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We establish some new interval oscillation criteria for a general class of second-order forced quasilinear functional differential
equations with 𝜙-Laplacian operator and mixed nonlinearities. It especially includes the linear, the one-dimensional p-Laplacian,
and the prescribedmean curvature quasilinear differential operators. It continues some recently published results on the oscillations
of the second-order functional differential equations including functional arguments of delay, advanced, or delay-advanced types.
The nonlinear terms are of superlinear or supersublinear (mixed) types. Consequences and examples are shown to illustrate the
novelty and simplicity of our oscillation criteria.

1. Introduction

We study the oscillation of the following three kinds of
second-order forced quasilinear functional differential equa-
tions of delay, advanced, and delay-advanced types:

(𝑟 (𝑡) 𝜙 (𝑥
󸀠

(𝑡)))
󸀠

+
𝑛

∑
𝑖=1

𝑟
𝑖
(𝑡) 𝑓 (𝑥 (ℎ

𝑖
(𝑡)))

+
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑥 (ℎ𝑖 (𝑡))
󵄨󵄨󵄨󵄨
𝛼𝑖 sgn𝑥 (ℎ

𝑖
(𝑡)) = 𝑒 (𝑡) ,

(1)

where 𝑡 ≥ 𝑡
0
> 0 and 𝑟(𝑡), 𝑟

𝑖
(𝑡), 𝑞
𝑖
(𝑡), and 𝑒(𝑡) are continuous

functions on [𝑡
0
,∞), and 𝑥 = 𝑥(𝑡), 𝑥 ∈ 𝐶2((𝑡

0
,∞),R), is a

classic solution of (1). A continuous function 𝑥(𝑡) is said to
be nonoscillatory if there is a 𝑇 > 𝑡

0
such that 𝑥(𝑡) ̸= 0 on

[𝑇,∞). Otherwise, 𝑥(𝑡) is said to be oscillatory. Equation (1)
is called oscillatory if all of its classic solutions are oscillatory.

In the delay case ℎ
𝑖
(𝑡) := 𝜏

𝑖
(𝑡) ≤ 𝑡, 𝑖 ∈ {1, . . . , 𝑛}, and

𝑟(𝑡) is nondecreasing; in the advanced case ℎ
𝑖
(𝑡) := 𝜎

𝑖
(𝑡) ≥

𝑡, 𝑖 ∈ {1, . . . , 𝑛}, and 𝑟(𝑡) is nonincreasing; in the delay-
advanced case ℎ

𝑖
(𝑡) := 𝜏

𝑖
(𝑡) ≤ 𝑡, 𝑖 ∈ {1, . . . , 𝑚}, ℎ

𝑖
(𝑡) :=

𝜎
𝑖
(𝑡) ≥ 𝑡, 𝑖 ∈ {𝑚 + 1, . . . , 𝑛}, and 𝑟(𝑡) ≡ const. > 0.

The exponents {𝛼
𝑖
} satisfy a superlinear or a supersublinear

(mixed) condition. On the function 𝜙 : R → R which
appears in the first termof (1), we impose such conditions that
the following three main classes of second-order differential
operators are especially included: the linear (𝑟(𝑡)𝑥󸀠)󸀠, the one-
dimensional 𝑝-Laplacian (𝑟(𝑡)|𝑥󸀠|𝑝−1𝑥󸀠)

󸀠

, and the prescribed
mean curvature operator (𝑟(𝑡)𝑥󸀠(1 + 𝑥󸀠2)

−1/2

)
󸀠

. The function
𝑓(𝑢) satisfies a usual growth condition and the coefficients
𝑟
𝑖
(𝑡), and 𝑞

𝑖
(𝑡) are positive only on some intervals where 𝑒(𝑡)

changes the sign.
Recently, Bai and Liu [1] have studied the oscillation of

second-order delay differential equation:

(𝑟 (𝑡) 𝑥
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𝑖
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𝑖
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+
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝑡 − 𝜏
𝑖
)
󵄨󵄨󵄨󵄨
𝛼𝑖 sgn𝑥 (𝑡 − 𝜏

𝑖
) = 𝑒 (𝑡) , 𝑡 ≥ 𝑡

0
,

(2)
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where 𝜏
𝑖

≥ 0. In Murugadass et al. [2], authors have
studied the oscillation of the second-order quasilinear delay
differential equation:

(𝑟 (𝑡) (𝑥
󸀠

(𝑡))
𝑝

)
󸀠

+ 𝑞 (𝑡) 𝑥
𝑝

(𝑡 − 𝜏)

+
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡) |𝑥 (𝑡 − 𝜏)|

𝛼𝑖 sgn𝑥 (𝑡 − 𝜏) = 𝑒 (𝑡) , 𝑡 ≥ 𝑡
0
,

(3)

where 𝑝 and {𝛼
𝑖
} are ratio of odd positive integers. Later, in

Hassan et al. [3], authors consider the oscillation of the half-
linear functional differential equation:

(𝑟 (𝑡) (𝑥
󸀠

(𝑡))
𝑝

)
󸀠

+ 𝑟
0
(𝑡) 𝑥
𝑝
(ℎ
0
(𝑡))

+
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑥 (ℎ𝑖 (𝑡))
󵄨󵄨󵄨󵄨
𝛼𝑖 sgn𝑥 (ℎ

𝑖
(𝑡)) = 𝑒 (𝑡) , 𝑡 ≥ 𝑡

0
,

(4)

where the function ℎ
𝑖

= ℎ
𝑖
(𝑡) is positive continuous

functions with lim
𝑡→∞

ℎ
𝑖
(𝑡) = ∞. Moreover, in [1–3] some

doubts concerning the proof of the main result of [4] are
resolved. The well-known variational technique that uses the
generalized Philos’ results based on the so-called𝐻-function
has been used in [1, Theorem 2.2], [2, Theorems 2.3, and 2.6],
and [3, Theorems 2.5, 2.6, and 2.7] (see also [5–11] and refer-
ences therein). Since the second-order quasilinear differential
operator (𝑟(𝑡)𝜙(𝑥󸀠(𝑡)))

󸀠 usually causes some difficulties in
many problems, the application of previous method on (1) is
stated here as an open problem. In contrast to the preceding,
we use a combination of the Riccati classic transformation,
a blow-up argument, and a comparison pointwise principle
recently established in [12, 13] but for differential equations
without functional arguments. It seems that our criteria are
slightly simpler to be verified, which is discussed on some
examples given in the next section.

Among some recently published papers on the oscillation
of quasilinear functional differential equations with both
delay and advanced terms, we point out an oscillation
criterion by Zafer [5] obtained for equation

(
󵄨󵄨󵄨󵄨󵄨𝑥
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑝−1

𝑥
󸀠

(𝑡))
󸀠

+ 𝑞
1
(𝑡) |𝑥 (𝜏 (𝑡))|

𝛽−1
𝑥 (𝜏 (𝑡))

+ 𝑞
2
(𝑡) |𝑥 (𝜎 (𝑡))|

𝛾−1
𝑥 (𝜎 (𝑡)) = 𝑒 (𝑡) , 𝑡 ≥ 0,

(5)

where 𝑝 > 0, 𝛽 ≥ 𝑝, and 𝛾 ≥ 𝑝. On an interesting example
in [5], the author established the oscillations provided at least
one of constants appearing in the coefficients is sufficiently
large (see also [6] for 𝑝 = 1), which is presented here in the
next section as a particular case of our main results.

On the properties of some classes of the one-dimensional
quasilinear differential equations with 𝜙-Laplacian operators
we refer reader to [14–20] and the references therein. About
the applications of second-order functional differential equa-
tions in the mathematical description of certain phenomena
in physics, technics, and biology (oscillation in a vacuum
tube; interaction of an oscillator with an energy source;
coupled oscillators in electronics, chemistry, and ecology;
relativistic motion of a mass in a central field; ship course

stabilization; moving of the tip of a growing plant; etc.), we
suggest reading Kolmanovskii and Myshkis book [21].

2. Main Results and Examples

Let 𝜙 = 𝜙(V) be a function which appears in the first term of
(1) such that

𝜙 ∈ 𝐶
1

(R,R) , 𝜙 is odd and increasing function on R,

(6)

𝜙 (V) V ≥ 󵄨󵄨󵄨󵄨𝜙 (V)
󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

∀V ∈ R and some 𝑝 > 0. (7)

These two assumptions are fulfilled, respectively, in
the linear case (𝑟(𝑡)𝑥󸀠(𝑡))

󸀠, where 𝜙(V) ≡ V and 𝑝 =
1; in the one-dimensional 𝑝-Laplacian quasilinear case
(𝑟(𝑡)|𝑥󸀠(𝑡)|

𝑝−1

𝑥󸀠(𝑡))
󸀠

, where 𝜙(V) ≡ |V|𝑝−1V and 𝑝 > 0; and
in the mean prescribed curvature quasilinear case

[𝑟 (𝑡) 𝑥
󸀠

(𝑡) (1 + 𝑥
󸀠2

(𝑡))
−1/2

]
󸀠

, (8)

where 𝜙(V) = V(1 + V2)−1/2 and 𝑝 = 1. The importance of the
prescribed mean curvature quasilinear differential operators
lies in the capillarity type problems in fluid mechanics, flux-
limited diffusion phenomena, and prescribedmean curvature
problems; see for instance [14, 22, 23].

The function 𝑓 = 𝑓(𝑢) which appears in the second term
of (1) satisfies

𝑓 (𝑢) is odd function on R,

𝑓 (𝑢)

𝑢𝑝
≥ 𝐾 > 0 ∀𝑢 > 0, and some 𝐾 ∈ R,

(9)

where 𝑝 > 0 is from assumption (7).
In the first two theorems below, the exponents {𝛼

𝑖
} satisfy

𝛼
1
≥ ⋅ ⋅ ⋅ ≥ 𝛼

𝑚
> 𝑝 > 𝛼

𝑚+1
≥ ⋅ ⋅ ⋅ ≥ 𝛼

𝑛
> 0, 𝑚 ∈ N,

𝛼
𝑖
> 𝛼
𝑖+1
, 𝑖 ∈ {1, . . . , 𝑛 − 1} ;

there exists (𝑛 + 1)-tuple (𝜂
0
, 𝜂
1
, . . . , 𝜂

𝑛
)

such that 0 < 𝜂
𝑖
< 1,

𝑛

∑
𝑖=1

𝜂
𝑖
< 1, 𝜂

0
= 1 −

𝑛

∑
𝑖=1

𝜂
𝑖
,

𝑛

∑
𝑖=1

𝛼
𝑖
𝜂
𝑖
= 𝑝,

(10)

where 𝑝 is from assumption (7). For instance if 𝑛 = 2, 𝛼
1
=

5/2, 𝑝 = 1, and 𝛼
2
= 1/2, then 𝜂

0
= 𝜂
1
= 𝜂
2
= 1/3. On

assumption (10) see for instance [9, Lemma 1].
Unlike recently published oscillation criteria for the linear

and half-linear second-order forced functional differential
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equations, our oscillation criterion is only based on the
following elementary integral inequality:

1

2𝜋
𝑝

∫
𝑏𝑗

𝑎𝑗

min
{
{
{

𝑝

(𝜆
𝑗
𝑟 (𝑡))
1/𝑝

, 𝜆
𝑗
(𝑅
𝑗
(𝑡) + 𝑄

𝑗
(𝑡))

}
}
}

𝑑𝑡 ≥ 1,

𝑗 ∈ {1, 2} ,

(11)

where 𝑎
1
< 𝑏
1
≤ 𝑎
2
< 𝑏
2
, 𝑝 is from (7), 𝜋

𝑝
= (𝑝/(𝑝 +

1))𝜋/ sin(𝑝𝜋/(𝑝 + 1)), 𝜆
𝑗

> 0, and functions 𝑄
𝑗
(𝑡), and

𝑅
𝑗
(𝑡) are explicitly expressed by the coefficients of (1) just like

it is done in the next three main results.

