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A nonlinear generalized difference equation with both delays and the maximum value of the unknown function over a discrete
past time interval are studied. A nonlinear boundary value problem of antiperiodic type for the given difference equation is set up.
One of the main characteristics of the considered difference equation is the presence of the unknown function in both sides of the
equation. It leads to impossibility for using the step method for explicit solving of the nonlinear difference equation. In this paper,
an approximate method, namely, the monotone iterative technique, is applied to solve the problem. An important feature of the
given algorithm is that each successive approximation of the unknown solution is equal to the unique solution of an appropriately
constructed initial value problem for a linear difference equation with “maxima,” and an algorithm for its explicit solving is given.
Also, each approximation is a lower/upper solution of the given nonlinear boundary value problem. The suggested scheme for
approximate solving is computer realized, and it is applied to a particular example, which is a generalization of amodel in population
dynamics.

1. Introduction

In the last few decades, great attention has been paid to auto-
matic control systems and their applications to computational
mathematics and modeling. Many problems in the control
theory correspond to the maximal deviation of the regulated
quantity. In the case when these problems are modeled
discretely the corresponding equations are called difference
equations with maxima.The presence of the maximum func-
tion in equations mostly requires new techniques for inves-
tigation of the qualitative behavior of their solutions. Note
also differential equations with maxima are not well studied
and still not widely applied as models (see, e.g., [1–5], the
monograph [6], and cited therein references). The character
of the maximum function leads to a variety of different types
of difference equations. The properties of solutions of some
special types of difference equations with maxima have
been studied in [7–9]. However, such nonlinear difference
equations can hardly be solved in explicit forms, and hence

we need to develop some approximatemethods for their solu-
tions.

Note in several papers various types of boundary value
problems for difference equations have been studied, and
monotone iterative method has been applied. For example, in
[10–13] first order difference equations have been studied in
[14, 15] some criteria for existence and uniqueness results for
𝑛th order antiperiodic difference equations have been devel-
oped; in [16] a generalized delay difference equation is studied
by lower and upper solutions, but the problem consists only of
a boundary condition, which does not get uniqueness of the
solution; the global boundary value problem for difference
equations without any kind of delay is well studied by Cabada
in [17]; in [18] a nonlinear boundary value problem for a delay
difference equation with one delay is studied by monotone
iterative method; in [19] an approximate method with a
rapid convergence is applied to an initial value problem for
difference equations with maxima, in [20] the monotone-
iterative technique for nonlinear boundary value problem for
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difference equations with various delays as well as maxima
is applied. Also, in [21], monotone iterative technique is
applied to a periodic boundary value problem for difference
equations with maxima but the successive approximation
are solutions of periodic boundary value problems, which is
practically difficult to be obtained.

However, in connection with the applications of differ-
ence equations as models of real world problems it is nec-
essary to study difference equations with both delays and
maximum over a discrete past time interval.

In this paper the authors consider a class of nonlinear
difference equations with both delays and maximum of the
unknown function over a discrete past time interval. A non-
linear boundary value problemof antiperiodic type is studied.
An algorithm for constructing approximate solutions of this
type of boundary value problem is developed. Any successive
approximation is a solution of an initial value problem for a
linear difference equation, and a practical algorithm for its
obtaining is given and computer realized.

2. Statement of the Problem

LetR
+
= [0,∞),Z be the set of all integers. For any 𝑐, 𝑏 ∈ Z :

𝑐 < 𝑏 we denote Z[𝑐, 𝑏] = {𝑧 ∈ Z : 𝑐 ≤ 𝑧 ≤ 𝑏}.
Let 𝑎, 𝑇 ∈ Z : 𝑇 > 𝑎 + 1, 𝑟, 𝑝 ∈ Z[0, 𝑇 − 𝑎], and ℎ ∈ Z :

ℎ > 0 be fixed.
Consider the following nonlinear mixed boundary value

problem for the generalized nonlinear delay-difference equa-
tion with maxima (BVP)

Δ𝑢 (𝑘 − 1)

= 𝑓(𝑘, 𝑢 (𝑘) , 𝑢 (𝜏
1
(𝑘)) , 𝑢 (𝜏

2
(𝑘)) , . . . ,

𝑢 (𝜏
𝑟
(𝑘)) , max
𝑠∈Z[𝑘−ℎ,𝑘]

