written as
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appendix). The system has the conserved quantities [15]

𝐼
1
= ∬

∞

−∞

𝜓


2

𝑑𝑥 𝑑𝑦 = constant, (7)

𝐼
2
= ∬

∞

−∞

𝜙


2

𝑑𝑥 𝑑𝑦 = constant. (8)

To avoid the complex computation, we assume

𝜓 = 𝑢
1
+ 𝑖𝑢
2
,

𝜙 = 𝑢
3
+ 𝑖𝑢
4
.

(9)

The system (1) can be written as
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where
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System (10) can be written in matrix vector form as
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The paper is organized as follows. In Section 2 we give
two ADI schemes for solving the two-dimensional coupled
nonlinear Schrödinger equation, and in Section 3, we present
the vonNeumann stability analysis for the proposed schemes.
Numerical experiments for several problems are presented in
Section 4. A parallel algorithm for the proposedADI schemes
is given in Section 5. Conclusions are given in Section 6.

2. Numerical Method

To derive the numerical schemes for solving system (1), we
consider the domain of interest Ω = [𝑎, 𝑏] × [𝑎, 𝑏], such that
(𝑥, 𝑦) ∈ Ω. The domain is divided by a uniformmesh in each
direction such that
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where ℎ and 𝑘 are the space and time step sizes, respectively.
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2.1. Second-Order ADIMethod. To derive the first scheme, we
approximate the space derivative using the central difference
formulae
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We apply (15) to system (12); this will lead us to the
following first order differential system in time
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Equation (16) is of second order in space.
By applying the Crank-Nicolsonmethod for the temporal

discretization, we get the following difference scheme with
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[𝐼 +
1

2
𝑟𝐴𝛿
2

𝑥
] [𝐼 +

1

2
𝑟𝐴𝛿
2

𝑦
]U𝑛+1
𝑙,𝑚

= [𝐼 −
1

2
𝑟𝐴𝛿
2

𝑥
] [𝐼 −

1

2
𝑟𝐴𝛿
2

𝑦
]U𝑛
𝑙,𝑚

− 𝑘𝐵 (U)U +
𝑟
2

4
{𝐴𝛿
2

𝑥
} {𝐴𝛿

2

𝑦
} (U𝑛+1
𝑙,𝑚

− U𝑛
𝑙,𝑚
) .

(20)

By Taylor’s expansion, the last term in (20) can be written
as
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By introducing a new intermediate vector U∗
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pose a D’Yakonov [12, 17] ADI-like scheme for the coupled
system
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which is a nonlinear scheme. An iterative algorithm of fixed
point nature can be used to solve the system of the nonlinear
equations (23)-(24). The fixed point that we propose can be
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where the superscript 𝑠 denotes the 𝑠th iterate for solving the
nonlinear system of equations for each time step. The block
tridiagonal matrix equations of (25) can be solved by Crout’s
method. The initial iterate U𝑛+1,0
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2.2. Fourth-Order ADI Method. Now, we want to derive a
highly accurate fourth order ADI scheme; to do this, we
approximate the space derivatives by the following formulas
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By using these approximations together with Crank-
Nicolson for the time direction, we get the numerical scheme
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which can be written as
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𝐴𝛿
2

𝑦
]U𝑛
𝑙,𝑚

− 𝑘 (1 +
1

12
𝛿
2

𝑥
)(1 +

1

12
𝛿
2

𝑦
)𝐵 (U)U.

