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This paper is concerned with the fractional separated boundary value problem of fractional differential equations with fractional
impulsive conditions. By means of the Schaefer fixed point theorem, Banach fixed point theorem, and nonlinear alternative of
Leray-Schauder type, some existence results are obtained. Examples are given to illustrate the results.

1. Introduction

Recently, much attention has been paid to study fractional
differential equations due to the fact that they have been
proven to be valuable tools in the mathematical modeling
of many phenomena in physics, biology, mechanics, and so
forth, (see [1–3]).

The theory of impulsive differential equations of integer
order has found its extensive applications in realistic math-
ematical modeling of a wide variety of practical situations
and has emerged as an important area of investigation in
recent years. For the general theory and applications of
impulsive differential equations, see [4–10] and so forth.
However, impulsive fractional differential equations have not
been much studied, and many aspects of these equations
are yet to be explored. For some recent work on impulsive
fractional differential equations, we can refer to [11–26] and
the references therein.

In this paper, we consider the existence and uniqueness
of solutions for the following fractional separated boundary
value problem with fractional impulsive conditions:

𝑐

𝐷
𝛼

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝑡 ∈ 𝐽 := [0, 𝑇] , 𝑡 ̸= 𝑡
𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , Δ (

𝑐

𝐷
𝛾

𝑥 (𝑡
𝑘
)) = 𝐼

∗

𝑘
(𝑥 (𝑡
−

𝑘
)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑎
1
𝑥 (0) + 𝑏

1
(
𝑐

𝐷
𝛾

𝑥 (0)) = 𝑐
1
,

𝑎
2
𝑥 (𝑇) + 𝑏

2
(
𝑐

𝐷
𝛾

𝑥 (𝑇)) = 𝑐
2
,

(1)

where 𝑐𝐷𝛼 is the Caputo fractional derivative of order 𝛼 ∈

(1, 2) with the lower limit zero, 0 < 𝛾 < 1, 𝑓 ∈ 𝐶(𝐽 × R,R),
𝐼
𝑘
, 𝐼
∗

𝑘
∈ 𝐶(R,R), 0 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑚
< 𝑡
𝑚+1

= 𝑇,
Δ𝑥(𝑡
𝑘
) = 𝑥(𝑡

+

𝑘
)−𝑥(𝑡

−

𝑘
)with 𝑥(𝑡+

𝑘
) = lim

𝜖→0
+𝑥(𝑡
𝑘
+𝜖), 𝑥(𝑡−

𝑘
) =

lim
𝜖→0
−𝑥(𝑡
𝑘
+ 𝜖) representing the right and left limits of 𝑥(𝑡)

at 𝑡 = 𝑡
𝑘
,Δ(𝑐𝐷𝛾𝑥(𝑡

𝑘
)) has a similar meaning for 𝑐𝐷𝛾𝑥(𝑡

𝑘
), and

𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝑖 = 1, 2, are real constants with 𝑎

1
̸= 0 and 𝑎

2
𝑇
𝛾

Γ(2 −

𝛾) ̸= − 𝑏
2
.

We note that the papers on this topic cited above except
[24] all deal with the Caputo derivative and the impulsive
conditions only involve integer order derivatives. Here we
study the fractional differential equations with fractional
impulsive conditions and fractional separated boundary con-
ditions.

In [24], the author considered the following two impul-
sive problems:
𝑐

𝐷
𝛿

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1] \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ,

𝑐

𝐷
𝛾

𝑥 (𝑡
+

𝑘
) −
𝑐

𝐷
𝛾

𝑥 (𝑡
−

𝑘
) = 𝐽
𝑘
(𝑥 (𝑡
𝑘
)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑥
0
, 𝑥

󸀠

(0) = 𝑥
1
,

(2)
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where 𝑐𝐷𝛿 is the Caputo fractional derivative of order 𝛿 ∈

(1, 2) with the lower limit zero, 0 < 𝛾 < 1, and

𝐿

𝐷
𝛿

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1] \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ,

𝐿

𝐷
𝛾

𝑥 (𝑡
+

𝑘
) −
𝐿

𝐷
𝛾

𝑥 (𝑡
−

𝑘
) = 𝐽
𝑘
(𝑥 (𝑡
𝑘
)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝐼
1−𝛼

𝑥 (0) = 𝑥
0
,

(3)

where 𝐿𝐷𝛿 is the Riemann-Liouville fractional derivative of
order 𝛿 ∈ (0, 1) with the lower limit zero and 0 < 𝛾 < 𝛿.

In [25], Fečkan et al. studied the impulsive problem of the
following form:

𝑐

𝐷
𝛿

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝑡 ∈ (0, 𝑇] \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} , 𝛿 ∈ (0, 1) ,

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑥
0
,

(4)

where 𝑓 : [0, 𝑇] × R → R is jointly continuous, 𝐼
𝑘
: R →

R and 𝑡
𝑘
satisfy 0 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑚+1
= 𝑇, 𝑥(𝑡+

𝑘
) =

lim
𝜖→0
+𝑥(𝑡
𝑘
+ 𝜖), and 𝑥(𝑡−

𝑘
) = lim

𝜖→0
−𝑥(𝑡
𝑘
+ 𝜖).

Furthermore, Wang et al. [26] considered the impulsive
fractional differential equations with boundary conditions as
follows:

𝑐

𝐷
𝛿

𝑢 (𝑡) = ℎ (𝑡) , 𝑡 ∈ 𝐽
󸀠

, 𝛿 ∈ (1, 2) ,

Δ𝑢 (𝑡
𝑘
) = 𝑦
𝑘
, Δ𝑢

󸀠

(𝑡
𝑘
) = 𝑦
𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

𝑢 (0) = 0, 𝑢
󸀠

(1) = 0,

(5)

where 𝑦
𝑘
, 𝑦
𝑘
∈ R.

To the best of our knowledge, there are few papers
concerning fractional differential equations with separated
boundary conditions [27, 28].

The rest of the paper is organized as follows. In Section 2
we introduce some preliminary results needed in the sequel.
In Section 3 we present the existence results for the problem
(1). Two examples are given in Section 4 to illustrate the
results.

