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We use the 𝑞-Chu-Vandermonde formula and transformation technique to derive a more general 𝑞-integral equation given by
Gasper and Rahman, which involves the Cauchy polynomial. In addition, some applications of the general formula are presented
in this paper.

1. Introduction and Main Result

It is well known that the 𝑞-integral is an important branch
of 𝑞-series theory. There are many techniques to achieve the
ends; for instance, combinatorics method (cf. [1]), analysis
methods (cf. [2–4]), andmethod of transformation (cf. [5–7])
are usually used. In 1989, Gasper and Rahman applied some
analysis techniques to derive the following 𝑞-contour integral
formula (cf. [8, Equation (3.17)]):

1

2𝜋𝑖
∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎𝑖𝑧; 𝑞)𝑚𝑖

𝑑𝑧

𝑧

=
(𝛾/𝛼, 𝛼𝑞/𝛾, 𝑞𝑏/𝑎; 𝑞)

∞

(𝑎𝛼, 𝑞/𝑎𝛼, 𝑏𝛼; 𝑞)
∞

(𝑞/𝑏𝛾𝑞
𝑚0 ; 𝑞)
𝑚0
(𝑏𝛼)
∑
𝑟

𝑖=0
𝑚𝑖

×

𝑟

∏

𝑖=1

(𝑎𝑖/𝑏; 𝑞)𝑚𝑖
.

(1)

Inspired by [7, 8], we employ the above equation and
transformation technique to derive a more general 𝑞-contour
integral equation. The main result of this paper is stated as
follows.

Theorem 1. If𝑚0,𝑚1, . . .,𝑚𝑟, and ℎ are nonnegative integers
and 𝑞 = 𝑎𝛾𝑞∑

𝑟

𝑖=0
𝑚𝑖 , then

1

2𝜋𝑖
∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎𝑖𝑧; 𝑞)𝑚𝑖

ℎ+1

∏

𝑗=1

𝑃𝑛𝑗
(1/𝑧; 𝑑𝑗)

𝑑𝑧

𝑧

=

∏
ℎ

𝑙=0
(𝛼𝑑𝑙; 𝑞)𝑛𝑙

𝛼∑
ℎ

𝑖=0
𝑛𝑖

(𝛾/𝛼, 𝑞𝛼/𝛾, 𝑞𝑏/𝑎; 𝑞)
∞

(𝑎𝛼, 𝑞/𝑎𝛼, 𝑏𝛼; 𝑞)
∞

× (𝑞/𝑏𝛾𝑞
𝑚0 ; 𝑞)
𝑚0
(𝑏𝛼)
∑
𝑟

𝑖=0
𝑚𝑖

×

𝑟

∏

𝑗=1

(𝑎
𝑗
/𝑏; 𝑞)
𝑚𝑗

×

ℎ

∏

𝑖=0

𝑛𝑖

∑

𝑘𝑖=0

(𝑞
−𝑛𝑖 , 𝑞
𝐴𝑖𝑏𝛼, 𝑞

𝐴𝑖+𝑛𝑖+1𝑑
𝑖+1
𝛼, . . . , 𝑞

𝐴𝑖+𝑛ℎ𝑑
ℎ
𝛼; 𝑞)
𝑘𝑖

(𝑞, 𝑞𝐴𝑖𝑑𝑖𝛼, 𝑞
𝐴𝑖𝑑𝑖+1𝛼, . . . , 𝑞

𝐴𝑖𝑑ℎ𝛼; 𝑞)𝑘𝑖

× 𝑞
𝑘𝑖(1−∑

ℎ

𝑗=𝑖+1
𝑛𝑗),

(2)

provided that |𝛾/𝛼| < 1 and𝐶 is a deformation of the unit circle
so that the poles of 1/(𝑎𝑧, 𝑏𝑧; 𝑞)

∞
lie outside the contour and

the origin and the poles of 1/(𝛼/𝑧; 𝑞)
∞

lie inside the contour.
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Where 𝑃
𝑛
(𝑎; 𝑏) denotes the Cauchy polynomial defined as (7),

one denotes that 𝐴
𝑖
= ∑
𝑖−1

𝑗=0
𝑘
𝑗
, and when 𝑖 = 0, one sets one

𝐴0 = ∑
𝑖−1

𝑗=0
𝑘
𝑗
= 0.

2. Notations and Lemmas

We adopt the custom notations given in [9]. It is supposed
that 0 < |𝑞| < 1 in this paper. We use 𝑁 to denote the set of
all nonnegative integers.