Theorem 1 (delay equation). One assumes (6), (7), (9), and
(10). Let 𝑟(𝑡) be a nondecreasing positive function on [𝑡

0
,∞).

Let ℎ
𝑖
(𝑡) = 𝜏

𝑖
(𝑡) ≤ 𝑡 on [𝑡

0
,∞) and lim

𝑡→∞
𝜏
𝑖
(𝑡) = ∞, 𝑖 ∈

{1, 2, . . . , 𝑛}. Let for every 𝑇 ≥ 𝑡
0
there exist 𝑎

1
, 𝑏
1
, 𝑎
2
, 𝑏
2
, 𝑇 ≤

𝑎
1
< 𝑏
1
≤ 𝜏min(𝑎2) ≤ 𝑎

2
< 𝑏
2
such that

𝑟
𝑖
(𝑡) ≥ 0, 𝑞

𝑖
(𝑡) ≥ 0

𝑜𝑛 [𝜏min (𝑎1) , 𝑏1] ∪ [𝜏min (𝑎2) , 𝑏2] ,
(12)

𝑒 (𝑡) ≤ 0 𝑜𝑛 [𝜏min (𝑎1) , 𝑏1] ,

𝑒 (𝑡) ≥ 0 𝑜𝑛 [𝜏min (𝑎2) , 𝑏2] ,
(13)

where 𝜏min(𝑡) = min{𝜏
1
(𝑡), 𝜏
2
(𝑡), . . . , 𝜏

𝑛
(𝑡)}. Equation (1) is

oscillatory provided there are two real parameters 𝜆
1
, 𝜆
2
> 0

such that (11) is fulfilled, where

𝑅
𝑗
(𝑡) = 𝐾

𝑛

∑
𝑖=1

𝑟
𝑖
(𝑡) (

𝜏
𝑖
(𝑡) − 𝜏

𝑖
(𝑎
𝑗
)

𝑡 − 𝜏
𝑖
(𝑎
𝑗
)

)

𝑝

, (14)

𝑄
𝑗
(𝑡)

= (𝜂
−1

0
|𝑒 (𝑡)|)

𝜂0

𝑛

∏
𝑖=1

(𝜂
−1

𝑖
𝑞
𝑖
(𝑡))
𝜂𝑖

𝑛

∏
𝑖=1

(
𝜏
𝑖
(𝑡) − 𝜏

𝑖
(𝑎
𝑗
)

𝑡 − 𝜏
𝑖
(𝑎
𝑗
)

)

𝛼𝑖𝜂𝑖

,

(15)

for 𝑡 ∈ [𝑎
𝑗
, 𝑏
𝑗
], 𝑗 ∈ {1, 2}, and positive constants 𝑝, 𝐾,

𝜂
𝑖
appearing, respectively, in (7), (9), and (10).

As we can see in (13), the forcing term 𝑒(𝑡) can be
an oscillatory function. The main property of any interval
oscillation criterion (see [8]) is that the coefficients of the
considered equation do not satisfy some conditions on the
whole [𝑡

0
,∞) than only on intervals [𝑎

1
, 𝑏
1
] ∪ [𝑎

2
, 𝑏
2
]. The

main consequence of Theorem 1 is the following oscillation
criterion for (1) with 𝑟(𝑡) ≡ 1 and 𝑟

𝑖
(𝑡) ≡ 0, 𝑖 ∈ {1, 2, . . . , 𝑛}.

Corollary 2. One assumes (6), (7), (10), (12), and (13). Then
equation

(𝜙 (𝑥
󸀠

(𝑡)))
󸀠

+
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝜏𝑖 (𝑡))
󵄨󵄨󵄨󵄨
𝛼𝑖 sgn𝑥 (𝜏

𝑖
(𝑡)) = 𝑒 (𝑡) (16)

is oscillatory provided

𝑝𝑝/(𝑝+1)

2𝜋
𝑝

∫
𝑏𝑗

𝑎𝑗

𝑄
𝑗
(𝑡) 𝑑𝑡 ≥ ( max

𝑡∈[𝑎𝑗 ,𝑏𝑗]
𝑄
𝑗
(𝑡))

𝑝/(𝑝+1)

> 0,

𝑗 ∈ {1, 2} ,

(17)

where 𝑄
𝑗
(𝑡) is defined in (15).

In particular for 𝑝 = 1, previous corollary takes the
following form.

Corollary 3. Let (10) hold with 𝑝 = 1, 𝜏
𝑖
(𝑡) ≤ 𝑡 on [𝑡

0
,∞),

and lim
𝑡→∞

𝜏
𝑖
(𝑡) = ∞, 𝑖 ∈ {1, 2, . . . , 𝑛}. Let for every 𝑇 ≥

𝑡
0
there exist 𝑎

1
, 𝑏
1
, 𝑎
2
, 𝑏
2
, 𝑇 ≤ 𝑎

1
< 𝑏
1
≤ 𝜏min(𝑎2) ≤ 𝑎

2
<

𝑏
2
such that assumptions (12) and (13) hold with 𝑟

𝑖
(𝑡) ≡ 0.

Equation

𝑥
󸀠󸀠

(𝑡) +
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝜏𝑖 (𝑡))
󵄨󵄨󵄨󵄨
𝛼𝑖 sgn𝑥 (𝜏

𝑖
(𝑡)) = 𝑒 (𝑡) (18)

is oscillatory provided

1

𝜋
∫
𝑏𝑗

𝑎𝑗

𝑄
𝑗
(𝑡) 𝑑𝑡 ≥ √ max

𝑡∈[𝑎𝑗 ,𝑏𝑗]
𝑄
𝑗
(𝑡) > 0, 𝑗 ∈ {1, 2} , (19)

where 𝑄
𝑗
(𝑡) is defined in (15).

In the next examples and remarks, we discuss the applica-
tion of oscillation criteria from Corollary 3 and [1, Theorem
2.2] on the following equation:

𝑥
󸀠󸀠
+ 𝑚
1
sin (𝑡) 󵄨󵄨󵄨󵄨𝑥 (𝜏1 (𝑡))

󵄨󵄨󵄨󵄨
𝛼1 sgn𝑥 (𝜏

1
(𝑡))

+ 𝑚
2
cos (𝑡) 󵄨󵄨󵄨󵄨𝑥 (𝜏2 (𝑡))

󵄨󵄨󵄨󵄨
𝛼2 sgn𝑥 (𝜏

2
(𝑡)) = −𝑒

0
cos (2𝑡) ,

(20)

where 𝛼
1
> 1 > 𝛼

2
> 0, 𝜏

1
(𝑡) = 𝜏

2
(𝑡) = 𝑡 − 𝜋/8, and 𝑚

1
, 𝑚
2
,

and 𝑒
0
are positive constants.

Example 4. As a consequence of Corollary 3, we show in
this example that (20) is oscillatory provided the constants
𝑚
1
, 𝑚
2
, and 𝑒

0
satisfy the following simple inequality:

𝐼
𝑗

𝜋
√𝜂𝑒
𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
≥ 1, 𝑗 ∈ {1, 2} , (21)

where 𝜂
𝑖
satisfy (10), 𝜂 = ∏

2

𝑖=0
𝜂
−𝜂𝑖

𝑖
, and 𝐼

1
, 𝐼
2
> 0 are two real

numbers defined by

𝐼
1
= ∫
𝜋/4

𝜋/8

𝑊(𝑡)
𝑡 − 𝜋/8

𝑡
𝑑𝑡,

𝐼
2
= ∫
𝜋/2

3𝜋/8

𝑊(𝑡)
𝑡 − 3𝜋/8

𝑡 − 𝜋/4
𝑑𝑡,

𝑊 (𝑡) = |cos 2𝑡|𝜂0 |sin 𝑡|𝜂1 |cos 𝑡|𝜂2 .

(22)

Indeed, let 𝜋
𝑝
= 𝜋/2, 𝜏min(𝑡) = 𝜏

1
(𝑡) = 𝜏

2
(𝑡) = 𝑡 −

𝜋/8, [𝑎
1
, 𝑏
1
] = [𝜋/8 + 2𝑘𝜋, 𝜋/4 + 2𝑘𝜋],[𝑎

2
, 𝑏
2
] = [3𝜋/8 +
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2𝑘𝜋, 𝜋/2 + 2𝑘𝜋], 𝑘 ∈ N, 𝑞
1
(𝑡) = sin(𝑡), 𝑞

2
(𝑡) = cos(𝑡),

and 𝑒(𝑡) = −𝑒
0
cos(2𝑡). Firstly, it is elementary to check that

the required inequalities (12) and (13) are satisfied. Next, we
prove that required inequality (19) immediately follows from
assumption (21). On the first hand, we estimate from above
the term on the right hand side in (19) using that𝛼

1
𝜂
1
+𝛼
2
𝜂
2
=

1:

𝑄
𝑗
(𝑡) = 𝜂𝑒

𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
𝑊(𝑡)

𝑡 − 𝑎
𝑗

𝑡 − 𝑎
𝑗
+ 𝜋/8

≤ 𝜂𝑒
𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
,

𝑡 ∈ [𝑎
𝑗
, 𝑏
𝑗
] ,

(23)

that is

0 < √ max
𝑡∈[𝑎𝑗 ,𝑏𝑗]

𝑄
𝑗
(𝑡) ≤ √𝜂𝑒

𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
, 𝑗 ∈ {1, 2} . (24)

On the other hand, we calculate the integral on the left
hand side in (19):

∫
𝑏1

𝑎1

𝑄
1
(𝑡) 𝑑𝑡

= 𝜂𝑒
𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
∫
𝜋/4+2𝑘𝜋

𝜋/8+2𝑘𝜋

𝑊(𝑡)
𝑡 − (𝜋/8 + 2𝑘𝜋)

𝑡 − (𝜋/8 + 2𝑘𝜋) + 𝜋/8
𝑑𝑡

= 𝜂𝑒
𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
𝐼
1
,

∫
𝑏2

𝑎2

𝑄
2
(𝑡) 𝑑𝑡

= 𝜂𝑒
𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
∫
𝜋/2+2𝑘𝜋

3𝜋/8+2𝑘𝜋

𝑊(𝑡)
𝑡 − (3𝜋/8 + 2𝑘𝜋)

𝑡 − (3𝜋/8 + 2𝑘𝜋) + 𝜋/8
𝑑𝑡

= 𝜂𝑒
𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
𝐼
2
.

