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We prove that the hyperorder of every nontrivial solution of homogenous linear differential equations of type 𝑓 + 𝐴
1
(𝑧)𝑒𝑎𝑧𝑓 +

𝐴
0
(𝑧)𝑒𝑏𝑧𝑓 = 0 and nonhomogeneous equation of type 𝑓 + 𝐴

1
(𝑧)𝑒𝑎𝑧𝑓 + 𝐴

0
(𝑧)𝑒𝑏𝑧𝑓 = 𝐻(𝑧) is one, where 𝐴

0
, 𝐴
1
, 𝐻(𝑧) are entire

functions of order less than one, improving the previous results of Chen, Wang, and Laine.

1. Introduction

We assume that the reader is familiar with the usual notations
and the basic results of the Nevanlinna theory (see [1–4]).We
also use basic notions and the results of the Wiman-Valiron
theory; see [5]. Let 𝑓(𝑧) be a nonconstant meromorphic
function in the complex plane. We remark that 𝜎(𝑓), respec-
tively, 𝜎

2
(𝑓) will be used to denote the order, respectively,

the hyperorder, of 𝑓. In particular, the hyperorder 𝜎
2
(𝑓) is

defined as

𝜎
2
(𝑓) = lim sup

𝑟→∞

log log 𝑇 (𝑟, 𝑓)
log 𝑟

; (1)

see [1, 2, 4]. For a set 𝐸 ⊂ 𝑅+, let 𝑚(𝐸), respectively,
𝜆(𝐸), denote the linear measure, respectively, the logarithmic
measure of 𝐸. Moreover, the upper logarithmic density and
the lower logarithmic density of 𝐸 are defined by

logdens (𝐸) = lim sup
𝑟→∞

𝜆 (𝐸⋂ [1, 𝑟])

log 𝑟
,

logdens (𝐸) = lim inf
𝑟→∞

𝜆 (𝐸⋂ [1, 𝑟])

log 𝑟
.

(2)

Observe that 𝐸 may have a different meaning at different
occurrences in what follows.

We now recall some previous results concerning linear
differential equations of type

𝑓 + 𝐴
1
(𝑧) 𝑒
𝑎𝑧𝑓 + 𝐴

0
(𝑧) 𝑒
𝑏𝑧𝑓 = 0, (3)

𝑓 + 𝐴
1
(𝑧) 𝑒
𝑎𝑧𝑓 + 𝐴

0
(𝑧) 𝑒
𝑏𝑧𝑓 = 𝐻 (𝑧) , (4)

where 𝐴
0
, 𝐴
1
, 𝐻(𝑧) are entire functions of order less than

one, and 𝑎, 𝑏 are complex constants.
Chen proved the following theorem; see [6].

TheoremA. Let 𝐴
0

̸≡ 0, 𝐴
1

̸≡ 0 be entire functions of order
less than one, and the complex constants 𝑎, 𝑏 satisfy 𝑎𝑏 ̸= 0 and
𝑎 = 𝑐𝑏 (𝑐 > 1). Then every nontrivial solution 𝑓 of (3) is of
infinite order.

Wang and Laine investigated the nonhomogeneous equa-
tion (4) and got the following; see [7].

Theorem B. Suppose that 𝐴
0

̸≡ 0, 𝐴
1

̸≡ 0, 𝐻 are entire
functions of order less than one, and the complex constants 𝑎, 𝑏
satisfy 𝑎𝑏 ̸= 0 and 𝑏 ̸= 𝑎.Then every nontrivial solution𝑓 of (4)
is of infinite order.

Theorem C. Suppose that 𝐴
0

̸≡ 0, 𝐴
1

̸≡ 0, 𝐷
0
, 𝐷
1
, 𝐻 are

entire functions of order less than one, and the complex
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constants 𝑎, 𝑏 satisfy 𝑎𝑏 ̸= 0 and 𝑏/𝑎 < 0. Then every nontrivial
solution 𝑓 of equation

𝑓 + (𝐴
1
(𝑧) 𝑒
𝑎𝑧 + 𝐷

1
(𝑧)) 𝑓



+ (𝐴
0
(𝑧) 𝑒
𝑏𝑧 + 𝐷

0
(𝑧)) 𝑓 = 𝐻 (𝑧)

(5)

is of infinite order.

In this paper, we investigate the hyperorder of the non-
trivial solutions of (3), (4), and (5) and obtain the following
theorems.

Theorem 1. Suppose that 𝐴
0

̸≡ 0, 𝐴
1

̸≡ 0,𝐻 are entire
functions of order less than one, and the complex constants 𝑎, 𝑏
satisfy 𝑎𝑏 ̸= 0 and 𝑏 ̸= 𝑎.Then the hyperorder of every nontrivial
solution 𝑓 of (4) is one.

Corollary 2. Let𝐴
0

̸≡ 0,𝐴
1

̸≡ 0 be entire functions of order
less than one, and the complex constants 𝑎, 𝑏 satisfy 𝑎𝑏 ̸= 0 and
𝑎 = 𝑐𝑏 (𝑐 > 1).Then the hyperorder of every nontrivial solution
𝑓 of (3) is one.

Theorem 3. Suppose that 𝐴
0

̸≡ 0, 𝐴
1

̸≡ 0, 𝐷
0
, 𝐷
1
, 𝐻

are entire functions of order less than one, and the complex
constants 𝑎, 𝑏 satisfy 𝑎𝑏 ̸= 0 and 𝑏/𝑎 < 0. Then the hyperorder
of every nontrivial solution 𝑓 of (5) is one.

