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Computer users’ reactions to the outbreak of Internet worm directly determine the defense capability of the computer and play
an important role in the spread of worm. In this paper, in order to characterize the impacts of adaptive user protection behaviors,
an improved SIS model is proposed to describe the Internet worm propagation. The results of theoretical analysis indicate that the
protective campaigns of users can indeed reduce theworm’s reproduction number to values less than one. But itmay not be sufficient
to eradicate the worm. In certain condition, a backward bifurcation leading to bistability can occur. These are new findings in the
worm propagation model that bring new challenges to control the spread of the worm and further demonstrate the importance
of user behaviors in controlling the worm propagation. Corresponding to the analysis results, defense and control strategies are
provided.

1. Introduction

A generalized Internet worm is a kind of computer program
that can replicate itself and spread from one host to another
through the network [1]. Internet worms are built to propa-
gate without warning or user interaction with the characters
of rapid pervasive speed, large invasive scale, and severe
destructive power. In the modern information and network
security, Internet worms have become one of themost serious
security threats to the Internet [2].

In order to effectively defense the Internet worm attack
and reduce the damage caused by them, the propagation
mechanism and control strategies of Internet worms have
become active research topics. Mathematical models have
been an important tool for investigating and quantifying such
effects. Many research efforts have focused on developing
effective worm propagation model to understand their prop-
agation mechanisms and examine the effects of defensive
measures [3–7]. However, all of these studies are focused on
the computer host [8–10] and ignore the user behavior which
is closely related to the worm propagation [11].

As stated in [12], the most effective way to protect a host
from worm is to patch. But it is almost impossible to achieve
for some reasons, one of which is the lack of the security
awareness of the computer user. It serves to show that user
behaviors play an important role in the spread of Internet
worm, and understanding the influence of these behaviors on
the spread of worm can be a key to improve control efforts.
Several studies have been carried out to evaluate the impact
and role of the user behavior factors on worm propagation
[13–19], but almost all of these studies are focused on the
user’s habitual actions. However, in the real world, users
can take actions to combat worm prevalence, and under
different actions, there will be different worm prevalence
processes [20]. Only a few recent attempts have considered
the self-induced behavior changes users adopt during an out-
break. Some approaches model user behaviors by modifying
infectious rate or removed rate [21, 22]. However, to fully
understand the impact of user behaviors on worm dynamics,
there still lacks a formulation of a general behavior worm
model.

In the actual network environment, during the outbreak
of the Internet worm, the computer users may filter and
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block suspicious messages with a firewall, no longer browse
websites that are suspicious, update the antivirus software to
new version timely, and so forth, which can be called user
protection behaviors. Certainly, these protection measures
can cause associated costs. For instance, some important
informationmay be filtered out, or the speed of the computer
operation can be slowed down. Moreover, these bring some
inconvenience to normal activities. So users always compare
the risk of worm infection with the associated cost of
protection measures and then make a personal decision
according to the current situation of worm propagation. As a
consequence, the states of the computers switch between vul-
nerable state and protected state relying on the corresponding
protection behaviors of users. From this new perspective, in
this paper the computers are categorized according to the
user behavioral responses to the spread of worm. The degree
of protection is different because of the difference of user’s
attitudes, belief systems, opinions, awareness of the worm,
and environment. For the sake of simplicity, the computers
that have not been infected by the worm are divided into two
classes roughly, where one is the vulnerable computers and
the other one is the protected computers. Incorporated with
the worm dynamics, we study the effect of user protection
behaviors on worm propagation and control.

The rest of this paper is organized as follows. In Section 2,
a worm propagation model coupled with user protection
behaviors is established. The basic reproduction number is
obtained in Section 3, and the equilibria and the correspond-
ing stability are studied. In Section 4, we carry out some
sensitivity analysis about the parameters. In the following
section are the simulation results and control strategies.
Finally, we conclude in Section 6 with a summary of our
findings.

2. The Worm Propagation Model

We focus on studying the impact of the user behaviors on
thewormpropagation and control so as to provide theoretical
basis for the worm control. Therefore, we shall exclusively
consider the random-scanning worm, regardless of the topo-
logical structure of the network. That is, all computer hosts
in the network are mixing homogeneously and have the
vulnerabilities that can be used by the worm.

All computers are divided into three classes: vulnerable
computers (worm-free computers), protected computers, and
infectious computers (computers that have been infected by
the worm and can transmit it to the vulnerable computers).
Let 𝑆
1
(𝑡), 𝑆
2
(𝑡), and 𝐼(𝑡) denote, at time 𝑡, the numbers of

vulnerable, protected, and infectious computers, respectively.
Then 𝑆

1
(𝑡) + 𝑆

2
(𝑡) + 𝐼(𝑡) = 𝑁(𝑡) is the total number of

computers.
By carefully considering the features of Internet worm,

the following hypotheses are made.

(H1) All newly connected computers are worm-free.These
computers are connected to the Internet at positive
constant ∧, of which a fraction 𝑝 is protected.

(H2) Computers are disconnected from the Internet at rate
𝜇.
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p∧
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Figure 1: The flowchart of computer worm spreading.

(H3) Infectious computers are cured at positive constant
rate 𝛾 by running with antivirus software or rein-
stalling the system, of which a fraction 𝑞 is protected.

(H4) Compared to the vulnerable computers, the protected
ones have the smaller infection rate by worm. We
utilize the fraction 1 − 𝜎 to measure the effect of
reducing the infection rate due to the protection
behaviors. 𝜎 = 0 means the protection is completely
effective in preventing infection, while 𝜎 = 1 means
the protection is utterly ineffective. In fact, we know
the protectionmay not be 100% or completely useless,
so we consider the case 0 < 𝜎 < 1, which is more
realistic.

(H5) The transformation rate of a computer from vulner-
able state to protected state is 𝜙. In the opposite
direction, the transformation rate is 𝜃.

Integrating the user protection behaviors into the worm
propagation, we have the following graphic of the state tran-
sition in Figure 1.