(25)

Now, from previous two equalities, and inequalities (21)
and (24), we conclude

1

𝜋
∫
𝑏𝑗

𝑎𝑗

𝑄
𝑗
(𝑡) 𝑑𝑡 =

𝐼
𝑗

𝜋
𝜂𝑒
𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2

≥ √𝜂𝑒
𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
≥ √ max
𝑡∈[𝑎𝑗 ,𝑏𝑗]

𝑄
𝑗
(𝑡) > 0.

(26)

Thus, assumption (21) proves desired inequality (19), and
thus, Corollary 2 verifies that (20) is oscillatory provided (21)
holds.

Remark 5. Oneway to obtain the inequality (21) is to suppose,
for instance, that at least one of the constants 𝑚

1
, 𝑚
2
,

and 𝑒
0
is large enough.

Remark 6. We can consider the slightly more general equa-
tion than (20):

(𝜙 (𝑥
󸀠

(𝑡)))
󸀠

+ 𝑚
1
sin (𝑡) 󵄨󵄨󵄨󵄨𝑥 (𝑡 − 𝜏

1
)
󵄨󵄨󵄨󵄨
𝛼1 sgn𝑥 (𝑡 − 𝜏

1
)

+ 𝑚
2
cos (𝑡) 󵄨󵄨󵄨󵄨𝑥 (𝑡 − 𝜏

2
)
󵄨󵄨󵄨󵄨
𝛼2 sgn𝑥 (𝑡 − 𝜏

2
) = −𝑒

0
cos (2𝑡) ,

(27)

where 𝜏
1
= 𝜏
2
= 𝜋/8 and 𝜙 = 𝜙(V) satisfy (6) and (7),

and 𝛼
1
> 𝑝 > 𝛼

2
> 0. In a similar way as in Example 4,

one can show that (27) is oscillatory provided at least one of
the constants 𝑚

1
, 𝑚
2
, and 𝑒

0
is large enough.

Example 7. In this example we present an application of
[1, Theorem 2.2] for getting another condition on the
constants 𝑚

1
, 𝑚
2
, and 𝑒

0
for oscillation of (20). Let 𝜏

1
=

𝜏
2
= 𝜋/8,

[𝑎
1
, 𝑐
1
] = [

𝜋

8
+ 2𝑘𝜋,

3𝜋

16
+ 2𝑘𝜋] ,

[𝑐
1
, 𝑏
1
] = [

3𝜋

16
+ 2𝑘𝜋,

𝜋

4
+ 2𝑘𝜋] ,

[𝑎
2
, 𝑐
2
] = [

3𝜋

8
+ 2𝑘𝜋,

7𝜋

16
+ 2𝑘𝜋] ,

[𝑐
2
, 𝑏
2
] = [

7𝜋

16
+ 2𝑘𝜋,

𝜋

2
+ 2𝑘𝜋] ,

(28)

𝑞
1
(𝑡) = 𝑚

1
sin(𝑡), 𝑞

2
(𝑡) = 𝑚

2
cos(𝑡), and 𝑒(𝑡) = −𝑒

0
cos(2𝑡).

It is clear that 𝑞
𝑖
(𝑡) ≥ 0 on [𝑎

1
− 𝜏
𝑖
, 𝑏
1
] ∪ [𝑎

2
− 𝜏
𝑖
, 𝑏
2
], 𝑖 =

1, 2, 𝑒(𝑡) ≤ 0 on [𝑎
1
− 𝜏
𝑖
, 𝑏
1
], and 𝑒(𝑡) ≥ 0 on [𝑎

2
−

𝜏
𝑖
, 𝑏
2
], 𝑖 = 1, 2. Therefore we may apply [1, Theorem 2.2] on

(20) provided the following inequality holds:

1

𝐻
𝑗
(𝑐
𝑗
, 𝑎
𝑗
)
∫
𝑐𝑗

𝑎𝑗

(𝑄
𝑗
(𝑡)𝐻
𝑗
(𝑡, 𝑎
𝑗
) − 1) 𝑑𝑡

+
1

𝐻
𝑗
(𝑏
𝑗
, 𝑐
𝑗
)
∫
𝑏𝑗

𝑐𝑗

(𝑄
𝑗
(𝑡)𝐻
𝑗
(𝑏
𝑗
, 𝑡) − 1) 𝑑𝑡 > 0,

𝑗 ∈ {1, 2} .

(29)

Now, if we put 𝐻
1
(𝑡, 𝑠) = 𝐻

2
(𝑡, 𝑠) = (𝑡 − 𝑠)2 and ℎ

𝑗,1

(𝑡, 𝑠) = ℎ
𝑗,2
(𝑡, 𝑠) = 1 for 𝑡 > 𝑠, then previous inequality takes

the following concrete form:

∫
3𝜋/16+2𝑘𝜋

𝜋/8+2𝑘𝜋

𝑄
1
(𝑡) (𝑡 −

𝜋

8
− 2𝑘𝜋)

2

𝑑𝑡

+ ∫
𝜋/4+2𝑘𝜋

3𝜋/16+2𝑘𝜋

𝑄
1
(𝑡) (𝑡 −

𝜋

4
− 2𝑘𝜋)

2

𝑑𝑡 >
𝜋

8
,

∫
7𝜋/16+2𝑘𝜋

3𝜋/8+2𝑘𝜋

𝑄
2
(𝑡) (𝑡 −

3𝜋

8
− 2𝑘𝜋)

2

𝑑𝑡

+ ∫
𝜋/2+2𝑘𝜋

7𝜋/16+2𝑘𝜋

𝑄
2
(𝑡) (𝑡 −

𝜋

2
− 2𝑘𝜋)

2

𝑑𝑡 >
𝜋

8
.

(30)

Similarly as in Example 4, we can calculate previous
integrals and conclude by [1, Theorem 2.2] that (20) is
oscillatory provided the following inequalities hold:

𝜂𝑒
𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
(𝐼
11
+ 𝐼
12
) >

𝜋

8
,

𝜂𝑒
𝜂0

0
𝑚
𝜂1

1
𝑚
𝜂2

2
(𝐼
21
+ 𝐼
22
) >

𝜋

8
,

(31)
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where

𝐼
11
= ∫
3𝜋/16

𝜋/8

𝑊(𝑡)
(𝑡 − 𝜋/8)3

𝑡
𝑑𝑡,

𝐼
12
= ∫
𝜋/4

3𝜋/16

𝑊(𝑡)
(𝑡 − 𝜋/8) (𝑡 − 𝜋/4)2

𝑡
𝑑𝑡,

𝐼
21
= ∫
7𝜋/16

3𝜋/8

𝑊(𝑡)
(𝑡 − 3𝜋/8)3

𝑡 − 𝜋/4
𝑑𝑡,

𝐼
22
= ∫
𝜋/2

7𝜋/16

𝑊(𝑡)
(𝑡 − 3𝜋/8) (𝑡 − 𝜋/2)2

𝑡 − 𝜋/4
𝑑𝑡,

(32)

and𝑊(𝑡) = | cos 2𝑡|𝜂0 | sin 𝑡|𝜂1 | cos 𝑡|𝜂2 .

We leave to the reader to compare and verify which
one of the two inequalities (21) and (31) is simpler to be
verified. Also, similar to the previous example, it is possible
to get corresponding inequalities analogously to (31) for other
criteria published in the papers cited in the references.

Remark 8. In [1, Section 3] the authors give an application of
[1, Theorem 2.2] to (20) where 𝜏

1
(𝑡) = 𝑡 − 𝜏

1
, 𝜏
2
(𝑡) = 𝑡 −

𝜏
2
, 𝜏
1
= 𝜋/8, and 𝜏

2
= 𝜋/4. However, the following choice

(see [1, Section 3])

[𝑎
1
, 𝑐
1
] = [2𝑘𝜋,

𝜋

8
+ 2𝑘𝜋] ,

[𝑐
1
, 𝑏
1
] = [

𝜋

8
+ 2𝑘𝜋,

𝜋

4
+ 2𝑘𝜋] ,

[𝑎
2
, 𝑐
2
] = [

𝜋

4
+ 2𝑘𝜋,

3𝜋

8
+ 2𝑘𝜋] ,

[𝑐
2
, 𝑏
2
] = [

3𝜋

8
+ 2𝑘𝜋,

𝜋

2
+ 2𝑘𝜋] ,

(33)

is not correct since the desired conditions 𝑞
𝑖
(𝑡) ≥ 0 on [𝑎

1
−

𝜏
𝑖
, 𝑏
1
]∪[𝑎
2
−𝜏
𝑖
, 𝑏
2
], 𝑖 = 1, 2 are not fulfilled. Hence, we suggest

reader to use the intervals proposed in the previous example.

Open Question 9. The well-known variational technique
based on the generalized Philos’ 𝐻-function has been used
in [1–11] to obtain some oscillation criteria for (1), where the
second-order quasilinear differential operator (𝑟(𝑡)𝜙(𝑥󸀠(𝑡)))󸀠

is linear or half-linear. Is it possible to use this technique in
the case of any function 𝜙(V) satisfying general conditions (6)
and (7)?

Theorem 10 (advanced equation). Under assumptions (6),
(7), (9), and (10), let 𝑟(𝑡) be a nonincreasing positive function
on [𝑡
0
,∞) and ℎ

𝑖
(𝑡) = 𝜎

𝑖
(𝑡) ≥ 𝑡 on [𝑡

0
,∞), 𝑖 ∈ {1, 2, . . . , 𝑛}.