For any complex parameter 𝑎, the 𝑞-shifted factorials are
defined as

(𝑎; 𝑞)
0
= 1, (𝑎; 𝑞)

𝑛
=

𝑛−1

∏

𝑘=0

(1 − 𝑎𝑞
𝑘
) , 𝑛 = 1, 2, . . . ,

(𝑎; 𝑞)
∞
=

∞

∏

𝑘=0

(1 − 𝑎𝑞
𝑘
) .

(3)

For brevity, we also use the following notation:

(𝑎
1, 𝑎2, . . . , 𝑎𝑚; 𝑞)𝑛 = (𝑎1; 𝑞)𝑛(𝑎2; 𝑞)𝑛 ⋅ ⋅ ⋅ (𝑎𝑚; 𝑞)𝑛. (4)

The 𝑞-binomial coefficient and the 𝑞-binomial theorem are
given by

[
𝑛

𝑘
] =

(𝑞; 𝑞)
𝑛

(𝑞; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛−𝑘

,

∞

∑

𝑛=0

(𝑎; 𝑞)
𝑛
𝑥
𝑛

(𝑞; 𝑞)
𝑛

=
(𝑎𝑥; 𝑞)

∞

(𝑥; 𝑞)
∞

, |𝑥| < 1.

(5)

The basic hypergeometric series
𝑠
Φ
𝑡
is given by

𝑠Φ𝑡 (
𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑠

𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑡

; 𝑞, 𝑥)

=

∞

∑

𝑘=0

(𝑎
1
, 𝑎
2
. . . , 𝑎
𝑠
; 𝑞)
𝑘

(𝑞, 𝑏
1
, . . . , 𝑏

𝑡
; 𝑞)
𝑘

[(−1)
𝑘
𝑞
( 𝑘

2
)
]

1+𝑡−𝑠

𝑥
𝑘
.

(6)

In this paper, we denote that ( 𝑛2 ) = 𝑛(𝑛 − 1)/2 and 𝑘, 𝑚, 𝑛, 𝑠,
𝑡 ∈ 𝑁.

Let 𝑎, 𝑏 be any complex variables; then, the Cauchy
polynomial 𝑃𝑛(𝑎; 𝑏) is defined as

𝑃0 (𝑎; 𝑏) = 1, 𝑃𝑛 (𝑎; 𝑏) = (𝑎 − 𝑏) (𝑎 − 𝑏𝑞) ⋅ ⋅ ⋅ (𝑎 − 𝑏𝑞
𝑛−1
) ,

𝑛 ≥ 1.

(7)

Recall that 𝑞-Chu-Vandermonde’s identity (cf. [9, page 14,
Equation (1.5.3)]) is given as follows:

2Φ1 (
𝑞
−𝑛
, 𝑎

𝑓
; 𝑞, 𝑞) =

𝑎
𝑛
(𝑓/𝑎; 𝑞)

𝑛

(𝑓; 𝑞)
𝑛

. (8)

As we know, it is one of the fundamental formulas in the
basic hypergeometric series. Some applications of it were
introduced in [5, 10, 11]. We will apply this identity to start
our proof in the following. Since we assume that the integrals
are the same established condition as the theorem, we omit
the condition in the following.

Lemma 2. One has
1

2𝜋𝑖
∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

𝑃𝑛 (1/𝑧; 𝑓)

𝑧
𝑑𝑧

=
(𝑓𝛼; 𝑞)

𝑛

𝛼𝑛

(𝛾/𝛼, 𝛼𝑞/𝛾, 𝑞𝑏/𝑎; 𝑞)
∞

(𝑎𝛼, 𝑞/𝑎𝛼, 𝑏𝛼; 𝑞)
∞

(𝑞/𝑏𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

× (𝑏𝛼)
∑
𝑟

𝑖=0
𝑚𝑖

𝑟

∏

𝑖=1

(𝑎
𝑖
/𝑏; 𝑞)
𝑚𝑖

×

𝑛

∑

𝑘=0

(𝑞
−𝑛
, 𝑏𝛼; 𝑞)

𝑘
(𝑎𝛾𝑞
∑
𝑟

𝑖=0
𝑚𝑖)
𝑘

(𝑞, 𝑓𝛼; 𝑞)
𝑘

.