2. Preliminaries

Let us set 𝐽
0
= [0, 𝑡

1
], 𝐽
1
= (𝑡
1
, 𝑡
2
], . . ., 𝐽

𝑚−1
= (𝑡
𝑚−1

, 𝑡
𝑚
],

and 𝐽
𝑚
= (𝑡
𝑚
, 𝑡
𝑚+1

], 𝐽󸀠 := 𝐽 \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} and introduce

the space PC(𝐽,R) := {𝑢 : 𝐽 → R | 𝑢 ∈ 𝐶(𝐽
𝑘
,R), 𝑘 =

0, 1, 2, . . . , 𝑚, and there exist 𝑢(𝑡+
𝑘
) and 𝑢(𝑡−

𝑘
), 𝑘 = 1, 2, . . . , 𝑚,

with 𝑢(𝑡−
𝑘
) = 𝑢(𝑡

𝑘
)}. It is clear that PC(𝐽,R) is a Banach space

with the norm ‖𝑢‖ = sup{|𝑢(𝑡)| : 𝑡 ∈ 𝐽}.

Definition 1 (see [3]). The Riemann-Liouville fractional inte-
gral of order 𝑞 for a continuous function 𝑓 : [0,∞) → R is
defined as

𝐼
𝑞

𝑓 (𝑡) =
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠) 𝑑𝑠, 𝑞 > 0, (6)

which provided that the integral exists.

Definition 2 (see [3]). For 𝑛−1 times an absolutely continuous
function 𝑓 : [0,∞) → R, the Caputo derivative of order 𝑞 is
defined as

𝑐

𝐷
𝑞

𝑓 (𝑡) =
1

Γ (𝑛 − 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝑞−1

𝑓
(𝑛)

(𝑠) 𝑑𝑠,

𝑛 − 1 < 𝑞 < 𝑛, 𝑛 = [𝑞] + 1,

(7)

where [𝑞] denotes the integer part of the real number 𝑞.

Lemma 3 (see [3]). Let 𝛼 > 0. Then the differential equation

𝑐

𝐷
𝛼

ℎ (𝑡) = 0 (8)

has solutions ℎ(𝑡) = 𝑐
0
+ 𝑐
1
t + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1

𝑡
𝑛−1 and

𝐼
𝛼 𝑐

𝐷
𝛼

ℎ (𝑡) = ℎ (𝑡) + 𝑐
0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1

𝑡
𝑛−1 (9)

which hold for almost all points on the interval [0,∞), here
𝑐
𝑖
∈ R, 𝑖 = 0, 1, 2, . . . , 𝑛 − 1, 𝑛 = [𝛼] + 1.

Definition 4. A function 𝑥 ∈ PC(𝐽,R) with its 𝛼-derivative
existing on 𝐽

󸀠 is said to be a solution of the problem (1) if
𝑥 satisfies the equation 𝑐𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) on 𝐽

󸀠 and the
conditions

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , Δ (

𝑐

𝐷
𝛾

𝑥 (𝑡
𝑘
)) = 𝐼

∗

𝑘
(𝑥 (𝑡
−

𝑘
)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑎
1
𝑥 (0) + 𝑏

1
(
𝑐

𝐷
𝛾

𝑥 (0)) = 𝑐
1
,

𝑎
2
𝑥 (𝑇) + 𝑏

2
(
𝑐

𝐷
𝛾

𝑥 (𝑇)) = 𝑐
2

(10)

are satisfied.

By using a similar discussion of [25], we have the
following lemma.
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Lemma 5. Let 𝑦 ∈ 𝑃𝐶(𝐽,R). A function 𝑥 is a solution of the
fractional integral equation:

𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 +

𝑐
1

𝑎
1

−
Λ𝑡

V
−
𝑎
2
Π𝑡

V
−
𝑎
2
𝑐
1
𝑡

V𝑎
1

+
𝑐
2
𝑡

V
− Γ (2 − 𝛾) 𝑡

𝑚

∑

𝑖=1

𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

𝑡
1−𝛾

𝑖

, 𝑡 ∈ 𝐽
0
;

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 +

𝑐
1

𝑎
1

+ 𝐼
1
(𝑥 (𝑡
−

1
))

−Γ (2 − 𝛾) 𝑡
𝛾

1
𝐼
∗

1
(𝑥 (𝑡
−

1
)) −

Λ𝑡

V
−
𝑎
2
Π𝑡

V
−
𝑎
2
𝑐
1
𝑡

V𝑎
1

+
𝑐
2
𝑡

V
− Γ (2 − 𝛾) 𝑡

𝑚

∑

𝑖=2

𝐼
∗

i (𝑥 (𝑡
−

𝑖
))

𝑡
1−𝛾

𝑖

, 𝑡 ∈ 𝐽
1
;

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 +

𝑐
1

𝑎
1

+

𝑘

∑

𝑖=1

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
))

−Γ (2 − 𝛾)

𝑘

∑

𝑖=1

𝑡
𝛾

𝑖
𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))−

Λ𝑡

V
−
𝑎
2
Π𝑡

V
−
𝑎
2
𝑐
1
𝑡

V𝑎
1

+
𝑐
2
𝑡

V
− Γ (2 − 𝛾) 𝑡

𝑚

∑

𝑖=𝑘+1

𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

𝑡
1−𝛾

𝑖

,

𝑡 ∈ 𝐽
𝑘
, 𝑘 = 2, . . . , 𝑚,

(11)

where

V =
𝑎
2
𝑇Γ (2 − 𝛾) + 𝑏

2
𝑇
1−𝛾

Γ (2 − 𝛾)
,

Λ = 𝑎
2
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 + 𝑏

2
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
𝑦 (𝑠) 𝑑𝑠,

(12)

Π =

𝑚

∑

𝑖=1

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
)) − Γ (2 − 𝛾)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
)) , (13)

if and only if 𝑥 is a solution of the impulsive fractional BVP:

𝑐

𝐷
𝛼

𝑥 (𝑡) = 𝑦 (𝑡) , 𝑡 ∈ 𝐽
󸀠

, 1 < 𝛼 < 2,

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) , Δ (

𝑐

𝐷
𝛾

𝑥 (𝑡
𝑘
)) = 𝐼

∗

𝑘
(𝑥 (𝑡
−

𝑘
)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑎
1
𝑥 (0) + 𝑏

1
(
𝑐

𝐷
𝛾

𝑥 (0)) = 𝑐
1
,

𝑎
2
𝑥 (𝑇) + 𝑏

2
(
𝑐

𝐷
𝛾

𝑥 (𝑇)) = 𝑐
2
.