According to the flowchart, the worm propagation pro-
cess that is coupled with the user protection behaviors can be
described as the following model:

̇𝑆
1
= (1 − 𝑝) ∧ −𝛽

0
𝐼
𝑆
1

232
− 𝜇𝑆
1
− 𝜙𝑆
1
+ (1 − 𝑞) 𝛾𝐼 + 𝜃𝑆

2
,

̇𝑆
2
= 𝑝 ∧ +𝜙𝑆

1
− 𝜎𝛽
0
𝐼
𝑆
2

232
− 𝜇𝑆
2
+ 𝑞𝛾𝐼 − 𝜃𝑆

2
,

̇𝐼 = 𝛽
0
𝐼
𝑆
1

232
+ 𝜎𝛽
0
𝐼
𝑆
2

232
− 𝜇𝐼 − 𝛾𝐼,

(1)

where 𝛽
0
denotes the infection rate of vulnerable computers

due to the successful scans of an infectious computer per
time step and 𝜎𝛽

0
is the infection rate of protected computers

due to the successful scans of an infectious computer per
time step.The probability of successfully finding a vulnerable
computer (protected computer) in one scan is 𝑆

1
/2
32(𝑆
2
/2
32),

where 232 is the size of IPv4 address space (the scanning
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space). Then, 𝛽
0
𝑆
1
/2
32(𝜎𝛽
0
𝑆
2
/2
32) is the number of vul-

nerable computers (protected computers) infected by an
infectious computer per time step. So 𝛽

0
𝐼𝑆
1
/2
32(𝜎𝛽
0
𝐼𝑆
2
/2
32)

is the number of vulnerable computers (protected computers)
infected by infectious computers per time step.

Summing up the three equations in system (1), we obtain

𝑑𝑁

𝑑𝑡
= ∧ − 𝜇𝑁. (2)

When 𝑡 → +∞, 𝑁 → ∧/𝜇 ≜ 𝑁
∗. It is easy to see that

system (1) can be shown to be mathematically well posed in
the positive invariant regionD = {(𝑆

1
, 𝑆
2
, 𝐼) | 0 ≤ 𝑆

1
+𝑆
2
+𝐼 ≤

𝑁
∗
} and solutions in D exist for all positive time.
Now, we take transformation 𝑥 = 𝑆

1
/𝑁
∗, 𝑦 = 𝑆

2
/𝑁
∗,

𝑧 = 𝐼/𝑁
∗ to system (1). For convenience, 𝑆

1
, 𝑆
2
, and 𝐼 are

used to represent 𝑥, 𝑦, and 𝑧 in the following equations:

̇𝑆
1
= (1 − 𝑝) 𝜇 − 𝛽𝑆

1
𝐼 − 𝜇𝑆

1
− 𝜙𝑆
1
+ (1 − 𝑞) 𝛾𝐼 + 𝜃𝑆

2
,

̇𝑆
2
= 𝑝𝜇 + 𝜙𝑆

1
− 𝜎𝛽𝑆

2
𝐼 − 𝜇𝑆

2
+ 𝑞𝛾𝐼 − 𝜃𝑆

2
,

̇𝐼 = 𝛽𝑆
1
𝐼 + 𝜎𝛽𝑆

2
𝐼 − 𝜇𝐼 − 𝛾𝐼,

(3)

where 𝛽 = 𝛽
0
𝑁
∗
/2
32 and 𝑆

1
+ 𝑆
2
+ 𝐼 = 1 is satisfied.

3. The Analysis of Dynamical Behaviors

The objective of this section is to perform theoretical analysis
of system (3). We first give the basic reproduction number.
Secondly, we study the equilibria and their stability. Finally,
we prove the occurrence of saddle-node bifurcation.

3.1.The Basic Reproduction Number. Usually, the basic repro-
duction number, denoted as 𝑅

0
, is “the expected number of

secondary cases produced, in a completely susceptible popu-
lation, by a typical infective individual” [23, 24]. Similarly, for
a worm propagation model the basic reproduction number
is defined as the average number of previously worm-free
computers that are infected by a single infectious computer
during its lifecycle. In our model, infectious computers come
from two sources: those vulnerable (𝑆0

1
) that get infected

and those protected (𝑆0
2
) that get infected. By the physical

meanings of the system parameters in system (3) (or (1)), the
following results are obtained:

(a) the average lifetime of an infectious computer is 𝑇 =
1/(𝜇 + 𝛾);

(b) an infectious computer converts a vulnerable com-
puter to an infectious one at rate 𝛽;

(c) an infectious computer converts a protected com-
puter to an infectious one at rate 𝜎𝛽.

Thus, the modified basic reproduction number with the pro-
tection measures is obtained as

𝑅pro = 𝑇 (𝛽𝑆
0

1
+ 𝜎𝛽𝑆

0

2
)

=
𝛽

𝜇 + 𝛾
(𝑆
0

1
+ 𝜎𝑆
0

2
) <

𝛽

𝜇 + 𝛾
= 𝑅
0
,

(4)

where 𝑅
0
= 𝛽/(𝜇 + 𝛾) is the basic reproduction number of

the SIS model which does not consider the user protection
behaviors. The expressions of 𝑆0

1
and 𝑆0

2
are given in (5).

Obviously, the protection behaviors do reduce the basic
reproduction number 𝑅pro.

3.2. Stability and Bifurcation Analysis

3.2.1.TheWorm-Free Equilibrium and Its Stability. Equilibria
are obtained by setting the right side of system (3) equal to
zero. From the third equation in system (3), we can obtain
𝐼 = 0 or 𝛽𝑆

1
+ 𝜎𝛽𝑆

2
= 𝜇 + 𝛾. If 𝐼 = 0, the model has a unique

worm-free equilibrium:

𝐸
0
= (𝑆
0

1
, 𝑆
0

2
, 0) , (5)

where 𝑆0
1
= ((1−𝑝)𝜇+𝜃)/(𝜇+𝜃+𝜙), 𝑆0

2
= (𝑝𝜇+𝜙)/(𝜇+𝜃+𝜙).

To study the local stability of the equilibria, we first give
the Jacobian matrix of system (3) at an arbitrary equilibrium:

𝐽 =
[
[

[

−𝛽𝐼 − 𝜇 − 𝜙 𝜃 −𝛽𝑆
1
+ (1 − 𝑞) 𝛾

𝜙 −𝜎𝛽𝐼 − 𝜇 − 𝜃 −𝜎𝛽𝑆
2
+ 𝑞𝛾

𝛽𝐼 𝜎𝛽𝐼 𝛽𝑆
1
+ 𝜎𝛽𝑆

2
− (𝜇 + 𝛾)

]
]

]

.