Let for every 𝑇 ≥ 𝑡
0
there exist numbers 𝑎

1
, 𝑏
1
, 𝑎
2
, 𝑏
2
, such that

𝑇 ≤ 𝑎
1
< 𝑏
1
≤ 𝜎max(𝑏1) ≤ 𝑎

2
< 𝑏
2
and

𝑟
𝑖
(𝑡) ≥ 0, 𝑞

𝑖
(𝑡) ≥ 0

𝑜𝑛 [𝑎
1
, 𝜎max (𝑏1)] ∪ [𝑎

2
, 𝜎max (𝑏2)] ,

𝑒 (𝑡) ≤ 0 𝑜𝑛 [𝑎
1
, 𝜎max (𝑏1)] ,

𝑒 (𝑡) ≥ 0 𝑜𝑛 [𝑎
2
, 𝜎max (𝑏2)] ,

(34)

where 𝜎max(𝑡) = max{𝜎
1
(𝑡), . . . , 𝜎

𝑛
(𝑡)}. Equation (1) is oscilla-

tory provided there are two real parameters 𝜆
1
, 𝜆
2
> 0 such

that (11) is fulfilled, where

𝑅
𝑗
(𝑡) = 𝐾

𝑛

∑
𝑖=1

𝑟
𝑖
(𝑡) (

𝜎
𝑖
(𝑏
𝑗
) − 𝜎
𝑖
(𝑡)

𝜎
𝑖
(𝑏
𝑗
) − 𝑡

)

𝑝

, (35)

𝑄
𝑗
(𝑡)

= (𝜂
−1

0
|𝑒 (𝑡)|)

𝜂0

𝑛

∏
𝑖=1

(𝜂
−1

𝑖
𝑞
𝑖
(𝑡))
𝜂𝑖

𝑛

∏
𝑖=1

(
𝜎
𝑖
(𝑏
𝑗
)−𝜎
𝑖
(𝑡)

𝜎
𝑖
(𝑏
𝑗
) − 𝑡

)

𝛼𝑖𝜂𝑖

,

(36)

for 𝑡 ∈ [𝑎
𝑗
, 𝑏
𝑗
], 𝑗 ∈ {1, 2}, and positive constants 𝑝, 𝐾,

and 𝜂
𝑖
appearing, respectively, in (7), (9), and (10).

Now, analogously with (16), we consider the oscillation of
the advanced equation:

(𝜙 (𝑥
󸀠

(𝑡)))
󸀠

+
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝜎𝑖 (𝑡))
󵄨󵄨󵄨󵄨
𝛼𝑖 sgn𝑥 (𝜎

𝑖
(𝑡)) = 𝑒 (𝑡) .

(37)

As a consequence of Theorem 10, we have the following
criterion.

Corollary 11. One assumes (6), (7), (10), and (34). Then (37)
is oscillatory provided condition (17) is satisfied, where 𝑄

𝑗
(𝑡) is

defined in (36).

As the third case, we consider second-order functional
differential equations with both delay and advanced argu-
ments.

Theorem 12 (delay-advanced equation). One assumes (6),
(7), and (9), 𝛼

𝑖
> 𝑝 for 𝑖 ∈ {1, 2, . . . , 𝑛}, and 𝑚 ∈ N, 1 <

𝑚 < 𝑛. Let 𝑟(𝑡) ≡ 𝑐𝑜𝑛𝑠𝑡 > 0 on [𝑡
0
,∞), ℎ

𝑖
(𝑡) = 𝜏

𝑖
(𝑡) ≤

𝑡 for 𝑖 ∈ {1, . . . , 𝑚}, and ℎ
𝑖
(𝑡) = 𝜎

𝑖
(𝑡) ≥ 𝑡 for 𝑖 ∈ {𝑚 +

1, . . . , 𝑛} on [𝑡
0
,∞). Let 𝑟

𝑖
(𝑡), 𝑞
𝑖
(𝑡), and 𝑒(𝑡) satisfy (12)-(13)

for 𝑖 ∈ {1, . . . , 𝑚} and (34) for 𝑖 ∈ {𝑚 + 1, . . . , 𝑛}. Equation (1)
is oscillatory provided there are two real parameters 𝜆

1
, 𝜆
2
>

0 such that (11) is fulfilled, where

𝑅
𝑗
(𝑡) = 𝐾

𝑚

∑
𝑖=1

𝑟
𝑖
(𝑡) (

𝜏
𝑖
(𝑡) − 𝜏

𝑖
(𝑎
𝑗
)

𝑡 − 𝜏
𝑖
(𝑎
𝑗
)

)

𝑝

+ 𝐾
𝑛

∑
𝑖=𝑚+1

𝑟
𝑖
(𝑡) (

𝜎
𝑖
(𝑏
𝑗
) − 𝜎
𝑖
(𝑡)

𝜎
𝑖
(𝑏
𝑗
) − 𝑡

)

𝑝

,

(38)
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𝑄
𝑗
(𝑡) =

𝑚

∑
𝑖=1

𝛼
𝑖

𝑝
𝑞
𝑝/𝛼𝑖

𝑖
(𝑡) (

𝑝 |𝑒 (𝑡)|

2 (𝛼
𝑖
− 𝑝)𝑚

)

(𝛼𝑖−𝑝)/𝛼𝑖

× (
𝜏
𝑖
(𝑡) − 𝜏

𝑖
(𝑎
𝑗
)

𝑡 − 𝜏
𝑖
(𝑎
𝑗
)

)

𝑝

+
𝑛

∑
𝑖=𝑚+1

𝛼
𝑖

𝑝
𝑞
𝑝/𝛼𝑖

𝑖
(𝑡) (

𝑝 |𝑒 (𝑡)|

2 (𝛼
𝑖
− 𝑝) (𝑛 − 𝑚 − 1)

)

(𝛼𝑖−𝑝)/𝛼𝑖

× (
𝜎
𝑖
(𝑏
𝑗
) − 𝜎
𝑖
(𝑡)

𝜎
𝑖
(𝑏
𝑗
) − 𝑡

)

𝑝

,

(39)

for 𝑡 ∈ [𝑎
𝑗
, 𝑏
𝑗
], 𝑗 ∈ {1, 2}, and positive constants 𝑝, 𝐾 appear-

ing, respectively, in (7) and (9).

Analogously with (16) and (37), we consider the oscilla-
tion of delay-advanced equation:

(𝜙 (𝑥
󸀠

(𝑡)))
󸀠

+
𝑚

∑
𝑖=1

𝑞
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝜏𝑖 (𝑡))
󵄨󵄨󵄨󵄨
𝛼𝑖 sgn𝑥 (𝜏

𝑖
(𝑡))

+
𝑛

∑
𝑖=𝑚+1

𝑞
𝑖
(𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝜎𝑖 (𝑡))
󵄨󵄨󵄨󵄨
𝛼𝑖 sgn𝑥 (𝜎

𝑖
(𝑡)) = 𝑒 (𝑡) .

(40)

As a consequence of Theorem 12 we derive the following
oscillation criterion for (40).

Corollary 13. Let all assumptions of Theorem 12 hold with
respect to 𝑟

𝑖
(𝑡) ≡ 0 and 𝑓(𝑢) ≡ 0. Equation (40) is oscillatory

provided condition (17) is satisfied, where 𝑄
𝑗
(𝑡) is defined in

(39).

In Zafer [5] (see also [6]) the author has illustrated
its main oscillation result on the following example of the
second-order functional differential equations with delay and
advanced arguments. Since |𝑥|𝛼−1𝑥 = |𝑥|𝛼 sgn𝑥, it can be
rewritten in the form

(
󵄨󵄨󵄨󵄨󵄨𝑥
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑝−1

𝑥
󸀠

(𝑡))
󸀠

+ 𝑚
1
sin (𝑡) |𝑥 (𝜏 (𝑡))|𝛼1 sgn𝑥 (𝜏 (𝑡))

+ 𝑚
2
cos (𝑡) |𝑥 (𝜎 (𝑡))|𝛼2 sgn𝑥 (𝜎 (𝑡)) = −𝑒

0
cos (2𝑡) ,

(41)

where 𝑚
1
, 𝑚
2
, and 𝑒

0
are positive constants; 𝜏(𝑡) = 𝑡 − 𝜋/5;

𝜎(𝑡) = 𝑡 + 𝜋/20; and 𝛼
1
, 𝛼
2
> 0. It has been proved that

previous equation is oscillatory provided at least one of the
constants 𝑚

1
, 𝑚
2
, and 𝑒

0
is large enough. Here according

to Corollary 13 we can repeat this interesting conclusion for
slightly complicated equation but with 𝛼

1
, 𝛼
2
> 1.

Example 14. We consider the following 𝜙-Laplacian func-
tional differential equation with delay and advanced argu-
ments:

(𝜙 (𝑥
󸀠

(𝑡)))
󸀠

+ 𝑚
1
sin (𝑡) |𝑥 (𝜏 (𝑡))|𝛼1 sgn𝑥 (𝜏 (𝑡))

+ 𝑚
2
cos (𝑡) |𝑥 (𝜎 (𝑡))|𝛼2 sgn𝑥 (𝜎 (𝑡)) = −𝑒

0
cos (2𝑡) ,

(42)

where 𝜙 = 𝜙(V) satisfies (6), (7), 𝜏(𝑡) = 𝑡 − 𝜏
0
, 𝜎(𝑡) = 𝑡 + 𝜎

0
,

and 𝜏
0
, 𝜎
0
∈ [0, 𝜋/4). We claim that the previous equation

is oscillatory provided at least one of the constants 𝑚
1
, 𝑚
2
,

and 𝑒
0
is large enough. Indeed, it is enough to show that

condition (17) is fulfilled by using Corollary 13. It can be done
in a similarway as in Example 4with (20) andCorollary 3.We
leave it to the reader.

3. Auxiliary Results: Qualitative
Properties of Concave-Like Functions

Let 𝑎 < 𝑏 be two arbitrary real numbers. It is known that if
𝑥(𝑡) is a concave and smooth enough function on (𝑎, 𝑏), that
is, if 𝑥󸀠󸀠(𝑡) ≤ 0 for all 𝑡 ∈ (𝑎, 𝑏), then 𝑥(𝑡) − 𝑥(𝑠) ≥ 𝑥󸀠(𝑡)(𝑡 − 𝑠)
for all 𝑠, 𝑡 ∈ (𝑎, 𝑏), 𝑠 < 𝑡. Moreover, if 𝑥(𝑡) > 0 for all 𝑡 ∈ (𝑎, 𝑏),
then from previous inequality we obtain

𝑥󸀠 (𝑡)

𝑥 (𝑡)
≤

1

𝑡 − 𝑠
∀𝑠, 𝑡 ∈ (𝑎, 𝑏) , 𝑠 < 𝑡. (43)

However, often we do not have any information about
the sign of the second-order linear differential operator in
(1) except only in a particular case when 𝑟(𝑡) ≡ 1 and
𝜙(V) ≡ V. Hence the main goal of this section is to find
some sufficient conditions on 𝑟(𝑡) and 𝜙(V) such that the
assumption “(𝑟(𝑡)𝜙(𝑥󸀠(𝑡)))󸀠 ≤ 0 for all 𝑡 ∈ (𝑎, 𝑏)” implies the
desired inequality (43). It is done in the following results.

Lemma 15. Let 𝜙 = 𝜙(V) satisfy (6). Let 0 < 𝑟(𝑠) ≤ 𝑟(𝑡) for
all 𝑠, 𝑡 ∈ (𝑎, 𝑏), 𝑠 ≤ 𝑡. For any function 𝑥 ∈ 𝐶2((𝑎, 𝑏),R) ∩
𝐶([𝑎, 𝑏),R) such that 𝑥(𝑡) > 0 for all 𝑡 ∈ (𝑎, 𝑏), the following
statement holds:

𝑖𝑓 (𝑟 (𝑡) 𝜙 (𝑥
󸀠

(𝑡)))
󸀠

≤ 0 ∀𝑡 ∈ (𝑎, 𝑏) ,

𝑡ℎ𝑒𝑛
𝑥󸀠 (𝑡)

𝑥 (𝑡)
≤

1

𝑡 − 𝑎
∀𝑡 ∈ (𝑎, 𝑏) .