(9)

Proof. We rewrite (8) as follows:
𝑛

∑

𝑘=0

(𝑞
−𝑛
; 𝑞)
𝑘

(𝑞, 𝑓; 𝑞)
𝑘

𝑞
𝑘 1

(𝑎𝑞𝑘; 𝑞)
∞

=
𝑎
𝑛
(𝑓/𝑎; 𝑞)

𝑛

(𝑓; 𝑞)
𝑛
(𝑎; 𝑞)
∞

. (10)

Replacing (𝑎, 𝑐) by (𝛼/𝑧, 𝑓𝛼), respectively, we have
𝑛

∑

𝑘=0

(𝑞
−𝑛
; 𝑞)
𝑘

(𝑞, 𝑓𝛼; 𝑞)
𝑘

𝑞
𝑘 1

(𝑞𝑘𝛼/𝑧; 𝑞)
∞

=
𝛼
𝑛

(𝑓𝛼; 𝑞)
𝑛

𝑃
𝑛
(1/𝑧; 𝑓)

(𝛼/𝑧; 𝑞)
∞

. (11)

Both sides of (11) multiply by

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

𝑟

∏

𝑖=1

(𝑎𝑖𝑧; 𝑞)𝑚𝑖

1

𝑧
. (12)

Then, we have
𝑛

∑

𝑘=0

(𝑞
−𝑛
; 𝑞)
𝑘
𝑞
𝑘

(𝑞, 𝑓𝛼; 𝑞)
𝑘

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝑞𝑘𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

1

𝑧

=
𝛼
𝑛

(𝑓𝛼; 𝑞)
𝑛

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

𝑃
𝑛
(1/𝑧; 𝑓)

𝑧
.

(13)

Taking the 𝑞-integral on both sides of (13) with respect to
variable 𝑧, we get
𝑛

∑

𝑘=0

(𝑞
−𝑛
; 𝑞)
𝑘
𝑞
𝑘

(𝑞, 𝑓𝛼; 𝑞) 𝑘
∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝑞𝑘𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

× (𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

𝑟

∏

𝑖=1

(𝑎𝑖𝑧; 𝑞)𝑚𝑖

1

𝑧
𝑑𝑧

=
𝛼
𝑛

(𝑓𝛼; 𝑞)
𝑛

∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

× (𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

𝑃
𝑛
(1/𝑧; 𝑓)

𝑧
𝑑𝑧.

(14)
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Employing (1) to the left side of (14), we have the desired
result after some simplification.

On the other hand, if we multiply (13) by 𝑃
𝑛1
(1/𝑧; 𝑔), we

have

𝑛

∑

𝑘=0

(𝑞
−𝑛
; 𝑞)
𝑘
𝑞
𝑘

(𝑞, 𝑓𝛼; 𝑞)
𝑘

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝑞𝑘𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

𝑃𝑛1
(1/𝑧; 𝑔)

𝑧

=
𝛼
𝑛

(𝑓𝛼; 𝑞)
𝑛

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

𝑃
𝑛1
(1/𝑧; 𝑔) 𝑃

𝑛
(1/𝑧; 𝑓)

𝑧
.

(15)

Taking the 𝑞-integral on both sides of (15) with respect
to variable 𝑧, we use (9) in the resulting equation. After
simple rearrangements, noting that 𝑞 = 𝑎𝛾𝑞∑

𝑟

𝑖=0
𝑚𝑖 , we get the

following.

Lemma 3. One has

1

2𝜋𝑖
∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎𝑖𝑧; 𝑞)𝑚𝑖

𝑃
𝑛1
(1/𝑧; 𝑔) 𝑃

𝑛
(1/𝑧; 𝑓)

𝑧
𝑑𝑧

=

(𝑔𝛼; 𝑞)
𝑛1
(f𝛼; 𝑞)

𝑛

𝛼𝑛1𝛼𝑛

(𝛾/𝛼, 𝑞𝛼/𝛾, 𝑞𝑏/𝑎; 𝑞)
∞

(𝑎𝛼, 𝑞/𝑎𝛼, 𝑏𝛼; 𝑞)
∞

× (𝑞/𝑏𝛾𝑞
𝑚0 ; 𝑞)
𝑚0
(𝑏𝛼)
∑
𝑟

𝑖=0
𝑚𝑖

𝑟

∏

𝑖=1

(𝑎
𝑖
/𝑏; 𝑞)
𝑚𝑖

×

𝑛

∑

𝑘=0

(𝑞
−𝑛
, 𝑏𝛼, 𝑞

𝑛1𝑔𝛼; 𝑞)
𝑘
𝑞
𝑘(1−𝑛1)

(𝑞, 𝑓𝛼, 𝑔𝛼; 𝑞)
𝑘

×

𝑛1

∑

𝑘1=0

(𝑞
−𝑛1 , 𝑏𝛼𝑞

𝑘
; 𝑞)
𝑘1

𝑞
𝑘1

(𝑞, 𝑔𝛼𝑞𝑘; 𝑞)
𝑘1

.