(6)

Then the corresponding characteristic polynomial at the
worm-free equilibrium 𝐸

0
is derived as

𝑃 (𝜆) = (𝜆 + 𝜇) (𝜆 + 𝜇 + 𝜃 + 𝜙)

× (𝜆 + 𝜇 + 𝛾 − 𝛽𝑆
0

1
− 𝜎𝛽𝑆

0

2
) ,

(7)

so we obtained that the eigenvalues at the worm-free equi-
librium 𝐸

0
are 𝜆
1
= −𝜇, 𝜆

2
= −(𝜇 + 𝜃 + 𝜙) and 𝜆

3
=

𝛽𝑆
0

1
+ 𝜎𝛽𝑆

0

2
− (𝜇 + 𝛾) = (𝜇 + 𝛾)(𝑅pro − 1), respectively.

Consequentially, the following result is obtained.

Theorem 1. System (3) always has a trivial equilibrium 𝐸
0
,

and if 𝑅
𝑝𝑟𝑜
≤ 1, 𝐸

0
is locally asymptotically stable.

3.2.2. The Existence and Stability of Endemic Equilibrium. In
this section, we study the existence and stability of the
endemic equilibria for system (3).

If 𝛽𝑆
1
+𝜎𝛽𝑆

2
= 𝜇+𝛾, combined with the second equation

of system (3), we can obtain

𝑆
1
=
(𝜇 + 𝛾) (𝜎𝛽𝐼 + 𝜇 + 𝜃) − 𝜎𝑞𝛾𝛽𝐼 − 𝜎𝛽𝑝𝜇

𝛽 (𝜎𝛽𝐼 + 𝜇 + 𝜃 + 𝜎𝜙)
,

𝑆
2
=
𝑞𝛾𝛽𝐼 + 𝛽𝑝𝜇 + 𝜙 (𝜇 + 𝛾)

𝛽 (𝜎𝛽𝐼 + 𝜇 + 𝜃 + 𝜎𝜙)
.

(8)

Then, substituting 𝑆
1
and 𝑆
2
into the first equation of system

(3), a quadratic equation is given as

𝐴𝐼
2
+ 𝐵𝐼 + 𝐶 = 0 (9)
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in terms of 𝐼, where

𝐴 = 𝜎𝛽
2
,

𝐵 = 𝛽 [𝜇 + 𝜃 + 𝜎𝜙 + 𝜎 (𝜇 + 𝛾) + 𝑞𝛾 (1 − 𝜎) − 𝜎𝛽] ,

𝐶 = (𝜇 + 𝛾) (𝜇 + 𝜃 + 𝜙) (1 − 𝑅pro) .

(10)

Define Δ = 𝐵
2
− 4𝐴𝐶; the number of endemic equilibria is

dependent on the sign of 𝐵, 𝐶, and Δ. After calculation, we
can obtain the following results.

Theorem 2. For system (3), consider the following.

(1) If 𝐶 < 0 (𝑅
𝑝𝑟𝑜

> 1), (9) has a positive root 𝐼∗ = (−𝐵 +
√Δ)/2𝐴. Correspondingly, system (3) has one endemic
equilibrium 𝐸

∗.
(2) If 𝐶 = 0 (𝑅

𝑝𝑟𝑜
= 1) and 𝐵 < 0, (9) also has a positive

root 𝐼∗ = −𝐵/𝐴. Correspondingly, system (3) has one
endemic equilibrium 𝐸

∗.
(3) If 𝐶 > 0 (𝑅

𝑝𝑟𝑜
< 1), 𝐵 < 0, there will be three cases.

(i) If Δ > 0, (9) has two positive roots 𝐼∗1 =

(−𝐵+√Δ)/2𝐴 and 𝐼∗2 = (−𝐵−√Δ)/2𝐴. Corre-
spondingly, system (3) has two endemic equilibria
𝐸
∗1
= (𝑆
∗1

1
, 𝑆
∗1

2
, 𝐼
∗1
) and 𝐸∗2 = (𝑆∗2

1
, 𝑆
∗2

2
, 𝐼
∗2
).

(ii) IfΔ = 0, (9) has a positive root 𝐼∗ = −𝐵/2𝐴; then
system (3) has one endemic equilibrium 𝐸

∗.
(iii) If Δ < 0, (9) has no positive root, and system (3)

has no endemic equilibrium.

Now,we study the stability of endemic equilibria seriatim.
Similar to Section 3.2.1, the corresponding characteristic
polynomial of an arbitrary endemic equilibrium is derived as

𝑄 (𝜆) = (𝜆 + 𝜇) [𝜆
2
+ (𝛽𝐼 + 𝜎𝛽𝐼 + 𝜇 + 𝜃 + 𝜙) 𝜆

+ (2𝐴𝐼 + 𝐵) 𝐼] .

(11)

Obviously, for any endemic equilibrium, there is an eigen-
value 𝜆

1
= −𝜇 < 0. In order to study the other ones, we set

𝑓 (𝜆) = 𝜆
2
+ (𝛽𝐼 + 𝜎𝛽𝐼 + 𝜇 + 𝜃 + 𝜙) 𝜆

+ (2𝐴𝐼 + 𝐵) 𝐼.

(12)

Then the signs of eigenvalues corresponding to the endemic
equilibrium are dependent on the distribution of the roots of
𝑓(𝜆) = 0.

Corresponding to the cases about the existence, we obtain
the stability of endemic equilibrium in each case, which are
stated as follows.

Theorem 3. For system (3), consider the following.

(1) If 𝐶 < 0 (𝑅
𝑝𝑟𝑜
> 1), then 𝐼∗ = (−𝐵 +√Δ)/2𝐴, 2𝐴𝐼∗ +

𝐵 = √Δ > 0. In this case,𝑓(𝜆) has no intersection point
with positive real axis; thus 𝐸∗ is locally asymptotically
stable.

(2) If 𝐶 = 0 (𝑅
𝑝𝑟𝑜

= 1) and 𝐵 < 0, then 𝐼∗ = −𝐵/𝐴,
2𝐴𝐼
∗
+ 𝐵 = −𝐵 > 0; same as case (1), 𝐸∗ is locally

asymptotically stable.