(34)

The fourth-orderD’YakonovADI-like scheme in this case
can be displayed as

[(1 +
1

12
𝛿
2

𝑥
) 𝐼 +

𝑟

2
𝐴𝛿
2

𝑥
] U̇

= [(1 +
1

12
𝛿
2

𝑥
) 𝐼 −

𝑟

2
𝐴𝛿
2

𝑥
] [(1 +

1

12
𝛿
2

𝑦
) 𝐼 −

𝑟

2
𝐴𝛿
2

𝑦
]U𝑛
𝑙,𝑚

− 𝑘 (1 +
1

12
𝛿
2

𝑥
)(1 +

1

12
𝛿
2

𝑦
)𝐵 (U)U

(35)

[(1 +
1

12
𝛿
2

𝑦
) 𝐼 +

𝑟

2
𝐴𝛿
2

𝑦
]U𝑛+1
𝑙,𝑚

= U̇. (36)

Now the systems in (35) and (36) are nonlinear. By the
similar approach used in the previous scheme, we can derive
a fixed point iterative formulas.

The boundary value of the intermediate variable U̇
𝑙,𝑚

in
(35) can be given by the following formulas:

U̇
0,𝑚

= [(1 +
1

12
𝛿
2

𝑦
) 𝐼 +

𝑟

2
𝐴𝛿
2

𝑦
]U𝑛+1
0,𝑚

,

U̇
𝐿+1,𝑚

= [(1 +
1

12
𝛿
2

𝑦
) 𝐼 +

𝑟

2
𝐴𝛿
2

𝑦
]U𝑛+1
𝐿+1,𝑚

.

(37)

We can easily write a generalized version of D’Yakonov
ADI like method for solving the two-dimensional coupled
nonlinear Schrödinger system (1) as

[(1 + 𝜎𝛿
2

𝑥
) 𝐼 +

𝑟

2
𝐴𝛿
2

𝑥
] U̇

= [(1 + 𝜎𝛿
2

𝑥
) 𝐼 −

𝑟

2
𝐴𝛿
2

𝑥
] [(1 + 𝜎𝛿

2

𝑦
) 𝐼 −

𝑟

2
𝐴𝛿
2

𝑦
]U𝑛
𝑙,𝑚

− 𝑘 (1 + 𝜎𝛿
2

𝑥
) (1 + 𝜎𝛿

2

𝑦
) 𝐵 (U)U,

[(1 + 𝜎𝛿
2

𝑦
) 𝐼 +

𝑟

2
𝐴𝛿
2

𝑦
]U𝑛+1
𝑙,𝑚

= U̇
(38)

for arbitrary value of 𝜎, and for 𝜎 = 0, 𝜎 = 1/12 we recover
the second- and fourth-order schemes, respectively.

3. Stability Analysis

To study the stability of the proposed scheme, we consider the
vonNeumann stability analysis which can be only applied for
the linear finite difference scheme, so we consider the linear
version of the generalized scheme

[(1 + 𝜎𝛿
2

𝑥
) 𝐼 +

𝑟

2
𝐴𝛿
2

𝑥
] [(1 + 𝜎𝛿

2

𝑦
) 𝐼 +

𝑟

2
𝐴𝛿
2

𝑦
]U𝑛+1
𝑙,𝑚

= [(1 + 𝜎𝛿
2

𝑥
) 𝐼 −

𝑟

2
𝐴𝛿
2

𝑥
] [(1 + 𝜎𝛿

2

𝑦
) 𝐼 −

𝑟

2
𝐴𝛿
2

𝑦
]U𝑛
𝑙,𝑚

−
𝑘

2
𝜔 (1 + 𝜎𝛿

2

𝑥
) (1 + 𝜎𝛿

2

𝑦
)U,

(39)

where 𝜔 is constant and 𝜎 = 0, 1/12.



Abstract and Applied Analysis 5

0.8

0.6

0.4

0.2

0

|u
|

−10

−5

0

5

10

x 10

5

0

y

−10

−5

Figure 1: Single soliton 𝛽
1
= 𝜅
1
= 0.5, 𝛽

2
= 𝜅
2
= 1, 𝛼 = 1, 𝑡 = 0.