(14)

Proof. For 1 < 𝛼 < 2, by Lemma 3, we know that a general
solution of the equation 𝑐𝐷𝛼𝑥(𝑡) = 𝑦(𝑡) on each interval 𝐽

𝑘

(𝑘 = 0, 1, 2, . . . , 𝑚) is given by

𝑥 (𝑡) = 𝐼
𝛼

𝑦 (𝑡) + 𝑑
𝑘
+ 𝑒
𝑘
𝑡

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 + 𝑑

𝑘
+ 𝑒
𝑘
𝑡, 𝑡 ∈ 𝐽

𝑘
,

(15)

where 𝑑
𝑘
, 𝑒
𝑘
∈ R are arbitrary constants. Since 𝑐𝐷𝛾𝐶 = 0 (𝐶

is a constant), 𝑐𝐷𝛾𝑡 = 𝑡1−𝛾/Γ(2−𝛾), and 𝑐𝐷𝛾𝐼𝛼𝑦(𝑡) = 𝐼𝛼−𝛾𝑦(𝑡)
(see [3]), then from (15), we have

𝑐

𝐷
𝛾

𝑥 (𝑡) = 𝐼
𝛼−𝛾

𝑦 (𝑡) +
𝑒
𝑘
𝑡
1−𝛾

Γ (2 − 𝛾)

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
𝑦 (𝑠) 𝑑𝑠 +

𝑒
𝑘
𝑡
1−𝛾

Γ (2 − 𝛾)
,

(16)

for 𝑡 ∈ 𝐽
𝑘
. Applying the boundary conditions of (14), we get

𝑎
1
× 𝑑
0
+ 𝑏
1
× 0 = 𝑐

1
,

𝑎
2
× (∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 + 𝑑

𝑚
+ 𝑒
𝑚
𝑇)

+ 𝑏
2
× (∫

𝑇

0

(𝑇 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
𝑦 (𝑠) 𝑑𝑠 +

𝑒
𝑚
𝑇
1−𝛾

Γ (2 − 𝛾)
) = 𝑐
2
.

(17)

Next, using the impulsive conditions in (14), we obtain that
for 𝑘 = 1, 2, . . . , 𝑚

𝑑
𝑘
− 𝑑
𝑘−1

+ (𝑒
𝑘
− 𝑒
𝑘−1

) 𝑡
𝑘
= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) ,

(𝑒
𝑘
− 𝑒
𝑘−1

)
𝑡
1−𝛾

𝑘

Γ (2 − 𝛾)
= 𝐼
∗

𝑘
(𝑥 (𝑡
−

𝑘
)) .

(18)

Nowwe can derive the values of 𝑑
𝑘
, 𝑒
𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑚 from

formulae (17)-(18). That is,

𝑑
0
=
𝑐
1

𝑎
1

,

𝑑
𝑘
= 𝑑
0
+

𝑘

∑

𝑖=1

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
)) − Γ (2 − 𝛾)

𝑘

∑

𝑖=1

𝑡
𝛾

𝑖
𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

(19)

for 𝑘 = 1, 2, . . . , 𝑚 and

𝑒
𝑚
= −

1

V
(𝑎
2
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠

+𝑏
2
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
𝑦 (𝑠) 𝑑𝑠) −

𝑎
2
𝑑
𝑚

V
+
𝑐
2

V
,

𝑒
𝑘
= 𝑒
𝑚
− Γ (2 − 𝛾)

𝑚

∑

𝑖=𝑘+1

𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

𝑡
1−𝛾

𝑖

,

for 𝑘 = 0, 1, 2, . . . , 𝑚 − 1.

(20)
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Hence for 𝑘 = 0, 1, 2, . . . , 𝑚, we have

𝑑
𝑘
+ 𝑒
𝑘
𝑡

=
𝑐
1

𝑎
1

+

𝑘

∑

𝑖=1

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
)) − Γ (2 − 𝛾)

𝑘

∑

𝑖=1

𝑡
𝛾

𝑖
𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
)) −

𝑡

V

× (𝑎
2
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 + 𝑏

2
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
𝑦 (𝑠) 𝑑𝑠)

−
𝑎
2
𝑡

V
(

𝑚

∑

𝑖=1

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
)) − Γ (2 − 𝛾)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
)))

−
𝑎
2
𝑐
1
𝑡

V𝑎
1

+
𝑐
2
𝑡

V
− Γ (2 − 𝛾) 𝑡

𝑚

∑

𝑖=𝑘+1

𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

𝑡
1−𝛾

𝑖

.

(21)

Now it is clear that a solution of the problem (14) has the form
of (11).

Conversely, assume that 𝑥 satisfies the fractional integral
equation (11). That is, for 𝑡 ∈ 𝐽

𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑚, we have

𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 +

𝑐
1

𝑎
1

+

𝑘

∑

𝑖=1

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
))

− Γ (2 − 𝛾)

𝑘

∑

𝑖=1

𝑡
𝛾

𝑖
𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

− (
Λ

V
+
𝑎
2
Π

V
+
𝑎
2
𝑐
1

V𝑎
1

−
𝑐
2

V
) 𝑡

− Γ (2 − 𝛾) 𝑡

𝑚

∑

𝑖=𝑘+1

𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

𝑡
1−𝛾

𝑖

.