(3) If 𝐶 > 0 (𝑅
𝑝𝑟𝑜
< 1), 𝐵 < 0, there will be three cases.

(i) IfΔ > 0, for the positive root 𝐼∗1 = (−𝐵+√Δ)/2𝐴,
2𝐴𝐼
∗1
+ 𝐵 = √Δ > 0; same as the above, 𝐸∗1 =

(𝑆
∗1

1
, 𝑆
∗2

2
, 𝐼
∗1
) is a stable node. For 𝐼∗2 = (−𝐵 −

√Δ)/2𝐴, 2𝐴𝐼∗2 + 𝐵 = −√Δ < 0; in this case,
𝑓(𝜆) has an intersection point with positive real
axis, so 𝐸∗2 = (𝑆∗2

1
, 𝑆
∗2

2
, 𝐼
∗2
) is a saddle point.

(ii) If Δ = 0, then 𝐼∗ = −𝐵/2𝐴, 2𝐴𝐼∗ + 𝐵 = 0;
in this case, one of the eigenvalues corresponding
to 𝐸∗ is equal to zero, so 𝐸∗ is a nonhyperbolic
equilibrium.

(iii) If Δ < 0, system (3) has no endemic equilibrium.

3.2.3. The Saddle Node and Bifurcation. According to The-
orems 2 and 3, we can see that under the conditions 𝐶 >

0 (𝑅pro < 1), 𝐵 < 0, and Δ = 0, system (3) has one
endemic equilibrium 𝐸

∗, and it is a nonhyperbolic equi-
librium. Utilizing the center manifold theorem [25, 26]
and the existence theorem [27], we studied the dynamical
behavior near the equilibrium𝐸

∗. Taking 𝛽 as the bifurcation
parameter, we prove that system (3) could experience saddle-
node bifurcation.The detailed results are given as follows (the
proofs ofTheorems 4 and 5 are provided inAppendices A and
B).

Theorem 4. If 𝐶 > 0 (𝑅
𝑝𝑟𝑜
< 1), 𝐵 < 0, and Δ = 0, system (3)

has one positive equilibrium 𝐸
∗, and 𝐸∗ is a saddle node.

Theorem 5. System (3) experiences saddle-node bifurcation at
the equilibrium 𝑥

0
= 𝐸
∗ as the parameter 𝛽 passes through the

bifurcation value.

From the above mathematical analysis, we can see that
under certain parameter condition, system (3) would expe-
rience backward bifurcation. Combined with the theoretical
results, we can rewrite the inequality conditions about 𝐶, 𝐵,
and Δ = 𝐵2 − 4𝐴𝐶 in terms of 𝛽:

𝐶< 0 (𝑅pro > 1) ⇐⇒ 𝛽>𝛽
𝐶
≜

(𝜇 + 𝛾) (𝜇 + 𝜃 + 𝜙)

𝜇 (1 − 𝑝) + 𝜃 + 𝜎𝜙 + 𝜎𝜇𝑝
,

𝐵<0 ⇐⇒ 𝛽>𝛽
𝐵
≜
𝜇 + 𝜃 + 𝜎𝜙 + 𝜎 (𝜇 + 𝛾) + 𝑞𝛾 (1 − 𝜎)

𝜎
,

Δ > 0 ⇐⇒ 𝛽 > 𝛽
Δ
≜ ((𝜎 (𝜇 + 𝛾) + (𝑝𝜇 + 𝑞𝛾) (1 − 𝜎)

+ 𝑝𝜇 (1 − 𝜎) − (𝜇 + 𝜃 + 𝜎𝜙) )

× (𝜎)
−1
)
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Figure 2: Bifurcation diagram. (a) Forward bifurcation case; (b) backward bifurcation case.

+ (2 (𝜎 (1 − 𝜎) (𝜇 + 𝛾) (𝜙 + 𝑝𝜇)

+ (𝑝𝜇 + 𝑞𝛾) (1 − 𝜎)

× [𝑝𝜇 (1 − 𝜎)

− (𝜇 + 𝜃 + 𝜎𝜙)])
1/2

× (𝜎)
−1
) .

(13)

𝛽
𝐶
, 𝛽
𝐵
, and 𝛽

Δ
satisfy the following relationship

𝛽
𝐶
> 𝛽
𝐵
󳨐⇒ 𝛽
𝐶
> 𝛽
Δ
> 𝛽
𝐵
. (14)

Then

𝑅
󸀠

pro ≜ 𝑅pro|𝛽=𝛽Δ =
𝛽
Δ

𝜇 + 𝛾
⋅
(1 − 𝑝) 𝜇 + 𝜃 + 𝜎 (𝑝𝜇 + 𝜙)

𝜇 + 𝜃 + 𝜙
(15)

becomes one critical threshold for system (3), and 𝛽 > 𝛽
Δ
⇔

𝑅pro > 𝑅
󸀠

pro. In addition, we can obtain 𝑅󸀠pro = 1 − (𝐵
2
/4𝐴) if

Δ = 0. Obviously, 𝑅󸀠pro < 1.
FromTheorems 1–5, we can obtain the following proper-

ties.

Corollary 6. For system (3),

(1) if 𝛽
𝐶
> 𝛽
𝐵
and 𝛽

Δ
< 𝛽 < 𝛽

𝐶
, then two endemic

equilibria exist, one of which is locally stable and
competes with the locally stable worm-free equilibrium,
which is the backward bifurcation (see Figure 2(b));

(2) otherwise, the worm-free equilibrium is the unique
attractor when 𝑅pro < 1, which is the forward
bifurcation (see Figure 2(a)).

These results can also be given in terms of 𝜎, 𝜙, or 𝜃, and
in practice, these parameters are easily controlled. However,
the expressions aremore complicated.Therefore, we only give
corresponding regions in numerical simulation.