2. Lemmas

Lemma4 (see [5]). Let𝑓 be an entire function of infinite order
and let ]

𝑓
(𝑟) be the central index of 𝑓(𝑧), then the hyperorder

𝜎
2
(𝑓) = lim sup

𝑟→∞

log log ]
𝑓
(𝑟)

log 𝑟
. (6)

Lemma5 (see [8]). Let𝑓 be an entire function of infinite order
with 𝜎

2
(𝑓) = 𝛼 (0 ≤ 𝛼 < ∞), and there exists a set 𝐸

2
⊂

[1,∞) which have a finite logarithmic measure. Then there
exists a sequence {𝑧

𝑛
= 𝑟
𝑛
𝑒𝑖𝜃𝑛} such that |𝑓(𝑧

𝑛
)| = 𝑀(𝑟

𝑛
, 𝑓),

𝜃
𝑛
∈ [0, 2𝜋), lim

𝑛→∞
𝜃
𝑛
= 𝜃
0
∈ [0, 2𝜋), and 𝑟

𝑛
∉ 𝐸
2
, 𝑟
𝑛
→ ∞

and such that

(1) if 𝜎
2
(𝑓) = 𝛼 (0 < 𝛼 < ∞), then, for any given 𝜀

1
(0 <

𝜀
1
< 𝛼),

exp {𝑟𝛼−𝜀1
𝑛

} < ] (𝑟
𝑛
) < exp {𝑟𝛼+𝜀1

𝑛
} ; (7)

(2) if 𝜎
2
(𝑓) = 0, then, for any given 𝜀

2
(0 < 𝜀

2
< 1/2) and

for any large𝑀
1
(> 0),

𝑟𝑀1
𝑛

< ] (𝑟
𝑛
) < exp {𝑟𝜀2

𝑛
} . (8)

Lemma 6 (see [7]). Suppose that 𝑃(𝑧) = (𝛼 + 𝑖𝛽)𝑧, where
𝛼, 𝛽 are real numbers, |𝛼| + |𝛽| ̸= 0, and that 𝐴(𝑧) ( ̸≡ 0) is a
meromorphic function with 𝜎(𝐴) < 1. Set 𝑔(𝑧) = 𝐴(𝑧)𝑒𝑃(𝑧),
𝑧 = 𝑟𝑒𝑖𝜃, 𝛿(𝑃, 𝜃) = 𝛼 cos 𝜃 − 𝛽 sin 𝜃. Then, for any given 𝜀 > 0,
there exists a set 𝐸

3
⊂ (1,∞) of finite linear measure such that,

for any 𝜃 ∈ [0, 2𝜋) \ 𝐻, there exists 𝑅 > 0 such that, for |𝑧| =
𝑟 > 𝑅 and 𝑟 ∉ 𝐸

3
, we have

(1) if 𝛿(𝑃, 𝜃) > 0, then

exp {(1 − 𝜀) 𝛿 (𝑃, 𝜃) 𝑟}

<
𝑔 (𝑟𝑒

𝑖𝜃)
 < exp {(1 + 𝜀) 𝛿 (𝑃, 𝜃) 𝑟} ;

(9)

(2) if 𝛿(𝑃, 𝜃) < 0, then

exp {(1 + 𝜀) 𝛿 (𝑃, 𝜃) 𝑟}

<
𝑔 (𝑟𝑒

𝑖𝜃)
 < exp {(1 − 𝜀) 𝛿 (𝑃, 𝜃) 𝑟} ,

(10)

where𝐻 = {𝜃 ∈ [0, 2𝜋) | 𝛿(𝑃, 𝜃) = 0}.

Lemma 7 (see [6]). Let 𝐴, 𝐵 be entire functions of finite order
and if 𝑓 is a solution of equation

𝑓 + 𝐴𝑓 + 𝐵𝑓 = 0, (11)

then the hyperorder 𝜎
2
(𝑓) ≤ max{𝜎(𝐴), 𝜎(𝐵)}.

The proof of the lemma below follows the idea of
Bergweiler et al.; see [9, Theorem 3.1].

Lemma 8. Let 𝑓(𝑧) be an entire function, and 𝑀(𝑟, 𝑓) =

𝑓(𝑟𝑒𝑖𝜃𝑟) for every 𝑟. Set 𝜃
𝑟
→ 𝜃
0
, and there exists a constant

𝑙
0
> 0 and a set 𝐸 with positive lower logarithmic density such

that

𝑀(𝑟, 𝑓)
1/5

≤
𝑓 (𝑟𝑒

𝑖𝜃)


(12)

for all 𝑟 ∈ 𝐸 large enough and all 𝜃 such that |𝜃 − 𝜃
0
| < 𝑙
0
.

Proof. Since 𝑓 is entire function, we know that 𝑀(𝑟, 𝑓) is
nondecrease, 𝑀(𝑟, 𝑓) → ∞ as 𝑟 → ∞, and |𝑓(𝑟𝑒𝑖𝜃)| is
continuous on the circle |𝑧| = 𝑟 for 𝑧 = 𝑟𝑒𝑖𝜃. Set 𝜃

𝑟
→ 𝜃
0
∈

[0, 2𝜋) as 𝑟 → ∞.𝐴(𝑢𝑎, 𝑢𝑏) denotes an annulus for 0 < 𝑎 < 𝑏
and sufficiently large 𝑢.Then, there exists a constant 4𝑙

0
(< 𝜋)

such that |𝑓(𝑟𝑒𝑖𝜃)| > 1 for 𝑧 = 𝑟𝑒𝑖𝜃 ∈ 𝐷, where 𝐷 := {(𝑟, 𝜃) |

𝑟 ∈ 𝐴(𝑢𝑎, 𝑢𝑏), |𝜃 − 𝜃
0
| < 4𝑙
0
} for 𝑢 sufficiently large. Then the

function ℎ(𝑧) := log |𝑓(𝑧)| is a positive harmonic in 𝐷. So
𝐻(𝑡) = ℎ(𝑒𝑡) is a positive harmonic in the domain 𝑆 := {𝑡 |
𝑎 log 𝑢 < R(𝑡) < 𝑏 log 𝑢, 𝜃