(22)

Since 1 < 𝛼 < 2, we have 𝑐𝐷𝛼𝐶 = 0 (𝐶 is a constant) and
𝑐

𝐷
𝛼

𝑡 = 0. Using the fact that 𝑐𝐷𝛼 is the left inverse of 𝐼𝛼, we
get

𝑐

𝐷
𝛼

𝑥 (𝑡) = 𝑦 (𝑡) , 𝑡 ∈ 𝐽
󸀠

, (23)

whichmeans that𝑥 satisfies the first equation of the impulsive
fractional BVP (14). Next we will verify that 𝑥 satisfies the
impulsive conditions. Taking fractional derivative 𝑐𝐷𝛾 of
(22), we have, for 𝑡 ∈ 𝐽

𝑘
,

𝑐

𝐷
𝛾

𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
𝑦 (𝑠) 𝑑𝑠

− (
Λ

V
+
𝑎
2
Π

V
+
𝑎
2
𝑐
1

V𝑎
1

−
𝑐
2

V
)

𝑡
1−𝛾

Γ (2 − 𝛾)

− 𝑡
1−𝛾

𝑚

∑

𝑖=𝑘+1

𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

𝑡
1−𝛾

𝑖

.

(24)

From (22), we obtain

𝑥 (𝑡
+

𝑘
) = ∫

𝑡
𝑘

0

(𝑡
𝑘
− 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 +

𝑘

∑

𝑖=1

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
))

− Γ (2 − 𝛾)

𝑘

∑

𝑖=1

𝑡
𝛾

𝑖
𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

− (
Λ

V
+
𝑎
2
Π

V
+
𝑎
2
𝑐
1

V𝑎
1

−
𝑐
2

V
) 𝑡
𝑘

− Γ (2 − 𝛾) 𝑡
𝑘

𝑚

∑

𝑖=𝑘+1

𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

𝑡
1−𝛾

𝑖

+
𝑐
1

𝑎
1

,

(25)

𝑥 (𝑡
−

𝑘
) = ∫

𝑡
𝑘

0

(𝑡
𝑘
− 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 +

𝑘−1

∑

𝑖=1

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
))

− Γ (2 − 𝛾)

𝑘−1

∑

𝑖=1

𝑡
𝛾

𝑖
𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

− (
Λ

V
+
𝑎
2
Π

V
+
𝑎
2
𝑐
1

V𝑎
1

−
𝑐
2

V
) 𝑡
𝑘

− Γ (2 − 𝛾) 𝑡
𝑘

𝑚

∑

𝑖=𝑘

𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

𝑡
1−𝛾

𝑖

+
𝑐
1

𝑎
1

.

(26)

Hence we have, for 𝑘 = 1, 2, . . . , 𝑚,

Δ𝑥 (𝑡
𝑘
) = 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) − Γ (2 − 𝛾) 𝑡

𝛾

𝑘
𝐼
∗

𝑘
(𝑥 (𝑡
−

𝑘
))

+ Γ (2 − 𝛾) 𝑡
𝑘

𝐼
∗

𝑘
(𝑥 (𝑡
−

𝑘
))

𝑡
1−𝛾

𝑘

= 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
)) .

(27)

Similarly, from (24), we can obtain that, for 𝑘 = 1, 2, . . . , 𝑚,

Δ (
𝑐

𝐷
𝛾

𝑥 (𝑡
𝑘
)) = 𝑡

1−𝛾

𝑘

𝐼
∗

𝑘
(𝑥 (𝑡
−

𝑘
))

𝑡
1−𝛾

𝑘

= 𝐼
∗

𝑘
(𝑥 (𝑡
−

𝑘
)) . (28)

Finally, it follows from (22) and (24) that (since 0 ∈ 𝐽
0
, 𝑇 ∈

𝐽
𝑚
) 𝑥(0) = 𝑐

1
/𝑎
1
, 𝑐𝐷𝛾𝑥(0) = 0, and

𝑥 (𝑇) = ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

Γ (𝛼)
𝑦 (𝑠) 𝑑𝑠 +

𝑐
1

𝑎
1

+ Π − (
Λ

V
+
𝑎
2
Π

V
+
𝑎
2
𝑐
1

V𝑎
1

−
𝑐
2

V
)𝑇,

𝑐

𝐷
𝛾

𝑥 (𝑇) = ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
𝑦 (𝑠) 𝑑𝑠

− (
Λ

V
+
𝑎
2
Π

V
+
𝑎
2
𝑐
1

V𝑎
1

−
𝑐
2

V
)

𝑇
1−𝛾

Γ (2 − 𝛾)
.

(29)
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Now we get

𝑎
1
𝑥 (0) + 𝑏

1
(
𝑐

𝐷
𝛾

𝑥 (0)) = 𝑐
1
,

𝑎
2
𝑥 (𝑇) + 𝑏

2
(
𝑐

𝐷
𝛾

𝑥 (𝑇))

= Λ +
𝑎
2
𝑐
1

𝑎
1

+ 𝑎
2
Π − 𝑎
2
𝑇(

Λ

V
+
𝑎
2
Π

V
+
𝑎
2
𝑐
1

V𝑎
1

−
𝑐
2

V
)

−
𝑏
2
𝑇
1−𝛾

Γ (2 − 𝛾)
(
Λ

V
+
𝑎
2
Π

V
+
𝑎
2
𝑐
1

V𝑎
1

−
𝑐
2

V
) = 𝑐
2
.

(30)

Therefore 𝑥 given by (11) satisfies the impulsive fractional
boundary value problem (14). The proof is complete.

Remark 6. We notice that the expression of (11) does not
depend on the parameter 𝑏

1
appearing in the boundary con-

ditions of the problem (14). Thus by Lemma 5, we conclude
that the parameter 𝑏

1
is of arbitrary nature of the problem (14).

Let 𝑋,𝑌 be Banach spaces and 𝑓 : 𝑋 → 𝑌, and we
say that 𝑓 is a compact if the image of each bounded set in
𝑋 under 𝑓 is relatively compact. The following are two fixed
point theorems which will be used in the sequel.