(16)

Both sides of (11) multiply by

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

×

ℎ

∏

𝑗=1

𝑃𝑛𝑗
(1/𝑧; 𝑑𝑗)

1

𝑧
.

(17)

Then, taking the 𝑞-integral on both sides of the result equa-
tion with respect to variable 𝑧, we find the following.

Lemma 4. On has

∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

×

ℎ+1

∏

𝑗=1

𝑃
𝑛𝑗
(1/𝑧; 𝑑

𝑗
)
𝑑𝑧

𝑧

=

(𝛼𝑑
ℎ+1; 𝑞)𝑛ℎ+1

𝛼𝑛ℎ+1

×

𝑛ℎ+1

∑

𝑘=0

(𝑞
−𝑛ℎ+1 ; 𝑞)

𝑘
𝑞
𝑘

(𝑞, 𝛼𝑑
ℎ+1
; 𝑞)
𝑘

× ∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝑞𝑘𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

ℎ

∏

𝑗=1

𝑃
𝑛𝑗
(1/𝑧; 𝑑

𝑗
)
𝑑𝑧

𝑧
,

(18)

where (𝑛
ℎ+1
, 𝑑
ℎ+1
) denote (𝑛, 𝑓), respectively.

3. Proof and Some Applications

Now, we return to the proof of Theorem 1.
The following result can be easily derived from (16) and

(18):

∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎𝑖𝑧; 𝑞)𝑚𝑖

3

∏

𝑗=1

𝑃𝑛𝑗
(1/𝑧; 𝑑𝑗)

𝑑𝑧

𝑧

=

∏
3

𝑖=1
(𝛼𝑑
𝑖
; 𝑞)
𝑛𝑖

𝛼∑
3

𝑖=1
𝑛𝑖

(𝛾/𝛼, 𝑞𝛼/𝛾, 𝑞𝑏/𝑎; 𝑞)
∞

(𝑎𝛼, 𝑞/𝑎𝛼, 𝑏𝛼; 𝑞)
∞

× (𝑞/𝑏𝛾𝑞
𝑚0 ; 𝑞)
𝑚0
(𝑏𝛼)
∑
𝑟

𝑖=0
𝑚𝑖

𝑟

∏

𝑗=1

(𝑎
𝑗
/𝑏; 𝑞)
𝑚𝑗

×

𝑛

∑

𝑘=0

(𝑞
−𝑛
, 𝑏𝛼, 𝑞

𝑛1𝑑
1
𝛼, 𝑞
𝑛2𝑑
2
𝛼; 𝑞)
𝑘

(𝑞, 𝑓𝛼, 𝑑
1
𝛼, 𝑑
2
𝛼; 𝑞)
𝑘

𝑞
𝑘(1−𝑛1−𝑛2)

×

𝑛1

∑

𝑘1=0

(𝑞
−𝑛1 , 𝑞
𝑘
𝑏𝛼, 𝑞
𝑛2+𝑘𝑑2𝛼; 𝑞)

𝑘1

(𝑞, 𝑞𝑘𝑑1𝛼, 𝑞
𝑘𝑑2𝛼; 𝑞)𝑘1

𝑞
𝑘1(1−𝑛2)

×

𝑛2

∑

𝑘2=0

(𝑞
−𝑛2 , 𝑞
𝑘+𝑘1𝑏𝛼; 𝑞)

𝑘2

(𝑞, 𝑞𝑘+𝑘1𝑑
2
𝛼; 𝑞)
𝑘2

𝑞
𝑘2 .

(19)

Letting 𝑛 = 𝑛
0, 𝑘 = 𝑘0, and 𝑓 = 𝑑0 and combining (19)

with (18), by induction, similar proof can be performed to get
the desired result.