0
−4𝑙
0
< I(𝑡) < 𝜃

0
+4𝑙
0
}.Thus, if 𝑡

1

and 𝑡
2
satisfy 𝑎 log 𝑢+3𝑙

0
< R(𝑡

1
) = R(𝑡

2
) < 𝑏 log 𝑢−3𝑙

0
and

|I(𝑡
1
) −I(𝑡

2
)| < 2𝑙

0
, whereI(𝑡

𝑗
) ∈ (𝜃

0
− 𝑙
0
, 𝜃
0
+ 𝑙
0
), 𝑗 = 1, 2,

then {𝑡 | |𝑡 − 𝑡
1
| < 3𝑙
0
} and |𝑡

1
− 𝑡
2
| < 2𝑙
0
< 3𝑙
0
. So

1

5
=
3𝑙
0
− 2𝑙
0

3𝑙
0
+ 2𝑙
0

≤
𝐻 (𝑡
2
)

𝐻 (𝑡
1
)
≤
3𝑙
0
+ 2𝑙
0

3𝑙
0
− 2𝑙
0

= 5 (13)

by Harnack’s inequality; see [10,Theorem 1.3.1]. Therefore, if
𝑧
1
and 𝑧
2
are in the domain𝐷

1
:= {(𝑟, 𝜃) | 𝑟 ∈ 𝐴(𝑢𝑎, 𝑢𝑏), |𝜃 −

𝜃
0
| < 𝑙
0
}, where 𝑢 is sufficiently large, then

1

5
≤
ℎ (𝑧
2
)

ℎ (𝑧
1
)
≤ 5. (14)
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Set 𝑚∗(𝑟, 𝑓) = min
|𝑧|=𝑟,|𝜃−𝜃

0
|<𝑙
0

|𝑓(𝑟𝑒𝑖𝜃)|. Then, we have
1/5 log𝑀(𝑟, 𝑓) ≤ log𝑚∗(𝑟, 𝑓) for 𝑧 ∈ 𝐷

1
. If let 𝑢 → ∞, and

then the set 𝐸 of 𝑟 ∈ (𝑢𝑎, 𝑢𝑏) is of positive lower logarithmic
density. Thus, the conclusion of this lemma holds.

Lemma 9. Let 𝑓(𝑧) be an entire function with infinite order
and let hyperorder 𝜎

2
(𝑓) ≤ 1, 𝑔(𝑧) be an entire function with

finite order 𝜎(𝑔) < ∞. For 𝑟 ∈ 𝐸, where 𝐸 is the infinite
logarithmic measure set which is given in Lemma 8. Then, for
any given 𝜀

0
,



𝑔 (𝑧)

𝑓 (𝑧)


< 𝜀
0 (15)

for all 𝑧 such that |𝑧| = 𝑟 ∈ 𝐸 is sufficiently large and that
|𝑓(𝑧)| = 𝑀(𝑟, 𝑓).

Proof. Since, for the entire function 𝑔(𝑧),

𝜎 (𝑔) = lim sup
𝑟→∞

log log 𝑀(𝑟, 𝑔)

log 𝑟
(16)

for any given 𝜀, we have
𝑔 (𝑧)

 ≤ exp {𝑟𝜎(𝑔)+𝜀} (17)

for all 𝑟 sufficiently large. Since the order of 𝑓 is infinite, for
𝑟 ∈ 𝐸, there exists a sufficiently large real number𝐴 such that

𝜎 (𝑓) = lim sup
𝑟→∞

log log 𝑀(𝑟, 𝑓)

log 𝑟
> 𝐴. (18)

Thus, for 𝑟 ∈ 𝐸 is sufficiently large,

𝑀(𝑟, 𝑓) ≥ exp {𝑟𝐴−𝜀} . (19)

By (17) and (19), we conclude that



𝑔 (𝑧)

𝑓 (𝑧)


≤
exp {𝑟𝜎(𝑔)+𝜀}
𝑀 (𝑟, 𝑓)

≤
exp {𝑟𝜎(𝑔)+𝜀}
exp {𝑟𝐴−𝜀}

→ 0

(20)

for all 𝑧 satisfying |𝑓(𝑧)| = 𝑀(𝑟, 𝑓) such that 𝑟 ∈ 𝐸 is
sufficiently large. Thus, the conclusion holds.

3. Proofs of Theorems

Proof of Theorem 1. Suppose that 𝑓 is a solution of (4), and
then 𝑓 is an entire function.

Step 1. We prove that 𝜎
2
(𝑓) ≤ 1. Since 𝜎(𝐴

0
; 𝐴
1
; 𝐻) < 1, set

𝜎(𝐻) = 𝜆 < 1. Then for any given 𝜀 satisfying 𝜀 < 1−𝜆, when
𝑟 is sufficiently large, we have

𝐴1𝑒
𝑎𝑧 ≤ exp {𝑟1+𝜀} , (21)

𝐴0𝑒
𝑏𝑧 ≤ exp {𝑟1+𝜀} , (22)

|𝐻 (𝑧)| ≤ exp {𝑟𝜆+𝜀} . (23)

From theWiman-Valiron theory, there is a set𝐸
1
having finite

logarithmic measure, such that

𝑓(𝑗) (𝑧)

𝑓 (𝑧)

= (
]
𝑓
(𝑟)

𝑧
)

𝑗

(1 + 𝑂 (1)) (𝑗 = 1, 2)

(24)

whenever |𝑓(𝑧)| = 𝑀(𝑟, 𝑓), 𝑟 ∉ 𝐸
1
, where the ]

𝑓
(𝑟) is the

central index of 𝑓(𝑧), and we know that ]
𝑓
(𝑟) → ∞ as 𝑟 →

∞. When 𝑟 sufficiently large, we have |𝑓(𝑧)| = 𝑀(𝑟, 𝑓) > 1.
From (4) we have



𝑓

𝑓


≤
𝐴1𝑒
𝑎𝑧



𝑓

𝑓


+
𝐴0𝑒
𝑏𝑧 +



𝐻

𝑓


. (25)