Theorem 7 (nonlinear alternative of Leray-Schauder type
[29]). Let 𝑋 be a Banach space, 𝐶 a nonempty convex subset
of𝑋, and 𝑈 a nonempty open subset of 𝐶 with 0 ∈ 𝑈. Suppose
that 𝑃 : 𝑈 → 𝐶 is a continuous and compact map. Then
either (a) 𝑃 has a fixed point in 𝑈 or (b) there exist a 𝑥 ∈ 𝜕𝑈

(the boundary of 𝑈) and 𝜆 ∈ (0, 1) with 𝑥 = 𝜆𝑃(𝑥).

Theorem 8 (Schaefer fixed point theorem [30]). Let 𝑋 be a
normed space and 𝑃 a continuous mapping of 𝑋 into 𝑋 which
is compact on each bounded subset 𝐵 of 𝑋. Then either (I) the
equation 𝑥 = 𝜆𝑃𝑥 has a solution for 𝜆 = 1 or (II) the set of all
such solutions 𝑥, for 0 < 𝜆 < 1, is unbounded.

3. Main Results

This section deals with the existence and uniqueness of
solutions for the problem (1).

In view of Lemma 5, we define an operator 𝐹 : PC(𝐽,
R) → PC(𝐽,R) by

(𝐹𝑥) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 +

𝑐
1

𝑎
1

+

𝑘

∑

𝑖=1

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
)) − Γ (2 − 𝛾)

𝑘

∑

𝑖=1

𝑡
𝛾

𝑖
𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

−
Λ
𝑥
𝑡

V
−
𝑎
2
Π
𝑥
𝑡

V
−
𝑎
2
𝑐
1
𝑡

V𝑎
1

+
𝑐
2
𝑡

V

− Γ (2 − 𝛾) 𝑡

𝑚

∑

𝑖=𝑘+1

𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))

𝑡
1−𝛾

𝑖

, 𝑡 ∈ 𝐽
𝑘
,

𝑘 = 0, 1, 2, . . . , 𝑚,

(31)

with

Λ
𝑥
= 𝑎
2
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

Γ (𝛼)
𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + 𝑏

2

× ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)
𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

Π
𝑥
=

𝑚

∑

𝑖=1

𝐼
𝑖
(𝑥 (𝑡
−

𝑖
)) − Γ (2 − 𝛾)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
)) .

(32)

Here Λ
𝑥
, Π
𝑥
mean that Λ, Π defined in Lemma 5 are related

to 𝑥 ∈ PC(𝐽,R). It is obvious that 𝐹 is well defined because of
the continuity of 𝑓, 𝐼

𝑘
, and 𝐼∗

𝑘
. Observe that the problem (1)

has solutions if and only if the operator equation 𝐹𝑥 = 𝑥 has
fixed points.

Lemma 9. The operator 𝐹 : 𝑃𝐶(𝐽,R) → 𝑃𝐶(𝐽,R) defined
by (31) is completely continuous.

Proof. Since 𝑓, 𝐼
𝑘
, and 𝐼∗

𝑘
are continuous, it is easy to show

that 𝐹 is continuous on PC(𝐽,R).
Let 𝐵 ⊆ PC(𝐽,R) be bounded. Then there exist positive

constants 𝑁
𝑖
, 𝑖 = 1, 2, 3, such that |𝑓(𝑡, 𝑥(𝑡))| ≤ 𝑁

1
,

|𝐼
𝑘
(𝑥(𝑡
−

𝑘
))| ≤ 𝑁

2
, and |𝐼∗

𝑘
(𝑥(𝑡
−

𝑘
))| ≤ 𝑁

3
for all 𝑡 ∈ 𝐽, 𝑥 ∈ 𝐵,

𝑘 = 1, 2, . . . , 𝑚. Thus, for 𝑥 ∈ 𝐵 and 𝑡 ∈ 𝐽, we have

|(𝐹𝑥) (𝑡)| ≤
𝑁
1
𝑇
𝛼

Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨

+ 𝑚𝑁
2

+ Γ (2 − 𝛾)𝑁
3

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
+

󵄨󵄨󵄨󵄨Λ 𝑥
󵄨󵄨󵄨󵄨 𝑇

|V|

+

󵄨󵄨󵄨󵄨𝑎2Π𝑥
󵄨󵄨󵄨󵄨 𝑇

|V|
+

󵄨󵄨󵄨󵄨𝑎2𝑐1
󵄨󵄨󵄨󵄨 𝑇

󵄨󵄨󵄨󵄨V𝑎1
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑐2
󵄨󵄨󵄨󵄨 𝑇

|V|

+ Γ (2 − 𝛾) 𝑇𝑁
3

𝑚

∑

𝑖=1

𝑡
𝛾−1

𝑖
,

(33)

󵄨󵄨󵄨󵄨Λ 𝑥
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑁1𝑇
𝛼

Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 𝑁1𝑇
𝛼−𝛾

Γ (𝛼 − 𝛾 + 1)
,

󵄨󵄨󵄨󵄨Π𝑥
󵄨󵄨󵄨󵄨 ≤ 𝑚𝑁2 + Γ (2 − 𝛾)𝑁3

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
.

(34)

Now we can obtain that, for all 𝑥 ∈ 𝐵, and 𝑡 ∈ 𝐽,

|(𝐹𝑥) (𝑡)|

≤
𝑁
1
𝑇
𝛼

Γ (𝛼 + 1)
+
𝑇

|V|
(

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑁1𝑇
𝛼

Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 𝑁1𝑇
𝛼−𝛾

Γ (𝛼 − 𝛾 + 1)
)

+ (1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)𝑚𝑁

2
+ Γ (2 − 𝛾)𝑁

3

× ((1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
+ 𝑇

𝑚

∑

𝑖=1

𝑡
𝛾−1

𝑖
)

+

󵄨󵄨󵄨󵄨𝑎2𝑐1
󵄨󵄨󵄨󵄨 𝑇

󵄨󵄨󵄨󵄨V𝑎1
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑐2
󵄨󵄨󵄨󵄨 𝑇

|V|
+

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨

,

(35)
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which implies that the operator 𝐹 is uniformly bounded on
𝐵.