Taking 𝑛
1
= 𝑛
2
= ⋅ ⋅ ⋅ = 𝑛

ℎ+1
= 0 in (2), the theorem goes

back to formula (1). Putting 𝑛
1
= ⋅ ⋅ ⋅ = 𝑛

ℎ
= 0 in (2), we have

the following.
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Corollary 5. One has

1

2𝜋𝑖
∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

𝑃
𝑛
(1/𝑧; 𝑑

0
)

𝑧
𝑑𝑧

=
(𝛾/𝛼, 𝛼𝑞/𝛾, 𝑞𝑏/𝑎; 𝑞)

∞

(𝑎𝛼, 𝑞/𝑎𝛼, 𝑏𝛼; 𝑞)
∞

(𝑞/𝑏𝛾𝑞
𝑚0 ; 𝑞)
𝑚0
(𝑏𝛼)
∑
𝑟

𝑖=0
𝑚𝑖

×

𝑟

∏

𝑖=1

(𝑎𝑖/𝑏; 𝑞)𝑚𝑖
(𝑑0/𝑏; 𝑞)𝑛𝑏

𝑛
.

(20)

Letting 𝑛
2
= ⋅ ⋅ ⋅ = 𝑛

ℎ
= 0 in (2), we get the following.

Corollary 6. One has

1

2𝜋𝑖
∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎𝑖𝑧; 𝑞)𝑚𝑖

𝑃𝑛1
(1/𝑧; 𝑑1) 𝑃𝑛 (1/𝑧; 𝑑0)

𝑧
𝑑𝑧

=
(𝛾/𝛼, 𝛼𝑞/𝛾, 𝑞𝑏/𝑎; 𝑞)

∞

(𝑎𝛼, 𝑞/𝑎𝛼, b𝛼; 𝑞)
∞

(𝑞/𝑏𝛾𝑞
𝑚0 ; 𝑞)
𝑚0
(𝑏𝛼)
∑
𝑟

𝑖=0
𝑚𝑖

×

𝑟

∏

𝑖=1

(𝑎
𝑖
/𝑏; 𝑞)
𝑚𝑖
(𝑑
0
/𝑏; 𝑞)
𝑛
(𝑑
1
/𝑏; 𝑞)
𝑛1
𝑏
𝑛+𝑛1 .

(21)

Combining (21) with (18), by induction and applying (2),
we can conclude the following.

Theorem 7. One has

1

2𝜋𝑖
∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

ℎ

∏

𝑗=0

𝑃
𝑛𝑗
(1/𝑧; 𝑑

𝑗
)
𝑑𝑧

𝑧

=
(𝛾/𝛼, 𝑞𝛼/𝛾, 𝑞𝑏/𝑎; 𝑞)

∞

(𝑎𝛼, 𝑞/𝑎𝛼, 𝑏𝛼; 𝑞)
∞

(𝑞/𝑏𝛾𝑞
𝑚0 ; 𝑞)
𝑚0
(𝑏𝛼)
∑
𝑟

𝑖=0
𝑚𝑖𝑏
∑
ℎ

𝑖=0
𝑛𝑖

×

𝑟

∏

𝑖=1

(𝑎𝑖/𝑏; 𝑞)𝑚𝑖

ℎ

∏

𝑗=0

(𝑑𝑗/𝑏; 𝑞)
𝑛𝑗

.

(22)

Comparing (2) and (22), we have the following interesting
identity.

Corollary 8. If𝑚
0
,𝑚
1
, . . .,𝑚

𝑟
, and ℎ are nonnegative integers,

then

𝑛0

∑

𝑘0=0

(𝑞
−𝑛0 , 𝑏𝛼, 𝑞

𝑛1𝑑1𝛼, . . . , 𝑞
𝑛ℎ𝑑ℎ𝛼; 𝑞)𝑘0

(𝑞, 𝑑0𝛼, 𝑑1𝛼, . . . , 𝑑ℎ𝛼; 𝑞)𝑘0

𝑞
𝑘0(1−∑

ℎ

𝑗=1
𝑛𝑗)

×

ℎ

∏

𝑖=1

𝑛𝑖

∑

𝑘𝑖=0

(𝑞
−𝑛𝑖 , 𝑞
𝐴𝑖𝑏𝛼, 𝑞

𝐴𝑖+𝑛𝑖+1𝑑
𝑖+1
𝛼, . . . , 𝑞

𝐴𝑖+𝑛ℎ𝑑
ℎ
𝛼; 𝑞)
𝑘𝑖

(𝑞, 𝑞𝐴𝑖𝑑
𝑖
𝛼, 𝑞𝐴𝑖𝑑

𝑖+1
𝛼, . . . , 𝑞𝐴𝑖𝑑

ℎ
𝛼; 𝑞)
𝑘𝑖

× 𝑞
𝑘𝑖(1−∑

ℎ

𝑗=𝑖+1
𝑛𝑗)

=

ℎ

∏

𝑖=0

(𝑑
𝑖
/𝑏; 𝑞)
𝑛𝑖

(𝑑
𝑖
𝛼; 𝑞)
𝑛𝑖

(𝑏𝛼)
𝑛0+𝑛1+⋅⋅⋅+𝑛ℎ .