Suppose that the numerical solution can be expressed by
Fourier series, whose typical term is

U𝑛
𝑙,𝑚

= 𝐺
𝑛W𝑛 exp (𝑖𝛽

1
𝑙ℎ + 𝑖𝛽

2
𝑚ℎ) , (40)

where 𝑖 = √−1, 𝐺
𝑛 is the amplification matrix at time level

𝑛, and 𝛽
1
, 𝛽
2
are the wave numbers in 𝑥 and 𝑦 directions.

Substituting (40) into (39) will lead to the matrix equation

[𝐼 − 2𝑟𝜇
𝑥
𝐴] [𝐼 − 2𝑟𝜇

𝑦
𝐴]𝐺

= [𝐼 + 2𝑟𝜇
𝑥
𝐴] [𝐼 + 2𝑟𝜇

𝑦
𝐴] −

𝑘

2
𝜔 [𝐺 + 𝐼] ,

(41)

where

𝜇
𝑥
= sin2 (𝛽

1
𝑙ℎ) , 𝜇

𝑦
= sin2 (𝛽

2
𝑚ℎ) . (42)

The eigenvalues of the matrix 𝐺 are given by

eigenvalues of 𝐺 =

[1 + 2𝑖𝑟𝜇
𝑥
] [1 + 2𝑖𝑟𝜇

𝑦
] − (𝑘/2) 𝜔

[1 − 2𝑖𝑟𝜇
𝑥
] [1 − 2𝑖𝑟𝜇

𝑦
] + (𝑘/2) 𝜔

.

(43)

It can be easily shown that the modulus of the maximum
eigenvalue of the amplification matrix 𝐺 is less than one;
hence, the scheme is unconditionally stable according to the
von Neumann stability analysis.

4. Numerical Results

In this section, the efficiency and accuracy of the proposed
schemes will be tested by comparing with the exact solutions.
We will measure the accuracy of the proposed schemes using
the 𝐿
∞

norm. We compute the conserved quantity by using
the trapezoidal rule.

4.1. Example 1. In this example, we choose the initial condi-
tions from the exact solutions

𝜓 (𝑥, 𝑦, 𝑡) = 𝐴 sech (𝜉) exp (𝑖𝜂) ,

𝜙 (𝑥, 𝑦, 𝑡) = 𝐵 sech (𝜉) exp (𝑖𝜂) ,
(44)
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Figure 2: Single soliton 𝛽
1
= 𝜅
1
= 0.5, 𝛽

2
= 𝜅
2
= 1, 𝛼 = 1, 𝑡 = 1.

Table 1: Single soliton with 𝜎 = 0.

Iter 𝑇 ER 𝐼

0 0 0 24.99989
2 0.2 0.00435 25.00086
2 0.4 0.00886 25.00291
2 0.6 0.01365 25.00586
2 0.8 0.01893 25.00973
2 1.0 0.02439 25.01458

where

𝜉 = 𝛽
1
𝑥 + 𝛽
2
𝑦 − V𝑡, 𝜂 = −𝜅

1
𝑥 − 𝜅
2
𝑦 + 𝜔𝑡 + 𝜃,

𝐴 = 𝐵 = [
2𝛿(𝛽
2

1
+ 𝛽
2

2
)

(1 + 𝛼)
]

1/2

,

(45)

at 𝑡 = 0. The following parameters are used

ℎ = 0.2, 𝑘 = 0.001, 𝛽
1
= 0.5,

𝛽
2
= 1.0, 𝑘

1
= 0.5, 𝑘

2
= 1.0,

𝛼 = 1, 𝛿 =
1

2
, −10 ≤ 𝑥, 𝑦 ≤ 10.

(46)

The boundary conditions are extracted from the exact
solution (44).