4. Sensitivity Analysis

In real world applications, ourmain objective is to control the
percentage of infective computers or eradicate the worm by
taking effective measures. In our model, parameters 𝜎, 𝜙, 𝜃,
𝑝, and 𝑞 are related to human behavioral responses. For our
purpose, following Arriola and Hyman [28], the normalized
forward sensitivity indices with respect to 𝜎, 𝜙, 𝜃, and 𝑝 are
calculated, respectively, as follows:

(𝜕𝑅pro/𝑅pro)

(𝜕𝜎/𝜎)
=

𝜎 (𝜙 + 𝑝𝜇)

(1 − 𝑝) 𝜇 + 𝜃 + 𝜎𝜙 + 𝜎𝑝𝜇
> 0,

(𝜕𝑅pro/𝑅pro)

(𝜕𝜙/𝜙)
= −

𝛽

𝜇 + 𝛾
⋅
(1 − 𝜎) [𝜃 + (1 − 𝑝) 𝜇]

(𝜇 + 𝜃 + 𝜙)
2

< 0,

(𝜕𝑅pro/𝑅pro)

(𝜕𝜃/𝜃)
=

𝛽

𝜇 + 𝛾
⋅
(1 − 𝜎) (𝜙 + 𝑝𝜇)

(𝜇 + 𝜃 + 𝜙)
2

> 0,

(𝜕𝑅pro/𝑅pro)

(𝜕𝑝/𝑝)
= −

𝛽

𝜇 + 𝛾
⋅
(1 − 𝜎) 𝜇

𝜇 + 𝜃 + 𝜙
< 0.

(16)

It can be seen that, among these parameters, 𝑅pro is an
increasing function of 𝜎 and 𝜃. Opposed to this, 𝜙 and 𝑝 have
an inversely proportional relationship with 𝑅pro.

By now, for a general worm propagation model with
forward bifurcation (Figure 2(a)), we can take measures to
increase 𝜙 and decrease 𝜎, 𝜃 at the same time to make 𝑅pro
below one. However, for ourmodel, the backward bifurcation
(Figure 2(b)) appears under certain parameter values. In this
case, reducing𝑅pro below one would not promise to eradicate
the worm eventually. As shown in Figure 2(b), there exists a
locally stable endemic equilibrium even if 𝑅pro < 1. In order
to control the worm propagation, the involved parameter
values must be further reduced or increased so far that𝑅pro <

𝑅
󸀠

pro, and 𝑅pro enters the region where no endemic equilibria
exist (see Figures 2(b) and 9). Therefore, the control of worm



6 Abstract and Applied Analysis

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (hour)

𝜎 = 0.02
𝜎 = 0.1

𝜎 = 0.2

I

(a)

0 1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (hour)

𝜙 = 0.00006
𝜙 = 0.0006
𝜙 = 0.001

I

(b)

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (hour)

𝜃 = 0.0005
𝜃 = 0.001
𝜃 = 0.01

I

(c)

0 1000 2000 3000 4000 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (hour)

p = 0.001

p = 0.1

p = 0.5

I

(d)

Figure 3: The variations in the number of infectious computers 𝐼(𝑡) for different values of 𝜎, 𝜙, 𝜃, and 𝑝, respectively.

propagation is more difficult under the situation in which
backward bifurcation appears.

5. Simulations and Control Strategies

Theoretical results have been provided in previous section;
now we use numerical simulations to verify the above results.
We fix 𝑁∗ = 0.24 × 232 [29], 𝜇 = 1/(5 × 24), and 𝛾 = 1/24
throughout this paper.

5.1. The Effect of Parameters. In Section 4, we have analyzed
the effects of 𝜎, 𝜙, 𝜃, and 𝑝 on 𝑅pro. To provide an intuitive

impression, when 𝛽 = 250 × 0.24 × 0.0026, the influences of
𝜎, 𝜙, 𝜃, and 𝑝 on 𝐼(𝑡) are shown in Figure 3.

It can be observed that the effects of 𝜎, 𝜙, and 𝜃 are
stronger and 𝑝 have little or almost no influence on 𝐼(𝑡).
Moreover, we find that𝜙 can influence not only the number of
infectious computers but also the arrival time of the second
peak. It is easy to see that the peak of the second outbreak
would be postponed if𝜙 is increasing. Generally, as the arrival
time of the first peak of worm outbreak is very quick, it is
too late to make any responses when we are aware of it. Thus,
if the arrival time of the second peak of worm outbreak can
be postponed, it can give security professionals more time to
study the corresponding counter measures.
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Figure 4:The variations in the number of infectious computers 𝐼(𝑡)
for different values of 𝑞.

Although 𝑞 does not appear in the expression for 𝑅pro, it
is related to the user behavior. So, fixing 𝛽 = 250 × 0.24 ×

0.0026, 𝑝 = 0.8, 𝜙 = 0.0003, 𝜃 = 0.0005, 𝜎 = 0.02 (this is
the forward bifurcation case, 𝑅pro = 2.3235), we study the
influences of 𝑞 on the changes of 𝐼(𝑡). From Figure 4, we can
see an increase of 𝑞 would lead to a decrease of 𝐼(𝑡). That is,
even if 𝑅pro > 1, the final size of infectious computers can be
reduced to a low level by increasing 𝑞.

In order to display the differences between the forward
and backward bifurcation, in the following parts, we carry on
numerical simulations for the two cases, respectively.

5.2. Forward Bifurcation. Firstly, to find better control strate-
gies for worm infection, we perform some sensitivity analysis
of 𝐼(𝑡) and the basic reproduction number𝑅pro in terms of the
model parameters. Choosing 𝑝 = 0.8, 𝑞 = 0.5, 𝜙 = 0.0003,
𝜃 = 0.0005, 𝜎 = 0.02, we can obtain 𝛽

𝐶
= 0.0671. Assuming

the value of 𝛽 is 250 × 0.24 × 0.0011, 250 × 0.24 × 0.002, and
250×0.24×0.0026, respectively, then the corresponding value
of 𝑅pro is 0.9830, 1.7873, and 2.3235. We show variations of
𝐼(𝑡) for different values of𝑅pro in Figure 5with 𝐼(0) = 10

7.We
can see that 𝑅pro is really the threshold for the establishment
of the worm in the susceptible pool, and the number of
infectious computers increases with the increase of 𝑅pro.

Secondly, in Figure 6, we show the influences of initial
conditions 𝐼(0) on the number of infectious computers 𝐼(𝑡)
for the same 𝑅pro. We can see 𝐼(0) has little or almost no
influence on 𝐼(𝑡).