On the other hand, let 𝑥 ∈ 𝐵 and for any 𝜏
1
⋅ 𝜏
2
∈ 𝐽
𝑘
,

𝑘 = 0, 1, 2, . . . , 𝑚, with 𝜏
1
< 𝜏
2
, we have

󵄨󵄨󵄨󵄨(𝐹𝑥) (𝜏2) − (𝐹𝑥) (𝜏1)
󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏
2

0

(𝜏
2
− 𝑠)
𝛼−1

Γ (𝛼)
𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− ∫

𝜏
1

0

(𝜏
1
− 𝑠)
𝛼−1

Γ (𝛼)
𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ (

󵄨󵄨󵄨󵄨Λ 𝑥
󵄨󵄨󵄨󵄨

|V|
+

󵄨󵄨󵄨󵄨𝑎2Π𝑥
󵄨󵄨󵄨󵄨

|V|
+

󵄨󵄨󵄨󵄨𝑎2𝑐1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨V𝑎1
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑐2
󵄨󵄨󵄨󵄨

|V|
) (𝜏
2
− 𝜏
1
)

+ Γ (2 − 𝛾)

𝑚

∑

𝑖=𝑘+1

𝑡
𝛾−1

𝑖

󵄨󵄨󵄨󵄨𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
))
󵄨󵄨󵄨󵄨 (𝜏2 − 𝜏1)

≤
𝑁
1
(𝜏
𝛼

2
− 𝜏
𝛼

1
)

Γ (𝛼 + 1)
+ (

󵄨󵄨󵄨󵄨Λ 𝑥
󵄨󵄨󵄨󵄨

|V|
+

󵄨󵄨󵄨󵄨𝑎2Π𝑥
󵄨󵄨󵄨󵄨

|V|
+

󵄨󵄨󵄨󵄨𝑎2𝑐1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨V𝑎1
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑐2
󵄨󵄨󵄨󵄨

|V|
)

× (𝜏
2
− 𝜏
1
) + Γ (2 − 𝛾)𝑁

3

𝑚

∑

𝑖=𝑘+1

𝑡
𝛾−1

𝑖
(𝜏
2
− 𝜏
1
) .

(36)

By (34) and the above inequality, we deduce that
󵄨󵄨󵄨󵄨(𝐹𝑥) (𝜏2) − (𝐹𝑥) (𝜏1)

󵄨󵄨󵄨󵄨 󳨀→ 0 as 𝜏
2
󳨀→ 𝜏
1
. (37)

This implies that𝐹 is equicontinuous on the interval 𝐽
𝑘
. Hence

by PC-type Arzela-Ascoli theorem (seeTheorem 2.1 [10]), the
operator 𝐹 : PC(𝐽,R) → PC(𝐽,R) is completely continuous.

Theorem 10. Assume that (1) there exist ℎ ∈ 𝐿
∞

(𝐽,R+) and
𝜑 : [0,∞) → (0,∞) continuous, nondecreasing such that
|𝑓(𝑡, 𝑥)| ≤ ℎ(𝑡)𝜑(|𝑥|) for (𝑡, 𝑥) ∈ 𝐽 × R; (2) there exist
𝜓, 𝜓
∗

: [0,∞) → (0,∞) continuous, nondecreasing such
that |𝐼

𝑘
(𝑥)| ≤ 𝜓(|𝑥|), |𝐼∗

𝑘
(𝑥)| ≤ 𝜓

∗

(|𝑥|) for all 𝑥 ∈ R and
𝑘 = 1, 2, . . . , 𝑚; (3) there exists a constant𝑀 > 0 such that

𝑀

𝑃𝜑 (𝑀) ‖ℎ‖
𝐿
∞ + 𝑄𝜓 (𝑀) + 𝑅𝜓

∗
(𝑀) + 𝐻

> 1, (38)

where

𝑃 =
𝑇
𝛼

Γ (𝛼 + 1)
+
𝑇

|V|
(

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇
𝛼

Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 𝑇
𝛼−𝛾

Γ (𝛼 − 𝛾 + 1)
) ,

𝑄 = 𝑚(1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
) ,

𝑅 = Γ (2 − 𝛾) [(1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
+ 𝑇

𝑚

∑

𝑖=1

𝑡
𝛾−1

𝑖
] ,

𝐻 =

󵄨󵄨󵄨󵄨𝑎2𝑐1
󵄨󵄨󵄨󵄨 𝑇

󵄨󵄨󵄨󵄨V𝑎1
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑐2
󵄨󵄨󵄨󵄨 𝑇

|V|
+

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨

.

(39)

Then, BVP (1) has at least one solution.

Proof. We will show that the operator 𝐹 defined by (31)
satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type.

From Lemma 9, the operator 𝐹 : PC(𝐽,R) → PC(𝐽,R)
is continuous and completely continuous.

Let 𝑥 ∈ PC(𝐽,R) such that 𝑥(𝑡) = 𝜆(𝐹𝑥)(𝑡) for some 𝜆 ∈

(0, 1). Then using the computations in proving that 𝐹 maps
bounded sets into bounded sets in Lemma 9, we have

|𝑥 (𝑡)| ≤ ‖ℎ‖
𝐿
∞𝜑 (‖𝑥‖)

× [
𝑇
𝛼

Γ (𝛼 + 1)
+
𝑇

|V|
(

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇
𝛼

Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 𝑇
𝛼−𝛾

Γ (𝛼 − 𝛾 + 1)
)]

+ Γ (2 − 𝛾) 𝜓
∗

(‖𝑥‖)((1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
+ 𝑇

𝑚

∑

𝑖=1

𝑡
𝛾−1

𝑖
)

+ (1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)𝑚𝜓 (‖𝑥‖) +

󵄨󵄨󵄨󵄨𝑎2𝑐1
󵄨󵄨󵄨󵄨 𝑇

󵄨󵄨󵄨󵄨V𝑎1
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑐2
󵄨󵄨󵄨󵄨 𝑇

|V|
+

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨

.