(23)

Taking ℎ = 1 and 𝑑
0
= 𝑑
1
= 𝑞𝑏 in (23), we have

𝑛0

∑

𝑘0=0

[
𝑛
0

𝑘
0

]

(𝑏𝛼, 𝑞
𝑛1+1𝑏𝛼; 𝑞)

𝑘0

(𝑞𝑏𝛼, 𝑞𝑏𝛼; 𝑞)
𝑘0

(−1)
𝑘0𝑞
(
𝑘0+1

2
)−𝑘0(𝑛0+𝑛1)

×

𝑛1

∑

𝑘1=0

[
𝑛
1

𝑘
1

]

(𝑞
𝑘0𝑏𝛼; 𝑞)

𝑘1

(𝑞𝑘0+1𝑏𝛼; 𝑞)
𝑘1

(−1)
𝑘1𝑞
(
𝑘1+1

2
)−𝑘1𝑛1

=

(𝑞; 𝑞)
𝑛0
(𝑞; 𝑞)
𝑛1

(𝑞𝑏𝛼; 𝑞)
𝑛0
(𝑞𝑏𝛼; 𝑞)

𝑛1

(𝑏𝛼)
𝑛0+𝑛1 .

(24)

Setting 𝑏𝛼 = 𝑞, then letting 𝑞 → 1 in the above identity, we
have the following.

Corollary 9. If 𝑛0, 𝑛1 ∈ 𝑁, then

𝑛0

∑

𝑘0=0

(
𝑛
0

𝑘
0

)

(𝑛
1
+ 2)
𝑘0

(2)𝑘0

(−1)
𝑘0

𝑛1

∑

𝑘1=0

(
𝑛
1

𝑘
1

)
1

𝑘
0
+ 𝑘
1
+ 1
(−1)
𝑘1

=
1

(𝑛
0
+ 1) (𝑛

1
+ 1)

,

(25)

where (𝑎)
0
= 1 and (𝑎)

𝑛
= 𝑎(𝑎+1) ⋅ ⋅ ⋅ (𝑎+𝑛−1), 𝑛 ≥ 1, 𝑛 ∈ 𝑁.

Taking ℎ = 2 and 𝑑
0
= 𝑑
1
= 𝑑
2
= 𝑞𝑏 in (23), we have

𝑛0

∑

𝑘=0

[
𝑛
0

𝑘
0

]

(𝑏𝛼, 𝑞
𝑛1+1𝑏𝛼, 𝑞

𝑛2+1𝑏𝛼; 𝑞)
𝑘0

(𝑞𝑏𝛼, 𝑞𝑏𝛼, 𝑞𝑏𝛼; 𝑞)
𝑘0

(−1)
𝑘0

× 𝑞
(
𝑘0+1

2
)−𝑘0(𝑛0+𝑛1+𝑛2)
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×

𝑛1

∑

𝑘1=0

[
𝑛1

𝑘1
]

(𝑞
𝑘0𝑏𝛼, 𝑞

𝑛2+𝑘0+1𝑏𝛼; 𝑞)
𝑘1

(𝑞𝑘0+1𝑏𝛼, 𝑞𝑘0+1𝑏𝛼; 𝑞)
𝑘1

(−1)
𝑘1

× 𝑞
(
𝑘1+1

2
)−𝑘1(𝑛1+𝑛2)

×

𝑛2

∑

𝑘2=0

[
𝑛
2

𝑘
2

]

(𝑞
𝑘0+𝑘1𝑏𝛼; 𝑞)

𝑘2

(𝑞𝑘0+𝑘1+1𝑏𝛼; 𝑞)
𝑘2

(−1)
𝑘2

× 𝑞
(
𝑘2+1

2
)−𝑘2𝑛2

=

(𝑞; 𝑞)
𝑛0
(𝑞; 𝑞)
𝑛1
(𝑞; 𝑞)
𝑛2

(𝑞𝑏𝛼; 𝑞)
𝑛0
(𝑞𝑏𝛼; 𝑞)

𝑛1
(𝑞𝑏𝛼; 𝑞)

𝑛2

(𝑏𝛼)
𝑛0+𝑛1+𝑛2 .