From the above analysis, we find that as long as we take
measures to control the parameter values to make 𝑅pro < 1,
wewill be able to control the spread of theworm.However, we
know that in real world the control measures corresponding
to involved parameters may not be easy to carry out. Even if
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Figure 5:The variations in the number of infectious computers 𝐼(𝑡)
for different values of 𝑅pro.

controlling parameter values cannot ensure that 𝑅pro < 1, the
final size of infectious computers can be reduced by reducing
the value of 𝑅pro as far as possible.

5.3. Backward Bifurcation. Similarly, keeping other parame-
ter values unchanged, we choose 𝜙 = 0.006, 𝜎 = 0.2, then
𝛽
𝐶
= 0.1589, 𝛽

𝐵
= 0.1336, 𝛽

Δ
= 0.1505, and 𝛽

𝐶
> 𝛽
𝐵
,

𝑅
󸀠

pro = 0.9470. Assuming the value of 𝛽 is 250×0.24×0.0025,
250×0.24×0.0026, and 250×0.24×0.00275, respectively, then
the corresponding value of 𝑅pro is 0.9439, 0.9817, and 1.0383.
The inequality 0.9439 < 𝑅󸀠pro < 0.9817 < 1.0383 is satisfied.

In Figure 7, we show the changes of 𝐼 with time for
different 𝑅pro. The initial values adopted in Figures 7(a) and
7(b) are 𝐼(0) = 107 and 𝐼(0) = 3 × 106, respectively.

Comparing Figure 7(a) with Figure 5, we can find if at
𝑅pro < 1, 𝐼(𝑡) may still tend to a positive endemic level;
that is, 𝑅pro < 1 is not sufficient to control the spread of
Internet worm. Comparing Figure 7(a) with Figure 7(b), it
can be observed that when 𝑅󸀠pro < 𝑅pro = 0.9817 < 1, the
initial value 𝐼(0) can influence the evolutions of 𝐼 with time.
But the initial value 𝐼(0) has no influence on the evolutions
of 𝐼 with time when 𝑅pro = 1.0383 > 1 and 𝑅pro = 0.9439 <

𝑅
󸀠

pro.Thus𝑅pro = 1 is not the only threshold condition for the
worm eradication, and 𝑅󸀠pro also plays a key role.

In order to display the impacts of 𝐼(0) on the evolutions
of 𝐼(𝑡) more clearly, in Figure 8, we assume the initial value
of 𝐼(0) is 106 : 106 : 107. From Figures 8(a)–8(c), we can see
that when 𝑅󸀠pro < 𝑅pro < 1, for different 𝐼(0), 𝐼(𝑡) will
tend to endemic equilibrium or worm-free equilibrium
simultaneously, which puts forward new challenges to the
worm control. Because the value of 𝐼(0) depends mainly on
the hackers who write malicious code, it is hard to control.
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Figure 6: The influences of initial conditions 𝐼(0) on the number of infectious computers 𝐼(𝑡) for different values of 𝐼(0) with the same 𝑅pro.

Then in order to eradicate the worm, we must take further
measures to reduce 𝑅pro, so that 𝑅pro < 𝑅

󸀠

pro.
For system (3), the parameters are in cooperation with

each other. So in Figure 9, we give the region division of the
distribution of endemic equilibria in (𝜎, 𝜙), (𝜙, 𝜃), and (𝜎, 𝜃)
planes.Thus the parameter space is divided into several parts.
In the yellow area, system (3) has two endemic equilibria, one
of which is locally asymptotically stable. In the “no endemic
equilibrium” region, the worm-free equilibrium is globally
asymptotically stable. In the “one endemic equilibrium”
region, the unique endemic equilibrium is globally asymptot-
ically stable. From Figure 9, we can obtain the corresponding
value ranges of 𝜎, 𝜙, and 𝜃 just as 𝛽 easily. This can be an
instruction to control parameter values and provides a good
basis for the establishment of control measures in practical
terms.

Synthesizing the above analysis and simulation results,
some control strategies can be implemented: in both cases
(forward and backward bifurcation), it is strongly rec-
ommended that one should periodically acquire and run
antivirus software of the newest version. Filtering and block-
ing suspicious messages with a firewall is also suggested.
Educational efforts should be rolled out to increase the public
awareness of worm propagation. Especially in the case of
backward bifurcation, in order to control the spread of the
worm, one must further strengthen the implementation of
these measures.

6. Conclusion

In the vast majority of Internet worm models [30–35],
the basic reproduction number 𝑅

0
is the critical threshold
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Figure 7: The variations in the number of infectious computers 𝐼(𝑡) for different values of 𝑅pro: (a) 𝐼(0) = 10
7, (b) 𝐼(0) = 3 × 106.

condition. Various actions are taken to control the system
parameter values so that 𝑅

0
< 1, then the solutions of

the system will approach worm-free equilibrium finally; that
is, the spread of worm can be controlled. In our paper, by
characterizing the user protection behaviors, we propose a
mathematical model which is coupled with the adaptive user
protection behaviors for the Internet worm propagation.The
theoretical analysis demonstrates that the protection behav-
ior can reduce the value of the basic reproduction number to
below one. Besides, we find that the simple model exhibits a
very interesting and rich spectrum of dynamical behaviors,
such as backward bifurcation, saddle-node bifurcation.Thus,
in this case, the basic reproduction number below one is
not the only threshold condition for the computer worm
control. In the backward bifurcation case, one must further
strengthen the protection to control the spread of worm.
These results show that whether the user selects protection
has an important effect on worm controlling. Moreover,
enhancing the protection consciousness of users or speeding
up the antivirus software upgrade can delay the arrival time
of second peak of infectious computer, which is essential for
the security professionals. To sum up, our results are new
discoveries in the field of Internet worm propagation and
can bring new perspectives to defense and control worm
propagation.

Appendices

A. The Proof of Theorem 4

In this subsection, we investigate the dynamics near 𝐸∗ in
the second item of case (III) by the center manifold theorem

[25, 26]. Firstly, using 𝑆
1
+𝑆
2
+𝐼 = 1, system (3) is qualitatively

equivalent to

̇𝑆
2
= 𝑝𝜇 + 𝜙 (1 − 𝑆

2
− 𝐼) − 𝜎𝛽𝑆

2
𝐼 − 𝜇𝑆

2
+ 𝑞𝛾𝐼 − 𝜃𝑆

2
,

̇𝐼 = 𝛽 (1 − 𝑆
2
− 𝐼) 𝐼 + 𝜎𝛽𝑆

2
𝐼 − 𝜇𝐼 − 𝛾𝐼.