Substituting (21), (22), (23), and (24) into (25), we obtain

(
]
𝑓
(𝑟)

|𝑧|
)

2

(1 + 𝑂 (1))

≤ exp {𝑟1+𝜀}
]
𝑓
(𝑟)

|𝑧|
(1 + 𝑂 (1))

+ exp {𝑟1+𝜀} + exp {𝑟𝜆+𝜀} ,

(26)

where 𝑧 satisfies |𝑧| = 𝑟 ∉ 𝐸
1
and 𝑟 sufficiently large. By (26)

we get

lim sup
𝑟→∞

log log ]
𝑓
(𝑟)

log 𝑟
≤ 1 + 𝜀. (27)

Since 𝜀 is arbitrary, by (27) and Lemma 4, we have 𝜎
2
(𝑓) ≤ 1.

Step 2. ByTheorem B, we know that the order of 𝑓 is infinite,
and, by the first step, we clear that the hyperorder of 𝑓 is less
than one. Thus, by Lemma 9 and (23), we have



𝐻

𝑓


< 𝜀
0 (28)

for all 𝑧 satisfying |𝑓(𝑧)| = 𝑀(𝑟, 𝑓) such that 𝑟 ∈ 𝐸 is
sufficiently large, where 𝐸 is of infinite logarithmic measure.
Set 𝜎
2
(𝑓) = 𝛼

0
, and we assert that 𝛼

0
= 1. Now we assume

that 𝛼
0

< 1, and prove that 𝜎
2
(𝑓) = 𝛼

0
< 1 results

in contradictions. 𝐸
2
, 𝐸
3
are the sets in Lemmas 5 and 6,

respectively.
Since 𝜆(𝐸

1
∪ 𝐸
2
∪ 𝐸
3
) < ∞, we have that 𝜆(𝐸 \ (𝐸

1
∪ 𝐸
2
∪

𝐸
3
)) is infinite. Thus, by Lemma 5, we see that there exists a

sequence of points {𝑧
𝑛
= 𝑟
𝑛
𝑒𝑖𝜃𝑛} such that |𝑓(𝑧

𝑛
)| = 𝑀(𝑟

𝑛
, 𝑓),

𝜃
𝑛
∈ [0, 2𝜋), lim

𝑛→∞
𝜃
𝑛
= 𝜃
0
∈ [0, 2𝜋), 𝑟

𝑛
∈ 𝐸\(𝐸

1
∪𝐸
2
∪𝐸
3
),

𝑟
𝑛
→ ∞, and if𝜎

2
(𝑓) = 𝛼

0
(0 < 𝛼

0
< ∞), then, for any given

𝜀
1
(0 < 𝜀

1
< min{𝛼

0
, 1 − 𝛼

0
}),

exp {𝑟𝛼0−𝜀1
𝑛

} < ]
𝑓
(𝑟
𝑛
) < exp {𝑟𝛼0+𝜀1

𝑛
} ; (29)

if 𝜎
2
(𝑓) = 0, then, for any given 𝜀

2
(0 < 𝜀

2
< 1/2) and for any

large𝑀
1
(> 0),

𝑟𝑀1
𝑛

< ]
𝑓
(𝑟
𝑛
) < exp {𝑟𝜀2

𝑛
} . (30)
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Firstly, we prove the case when 𝜎
2
(𝑓) = 𝛼

0
(> 0). It can

separate into three cases to discuss.

Case 1. First assume that 𝛿(𝑎𝑧, 𝜃
0
) > 0. From the continuity

of 𝛿(𝑎𝑧, 𝜃
0
), we have

1

2
𝛿 (𝑎𝑧, 𝜃

0
) < 𝛿 (𝑎𝑧, 𝜃

𝑛
) <

3

2
𝛿 (𝑎𝑧, 𝜃

0
) (31)

for sufficiently large 𝑛. From (9), we deduce that

exp {1 − 𝜀
2

𝛿 (𝑎𝑧, 𝜃
0
) 𝑟
𝑛
}

≤
𝐴1 (𝑧𝑛) 𝑒

𝑎𝑧
𝑛
 ≤ exp {3 (1 + 𝜀)

2
𝛿 (𝑎𝑧, 𝜃

0
) 𝑟
𝑛
}

(32)

for all 𝑛 sufficiently large.
From (4), we have



𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)
+
𝐴
0
(𝑧
𝑛
)

𝐴
1
(𝑧
𝑛
)
𝑒(𝑏−𝑎)𝑧𝑛



≤
1

𝐴1 (𝑧𝑛) 𝑒
𝑎𝑧
𝑛


(


𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


+


𝐻 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


) .

(33)

Subcase 1.1. We first assume that 𝜃
0
satisfies 𝜂 := 𝛿((𝑏 −

𝑎)𝑧, 𝜃
0
) > 0. From the continuity of 𝛿((𝑏 − 𝑎)𝑧, 𝜃), we also

have

exp {1 − 𝜀
2

𝜂𝑟
𝑛
}

≤


𝐴
0
(𝑧
𝑛
)

𝐴
1
(𝑧
𝑛
)
𝑒(𝑏−𝑎)𝑧𝑛


≤ exp {3 (1 + 𝜀)

2
𝜂𝑟
𝑛
}

(34)

for all 𝑛 sufficiently large. From (33), we get



𝐴
0
(𝑧
𝑛
)

𝐴
1
(𝑧
𝑛
)
𝑒(𝑏−𝑎)𝑧𝑛



≤


𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


+

1
𝐴1 (𝑧𝑛) 𝑒

𝑎𝑧
𝑛


(


𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


+


𝐻 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


) .