(26)

Setting 𝑏𝛼 = 𝑞, then letting 𝑞 → 1 in the above identity, we
have the following.

Corollary 10. If 𝑛
0
, 𝑛
1
, 𝑛
2
∈ 𝑁, then

𝑛0

∑

𝑘0=0

(
𝑛
0

𝑘
0

)

(𝑛
1
+ 2)
𝑘0
(𝑛
2
+ 2)
𝑘0

(2)𝑘0
(2)𝑘0

(−1)
𝑘0

×

𝑛1

∑

𝑘1=0

(
𝑛1

𝑘1
)

(𝑛
2 + 𝑘0 + 2)𝑘1

(𝑘0 + 2)𝑘1

(−1)
𝑘1

×

𝑛2

∑

𝑘2=0

(
𝑛
2

𝑘
2

)
1

𝑘0 + 𝑘1 + 𝑘2 + 1
(−1)
𝑘2

=
1

(𝑛
0
+ 1) (𝑛

1
+ 1) (𝑛

2
+ 1)

,

(27)

where (𝑎)
0
= 1 and (𝑎)

𝑛
= 𝑎(𝑎+1) ⋅ ⋅ ⋅ (𝑎+𝑛−1), 𝑛 ≥ 1, 𝑛 ∈ 𝑁.

More general, we have the following identity.

Corollary 11. If ℎ, 𝑛
0
, 𝑛
1
, . . ., 𝑛

ℎ
∈ 𝑁, then

∑

𝑘0 ,...,𝑘ℎ

ℎ−1

∏

𝑖=0

(
𝑛
𝑖

𝑘
𝑖

)

(𝐴
𝑖
+ 𝑛
𝑖+1
+ 2)
𝑘𝑖
⋅ ⋅ ⋅ (𝐴

𝑖
+ 𝑛
ℎ
+ 2)
𝑘𝑖

(𝐴
𝑖
+ 2)
𝑘𝑖
⋅ ⋅ ⋅ (𝐴

𝑖
+ 2)
𝑘𝑖

×
(−1)
𝑘0+⋅⋅⋅+𝑘ℎ

𝐴
ℎ
+ 𝑘
ℎ
+ 2

=

ℎ

∏

𝑖=0

1

(𝑛
𝑖
+ 1)

,

(28)

where 0 ≤ 𝑘
𝑖
≤ 𝑛
𝑖
, 𝑖 = 0, . . . , ℎ.

Both sides of (20) multiply by 1/(𝑞; 𝑞)
𝑛
; then, summing 𝑛

from 0 to∞ and using the 𝑞-binomial theorem, we find the
following.

Corollary 12. Ifmax{|1/𝑧|, |𝑏|} < 1, then

1

2𝜋𝑖
∫
𝐶

(𝛾/𝑧, 𝑏𝑞𝑧, 𝑞𝑧/𝛾; 𝑞)
∞

(𝛼/𝑧, 1/𝑧, 𝑎𝑧, 𝑏𝑧; 𝑞)
∞

(𝑞𝑧/𝛾𝑞
𝑚0 ; 𝑞)
𝑚0

×

𝑟

∏

𝑖=1

(𝑎
𝑖
𝑧; 𝑞)
𝑚𝑖

𝑑𝑧

𝑧

=
(𝛾/𝛼, 𝛼𝑞/𝛾, 𝑞𝑏/𝑎; 𝑞)

∞

(𝑎𝛼, 𝑞/𝑎𝛼, 𝑏𝛼, 𝑏; 𝑞)
∞

(𝑞/𝑏𝛾𝑞
𝑚0 ; 𝑞)
𝑚0
(𝑏𝛼)
∑
𝑟

𝑖=0
𝑚𝑖

×

𝑟

∏

𝑖=1

(𝑎𝑖/𝑏; 𝑞)𝑚𝑖
.

(29)

Remark 13. If 𝑛1 = 𝑛2 = ⋅ ⋅ ⋅ = 𝑛ℎ = 0, identity (23) becomes
the 𝑞-Chu-Vandermonde formula.
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