(A.1)

From the previous analysis, we can obtain that the eigenvalues
corresponding to 𝐸∗ are Λ

1
= 0 and Λ

2
= −(𝛽𝐼

∗
+ 𝜎𝛽𝐼

∗
+

𝜇 + 𝜃 + 𝜙).
Secondly, shifting 𝐸∗ to the origin via 𝑥

1
= 𝑆
2
− 𝑆
∗

2
and

𝑥
2
= 𝐼 − 𝐼

∗, system (A.1) can be transformed into

𝑥̇
1
= − (𝜎𝛽𝐼

∗
+ 𝜇 + 𝜃 + 𝜙) 𝑥

1
− (𝜙 + 𝜎𝛽𝑆

∗

2
− 𝑞𝛾) 𝑥

2

− 𝜎𝛽𝑥
1
𝑥
2
,

𝑥̇
2
= − (1 − 𝜎) 𝛽𝐼

∗
𝑥
1
− 𝛽𝐼
∗
𝑥
2
− (1 − 𝜎) 𝛽𝑥

1
𝑥
2
− 𝛽𝑥
2

2
.

(A.2)

Thirdly, define the transformation

[
𝑥
1

𝑥
2

] = 𝐻[
𝑦
1

𝑦
2

] , 𝐻 =
[
[
[

[

1
𝜎𝛽𝐼
∗
+ 𝜇 + 𝜃 + 𝜙

(1 − 𝜎) 𝛽𝐼∗

𝜎 − 1 1

]
]
]

]

,

(A.3)

which transformed system (A.2) into the following standard
form

̇𝑦
1
= 𝑓
1
(𝑦
1
, 𝑦
2
) ,

̇𝑦
2
= Λ
2
𝑦
2
+ 𝑓
2
(𝑦
1
, 𝑦
2
) ,

(A.4)
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Figure 8: The influences of initial conditions 𝐼(0) on the number of infectious computers 𝐼(𝑡) for different 𝑅pro.

where 𝑓
1
= (𝑐/𝑎)𝜎𝛽(1 − 𝜎)𝑦

2

1
− ((𝑐𝜎𝛽(1 − (𝑏/𝑐)) + 𝑏𝛽(1 −

(𝑏/𝑐)))/𝑎)𝑦
1
𝑦
2
+ ((𝑏𝛽 + 𝑏

2
𝛽/(1 − 𝜎)𝑐)/𝑎)𝑦

2

2
and 𝑓

2
=

−(𝑐𝜎𝛽(1 − 𝜎)
2
/𝑎)𝑦
2

1
+((𝜎−1+(1+𝜎)(𝑏/𝑐))/𝑎)𝑦

1
𝑦
2
−((𝑏(1+𝜎)+

𝑐𝛽)/𝑎)𝑦
2

2
, with 𝑎 = 𝛽𝐼∗+𝜎𝛽𝐼∗+𝜇+𝜃+𝜙, 𝑏 = 𝜎𝛽𝐼∗+𝜇+𝜃+𝜙,

𝑐 = 𝛽𝐼
∗, 𝑑 = 𝜙 + 𝜎𝛽𝑆∗

2
− 𝛾, and 𝑎 = 𝑏 + 𝑐, (1 − 𝜎)𝑑 − 𝑏 = 0 are

satisfied.
By the existence theorem [27], there exists a center

manifold for system (A.4), which can be expressed locally as
follows:
𝑊
𝑐
(0) = {(𝑦

1
, 𝑦
2
) ∈ R
2 󵄨󵄨󵄨󵄨𝑦2 = ℎ (𝑦1) ,

󵄩󵄩󵄩󵄩𝑦1
󵄩󵄩󵄩󵄩 < 𝛿, ℎ (0) = 0, 𝐷ℎ (0) = 0

󵄨󵄨󵄨󵄨 𝛿 > 0} ,

(A.5)

with 𝛿 sufficiently small, and 𝐷ℎ is the derivative of ℎ with
respect to 𝑦

1
.

To compute the center manifold𝑊𝑐(0), we suppose ℎ(𝑦
1
)

has the form

ℎ (𝑦
1
) = ℎ
1
𝑦
2

1
+ ℎ
2
𝑦
3

1
+ ℎ
3
𝑦
4

1
+ ℎ
4
𝑦
5

1
+ ⋅ ⋅ ⋅ . (A.6)

By the local center manifold theorem, the center manifold
(A.6) satisfies

𝐷ℎ ⋅ 𝑓
1
(𝑦
1
, 𝑦
2
) − 𝜎
2
𝑦
2
− 𝑓
2
(𝑦
1
, 𝑦
2
) = 0, (A.7)

where𝐷ℎ(𝑦
1
) = 2ℎ

1
𝑦
1
+ 3ℎ
2
𝑦
2

1
+ 4ℎ
3
𝑦
3

1
+ 5ℎ
4
𝑦
4

1
+ ⋅ ⋅ ⋅ .
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Figure 9: Bifurcation diagram in the (𝜎, 𝜙), (𝜙, 𝜃), and (𝜎, 𝜃) planes (𝐶 < 0 ⇔ 𝑅pro > 1).

Rewrite 𝑓
1
and 𝑓

2
as 𝑓
1
= 𝑎
1
𝑦
2

1
+ 𝑎
2
𝑦
1
𝑦
2
+ 𝑎
3
𝑦
2

2
and 𝑓

2
=

𝑏
1
𝑦
2

1
+ 𝑏
2
𝑦
1
𝑦
2
+ 𝑏
3
𝑦
2

2
, respectively, where

𝑎
1
=
𝑐

𝑎
𝜎𝛽 (1 − 𝜎) ,

𝑎
2
=
𝑐𝜎𝛽 (1 − (𝑏/𝑐)) + 𝑏𝛽 (1 − (𝑏/𝑐))

𝑎
,

𝑎
3
=

𝑏𝛽 + (𝑏
2
𝛽/ (1 − 𝜎) 𝑐)

𝑎
,

𝑏
1
= −

𝑐𝜎𝛽(1 − 𝜎)
2

𝑎
, 𝑏

2
=
𝜎 − 1 + (1 + 𝜎) (𝑏/𝑐)

𝑎
,

𝑏
3
= −

𝑏 (1 + 𝜎) + 𝑐𝛽

𝑎
.