Tables 1, 2, and 3 show the errors (ER) and the conserved
quantities (I) for 𝜎 = 0, 1/6 and 𝜎 = 1/12, respectively. We
have noticed that the scheme with 𝜎 = 1/12 produced highly
accurate results, and this is due to the fourth order accuracy
in space and second-order accuracy in time. The other two
methods using 𝜎 = 0 and 𝜎 = 1/6 are of second-order
accuracy in space and time. Figure 1 shows a single soliton
at 𝑡 = 0. Figure 2 shows the numerical solution at 𝑡 = 1.
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Figure 3: Soliton solution |𝜓|
2 at 𝑡 = 0.

Table 2: Single soliton with 𝜎 = 1/6.

Iter 𝑇 ER 𝐼

0 0 0 24.99989
2 0.2 0.00436 24.99882
2 0.4 0.00859 24.99664
2 0.6 0.01277 24.99351
2 0.8 0.01750 24.98938
2 1.0 0.02206 24.98417

Table 3: Single soliton with 𝜎 = 1/12.

Iter 𝑇 ER 𝐼

0 0 0 24.99989
2 0.2 0.00011 24.99989
2 0.4 0.00018 24.99987
2 0.6 0.00025 24.99981
2 0.8 0.00030 24.99971
2 1.0 0.00036 24.99952

4.2. Example 2. In this example we will choose the initial
condition [1]

𝜓 (𝑥, 𝑦, 0) =
𝛼
1

2
exp(

−𝜂

2
) sech

× [Re (𝜅
1
𝑥 + 𝑙
1
𝑦) +

𝜂

2
] exp (𝑖 Im (𝜅

1
𝑥 + 𝑙
1
𝑦))

𝜙 (𝑥, 𝑦, 0) =
𝛽
1

2
exp(

−𝜂

2
) sech

× [Re (𝜅
1
𝑥 + 𝑙
1
𝑦) +

𝜂

2
] exp (𝑖 Im (𝜅

1
𝑥 + 𝑙
2
𝑦)) ,

(47)

where

exp (𝜂) = 1

2

𝛼1


2

+
𝛽1



2

(𝜅
1
+ 𝜅
∗

1
)
2

+ (𝑙
1
+ 𝑙
∗

1
)
2
, (48)
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Figure 4: Soliton solution |𝜓|
2 at 𝑡 = 1.

which represent two solitons of different amplitudes. The
parameters 𝛼

1
, 𝛽
1
, 𝜅
1
, and 𝑙

1
are complex parameters. In this

test, we choose the parameters

ℎ = 0.2, 𝑘 = 0.01, 𝑥
𝑙
= −10, 𝛼

1
= 1,

𝛽
1
= 0.5, 𝜅

1
= 𝑙
1
= 1 + 𝑖.

(49)

In Figures 3 and 4, we display the numerical solution of
|𝜓|
2 at 𝑡 = 0 and 𝑡 = 1, while in Figures 5 and 6 we display the

numerical solution of |𝜙|2 at 𝑡 = 0 and 𝑡 = 1.

4.3. Example 3. To study the interaction of two solitons,
many numerical tests have been conducted with different
initial conditions, and, among these tests, we select the initial
conditions of the form

𝜓 (𝑥, 𝑦, 0)

= 𝐴 exp (−(𝑥 − 𝑑)
2
− 𝑦
2
) exp (−𝑖 ln (cosh (𝑥2 + 𝑦

2
))) ,

𝜙 (𝑥, 𝑦, 0)

= 𝐵 exp (−(𝑥 + 𝑑)
2
− 𝑦
2
) exp (−𝑖 ln (cosh (𝑥2 + 𝑦

2
))) ,

(50)

which represent two solitons moving in the opposite direc-
tion and centered at 𝑑 and −𝑑, respectively. In this test we
choose the parameters

ℎ = 0.2, 𝑘 = 0.01, 𝑥
𝑙
= −10, 𝑑 = 5.0,

𝐴 = 1, 𝐵 = 0.8, 𝑡 = 0, . . . , 1.5.