(44)

Proof. From assumption (𝑟(𝑡)𝜙(𝑥󸀠(𝑡)))󸀠 ≤ 0 for all 𝑡 ∈ (𝑎, 𝑏),
it follows that

𝑟 (𝑡) 𝜙 (𝑥
󸀠

(𝑡)) ≤ 𝑟 (𝜉) 𝜙 (𝑥
󸀠

(𝜉)) ∀𝜉, 𝑡 ∈ (𝑎, 𝑏) , 𝜉 ≤ 𝑡.

(45)

To the end of this proof, let 𝑡 ∈ (𝑎, 𝑏) be fixed. Thanks to
(6), if 𝜙(𝑥󸀠(𝑡)) ≤ 0, then 𝑥󸀠(𝑡) ≤ 0 too, because 𝜙 is odd and
increasing. In this case, since 𝑟(𝑠) > 0 and 𝑥(𝑠) > 0 on (𝑎, 𝑏),
it implies that

𝑥󸀠 (𝑡)

𝑥 (𝑡)
≤ 0 <

1

𝑡 − 𝑎
∀𝑡 ∈ (𝑎, 𝑏) . (46)

Thus, it remains to show (44) for the case of 𝜙(𝑥󸀠(𝑡)) ≥ 0.
From 0 < 𝑟(𝜉) ≤ 𝑟(𝑡) for all 𝜉 ∈ (𝑎, 𝑏), 𝜉 ≤ 𝑡, we obtain
𝑟(𝑡)/𝑟(𝜉) ≥ 1 which together with 𝜙(𝑥󸀠(𝑡)) ≥ 0 and (45) gives

𝜙 (𝑥
󸀠

(𝑡)) ≤
𝑟 (𝑡)

𝑟 (𝜉)
𝜙 (𝑥
󸀠

(𝑡)) ≤ 𝜙 (𝑥
󸀠

(𝜉)) ∀𝜉 ∈ (𝑎, 𝑏) , 𝜉 ≤ 𝑡.

(47)
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Acting on (47) with 𝜙−1 and using that 𝜙−1 is an increas-
ing function because of (6), we obtain

𝑥
󸀠

(𝜉) ≥ 𝑥
󸀠

(𝑡) ∀𝜉 ∈ (𝑎, 𝑏) , 𝜉 ≤ 𝑡. (48)

Next, since 𝑥(𝑡) > 0 on (𝑎, 𝑏) and 𝑥 ∈ 𝐶([𝑎, 𝑏),R), we
have 𝑥(𝑎) ≥ 0. From the mean-value theorem for 𝑥(𝑡) on
(𝑎, 𝑡), we get a 𝜉 ∈ (𝑎, 𝑡) depending on 𝑎 and 𝑡 such that
𝑥(𝑡) − 𝑥(𝑎) = 𝑥󸀠(𝜉)(𝑡 − 𝑎), and since 𝑥(𝑎) ≥ 0, from (48)
we obtain

𝑥 (𝑡) ≥ 𝑥
󸀠

(𝜉) (𝑡 − 𝑎) ≥ 𝑥
󸀠

(𝑡) (𝑡 − 𝑎) , (49)

which proves the desired inequality in (44).

In the advanced case of (1), that is, when ℎ
𝑖
(𝑡) = 𝜎

𝑖
(𝑡) ≥ 𝑡,

we have the analogous result to Lemma 15.

Lemma 16. Let 𝜙 = 𝜙(V) satisfy (6). Let 𝑟(𝑠) ≥ 𝑟(𝑡) > 0 for
all 𝑠, 𝑡 ∈ (𝑎, 𝑏), 𝑠 ≤ 𝑡. For any function 𝑥 ∈ 𝐶2((𝑎, 𝑏),R) ∩
𝐶((𝑎, 𝑏],R) such that 𝑥(𝑠) > 0 for all 𝑠 ∈ (𝑎, 𝑏), the following
statement holds:

𝑖𝑓 (𝑟 (𝑠) 𝜙 (𝑥
󸀠

(𝑠)))
󸀠

≤ 0 ∀𝑠 ∈ (𝑎, 𝑏) ,

𝑡ℎ𝑒𝑛
𝑥󸀠 (𝑠)

𝑥 (𝑠)
≥ −

1

𝑏 − 𝑠
∀𝑠 ∈ (𝑎, 𝑏) .

(50)

Proof. From assumption (𝑟(𝑠)𝜙(𝑥󸀠(𝑠)))󸀠 ≤ 0 for all 𝑠 ∈ (𝑎, 𝑏),
we have

𝑟 (𝑠) 𝜙 (𝑥
󸀠

(𝑠)) ≥ 𝑟 (𝜉) 𝜙 (𝑥
󸀠

(𝜉)) ∀𝑠, 𝜉 ∈ (𝑎, 𝑏) , 𝑠 ≤ 𝜉.

(51)

To the end of this proof, let 𝑠 ∈ (𝑎, 𝑏) be fixed. If𝜙(𝑥󸀠(𝑠)) ≥
0, then 𝑥󸀠(𝑠) ≥ 0 because 𝜙 is odd and increasing, and since
by assumption 𝑥(𝑡) > 0 for all 𝑡 ∈ (𝑎, 𝑏), we have that

𝑥󸀠 (𝑠)

𝑥 (𝑠)
≥ 0 ≥ −

1

𝑏 − 𝑠
∀𝑠 ∈ (𝑎, 𝑏) , (52)

which proves (50) in this case. Let now 𝜙(𝑥󸀠(𝑠)) ≤ 0. It
implies that 𝑥󸀠(𝑠) ≤ 0 and 𝜙(𝑥󸀠(𝜉)) ≤ 0 because of (51) and
𝑟(𝑠) > 0 for all 𝑠 ∈ (𝑎, 𝑏). Hence, from 𝑟(𝜉) ≤ 𝑟(𝑠) for all
𝜉 ∈ (𝑎, 𝑏), 𝜉 ≥ 𝑠, from (51), and 𝜙(𝑥󸀠(𝜉)) ≤ 0, we especially
conclude that

𝜙 (𝑥
󸀠

(𝑠)) ≥
𝑟 (𝜉)

𝑟 (𝑠)
𝜙 (𝑥
󸀠

(𝜉)) ≥ 𝜙 (𝑥
󸀠

(𝜉)) ∀𝜉 ∈ (𝑎, 𝑏) , 𝜉 ≥ 𝑠.

(53)

Acting on (53) with 𝜙−1 we obtain

𝑥
󸀠

(𝑠) = 𝜙
−1
(𝜙 (𝑥
󸀠

(𝑠))) ≥ 𝜙
−1
(𝜙 (𝑥
󸀠

(𝜉))) = 𝑥
󸀠

(𝜉)

∀𝜉 ∈ (𝑎, 𝑏) , 𝜉 ≥ 𝑠.
(54)

By the Lagrange’s mean-value theorem, there exists a 𝜉 ∈
(𝑠, 𝑏) depending on 𝑠, 𝑏 such that 𝑥(𝑏) − 𝑥(𝑠) = 𝑥󸀠(𝜉)(𝑏 − 𝑠).
Since 𝑥(𝑠) > 0 for all 𝑠 ∈ (𝑎, 𝑏) and 𝑥 ∈ 𝐶((𝑎, 𝑏],R), from
(54) we obtain

−𝑥 (𝑠) ≤ 𝑥 (𝑏) − 𝑥 (𝑠) = 𝑥
󸀠

(𝜉) (𝑏 − 𝑠) ≤ 𝑥
󸀠

(𝑠) (𝑏 − 𝑠) , (55)

which proves the desired inequality.

Statement (44) will be frequently used in the following
form.

Corollary 17. Let 𝜙 = 𝜙(V) satisfy (6), 𝜏(𝑡) ≤ 𝑡, and 0 <
𝑟(𝑠) ≤ 𝑟(𝑡) for all 𝑠, 𝑡, 𝑡

0
≤ 𝑠 ≤ 𝑡. Let 𝑎

1
, 𝑏
1
be two arbitrary

real numbers such that 𝑡
0
≤ 𝜏(𝑎

1
) ≤ 𝑎

1
< 𝑏
1
. Then for any

function 𝑥 ∈ 𝐶2((𝜏(𝑎
1
), 𝑏
1
),R) ∩ 𝐶([𝜏(𝑎

1
), 𝑏
1
),R) such that

𝑥(𝑡) > 0 for all 𝑡 ∈ (𝜏(𝑎
1
), 𝑏
1
), the following statement holds:

𝑖𝑓 (𝑟 (𝑡) 𝜙 (𝑥
󸀠

(𝑡)))
󸀠

≤ 0, ∀𝑡 ∈ (𝜏 (𝑎
1
) , 𝑏
1
) ,

𝑡ℎ𝑒𝑛
𝑥 (𝜏 (𝑡))

𝑥 (𝑡)
≥
𝜏 (𝑡) − 𝜏 (𝑎

1
)

𝑡 − 𝜏 (𝑎
1
)

, ∀𝑡 ∈ (𝑎
1
, 𝑏
1
) .

(56)

Proof. By assumptions of this corollary, we have 𝜏(𝑡) ≤ 𝑡,
𝑥(𝑡) > 0, and (𝑟(𝑡)𝜙(𝑥󸀠(𝑡)))

󸀠

≤ 0 for all 𝑡 ∈ (𝜏(𝑎
1
), 𝑏
1
). In

particular from statement (44) applied on (𝑎, 𝑏) = (𝜏(𝑎
1
), 𝑏
1
),

we get

𝑥󸀠 (𝑡)

𝑥 (𝑡)
≤

1

𝑡 − 𝜏 (𝑎
1
)

∀𝑡 ∈ (𝜏 (𝑎
1
) , 𝑏
1
) . (57)

Integrating this inequality over the interval [𝜏(𝑡), 𝑡] for all
𝑡 ∈ (𝑎
1
, 𝑏
1
), we obtain

𝑥 (𝑡)

𝑥 (𝜏 (𝑡))
≤

𝑡 − 𝜏 (𝑎
1
)

𝜏 (𝑡) − 𝜏 (𝑎
1
)

∀𝑡 ∈ (𝑎
1
, 𝑏
1
) , (58)

which proves the desired inequality in (56).

Statement (50) will appear in the following form.