(35)

Substituting (24), (28), (29), (32), and (34) into (35), we
obtain

exp {1 − 𝜀
2

𝜂𝑟
𝑛
}

≤ exp {𝑟𝛼0+𝜀1
𝑛

} 𝑟−1
𝑛
(1 + 𝑂 (1))

+ exp {−1 − 𝜀
2

𝛿 (𝑎𝑧, 𝜃
0
) 𝑟
𝑛
}

× (exp {2𝑟𝛼0+𝜀1
𝑛

} 𝑟−2
𝑛
(1 + 𝑂 (1)) + 𝜀

0
) .

(36)

Since 𝛼
0
+ 𝜀
1
< 1, we see that (36) are contradictory as 𝑛 →

∞.

Subcase 1.2. Next assume that 𝜂 := 𝛿((𝑏 − 𝑎)𝑧, 𝜃
0
) < 0. Then,

from (10), for 𝑛 large enough, we deduce that

exp {3 (1 + 𝜀)
2

𝜂𝑟
𝑛
}

≤


𝐴
0
(𝑧
𝑛
)

𝐴
1
(𝑧
𝑛
)
𝑒(𝑏−𝑎)𝑧𝑛


≤ exp {1 − 𝜀

2
𝜂𝑟
𝑛
} .

(37)

From (33), we get



𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


≤


𝐴
0
(𝑧
𝑛
)

𝐴
1
(𝑧
𝑛
)
𝑒(𝑏−𝑎)𝑧𝑛



+
1

𝐴1 (𝑧𝑛) 𝑒
𝑎𝑧
𝑛


(


𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


+


𝐻 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


) .

(38)

Substituting (24), (28), (29), (32), and (37) into (38), we
obtain

]
𝑓
(𝑟
𝑛
)

𝑟
𝑛

(1 + 𝑂 (1))

≤ exp {1 − 𝜀
2

𝜂𝑟
𝑛
} + exp {−1 − 𝜀

2
𝛿 (𝑎𝑧, 𝜃

0
) 𝑟
𝑛
}

× (exp {2𝑟𝛼0+𝜀1
𝑛

} 𝑟−2
𝑛
(1 + 𝑂 (1)) + 𝜀

0
)

(39)

as 𝑛 → ∞. Since 𝛼
0
+ 𝜀
1
< 1, this implies that ]

𝑓
(𝑟) → 0,

𝑛 → ∞, which is impossible.

Subcase 1.3. Assume finally that 𝜂 := 𝛿((𝑏 − 𝑎)𝑧, 𝜃
0
) = 0.

Here, (12) may be used to construct another sequence of
points {𝑧∗

𝑛
= 𝑟
𝑛
𝑒𝑖𝜃
∗

𝑛 } with lim
𝑛→∞

𝜃∗
𝑛
= 𝜃∗
0
, such that 𝜂

1
:=

𝛿((𝑏 − 𝑎)𝑧, 𝜃∗
0
) > 0. Indeed, we may suppose, without less of

generality, that

𝜂 := 𝛿 ((𝑏 − 𝑎) 𝑧, 𝜃) > 0,

𝜃 ∈ (𝜃
0
+ 2𝑘𝜋, 𝜃

0
+ (2𝑘 + 1) 𝜋) ,

𝜂 := 𝛿 ((𝑏 − 𝑎) 𝑧, 𝜃) < 0,

𝜃 ∈ (𝜃
0
+ (2𝑘 − 1) 𝜋, 𝜃

0
+ 2𝑘𝜋)

(40)

with 𝑘 ∈ Z. When 𝑛 is large enough, we have |𝜃
𝑛
− 𝜃
0
| ≤ 𝑙
0
,

where 𝑙
0
is a small constant. Choose now 𝜃∗

𝑛
such that 𝑙

0
/2 ≤

𝜃∗
𝑛
−𝜃
𝑛
≤ 𝑙
0
.Then 𝜃

0
+𝑙
0
/2 ≤ 𝜃∗

0
≤ 𝜃
0
+𝑙
0
. For sufficiently large

𝑛, we have (12) for 𝑧∗
𝑛
and 𝜂
1
:= 𝛿((𝑏 − 𝑎)𝑧, 𝜃∗

0
) > 0. Therefore



𝐻 (𝑧∗
𝑛
)

𝑓 (𝑧∗
𝑛
)


≤

𝑀 (𝑟
𝑛
, 𝐻)

𝑀(𝑟
𝑛
, 𝑓)
1/5

→ 0, (41)

exp {1 − 𝜀
2

𝜂
1
𝑟
𝑛
}

≤


𝐴
0
(𝑧∗
𝑛
)

𝐴
1
(𝑧∗
𝑛
)
𝑒(𝑏−𝑎)𝑧

∗

𝑛


≤ exp {3 (1 + 𝜀)

2
𝜂
1
𝑟
𝑛
}

(42)
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for sufficiently large 𝑛. Taking now 𝑙
0
small enough, we have

𝛿(𝑎𝑧, 𝜃∗
0
) > 0, by the continuity of 𝛿(𝑎𝑧, 𝜃). This yields

exp {1 − 𝜀
2

𝛿 (𝑎𝑧, 𝜃∗
0
) 𝑟
𝑛
}

≤

𝐴
1
(𝑧∗
𝑛
) 𝑒𝑎𝑧

∗

𝑛


≤ exp {3 (1 + 𝜀)

2
𝛿 (𝑎𝑧, 𝜃∗

0
) 𝑟
𝑛
} .

(43)

Similarly as (36), a contradiction easily follows.

Case 2. Suppose now that 𝛿(𝑎𝑧, 𝜃
0
) < 0. Then, from the

continuity of 𝛿(𝑎𝑧, 𝜃) and (10), we have

exp {3 (1 + 𝜀)
2

𝛿 (𝑎𝑧, 𝜃
0
) 𝑟
𝑛
}

≤
𝐴1 (𝑧𝑛) 𝑒

𝑎𝑧
𝑛
 ≤ exp {1 − 𝜀

2
𝛿 (𝑎𝑧, 𝜃

0
) 𝑟
𝑛
}

(44)

for 𝑛 large enough.