(51)

The interaction scenario is given in Figures 7 and 8.
In Figure 7 we show the two solitons with two different
amplitudes at 𝑡 = 0. In Figure 8 we display the interaction
where the two solitons interact at 𝑡 = 0.5, and, in Figure 9,
we display the two solitons after the interaction at 𝑡 = 1.5. In
Table 4, we display the conserved quantities, and we see that
the numerical method we proposed conserves the conserved
quantities almost exactly. It is easy to see that the interaction
regiem is an inelastic one. See [18].
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Figure 5: Soliton solution |𝜙|
2 at 𝑡 = 0.
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Figure 6: Soliton solution |𝜙|
2 at 𝑡 = 1.

4.4. Example 4. The system under consideration generates a
progressive plane wave solutions [7]:

𝜓 (𝑥, 𝑦, 𝑡) = 𝐴 exp (𝑖 (𝜅
1
𝑥 + 𝜅
2
𝑦 + 𝜔𝑡)) ,

𝜙 (𝑥, 𝑦, 𝑡) = 𝐴 exp (𝑖 (𝜅
1
𝑥 + 𝜅
2
𝑦 + 𝜔𝑡)) ,

(52)

where

𝜔 = 𝑘
2

1
+ 𝑘
2

2
− (1 + 𝛼) |𝐴|

2
. (53)

Our numerical experiments are conducted in the domain
[0, 2𝜋] × [0, 2𝜋] with

𝐴 = 1, 𝛼 = 1, 𝑘
1
= 𝑘
2
= 1, 𝛿 = 1,

𝑘 = 0.001, ℎ =
𝜋

50
.

(54)

Initial and boundary conditions are extracted from the
exact solution. In this examplewe choose𝜎 = 1/12, the fourth
order ADI method. The numerical results are presented in
Table 5. Figure 10 displays the solution at 𝑡 = 0, and Figure 11
displays, the solution at 𝑡 = 1.

Table 4 displays the accuracy of the scheme and preserves
the conserved quantities.
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Figure 7: Interaction of two solitons |𝜓|2 and |𝜙|
2 at 𝑡 = 0.
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Figure 8: Interaction of two solitons |𝜓|2 and |𝜙|
2 at 𝑡 = 0.5.

Table 4: The conserved quantities during the interaction scenario.

𝑇 𝐼
1

𝐼
2

0.0 1.57080 1.00531
0.5 1.57086 1.00533
1.0 1.57065 1.00522
1.5 1.57060 1.00520

Table 5: Periodic solution 𝑘
1
= 𝑘
2
= 𝛼 = 1.

Iter 𝑇 ER 𝐼

0 0.0 0.000000 39.478420
2 0.2 0.000003 39.478420
2 0.4 0.000005 39.478420
2 0.6 0.000007 39.478420
2 0.8 0.000009 39.478420
2 1.0 0.000008 39.478420

5. Parallel Algorithm for the Proposed
ADI Schemes

It is to be noted that the implementation of the ADI schemes
requires solving the same block-tridiagonal matrix with
different right-hand sides. This can be done efficiently by
using the fast parallel algorithm given in [19]. This algorithm
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Figure 9: Interaction of two solitons |𝜓|2 and |𝜙|
2 at 𝑡 = 1.5.
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Figure 10: Initial condition with 𝑘
1
= 𝑘
2
= 𝛼 = 1, at 𝑡 = 0.

[19] is a generalization of the parallel dichotomy algorithm for
solving tridiagonal liner system of equations [20].

It has been shown that this dichotomy yields almost a
linear speedup on a high performance systemwithmany pro-
cessors [19]. We expect the same speedup for our proposed
methods. The parallel implementation of the proposed ADI
method will be reported in our future work.