(40)

Consequently, we have

‖𝑥‖

𝑃‖ℎ‖
𝐿
∞𝜑 (‖𝑥‖) + 𝑄𝜓 (‖𝑥‖) + 𝑅𝜓

∗
(‖𝑥‖) + 𝐻

≤ 1. (41)

Then by condition (38), ‖𝑥‖ ̸=𝑀. Let us set

𝑈 = {𝑥 ∈ PC (𝐽,R) : ‖𝑥‖ < 𝑀} . (42)

The operator 𝐹 : 𝑈 → PC(𝐽,R) is continuous and
compact. From the choice of the set 𝑈, there is no 𝑥 ∈

𝜕𝑈 such that 𝑥 = 𝜆𝐹𝑥 for some 𝜆 ∈ (0, 1). Therefore
by the nonlinear alternative of Leray-Schauder type (see
Theorem 7), we deduce that 𝐹 has a fixed point 𝑥 in 𝑈 which
is a solution of the problem (1). The proof is complete.

Theorem 11. Assume that there exist ℎ ∈ 𝐿
∞

(𝐽,R+) and
positive constants 𝐻

1
, 𝐻
2
such that, for 𝑡 ∈ 𝐽, 𝑥 ∈ R, 𝑘 =

1, 2, . . . , 𝑚,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨 ≤ ℎ (𝑡) ,

󵄨󵄨󵄨󵄨𝐼𝑘 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐻1,

󵄨󵄨󵄨󵄨𝐼
∗

𝑘
(𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝐻2.

(43)

Then, BVP (1) has at least one solution on [0, 𝑇].

Proof. Lemma 9 tells us that the operator 𝐹 : PC(𝐽,R) →

PC(𝐽,R) defined by (31) is continuous and compact on each
bounded subset 𝐵 of PC(𝐽,R).
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Let 𝑉 = {𝑢 ∈ PC(𝐽,R) : 𝑢 = 𝜆𝐹𝑢, 0 < 𝜆 < 1}. Since, for
each 𝑡 ∈ 𝐽,

|𝑥 (𝑡)|

= |𝜆 (𝐹𝑥) (𝑡)|

≤ ‖ℎ‖
𝐿
∞

× [
𝑇
𝛼

Γ (𝛼 + 1)
+
𝑇

|V|
(

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇
𝛼

Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 𝑇
𝛼−𝛾

Γ (𝛼 − 𝛾 + 1)
)]

+ Γ (2 − 𝛾)𝐻
2
((1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
+ 𝑇

𝑚

∑

𝑖=1

𝑡
𝛾−1

𝑖
)

+ (1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)𝑚𝐻

1
+

󵄨󵄨󵄨󵄨𝑎2𝑐1
󵄨󵄨󵄨󵄨 𝑇

󵄨󵄨󵄨󵄨V𝑎1
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑐2
󵄨󵄨󵄨󵄨 𝑇

|V|
+

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨

,

(44)

we know that𝑉 is bounded.Thus, byTheorem 8, the operator
𝐹 has at least one fixed point. Hence the problem (1) has at
least one solution. The proof is completed.

Theorem 12. Assume that there exist ℎ ∈ 𝐿
∞

(𝐽,R+) and
positive constants 𝐿, 𝐿∗ such that, for 𝑡 ∈ 𝐽, 𝑥, 𝑦 ∈ R, 𝑘 =

1, 2, . . . , 𝑚,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ ℎ (𝑡)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝐼𝑘 (𝑥) − 𝐼𝑘 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝐿

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝐼
∗

𝑘
(𝑥) − 𝐼

∗

𝑘
(𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝐿
∗ 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 .

(45)

Moreover

‖ℎ‖
𝐿
∞𝑇
𝛼

Γ (𝛼 + 1)
+
𝑇‖ℎ‖
𝐿
∞

|V|
(

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇
𝛼

Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 𝑇
𝛼−𝛾

Γ (𝛼 − 𝛾 + 1)
)

+ (1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)𝑚𝐿 + Γ (2 − 𝛾) 𝐿

∗

×[(1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
+ 𝑇

𝑚

∑

𝑖=1

𝑡
𝛾−1

𝑖
] < 1.

(46)

Then, BVP (1) has a unique solution on 𝐽.

Proof. Let 𝑥, 𝑦 ∈ PC(𝐽,R). Then for each 𝑡 ∈ 𝐽, we have

󵄨󵄨󵄨󵄨(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)
󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝐼𝑖 (𝑥 (𝑡
−

𝑖
)) − 𝐼
𝑖
(𝑦 (𝑡
−

𝑖
))
󵄨󵄨󵄨󵄨

+ Γ (2 − 𝛾)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖

󵄨󵄨󵄨󵄨𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
)) − 𝐼
∗

𝑖
(𝑦 (𝑡
−

𝑖
))
󵄨󵄨󵄨󵄨

+
𝑇

|V|

󵄨󵄨󵄨󵄨󵄨
Λ
𝑥
− Λ
𝑦

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|

󵄨󵄨󵄨󵄨󵄨
Π
𝑥
− Π
𝑦

󵄨󵄨󵄨󵄨󵄨
+ Γ (2 − 𝛾) 𝑇

×

𝑚

∑

𝑖=1

𝑡
𝛾−1

𝑖

󵄨󵄨󵄨󵄨𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
)) − 𝐼
∗

𝑖
(𝑦 (𝑡
−

𝑖
))
󵄨󵄨󵄨󵄨 .