Subcase 2.1. Assume first that 𝛿(𝑏𝑧, 𝜃
0
) > 0. From the

continuity of 𝛿(𝑏𝑧, 𝜃) and (9), we deduce that

exp {1 − 𝜀
2

𝛿 (𝑏𝑧, 𝜃
0
) 𝑟
𝑛
}

≤
𝐴0 (𝑧𝑛) 𝑒

𝑏𝑧
𝑛

 ≤ exp {3 (1 + 𝜀)
2

𝛿 (𝑏𝑧, 𝜃
0
) 𝑟
𝑛
}

(45)

for 𝑛 large enough. From (4), we have

𝐴0𝑒
𝑏𝑧 ≤



𝑓

𝑓


+
𝐴1𝑒
𝑎𝑧



𝑓

𝑓


+


𝐻

𝑓


. (46)

Substituting (24), (28), (29), (44), and (45) into (46), we
obtain

exp {1 − 𝜀
2

𝛿 (𝑏𝑧, 𝜃
0
) 𝑟
𝑛
}

≤ exp {2𝑟𝛼0+𝜀1
𝑛

} 𝑟−2
𝑛
(1 + 𝑂 (1))

+ exp {1 − 𝜀
2

𝛿 (𝑎𝑧, 𝜃
0
) 𝑟
𝑛
}

× exp {𝑟𝛼0+𝜀1
𝑛

} 𝑟−1
𝑛
(1 + 𝑂 (1)) + 𝜀

0
.

(47)

Since 𝛼
0
+𝜀
1
< 1, we see that (47) is contradictory as 𝑛 → ∞.

Subcase 2.2. Assume that 𝛿(𝑏𝑧, 𝜃
0
) < 0. From the continuity

of 𝛿(𝑏𝑧, 𝜃) and (9), we deduce that

exp {3 (1 + 𝜀)
2

𝛿 (𝑏𝑧, 𝜃
0
) 𝑟
𝑛
}

≤
𝐴0 (𝑧𝑛) 𝑒

𝑏𝑧
𝑛

 ≤ exp {1 − 𝜀
2

𝛿 (𝑏𝑧, 𝜃
0
) 𝑟
𝑛
}

(48)

for 𝑛 large enough. From (4), we have



𝑓

𝑓


≤
𝐴0𝑒
𝑏𝑧 +

𝐴1𝑒
𝑎𝑧



𝑓

𝑓


+


𝐻

𝑓


. (49)

Substituting (24), (28), (29), (44), and (48) into (49), we
obtain

(
]
𝑓
(𝑟
𝑛
)

𝑟
𝑛

)

2

(1 + 𝑂 (1))

≤ exp {1 − 𝜀
2

𝛿 (𝑏𝑧, 𝜃
0
) 𝑟
𝑛
}

+ exp {1 − 𝜀
2

𝛿 (𝑎𝑧, 𝜃
0
) 𝑟
𝑛
}

× exp {𝑟𝛼0+𝜀1
𝑛

} 𝑟−1
𝑛
(1 + 𝑂 (1)) + 𝜀

0

(50)

as 𝑛 → ∞. Since 𝛼
0
+ 𝜀
1
< 1, this implies that ]

𝑓
(𝑟) → 0,

𝑛 → ∞, which is impossible.

Subcase 2.3. Assume that 𝛿(𝑏𝑧, 𝜃
0
) = 0. Arguing similarly

as in Subcase 1.3, we may again construct another sequence
of points {𝑧∗

𝑛
= 𝑟
𝑛
𝑒𝑖𝜃
∗

𝑛 } with lim
𝑛→∞

𝜃∗
𝑛
= 𝜃∗
0
, such that

𝛿(𝑎𝑧, 𝜃∗
0
) < 0 < 𝛿(𝑏𝑧, 𝜃∗

0
). Replace 𝛿(𝑎𝑧, 𝜃

0
) with 𝛿(𝑎𝑧, 𝜃∗

0
)

in (44) and 𝛿(𝑏𝑧, 𝜃
0
) with 𝛿(𝑏𝑧, 𝜃∗

0
) in (45), respectively. We

obtain (44) and (45) for the sequence of {𝑧∗
𝑛

= 𝑟
𝑛
𝑒𝑖𝜃
∗

𝑛 }.
Similarly as (47), we get a contradiction as 𝑛 → ∞.

Case 3. In this final case, we suppose that 𝛿(𝑎𝑧, 𝜃
0
) = 0. We

discuss three subcases according to 𝛿(𝑏𝑧, 𝜃
0
) as follows.

Subcase 3.1. Suppose that 𝛿(𝑏𝑧, 𝜃
0
) > 0. By an argument sim-

ilar to that in Subcase 1.3, we can choose another sequence
of points {𝑧∗

𝑛
= 𝑟
𝑛
𝑒𝑖𝜃
∗

𝑛 } with lim
𝑛→∞

𝜃∗
𝑛
= 𝜃∗
0
, and 𝑙

0
/2 ≤

𝜃∗
0
− 𝜃
0
≤ 𝑙
0
, such that 𝛿(𝑎𝑧, 𝜃∗

0
) < 0 < 𝛿(𝑏𝑧, 𝜃∗

0
). Similarly as

in Subcase 2.3, a contradiction follows as 𝑛 → ∞.