6. Concluding Remarks

In this present work, a generalized alternating direction
implicit methods for solving two-dimensional coupled non-
linear Schrödinger equation have been established, the
methods are unconditionally stable. The methods produced
schemes of second and fourth order accuracy in space and
second order in time according to the selected value of
𝜎. The numerical results have shown that the proposed
schemes successfully combine accuracy and efficiency for
the two-dimensional coupled nonlinear Schrödinger system.
The implementation of the ADI schemes requires solving
the same block-tridiagonal matrix with different right-hand
sides. This can be done by using the fast parallel algorithm
given in [19]. This algorithm yields almost a linear speedup
on a high performance system with many processors [19].
We expect the same speedup for our proposed methods. The
proposed schemes can be easily extended to solve higher
dimensional coupled nonlinear Schrödinger system.
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Figure 11: Numerical solution with 𝑘
1
= 𝑘
2
= 𝛼 = 1, at 𝑡 = 1.

Appendix

The exact solution of the nonlinear system can be derived as
follows: we assume [19]

𝜓 (𝑥, 𝑦, 𝑡) = 𝐴 sech (𝜉) exp (𝑖𝜂) ,

𝜙 (𝑥, 𝑦, 𝑡) = 𝐵 sech (𝜉) exp (𝑖𝜂) ,
(A.1)

where

𝜉 = 𝛽
1
𝑥 + 𝛽
2
𝑦 − V𝑡,

𝜂 = −𝜅
1
𝑥 − 𝜅
2
𝑦 + 𝜔𝑡 + 𝜃.

(A.2)

Now from (A.1), we deduce

𝜓
𝑡
= [V𝐴 tanh (𝜉) sech (𝜉) + 𝑖𝜔𝐴 sech (𝜉)] exp (𝑖𝜂) ,

𝜓
𝑥𝑥

= [𝐴𝛽
2

1
sech (𝜉) − 2𝐴𝛽

2

1
sech3 (𝜉) − 𝐴𝜅

2

1
sech (𝜉)

+2𝑖𝜅
1
𝛽
1
𝐴 tanh (𝜉) sech (𝜉) ] exp (𝑖𝜂) ,

𝜓
𝑦𝑦

= [𝐴𝛽
2

2
sech (𝜉) − 2𝐴𝛽

2

2
sech3 (𝜉) − 𝐴𝜅

2

2
sech (𝜉)

+2𝑖𝜅
2
𝛽
2
𝐴 tanh (𝜉) sech (𝜉) ] exp (𝑖𝜂) ,

(A.3)

and similar expressions can be obtained for the function 𝜙.
By substituting these expressions into the given system, and
equating the real and imaginary parts, this will produce the
following relations:

V = −2𝛿 (𝜅
1
𝛽
1
+ 𝜅
2
𝛽
2
) , (A.4)

− 𝜔𝐴 sech (𝜉) + 𝛿𝐴𝛽
2

1
sech (𝜉) − 2𝛿𝐴𝛽

2

1
sech3 (𝜉)

− 𝛿𝐴𝜅
2

1
sech (𝜉) + 𝛿𝐴𝛽

2

2
sech (𝜉)

− 2𝛿𝐴𝛽
2

2
sech3 (𝜉) − 𝛿𝐴𝜅

2

2
sech (𝜉)

+ (𝐴
2
+ 𝛼𝐵
2
)𝐴 sech3 (𝜉) = 0.

(A.5)

By equating the coefficient of sech3(𝜉) in (A.5), we obtain

𝐴
2
+ 𝛼𝐵
2
= 2𝛿 (𝛽

2

1
+ 𝛽
2

2
) , (A.6)
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and by equating the coefficients of sech(𝜉), we will get the
relation

𝜔 = 𝛿 [(𝛽
2

1
+ 𝛽
2

2
) − (𝜅

2

1
+ 𝜅
2

2
)] . (A.7)

From the second equation of the proposed system (𝜙), we will
get the relation

𝛼𝐴
2
+ 𝐵
2
= 2𝛿 (𝛽

2

1
+ 𝛽
2

2
) , (A.8)

and from (A.6) and (A.8), we deduce that𝐴 = 𝐵, and then we
get the relation

𝐴 = 𝐵 = [
2𝛿(𝛽
2

1
+ 𝛽
2

2
)

(1 + 𝛼)
]

1/2

(A.9)

with 𝛼, 𝛽, 𝜅, and 𝑙 as arbitrary complex parameters.