(47)

Since
󵄨󵄨󵄨󵄨󵄨
Λ
𝑥
− Λ
𝑦

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

Γ (𝛼)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−𝛾−1

Γ (𝛼 − 𝛾)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤
‖ℎ‖
𝐿
∞

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇
𝛼

Γ (𝛼 + 1)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 +

‖ℎ‖
𝐿
∞

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 𝑇
𝛼−𝛾

Γ (𝛼 − 𝛾 + 1)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ,

󵄨󵄨󵄨󵄨󵄨
Π
𝑥
− Π
𝑦

󵄨󵄨󵄨󵄨󵄨
≤

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝐼𝑖 (𝑥 (𝑡
−

𝑖
)) − 𝐼
𝑖
(𝑦 (𝑡
−

𝑖
))
󵄨󵄨󵄨󵄨

+ Γ (2 − 𝛾)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖

󵄨󵄨󵄨󵄨𝐼
∗

𝑖
(𝑥 (𝑡
−

𝑖
)) − 𝐼
∗

𝑖
(𝑦 (𝑡
−

𝑖
))
󵄨󵄨󵄨󵄨

≤ 𝑚𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + Γ (2 − 𝛾) 𝐿
∗

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ,

(48)

then combining these two estimations with (47), we obtain

󵄩󵄩󵄩󵄩𝐹𝑥 − 𝐹𝑦
󵄩󵄩󵄩󵄩

≤ [
𝑇‖ℎ‖
𝐿
∞

|V|
(

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇
𝛼

Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 𝑇
𝛼−𝛾

Γ (𝛼 − 𝛾 + 1)
)

+ Γ (2 − 𝛾) 𝐿
∗

((1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
+ 𝑇

𝑚

∑

𝑖=1

𝑡
𝛾−1

𝑖
)

+
‖ℎ‖
𝐿
∞𝑇
𝛼

Γ (𝛼 + 1)
+ (1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)𝑚𝐿]

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 .

(49)

Therefore, by (46), the operator 𝐹 is a contraction mapping
on PC(𝐽,R).Then it follows Banach’s fixed point theorem that
the problem (1) has a unique solution on 𝐽.This completes the
proof.

4. Examples

Finally we give two simple examples to show the applicability
of our results.
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Example 1. Consider the following impulsive fractional sep-
arated BVP:

𝑐

𝐷
7/4

𝑥 (𝑡) =
cos 𝑡
(𝑡 + 6)

2
(𝑥 (𝑡) + arctan𝑥 (𝑡)) ,

𝑡 ∈ [0, 1] , 𝑡 ̸=
1

2
,

Δ𝑥 (
1

2
) =

󵄨󵄨󵄨󵄨𝑥 ((1/2)
−

)
󵄨󵄨󵄨󵄨

(17 +
󵄨󵄨󵄨󵄨𝑥 ((1/2)

−

)
󵄨󵄨󵄨󵄨)
,

Δ (
𝑐

𝐷
1/4

𝑥(
1

2
)) =

󵄨󵄨󵄨󵄨𝑥 ((1/2)
−

)
󵄨󵄨󵄨󵄨

(20 +
󵄨󵄨󵄨󵄨𝑥 ((1/2)

−

)
󵄨󵄨󵄨󵄨)
,

𝑥 (0) + 2 (
𝑐

𝐷
1/4

𝑥 (0)) =
1

2
,

1

2
𝑥 (1) +

1

3
(
𝑐

𝐷
1/4

𝑥 (1)) = 2.

(50)

Here 𝛼 = 7/4, 𝛾 = 1/4, 𝑇 = 1, and𝑚 = 1. Clearly, we can
take ℎ(𝑡) = 2 cos 𝑡/(𝑡 + 6)2, 𝐿 = 1/17 and 𝐿∗ = 1/20 such that
the relations (45) hold. Moreover

‖ℎ‖
𝐿
∞𝑇
𝛼

Γ (𝛼 + 1)
+
𝑇‖ℎ‖
𝐿
∞

|V|
(

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇
𝛼

Γ (𝛼 + 1)
+

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 𝑇
𝛼−𝛾

Γ (𝛼 − 𝛾 + 1)
)

+ (1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)𝑚𝐿 + Γ (2 − 𝛾) 𝐿

∗

× [(1 +

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 𝑇

|V|
)

𝑚

∑

𝑖=1

𝑡
𝛾

𝑖
+ 𝑇

𝑚

∑

𝑖=1

1

𝑡
1−𝛾

𝑖

]

≈
1

18
× 1.2728 +

1

17
× 1.5796 +

1

20
× 2.7666 < 1.

(51)

Thus, all the assumptions of Theorem 12 are satisfied. Hence,
by the conclusion of Theorem 12, the impulsive fractional
BVP (50) has a unique solution on [0, 1].

Example 2. Consider the following impulsive fractional sep-
arated BVP:

𝑐

𝐷
3/2

𝑥 (𝑡) = 5𝑡
2

+ 𝑒
−|𝑥(𝑡)|

+ sin𝑥 (𝑡) ,

𝑡 ∈ [0, 1] , 𝑡 ̸=
1

4
,

Δ𝑥 (
1

4
) =

2
󵄨󵄨󵄨󵄨𝑥 ((1/4)

−

)
󵄨󵄨󵄨󵄨

(1 +
󵄨󵄨󵄨󵄨𝑥 ((1/4)

−

)
󵄨󵄨󵄨󵄨)
,

Δ (
𝑐

𝐷
1/2

𝑥(
1

4
)) = cos𝑥(1

4

−

) + 3,

3𝑥 (0) +
1

2
(
𝑐

𝐷
1/2

𝑥 (0)) = 1,

2𝑥 (1) + 3 (
𝑐

𝐷
1/2

𝑥 (1)) = 2.5.

(52)

In the context of this problem, we have
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨
5𝑡
2

+ 𝑒
−|𝑥|

+ sin𝑥󵄨󵄨󵄨󵄨󵄨 ≤ 7, 𝑡 ∈ [0, 1] , 𝑥 ∈ R,

󵄨󵄨󵄨󵄨𝐼𝑘 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 2,

󵄨󵄨󵄨󵄨𝐼
∗

𝑘
(𝑥)

󵄨󵄨󵄨󵄨 ≤ 4, 𝑥 ∈ R.

(53)

Put ℎ(𝑡) ≡ 7, 𝐻
1
= 2, and 𝐻

2
= 4. Then from Theorem 11,

the impulsive fractional BVP (52) has at least one solution on
[0, 1].
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[25] M. Fečkan, Y. Zhou, and J. R. Wang, “On the concept and
existence of solution for impulsive fractional differential equa-
tions,” Communications in Nonlinear Science and Numerical
Simulation, vol. 17, no. 7, pp. 3050–3060, 2012.

[26] J. R.Wang, Y. Zhou, andM. Fečkan, “On recent developments in
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