Corollary 18. Let 𝑎
1
< 𝑏
1
be two arbitrary real numbers. Let

𝜙 = 𝜙(V) satisfy (6), 𝜎(𝑡) ≥ 𝑡, 𝑟(𝑡) > 0, and 𝑟(𝑠) ≥ 𝑟(𝑡) for
all 𝑠, 𝑡, 𝑠 ≤ 𝑡. Then for any function 𝑥 ∈ 𝐶2((𝑎

1
, 𝜎(𝑏
1
)),R) ∩

𝐶((𝑎
1
, 𝜎(𝑏
1
)],R) such that 𝑥(𝑡) > 0 for all 𝑡 ∈ (𝑎

1
, 𝜎(𝑏
1
)), the

following statement holds:

𝑖𝑓 (𝑟 (𝑠) 𝜙 (𝑥
󸀠

(𝑠)))
󸀠

≤ 0 ∀𝑠 ∈ (𝑎
1
, 𝜎 (𝑏
1
))

𝑡ℎ𝑒𝑛
𝑥 (𝜎 (𝑠))

𝑥 (𝑠)
≥
𝜎 (𝑏
1
) − 𝜎 (𝑠)

𝜎 (𝑏
1
) − 𝑠

∀𝑠 ∈ (𝑎
1
, 𝑏
1
) .

(59)

Proof. Analogously with the proof of Corollary 17, we just
need to use the second inequality in (50) on (𝑎, 𝑏) =
(𝑎
1
, 𝜎(𝑏
1
)) and integrate it over the interval [𝑠, 𝜎(𝑠)] for all

𝑠 ∈ (𝑎
1
, 𝑏
1
).

Next, by Corollary 17 and the arithmetic-geometric mean
inequality

𝑛

∑
𝑖=0

𝜂
𝑖
𝑢
𝑖
≥
𝑛

∏
𝑖=0

𝑢
𝜂𝑖

𝑖
, 𝑢
𝑖
≥ 0, 𝜂

𝑖
> 0, (60)

we can prove the following proposition.

Proposition 19 (with delay arguments). Let 0 < 𝑟(𝑠) ≤ 𝑟(𝑡)
for all 𝑠, 𝑡 such that 𝑡

0
≤ 𝑠 < 𝑡 and let 𝜙 = 𝜙(V) satisfy

(6). Let exponents {𝛼
𝑖
} and the (𝑛 + 1)-tuple (𝜂

0
, 𝜂
1
, . . . , 𝜂

𝑛
)
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satisfy (10). Let 𝜏
𝑖
(𝑡) ≤ 𝑡 on [𝑡

0
,∞), 𝑖 ∈ {1, . . . , 𝑛}, and

𝜏min(𝑡) = min{𝜏
1
(𝑡), . . . , 𝜏

𝑛
(𝑡)}. Let 𝑒(𝑡) ≤ 0 and 𝑞

𝑖
(𝑡) ≥

0 on [𝑎
1
, 𝑏
1
], where 𝑡

0
≤ 𝑎
1
< 𝑏
1
. Then for any function 𝑥 ∈

𝐶2((𝜏min(𝑎1), 𝑏1),R) ∩ 𝐶([𝜏min(𝑎1), 𝑏1),R) such that 𝑥(𝑡) > 0

and (𝑟(𝑡)𝜙(𝑥󸀠(𝑡)))󸀠 ≤ 0 for all 𝑡 ∈ (𝜏min(𝑎1), 𝑏1), we have

1

𝑥𝑝 (𝑡)
[
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡) (𝑥 (𝜏

𝑖
(𝑡)))
𝛼𝑖 − 𝑒 (𝑡)]

≥ (𝜂
−1

0
|𝑒 (𝑡)|)

𝜂0

𝑛

∏
𝑖=1

(𝜂
−1

𝑖
𝑞
𝑖
(𝑡))
𝜂𝑖

𝑛

∏
𝑖=1

(
𝜏
𝑖
(𝑡) − 𝜏

𝑖
(𝑎
1
)

𝑡 − 𝜏
𝑖
(𝑎
1
)

)

𝛼𝑖𝜂𝑖

,

𝑡 ∈ (𝑎
1
, 𝑏
1
) .

(61)

Proof. By inequality (60) in particular for 𝑢
𝑖
= 𝜂−1
𝑖
𝑞
𝑖
(𝑡)

(𝑥(𝜏
𝑖
(𝑡)))𝛼𝑖 and 𝑢

0
= 𝜂−1
0
𝑒(𝑡), together with (56), we obtain

1

𝑥𝑝 (𝑡)
[
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡) (𝑥 (𝜏

𝑖
(𝑡)))
𝛼𝑖 − 𝑒 (𝑡)]

=
1

𝑥𝑝 (𝑡)
[
𝑛

∑
𝑖=1

𝜂
𝑖
(𝜂
−1

𝑖
𝑞
𝑖
(𝑡) (𝑥 (𝜏

𝑖
(𝑡)))
𝛼𝑖) + 𝜂

0
(𝜂
−1

0
|𝑒 (𝑡)|)]

≥
1

𝑥𝑝 (𝑡)

𝑛

∏
𝑖=1

(𝜂
−1

𝑖
𝑞
𝑖
(𝑡) (𝑥 (𝜏

𝑖
(𝑡)))
𝛼𝑖)
𝜂𝑖

(𝜂
−1

0
|𝑒 (𝑡)|)

𝜂0

= (𝜂
−1

0
|𝑒 (𝑡)|)

𝜂0

𝑛

∏
𝑖=1

(𝜂
−1

𝑖
𝑞
𝑖
(𝑡))
𝜂𝑖∏
𝑛

𝑖=1
(𝑥 (𝜏
𝑖
(𝑡)))
𝛼𝑖𝜂𝑖

(𝑥 (𝑡))∑
𝑛

𝑖=1
𝛼𝑖𝜂𝑖

= (𝜂
−1

0
|𝑒 (𝑡)|)

𝜂0

𝑛

∏
𝑖=1

(𝜂
−1

𝑖
𝑞
𝑖
(𝑡))
𝜂𝑖∏
𝑛

𝑖=1
(𝑥 (𝜏
𝑖
(𝑡)))
𝛼𝑖𝜂𝑖

∏
𝑛

𝑖=1
(𝑥 (𝑡))𝛼𝑖𝜂𝑖

= (𝜂
−1

0
|𝑒 (𝑡)|)

𝜂0

𝑛

∏
𝑖=1

(𝜂
−1

𝑖
𝑞
𝑖
(𝑡))
𝜂𝑖

𝑛

∏
𝑖=1

(
𝑥 (𝜏
𝑖
(𝑡))

𝑥 (𝑡)
)

𝛼𝑖𝜂𝑖

≥ (𝜂
−1

0
|𝑒 (𝑡)|)

𝜂0

𝑛

∏
𝑖=1

(𝜂
−1

𝑖
𝑞
𝑖
(𝑡))
𝜂𝑖

𝑛

∏
𝑖=1

(
𝜏
𝑖
(𝑡) − 𝜏

𝑖
(𝑎
1
)

𝑡 − 𝜏
𝑖
(𝑎
1
)

)

𝛼𝑖𝜂𝑖

,

(62)

which proves this proposition.

Proposition20 (with advanced arguments). Let 𝑟(𝑠) ≥ 𝑟(𝑡) >
0 for all 𝑠, 𝑡 such that 𝑡

0
≤ 𝑠 < 𝑡 and let 𝜙 = 𝜙(V) satisfy

(6). Let exponents {𝛼
𝑖
} and the (𝑛 + 1)-tuple (𝜂

0
, 𝜂
1
, . . . , 𝜂

𝑛
)

satisfy (10). Let 𝜎
𝑖
(𝑡) ≥ 𝑡 on [𝑡

0
,∞), 𝑖 ∈ {1, . . . , 𝑛}, and

𝜎max(𝑡) = max{𝜎
1
(𝑡), . . . , 𝜎

𝑛
(𝑡)}. Let 𝑒(𝑡) ≤ 0 and 𝑞

𝑖
(𝑡) ≥ 0

on [𝑎
1
, 𝑏
1
], where 𝑡

0
≤ 𝑎
1
< 𝑏
1
. Then for any function 𝑥 ∈

𝐶2((𝑎
1
, 𝜎max(𝑏1)),R) ∩ 𝐶((𝑎

1
, 𝜎max(𝑏1)],R) such that 𝑥(𝑡) > 0

and (𝑟(𝑡)𝜙(𝑥󸀠(𝑡)))󸀠 ≤ 0 for all 𝑡 ∈ (𝑎
1
, 𝜎max(𝑏1)), we have

1

𝑥𝑝 (𝑡)
[
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡) (𝑥 (𝜎

𝑖
(𝑡)))
𝛼𝑖 − 𝑒 (𝑡)]

≥ (𝜂
−1

0
|𝑒 (𝑡)|)

𝜂0

𝑛

∏
𝑖=1

(𝜂
−1

𝑖
𝑞
𝑖
(𝑡))
𝜂𝑖

𝑛

∏
𝑖=1

(
𝜎
𝑖
(𝑏
1
) − 𝜎
𝑖
(𝑡)

𝜎
𝑖
(𝑏
1
) − 𝑡

)

𝛼𝑖𝜂𝑖

,

𝑡 ∈ (𝑎
1
, 𝑏
1
) .

(63)

Proof. It is very similar to the proof of Proposition 19 but
instead of Corollary 17 we need to use Corollary 18.

According to Corollary 17, we are able to prove the next
useful proposition in which we also use the well-known
Young inequality𝑋,𝑌 ≥ 0:

𝑋
𝛾
+ (𝛾 − 1) 𝑌

𝛾
≥ 𝛾𝑋𝑌

𝛾−1
, 𝛾 > 1. (64)

Proposition 21 (with delay-advanced arguments). Let 𝑟(𝑡) ≡
𝑐𝑜𝑛𝑠𝑡 > 0 on [𝑡

0
,∞), real numbers 𝛼

𝑖
> 𝑝 > 0 for all

𝑖 = 1, 2, . . . , 𝑛 and𝑚 ∈ N, 1 < 𝑚 < 𝑛. Let 𝜙 = 𝜙(V) satisfy (6),
𝜏
𝑖
(𝑡) ≤ 𝑡, 𝑖 ∈ {1, . . . , 𝑚} and 𝜎

𝑖
(𝑡) ≥ 𝑡, 𝑖 ∈ {𝑚 + 1, . . . , 𝑛}

on [𝑡
0
,∞), and 𝜏min(𝑡) = min{𝜏

1
(𝑡), . . . , 𝜏

𝑚
(𝑡)}, 𝜎max(𝑡) =

max{𝜎
𝑚+1

(𝑡), . . . , 𝜎
𝑛
(𝑡)}. Let 𝑒(𝑡) ≤ 0 and 𝑞

𝑖
(𝑡) ≥ 0 on

[𝑎
1
, 𝑏
1
], where 𝑡

0
≤ 𝑎
1

< 𝑏
1
. Then for any function 𝑥 ∈

𝐶2((𝜏min(𝑎1), 𝜎max(𝑏1)),R) ∩ 𝐶([𝜏min(𝑎1), 𝜎max(𝑏1)],R) such
that 𝑥(𝑡) > 0 and (𝑟(𝑡)𝜙(𝑥󸀠(𝑡)))󸀠 ≤ 0 on (𝜏min(𝑎1), 𝜎max(𝑏1)),
we have