Acknowledgments

This work was funded by the Deanship of Scientific Research
(DSR), King Abdulaziz University, Jeddah, under Grant no.
(130-074-D1433). The authors, therefore, acknowledge with
thanks the DSR technical and financial support.

References

[1] H.-Q. Zhang, X.-H. Meng, T. Xu, L.-L. Li, and B. Tian,
“Interactions of bright solitons for the (2 + 1)-dimensional
coupled nonlinear Schrödinger equations from optical fibres
with symbolic computation,” Physica Scripta, vol. 75, no. 4, pp.
537–542, 2007.

[2] M. S. Ismail and T. R. Taha, “Numerical simulation of coupled
nonlinear Schrödinger equation,” Mathematics and Computers
in Simulation B, vol. 56, no. 6, pp. 547–562, 2001.

[3] M. S. Ismail, “A fourth-order explicit schemes for the coupled
nonlinear Schrödinger equation,” Applied Mathematics and
Computation, vol. 196, no. 1, pp. 273–284, 2008.

[4] M. S. Ismail, “Numerical solution of coupled nonlinear
Schrödinger equation by Galerkin method,” Mathematics and
Computers in Simulation, vol. 78, no. 4, pp. 532–547, 2008.

[5] M. S. Ismail and S. Z. Alamri, “Highly accurate finite difference
method for coupled nonlinear Schrödinger equation,” Interna-
tional Journal of Computer Mathematics, vol. 81, no. 3, pp. 333–
351, 2004.

[6] T. R. Taha and X. Xu, “Parallel split-step fourier methods for the
coupled nonlinear Schrödinger type equations,” The Journal of
Supercomputing, vol. 32, no. 1, pp. 5–23, 2005.

[7] Z. Gao and S. Xie, “Fourth-order alternating direction implicit
compact finite difference schemes for two-dimensional
Schrödinger equations,” Applied Numerical Mathematics, vol.
61, no. 4, pp. 593–614, 2011.

[8] L. Kong, Y. Duan, L. Wang, X. Yin, and Y. Ma, “Spectral-
like resolution compact ADI finite difference method for the
multi-dimensional Schrödinger equations,” Mathematical and
Computer Modelling, vol. 55, no. 5-6, pp. 1798–1812, 2012.

[9] Z. F. Tian and P. X. Yu, “High-order compact ADI (HOC-
ADI) method for solving unsteady 2D Schrödinger equation,”
Computer Physics Communications, vol. 181, no. 5, pp. 861–868,
2010.

[10] T.Wang, B. Guo, and Q. Xu, “Fourth order compact and energy
conservative difference schemes for the nonlinear Schrödinger
equation in two dimensions,” Journal of Computational Physics,
vol. 243, pp. 382–399, 2013.

[11] Y. Xu and L. Zhang, “Alternating direction implicit method
for solving two-dimensional cubic nonlinear Schrödinger equa-
tion,” Computer Physics Communications, vol. 183, no. 5, pp.
1082–1093, 2012.

[12] S. Karaa and J. Zhang, “High order ADI method for solving
unsteady convection-diffusion problems,” Journal of Computa-
tional Physics, vol. 198, no. 1, pp. 1–9, 2004.

[13] M. Sapagovas and K. Jakubeliene, “Alternating direction
method for two-dimensional parabolic equation with nonlocal
integral condition,” Nonlinear Analysis, vol. 17, no. 1, pp. 91–98,
2012.

[14] M. Subasi, “On the finite difference schemes for the numerical
solution of two dimensional Schrödinger equation,” Numerical
Methods for Partial Differential Equations, vol. 18, pp. 124–134,
2002.
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