Subcase 3.2. Suppose that 𝛿(𝑏𝑧, 𝜃
0
) < 0. By an argument

similar to the Subcase 3.2 of the proof of Theorem 1.1 in [7],
we can choose another sequence of points {𝑧∗

𝑛
= 𝑟
𝑛
𝑒𝑖𝜃
∗

𝑛 }, with
lim
𝑛→∞

𝜃∗
𝑛
= 𝜃∗
0
, such that 𝛿(𝑏𝑧, 𝜃∗

0
) < 0 < 𝛿(𝑎𝑧, 𝜃∗

0
). From

(4), for {𝑧∗
𝑛
= 𝑟
𝑛
𝑒𝑖𝜃
∗

𝑛 }, we get


𝑓 (𝑧∗
𝑛
)

𝑓 (𝑧∗
𝑛
)


≤


1

𝐴
1
(𝑧∗
𝑛
) 𝑒𝑎𝑧

∗

𝑛



× (

𝐴
0
(𝑧∗
𝑛
) 𝑒𝑏𝑧

∗

𝑛


+


𝑓 (𝑧∗
𝑛
)

𝑓 (𝑧∗
𝑛
)


+


𝐻 (𝑧∗
𝑛
)

𝑓 (𝑧∗
𝑛
)


) .

(51)

Replace 𝛿(𝑎𝑧, 𝜃
0
) with 𝛿(𝑎𝑧, 𝜃∗

0
) in (32) and 𝛿(𝑏𝑧, 𝜃

0
) with

𝛿(𝑏𝑧, 𝜃∗
0
) in (48), respectively. We obtain (32) and (48) for the

sequence of {𝑧∗
𝑛
= 𝑟
𝑛
𝑒𝑖𝜃
∗

𝑛 }. Substituting them into (51), this
implies that ]

𝑓
(𝑟) → 0, 𝑛 → ∞, which is impossible.

Subcase 3.3. Finally, suppose that 𝛿(𝑏𝑧, 𝜃
0
) = 0. We now have

𝑎/𝑏 = 𝑐 ∈ R, 𝑐 ̸= 0, 1, and so 𝑎𝑧 = 𝑐𝑏𝑧, (𝑏 − 𝑎)𝑧 = (1 − 𝑐)𝑏𝑧.
If 𝑐 < 0, we may choose another sequence such that

𝛿(𝑏𝑧, 𝜃) < 0 < 𝛿(𝑎𝑧, 𝜃). By an argument similar to that in
Subcase 3.2, we can get ]

𝑓
(𝑟) → 0, 𝑛 → ∞, a contradiction.

If 0 < 𝑐 < 1, we similarly obtain 𝛿((𝑏 − 𝑎)𝑧, 𝜃) > 0 and
𝛿(𝑎𝑧, 𝜃) > 0 for another sequence. By an argument similar to
that in Subcase 1.3, a contradiction follows.
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Finally, if 𝑐 > 1, we obtain 𝛿((𝑏−𝑎)𝑧, 𝜃) < 0 < 𝛿(𝑎𝑧, 𝜃) for
another sequence. Similarly as in Subcase 1.2, a contradiction
again follows.

Thus, we complete the proof when 0 < 𝛼
0
< 1. When

𝛼
0
= 0, we have (30). Similarly as the case when 0 < 𝛼

0
< 1,

it results in contradiction. Hence, we get 𝜎
2
(𝑓) = 𝛼

0
= 1.

Proof of Theorem 3. Suppose that 𝑓 is a nontrivial solution
of (5), and then 𝑓 is an entire function. Since  =
max{𝜎(𝐷

0
), 𝜎(𝐷

1
)} < 1, we have

𝐷𝑗 (𝑧)
 ≤ exp {𝑟+𝜀} (𝑗 = 0, 1) (52)

for any such that 0 < 3𝜀 < 1 − . Similarly as in the proof of
Theorem 1, we may choose a sequence of points {𝑧

𝑛
= 𝑟
𝑛
𝑒𝑖𝜃𝑛}

that satisfy |𝑓(𝑧
𝑛
)| = 𝑀(𝑟

𝑛
, 𝑓), with lim

𝑛→∞
𝜃
𝑛
= 𝜃
0
, 𝑟
𝑛
∈

𝐸 \ (𝐸
1
∪ 𝐸
2
∪ 𝐸
3
), 𝑟
𝑛
→ ∞.

Step 1.We will prove that 𝜎
2
(𝑓) ≤ 1. Since 𝜎(𝐴

0
; 𝐴
1
; 𝐻) < 1,

set 𝜎(𝐻) = 𝜆 < 1. Then for any given 𝜀 satisfying 𝜀 < min{1 −
𝜆, (1 − )/3}, when 𝑟 is sufficiently large, we have

𝐴1𝑒
𝑎𝑧 + 𝐷

1
(𝑧)

 ≤ exp {𝑟1+𝜀} ,

𝐴0𝑒
𝑏𝑧 + 𝐷

0
(𝑧)

 ≤ exp {𝑟1+𝜀} ,
(53)

|𝐻 (𝑧)| ≤ exp {𝑟𝜆+𝜀} . (54)

From the Wiman-Valiron theory, we have (24). By Theorem
C, we know that 𝜎(𝑓) = ∞. So we have (28). From (5) we
have

𝑓

𝑓
+ (𝐴
1
𝑒𝑎𝑧 + 𝐷

1
)
𝑓

𝑓
+ (𝐴
0
𝑒𝑏𝑧 + 𝐷

0
) =

𝐻

𝑓
. (55)

Substituting (24), (28), and (53) into (55), we obtain (26) and
(27); thus, we have 𝜎

2
(𝑓) ≤ 1.

Step 2. Set 𝜎
2
(𝑓) = 𝛼

0
, and we assert that 𝛼

0
= 1. Now we

assume that 𝛼
0
< 1, and prove that 𝜎

2
(𝑓) = 𝛼

0
< 1 results

in contradiction. By Lemma 5, we have (29) and (30). Next
we only prove the case 0 < 𝜎

2
(𝑓) = 𝛼

0
≤ 1 by using (29).

The case 𝜎
2
(𝑓) = 𝛼

0
= 0 also can be proved by the same

method, a little different is that we use (30) instead of (29).
Since 𝑎 = 𝑏𝑐, 𝑐 (< 0) is a real number, there are three cases to
be discussed, according to the signs of 𝛿(𝑎𝑧, 𝜃

0
) and 𝛿(𝑏𝑧, 𝜃

0
).