1

𝑥𝑝 (𝑡)
[
𝑚

∑
𝑖=1

𝑞
𝑖
(𝑡) (𝑥 (𝜏

𝑖
(𝑡)))
𝛼𝑖 −

1

2
𝑒 (𝑡)]

+
1

𝑥𝑝 (𝑡)
[
𝑛

∑
𝑖=𝑚+1

𝑞
𝑖
(𝑡) (𝑥 (𝜎

𝑖
(𝑡)))
𝛼𝑖 −

1

2
𝑒 (𝑡)]

≥
𝑚

∑
𝑖=1

𝛼
𝑖

𝑝
𝑞
𝑝/𝛼𝑖

𝑖
(𝑡) (

𝑝 |𝑒 (𝑡)|

2 (𝛼
𝑖
− 𝑝)𝑚

)

(𝛼𝑖−𝑝)/𝛼𝑖

× (
𝜏
𝑖
(𝑡) − 𝜏

𝑖
(𝑎
1
)

𝑡 − 𝜏
𝑖
(𝑎
1
)

)

𝑝

+
𝑛

∑
𝑖=𝑚+1

𝛼
𝑖

𝑝
𝑞
𝑝/𝛼𝑖

𝑖
(𝑡) (

𝑝 |𝑒 (𝑡)|

2 (𝛼
𝑖
− 𝑝) (𝑛 − 𝑚 − 1)

)

(𝛼𝑖−𝑝)/𝛼𝑖

× (
𝜎
𝑖
(𝑏
1
) − 𝜎
𝑖
(𝑡)

𝜎
𝑖
(𝑏
1
) − 𝑡

)

𝑝

,

(65)

for all 𝑡 ∈ (𝑎
1
, 𝑏
1
).

Proof. First of all, by inequality (64) in particular for 𝛾 =
𝛼
𝑖
/𝑝 and

𝑋 = (𝑞
𝑖
(𝑡))
𝑝/𝛼𝑖𝑥
𝑝
(𝜏
𝑖
(𝑡)) , 𝑌 = (

𝑝 |𝑒 (𝑡)|

2 (𝛼
𝑖
− 𝑝)𝑚

)

𝑝/𝛼𝑖

,

(66)
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together with (56), we obtain

1

𝑥𝑝 (𝑡)
[
𝑚

∑
𝑖=1

𝑞
𝑖
(𝑡) (𝑥 (𝜏

𝑖
(𝑡)))
𝛼𝑖 −

1

2
𝑒 (𝑡)]

=
1

𝑥𝑝 (𝑡)

𝑚

∑
𝑖=1

{[(𝑞
𝑖
(𝑡))
𝑝/𝛼𝑖𝑥
𝑝
(𝜏
𝑖
(𝑡))]
𝛼𝑖/𝑝

+(
𝛼
𝑖

𝑝
− 1)[(

𝑝 |𝑒 (𝑡)|

2 (𝛼
𝑖
− 𝑝)𝑚

)

𝑝/𝛼𝑖

]

𝛼𝑖/𝑝

}
}
}

≥
1

𝑥𝑝 (𝑡)

𝑚

∑
𝑖=1

𝛼
𝑖

𝑝
(𝑞
𝑖
(𝑡))
𝑝/𝛼𝑖(

𝑝 |𝑒 (𝑡)|

2 (𝛼
𝑖
− 𝑝)𝑚

)

(𝛼𝑖−𝑝)/𝛼𝑖

𝑥
𝑝
(𝜏
𝑖
(𝑡))

=
𝑚

∑
𝑖=1

𝛼
𝑖

𝑝
(𝑞
𝑖
(𝑡))
𝑝/𝛼𝑖(

𝑝 |𝑒 (𝑡)|

2 (𝛼
𝑖
− 𝑝)𝑚

)

(𝛼𝑖−𝑝)/𝛼𝑖

[
𝑥 (𝜏
𝑖
(𝑡))

𝑥 (𝑡)
]

𝑝

≥
𝑚

∑
𝑖=1

𝛼
𝑖

𝑝
(𝑞
𝑖
(𝑡))
𝑝/𝛼𝑖(

𝑝 |𝑒 (𝑡)|

2 (𝛼
𝑖
− 𝑝)𝑚

)

(𝛼𝑖−𝑝)/𝛼𝑖

× (
𝜏
𝑖
(𝑡) − 𝜏

𝑖
(𝑎
1
)

𝑡 − 𝜏
𝑖
(𝑎
1
)

)

𝑝

.

(67)

In the same way, one can show that

1

𝑥𝑝 (𝑡)
[
𝑛

∑
𝑖=𝑚+1

𝑞
𝑖
(𝑡) (𝑥 (𝜎

𝑖
(𝑡)))
𝛼𝑖 −

1

2
𝑒 (𝑡)]

≥
𝑛

∑
𝑖=𝑚+1

𝛼
𝑖

𝑝
𝑞
𝑝/𝛼𝑖

𝑖
(𝑡) (

𝑝 |𝑒 (𝑡)|

2 (𝛼
𝑖
− 𝑝) (𝑛 − 𝑚 − 1)

)

(𝛼𝑖−𝑝)/𝛼𝑖

× (
𝜎
𝑖
(𝑏
1
) − 𝜎
𝑖
(𝑡)

𝜎
𝑖
(𝑏
1
) − 𝑡

)

𝑝

.

(68)

The previous two inequalities prove this proposition.

4. Proof of Main Results

Proof of Theorem 1. If the assertion of this theorem does not
hold, then there is a nonoscillatory solution 𝑥(𝑡) of (1) such
that 𝑥(𝑡) ̸= 0 for all 𝑡 ≥ 𝑇 and some 𝑇 ≥ 𝑡

0
. Moreover, it is

enough to work only with the case 𝑥(𝑡) > 0 and 𝑒(𝑡) ≤ 0 on
[𝜏min(𝑎1), 𝑏1], since the second case 𝑥(𝑡) < 0 and −𝑒(𝑡) ≤ 0 on
[𝜏min(𝑎2), 𝑏2] can be transformed into the first one. Indeed,
multiplying equation (1) by −1 and using assumptions that
𝜙(V) and𝑓(𝑢) are odd functions, we have that (1) is equivalent
to

(𝑟 (𝑡) 𝜙 (−𝑥
󸀠

(𝑡)))
󸀠

+
𝑛

∑
𝑖=1

𝑟
𝑖
(𝑡) 𝑓 (−𝑥 (𝜏

𝑖
(𝑡)))

+
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡)

󵄨󵄨󵄨󵄨(−𝑥 (𝜏𝑖 (𝑡)))
󵄨󵄨󵄨󵄨
𝛼𝑖 sgn (−𝑥 (𝜏

𝑖
(𝑡))) = −𝑒 (𝑡) ,

𝑡 ≥ 𝑡
0
.

(69)

The proof is outlined in the following three steps.

Step 1. Next, for any 𝜆
1
> 0 the following function is well

defined:

𝜔
1
(𝑡) = −

𝜆
1
𝑟 (𝑡) 𝜙 (𝑥󸀠 (𝑡))

𝑥𝑝 (𝑡)
, 𝑡 ∈ [𝑎

1
, 𝑏
1
] , (70)

and 𝜔
1
∈ 𝐶1([𝑎

1
, 𝑏
1
),R). Since 𝜆

1
> 0 and 𝑟(𝑡) > 0 on

[𝑎
1
, 𝑏
1
], from the previous equality we get

󵄨󵄨󵄨󵄨󵄨𝜙 (𝑥
󸀠

(𝑡))
󵄨󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝜔1 (𝑡)
󵄨󵄨󵄨󵄨

𝜆
1
𝑟 (𝑡)

𝑥
𝑝

(𝑡) ,

𝜔
󸀠

1
(𝑡) = −

𝜆
1
(𝑟 (𝑡) 𝜙 (𝑥󸀠 (𝑡)))

󸀠

𝑥𝑝 (𝑡)
+
𝑝𝜆
1
𝑟 (𝑡) 𝜙 (𝑥󸀠 (𝑡))

𝑥𝑝+1 (𝑡)
𝑥
󸀠

(𝑡) .

(71)

Using (1) and assumptions (7) and (9), from the second
equality of (71), we get

𝑑

𝑑𝑡
𝜔
1
(𝑡) ≥

𝑝

(𝜆
1
𝑟 (𝑡))
1/𝑝

󵄨󵄨󵄨󵄨𝜔1 (𝑡)
󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

+ 𝜆
1
𝐾
𝑛

∑
𝑖=1

𝑟
𝑖
(𝑡) (

𝑥 (𝜏
𝑖
(𝑡))

𝑥 (𝑡)
)

𝑝

+
𝜆
1

𝑥𝑝 (𝑡)
[
𝑛

∑
𝑖=1

𝑞
𝑖
(𝑡) (𝑥 (𝜏

𝑖
(𝑡)))
𝛼𝑖 − 𝑒 (𝑡)] ,

(72)

where 𝑡 ∈ (𝑎
1
, 𝑏
1
). Next, using assumptions (12) and (13) in (1)

for all 𝑡 ∈ (𝜏min(𝑎1), 𝑏1) we easily conclude that 𝑥(𝑡) satisfies
all assumptions of Corollary 17 and Proposition 19. Hence
from (56), (61), and (72) we observe

𝑑

𝑑𝑡
𝜔
1
(𝑡) ≥

𝑝

(𝜆
1
𝑟 (𝑡))
1/𝑝

󵄨󵄨󵄨󵄨𝜔1 (𝑡)
󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

+ 𝜆
1
(𝑅
1
(𝑡) + 𝑄

1
(𝑡)) ,

𝑡 ∈ (𝑎
1
, 𝑏
1
) .

(73)

Step 2. In this step, we need the next elementary proposition.

Proposition 22. Let 𝑝 > 0 and let 𝜋
𝑝
be a positive number

defined by

𝜋
𝑝
=

𝜋

((𝑝 + 1) /𝑝) sin (𝑝𝜋/ (𝑝 + 1))
. (74)

Then there is an increasing odd function 𝑦 = 𝑦(𝑠), 𝑦 ∈

𝐶1((−𝜋
𝑝
, 𝜋
𝑝
),R), such that

𝑦
󸀠

(𝑠) = 1 +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

, 𝑠 ∈ (−𝜋
𝑝
, 𝜋
𝑝
) ,

𝑦 (0) = 0, 𝑦 (𝜋
𝑝
) = ∞.