(A.8)

Substituting (A.4) into (A.7) and then equating coefficients
on each power of 𝑦

1
to zero yields

ℎ
1
=
1

Λ
2

,

ℎ
2
=
2𝑎
1
ℎ
1
− 𝑏
2
ℎ
1

Λ
2

,
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ℎ
3
=
2𝑎
1
ℎ
2

1
+ 3𝑎
1
ℎ
2
− 𝑏
2
ℎ
2
− 𝑏
3
ℎ
2

1

Λ
2

,

ℎ
4
=
5𝑎
2
ℎ
1
ℎ
2
+ 2𝑎
3
ℎ
3

1
+ 4𝑎
1
ℎ
3
− 𝑏
2
ℎ
3
− 2𝑏
3
ℎ
1
ℎ
2

Λ
2

.

(A.9)

Then, we get the approximation for ℎ:

ℎ =
1

Λ
2

[𝑦
2

1
+ (2𝑎
1
ℎ
1
− 𝑏
2
ℎ
1
) 𝑦
3

1

+ (2𝑎
1
ℎ
2

1
+ 3𝑎
1
ℎ
2
− 𝑏
2
ℎ
2
− 𝑏
3
ℎ
2

1
) 𝑦
4

1

+ (5𝑎
2
ℎ
1
ℎ
2
+ 2𝑎
3
ℎ
3

1
+ 4𝑎
1
ℎ
3
− 𝑏
2
ℎ
3
− 2𝑏
3
ℎ
1
ℎ
2
) 𝑦
5

1
]

+ ⋅ ⋅ ⋅ .

(A.10)

Substituting (A.10) in the first equation of system (A.4), we
achieve

̇𝑦
1
= 𝑓
1
(𝑦
1
, 𝑦
2
)

=
(𝜎 − 1) 𝜎𝛽

2
𝐼
∗

Λ
2

𝑦
2

1

+
𝑐𝜎𝛽
2
(1 − 𝜎)

2
[𝑐𝜎 (1 − (𝑏/𝑐)) + 𝑏 (1 + (𝑏/𝑐))]

𝑎3
𝑦
3

1
+ ⋅ ⋅ ⋅ .

(A.11)

So from (A.11) (see [36, page 338–340]), we get the following.
If 𝐶 > 0 (𝑅pro < 1), 𝐵 < 0, and Δ = 0, system (3) has one
positive equilibrium 𝐸

∗, and 𝐸∗ is a saddle node.

B. The Proof of Theorem 5

From Section 3.2, we can see that when 𝐶 > 0 (𝑅pro < 1),
𝐵 < 0, and if the sign of Δ changes, system (3) will experience
a saddle-node bifurcation. In this part, we give the proof.

Let us consider 𝛽 as a control parameter, define 𝛽
0
≜ 𝛽
Δ
,

𝑥
0
(𝑥
∗

1
, 𝑥
∗

2
) = 𝐸
∗
(𝑆
∗

2
, 𝐼
∗
), where 𝐼∗ = −𝐵/2𝐴.

Rewrite system (A.1) as

𝑥̇ = 𝑓 (𝑥, 𝛽)

= [

𝑝𝜇 + 𝜙 − (𝜇 + 𝜃 + 𝜙) 𝑥
1
+ (𝑞𝛾 − 𝜙) 𝑥

2
− 𝜎𝛽𝑥

1
𝑥
2

(𝛽 − (𝜇 + 𝛾)) 𝑥
2
− (1 − 𝜎) 𝛽𝑥

1
𝑥
2
− 𝛽𝑥
2

2

] .

(B.1)

Then we have

𝐷𝑓 (𝑥
0
, 𝛽
0
) = [

− (𝜎𝛽
0
𝑥
∗

2
+ 𝜇 + 𝜃 + 𝜙) 𝑞𝛾 − 𝜙 − 𝜎𝛽

0
𝑥
∗

1

− (1 − 𝜎) 𝛽
0
𝑥
∗

2
−𝛽
0
𝑥
∗

2

] ,

𝑓
𝛽
(𝑥
0
, 𝛽
0
) = [

−𝜎𝑥
∗

1
𝑥
∗

2

𝑥
∗

2
− (1 − 𝜎) 𝑥

∗

1
𝑥
∗

2
− 𝑥
∗2

2

] .

(B.2)

𝐷𝑓(𝑥
0
, 𝛽
0
) has a simple eigenvalue 𝜆 = 0 with eigenvector

V = [1, 𝜎 − 1]
𝑇 and 𝐷𝑇𝑓(𝑥

0
, 𝛽
0
) has an eigenvector 𝑤 =

[−(𝛽
0
𝑥
∗

2
/(𝜎𝛽
0
𝑥
∗

1
+ 𝜙 − 𝑞𝛾)), 1]

𝑇, corresponding to 𝜆 = 0.
Furthermore, the following conditions are satisfied:

𝑤
𝑇
𝑓
𝛽
(𝑥
0
, 𝛽
0
) =

𝑥
∗

2

𝜎𝛽
0
𝑥
∗

1
+ 𝜙 − 𝑞𝛾

× [(1 − (1 − 𝜎) 𝑥
∗

1
− 𝑥
∗

2
) (𝜎𝛽
0
𝑥
∗

1
+ 𝜙 − 𝑞𝛾)

+𝜎𝛽
0
𝑥
∗

1
𝑥
∗

2
] ̸= 0,

𝑤
𝑇
𝐷
2
𝑓 (𝑥
0
, 𝛽
0
) (V, V) = 2

𝜎𝛽
2

0
(𝜎 − 1) 𝑥

∗

2

𝜎𝛽
0
𝑥
∗

1
+ 𝜙 − 𝑞𝛾

̸= 0.

(B.3)

According to the theorem (see [37, page 148]), we obtain
the following result. System (3) experiences a saddle-node
bifurcation at the equilibrium 𝑥

0
= 𝐸
∗ as the parameter 𝛽

passes through the bifurcation value 𝛽 = 𝛽
0
.
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