Case 1. First assume that 𝛿(𝑏𝑧, 𝜃
0
) < 0 < 𝛿(𝑎𝑧, 𝜃

0
), so we have

(32) and (48). Combining (52), (32), and (48), we deduce

𝐴0 (𝑧𝑛) 𝑒
𝑏𝑧
𝑛 + 𝐷
0
(𝑧
𝑛
)
 ≤ exp {𝑟+2𝜀} , (56)

𝐴1 (𝑧𝑛) 𝑒
𝑎𝑧
𝑛 + 𝐷
1
(𝑧
𝑛
)
 ≥ exp {1 − 2𝜀

2
𝛿 (𝑎𝑧, 𝜃

0
) 𝑟
𝑛
} (57)

provided that 𝑛 is large enough. From (5), we have



𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)



≤
1

𝐴1 (𝑧𝑛) 𝑒
𝑎𝑧
𝑛 + 𝐷
1
(𝑧
𝑛
)


× (


𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


+
𝐴0 (𝑧𝑛) 𝑒

𝑏𝑧
𝑛 + 𝐷
0
(𝑧
𝑛
)
 +



𝐻 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


) .

(58)

Substituting (24), (28), (56), and (57) into (58), we obtain

]
𝑓
(𝑟
𝑛
)

𝑟
𝑛

(1 + 𝑂 (1)) ≤ exp {−1 − 2𝜀
2

𝛿 (𝑎𝑧, 𝜃
0
) 𝑟
𝑛
}

× (exp {2𝑟𝛼0+𝜀1
𝑛

} 𝑟−2
𝑛
(1 + 𝑂 (1))

+ exp {𝑟+2𝜀
𝑛

} + 𝜀
0
)

(59)

for 𝑛 large enough. Since 𝛼
0
+ 𝜀
1
< 1, this implies that

]
𝑓
(𝑟
𝑛
) → 0, 𝑛 → ∞, which is impossible.

Case 2. Next, assume that 𝛿(𝑎𝑧, 𝜃
0
) < 0 < 𝛿(𝑏𝑧, 𝜃

0
), so we

have (44) and (45). Combining (52), (44), and (45), we deduce

𝐴0 (𝑧𝑛) 𝑒
𝑏𝑧
𝑛 + 𝐷
0
(𝑧
𝑛
)


≥ exp {1 − 2𝜀
2

𝛿 (𝑏𝑧, 𝜃
0
) 𝑟
𝑛
} ,

(60)

𝐴1 (𝑧𝑛) 𝑒
𝑎𝑧
𝑛 + 𝐷
1
(𝑧
𝑛
)
 ≤ exp {𝑟+2𝜀

𝑛
} (61)

for 𝑛 is large enough. From (5), we have

𝐴0 (𝑧𝑛) 𝑒
𝑏𝑧
𝑛 + 𝐷
0
(𝑧
𝑛
)


≤


𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


+
𝐴1 (𝑧𝑛) 𝑒

𝑎𝑧
𝑛 + 𝐷
1
(𝑧
𝑛
)


×


𝑓 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


+


𝐻 (𝑧
𝑛
)

𝑓 (𝑧
𝑛
)


.

(62)

Substituting (24), (28), (60), and (61) into (62), we obtain

exp {1 − 2𝜀
2

𝛿 (𝑏𝑧, 𝜃
0
) 𝑟
𝑛
}

≤ exp {2𝑟𝛼0+𝜀1
𝑛

} 𝑟−2
𝑛
(1 + 𝑂 (1))

+ exp {𝑟+2𝜀
𝑛

} exp {𝑟𝛼0+𝜀1
𝑛

} 𝑟−1
𝑛
(1 + 𝑂 (1)) + 𝜀

0

(63)

for 𝑛 large enough. Since 𝛼
0
+ 𝜀
1
< 1,  + 2𝜀 < 1, this leads to

a contradiction.

Case 3. Finally, we have to assume that 𝛿(𝑎𝑧, 𝜃
0
) = 𝛿(𝑏𝑧, 𝜃

0
) =

0. Similarly as in Subcase 1.3 of the proof of Theorem 1, we
may again construct a sequence of points {𝑧∗

𝑛
= 𝑟
𝑛
𝑒𝑖𝜃
∗

𝑛 }, with
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lim
𝑛→∞

𝜃∗
𝑛
= 𝜃∗
0
, such that 𝛿(𝑎𝑧, 𝜃∗

0
) < 0. Indeed, without

loss of generality,

𝛿 (𝑎𝑧, 𝜃) > 0, 𝜃 ∈ (𝜃
0
+ 2𝑘𝜋, 𝜃

0
+ (2𝑘 + 1) 𝜋) ,

𝛿 (𝑎𝑧, 𝜃) < 0, 𝜃 ∈ (𝜃
0
+ (2𝑘 − 1) 𝜋, 𝜃

0
+ 2𝑘𝜋)

(64)

for all 𝑘 ∈ Z. Provided that 𝑛 is large enough, we have |𝜃
𝑛
−

𝜃
0
| ≤ 𝑙
0
. Choosing now 𝜃∗

0
such that 𝑙

0
/2 ≤ 𝜃

𝑛
− 𝜃∗
𝑛
≤ 𝑙
0
,

then 𝑙
0
/2 ≤ 𝜃

0
− 𝜃∗
0
≤ 𝑙
0
, thus, 𝜃

0
− 𝑙
0
≤ 𝜃∗
0
≤ 𝜃
0
− 𝑙
0
/2,

and 𝛿(𝑎𝑧, 𝜃∗
0
) < 0. Since now 𝛿(𝑏𝑧, 𝜃∗

0
) > 0, a contradiction

follows as in Case 2 above.
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