(75)

Moreover, for 𝑝 = 1 we have 𝜋
𝑝
= 𝜋/2 and we can take

𝑦(𝑠) = tan(𝑠), 𝑠 ∈ (−𝜋/2, 𝜋/2).
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Proof. Let 𝑧 = 𝑧(𝑡) be a function defined by

𝑧 (𝑡) = ∫
𝑡

0

1

1 + |𝜏|(𝑝+1)/𝑝
𝑑𝜏, 𝑡 ∈ R. (76)

It is not difficult to see that 𝑧(∞) = 𝜋
𝑝
(see [24])

and 𝑧 is a bijection from R on interval (−𝑧(∞), 𝑧(∞)) and
that the function 𝑦(𝑠) determined by the formula 𝑦(𝑠) =

𝑧−1(𝑠), where 𝑧−1(𝑠) is the inverse function of 𝑧(𝑡), satisfies
all properties given in (75).

Let now 𝑠
𝑗

∈ (−𝜋/2, 𝜋/2) be such that 𝑦(𝑠
𝑗
) =

𝜔
1
(𝑎
𝑗
) (such an 𝑠

𝑗
exists since 𝑦(𝑠) is a bijection from

(−𝜋/2, 𝜋/2) to (−∞,∞)), 𝐽 = [𝑎
1
, 𝑏
1
] ∪ [𝑎

2
, 𝑏
2
], and let

𝐶
0
(𝑡) be a function defined by

𝐶
0
(𝑡) =

1

2𝜋
𝑝

min{
𝑝

(𝜆
1
𝑟 (𝑡))
1/𝑝

, 𝜆
1
(𝑅
1
(𝑡) + 𝑄

1
(𝑡))} ,

𝑡 ∈ 𝐽.

(77)

Because of (11), we have 𝑐
0𝑗
:= ∫
𝑏𝑗

𝑎𝑗

𝐶
0
(𝜏)𝑑𝜏 ≥ 1. Hence,

2𝜋
𝑝

𝑐
0𝑗

𝐶
0
(𝑡) ≤ min{

𝑝

(𝜆
1
𝑟 (𝑡))
1/𝑝

, 𝜆
1
(𝑅
1
(𝑡) + 𝑄

1
(𝑡))} ,

𝑡 ∈ 𝐽.

(78)

Next, let 𝑉
1
(𝑡) and 𝑉

2
(𝑡) be two functions defined by

𝑉
𝑗
(𝑡) = 𝑠

𝑗
+
2𝜋
𝑝

𝑐
0𝑗

∫
𝑡

𝑎𝑗

𝐶
0
(𝜏) 𝑑𝜏, 𝑡 ∈ [𝑎

𝑗
, 𝑏
𝑗
] , 𝑗 ∈ {1, 2} .

(79)

Since 𝐶
0
(𝑡) ≥ 0 for all 𝑡 ∈ 𝐽, we have 𝑉

𝑗
(𝑎
𝑗
) = 𝑠
𝑗
< 𝜋
𝑝

and 𝑉
𝑗
(𝑏
𝑗
) > 2𝜋

𝑝
+ 𝑠
𝑗
. Since 𝑉

𝑗
(𝑡) is continuous, it gives the

existence of 𝑇∗
𝑗
∈ (𝑎
𝑗
, 𝑏
𝑗
) such that 𝑉

𝑗
(𝑇∗
𝑗
) = 𝜋

𝑝
. Hence, the

function 𝜔
𝑗
(𝑡) = tan(𝑉

𝑗
(𝑡)), 𝑡 ∈ (𝑎

𝑗
, 𝑇∗
𝑗
), satisfies

𝜔
𝑗
(𝑎
𝑗
) = 𝑦 (𝑉

𝑗
(𝑎
𝑗
)) = 𝑦 (𝑠

𝑗
) = 𝜔
1
(𝑎
𝑗
) ,

𝜔
𝑗
(𝑇
∗

𝑗
) = 𝑦 (𝑉

𝑗
(𝑇
∗

𝑗
)) = 𝑦 (𝜋

𝑝
) = ∞,

(80)

and because of (78), we obtain

𝜔
󸀠

𝑗
(𝑡) = 𝑦

󸀠
(𝑉
𝑗
(𝑡)) 𝑉

󸀠

𝑗
(𝑡)

= (1 +
󵄨󵄨󵄨󵄨󵄨𝑦 (𝑉𝑗 (𝑡))

󵄨󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

)𝑉
󸀠

𝑗
(𝑡)

= (1 +
󵄨󵄨󵄨󵄨󵄨𝜔𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

)𝑉
󸀠

𝑗
(𝑡)

≤ (1 +
󵄨󵄨󵄨󵄨󵄨𝜔𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

)
2𝜋
𝑝

𝑐
0𝑗

𝐶
0
(𝑡)

≤ (1 +
󵄨󵄨󵄨󵄨󵄨𝜔𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

)

×min{
𝑝

(𝜆
1
𝑟 (𝑡))
1/𝑝

, 𝜆
1
(𝑅
1
(𝑡) + 𝑄

1
(𝑡))} ,

(81)

that is

𝜔
󸀠

𝑗
(𝑡) ≤

𝑝

(𝜆
1
𝑟 (𝑡))
1/𝑝

󵄨󵄨󵄨󵄨󵄨𝜔𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

+ 𝜆
1
(𝑅
1
(𝑡) + 𝑄

1
(𝑡)) ,

𝑡 ∈ [𝑎
𝑗
, 𝑇
∗

𝑗
) .

(82)

Step 3.We claim that

𝜔
1
(𝑡) ≤ 𝜔

1
(𝑡) on [𝑎

1
, 𝑇
∗

1
) . (83)

In order to prove inequality (83), we need the following
proposition.

Proposition 23. Let 𝑎 < 𝑇∗ and 𝜑, 𝜓 ∈ 𝐶1([𝑎, 𝑇∗),R) be two
functions satisfying on [𝑎, 𝑇∗), respectively,

𝜑
󸀠
≤

𝑝

(𝜆
1
𝑟 (𝑡))
1/𝑝

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

+ 𝜆
1
(𝑅
1
(𝑡) + 𝑄

1
(𝑡)) ,

𝜓
󸀠
≥

𝑝

(𝜆
1
𝑟 (𝑡))
1/𝑝

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨
(𝑝+1)/𝑝

+ 𝜆
1
(𝑅
1
(𝑡) + 𝑄

1
(𝑡)) .

(84)

Then the following statement holds:

𝜑 (𝑎) ≤ 𝜓 (𝑎) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜑 (𝑡) ≤ 𝜓 (𝑡) ∀𝑡 ∈ [𝑎, 𝑇
∗
) . (85)

Proof. If we denote by

𝐹 (𝑡, 𝑢) =
𝑝

(𝜆
1
𝑟 (𝑡))
1/𝑝

𝑢
(𝑝+1)/𝑝

+ 𝜆
1
(𝑅
1
(𝑡) + 𝑄

1
(𝑡)) , (86)

then (84) can be rewritten in the form 𝜑󸀠 ≤ 𝐹(𝑡, 𝜑) and 𝜓󸀠 ≥
𝐹(𝑡, 𝜓) on [𝑎, 𝑇∗). Also, it is not difficult to check
that 𝐹(𝑡, 𝑢) is locally Lipschitz function in the second
variable and bounded in the first variable on bounded inter-
val [𝑎, 𝑇∗). Hence, we may apply the pointwise comparison
principle from [12, Lemma 19] and, consequently, we
conclude that statement (85) holds, which proves this
proposition.

Next, we proceed with the proof of inequality (83). By
(80) we know that 𝜔

𝑗
(𝑎
𝑗
) = 𝜔
1
(𝑎
𝑗
) which, together with (73)

and (82), ensures that we may apply Proposition 23. Now, the
desired inequality (83) immediately follows from statement
(85).

Next, from the second equality of (80) and inequality (83)
we conclude that 𝜔

1
(𝑇∗
1
) = ∞. It contradicts the fact that

𝜔
1
∈ 𝐶1([𝑎

1
, 𝑏
1
)). Hence, 𝑥(𝑡) can not be oscillatory as it is

supposed at the beginning of this proof and we conclude that
(1) is oscillatory.

Proof of Corollary 2. From (16), we see that 𝑟(𝑡) ≡
1 and 𝑟

𝑖
(𝑡) ≡ 0. Next, to the end of this proof, let 𝜆

𝑗
be

defined by

𝜆
𝑗
= (

𝑝

max
[𝑎𝑗 ,𝑏𝑗]

𝑄
𝑗
(𝑡)

)

𝑝/(𝑝+1)

, 𝑗 ∈ {1, 2} . (87)
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Now, we can rewrite (17) in the form

1

2𝜋
𝑝

∫
𝑏𝑗

𝑎𝑗

𝜆
𝑗
𝑄
𝑗
(𝑡) 𝑑𝑡 ≥ 1. (88)

Since max
[𝑎𝑗 ,𝑏𝑗]

𝑄
𝑗
(𝑡) ≤ 𝑄

𝑗
(𝑡), it is clear that

𝑝

𝜆
1/𝑝

𝑗

≥ 𝜆
𝑗
𝑄
𝑗
(𝑡) , 𝑡 ∈ [𝑎

𝑗
, 𝑏
𝑗
] , (89)

and so

min
{
{
{

𝑝

𝜆
1/𝑝

𝑗

, 𝜆
𝑗
𝑄
𝑗
(𝑡)
}
}
}

= 𝜆
𝑗
𝑄
𝑗
(𝑡) . (90)

Together with assumption (88) we show that

1

2𝜋
𝑝

∫
𝑏𝑗

𝑎𝑗

min
{
{
{

𝑝

(𝜆
𝑗
𝑟 (𝑡))
1/𝑝

, 𝜆
𝑗
(𝑅
𝑗
(𝑡) + 𝑄

𝑗
(𝑡))

}
}
}

𝑑𝑡

=
1

2𝜋
𝑝

∫
𝑏𝑗

𝑎𝑗

min
{
{
{

𝑝

𝜆
1/𝑝

𝑗

, 𝜆
𝑗
𝑄
𝑗
(𝑡)
}
}
}

𝑑𝑡

=
1

2𝜋
𝑝

∫
𝑏𝑗

𝑎𝑗

𝜆
𝑗
𝑄
𝑗
(𝑡) 𝑑𝑡 ≥ 1.

(91)

It proves that desired condition (11) is fulfilled. Thus, this
corollary follows fromTheorem 1.

Proofs of Theorems 10 and 12. It follows by the same line
of arguments as in the proof of Theorem 1, but instead of
Proposition 19 we use Propositions 20 and 21, respectively.
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[6] A. F. Güvenilir andA. Zafer, “Second-order oscillation of forced
functional differential equations with oscillatory potentials,”
Computers & Mathematics with Applications, vol. 51, no. 9-10,
pp. 1395–1404, 2006.
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tions, Birkhäuser, Basel, Switzerland, 1984.

[24] I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H.
Muehlig,Handbook of Mathematics, Springer, Berlin, Germany,
2007.