𝑢 (𝑠)) , for 𝑘 ∈ Z [𝑎 + 1, 𝑇] ,

(1)

𝑔 (𝑢 (𝑎) , 𝑢 (𝑇 − 𝜆
1
) , 𝑢 (𝑇 − 𝜆

2
) , . . . , 𝑢 (𝑇 − 𝜆

𝑝
) , 𝑢 (𝑇)) = 0,

𝑢 (𝑘) = 𝑢 (𝑎) for 𝑘 ∈ Z [𝑎 − ℎ + 1, 𝑎 − 1] ,

(2)

where 𝑢 ∈ R, Δ𝑢(𝑘 − 1) = 𝑢(𝑘) − 𝑢(𝑘 − 1), 𝑓 : Z[𝑎 + 1, 𝑇] ×

R𝑟+2 → R, 𝑔 : R𝑝+2 → R, 𝜏
𝑚
(𝑘) : Z[𝑎 + 1, 𝑇] → Z[𝑎 +

1 − ℎ, 𝑇] : 𝑘 − ℎ ≤ 𝜏
𝑚
(𝑘) ≤ 𝑘 for𝑚 = 1, 2, . . . , 𝑟.

Any solution of BVP (1)-(2) is a finite sequence of𝑇−𝑎+ℎ

real numbers, and we will consider it as a real valued function
with a discrete domain.

In this paper we will study boundary condition (2) in the
case when it is from antiperiodic type. The studied problem
includes as partial cases the initial value problem (𝑔(𝑥) ≡

𝑥 + const for 𝑥 ∈ R) and the antiperiodic boundary value
problem (𝑔(𝑥, 𝑢) ≡ 𝑥 + 𝑢 for 𝑥, 𝑢 ∈ R).

The presence of the delays 𝜏
𝑚
generalizes the type of the

considered difference equation since the function 𝑓 could
depend on different delays at any point 𝑘. As a partial case
𝑟 = ℎ and 𝜏

𝑗
(𝑘) = 𝑘 − 𝑗, 𝑗 = 1, . . . , 𝑟 the right side

of (1) is reduced to 𝑓(𝑘, 𝑢(𝑘 − ℎ), 𝑢(𝑘 − ℎ + 1), . . . , 𝑢(𝑘 −

1), 𝑢(𝑘),max
𝑠∈Z[𝑘−ℎ,𝑘]𝑢(𝑠)). For some other particular cases

see Example 7 of the paper.
Note the explicit solving of BVP (1)-(2) is often impossible

because of the nonlinearity and the presence of the unknown
function 𝑢(𝑘), 𝑘 ∈ Z[𝑎 + 1, 𝑇], in both sides of (1). It requires
an application of approximate methods, one of which is an
object of investigation in the paper.

3. Preliminary Notes, Basic Notations,
and Definitions

Note, ∑𝑚
𝑖=𝑛

𝑎
𝑖
= 0 and ∏

𝑚

𝑖=𝑛
𝑎
𝑖
= 1 where 𝑚 < 𝑛 < ∞ and

𝑎
𝑗
∈ R, 𝑗 ∈ 𝑍[𝑚, 𝑛].
For any function 𝑢 : Z[𝑎 − ℎ + 1, 𝑇] → R we introduce

the following notations:

𝜒 (𝑢 (𝑇)) = (𝑢 (𝑇 − 𝜆
1
) , 𝑢 (𝑇 − 𝜆

2
) , . . . , 𝑢 (𝑇 − 𝜆

𝑝
) , 𝑢 (𝑇)) ,

𝑈 (𝑢 (𝜏 (𝑘))) = (𝑢 (𝜏
1
(𝑘)) , 𝑢 (𝜏

2
(𝑘)) , . . . , 𝑢 (𝜏

𝑟
(𝑘))) ,

𝑘 ∈ Z [𝑎 + 1, 𝑇] ,

Ξ (𝑢 (𝜏 (𝑘))) = (𝑢 (𝑘) , 𝑈 (𝑢 (𝜏 (𝑘))) , max
𝑠∈Z[𝑘−ℎ,𝑘]

𝑢 (𝑠)) ,

𝑘 ∈ Z [𝑎 + 1, 𝑇] .

(3)

Using the previous notations the right side part of (1)
could be written in a simpler way 𝑓(𝑘, Ξ(𝑢(𝜏(𝑘)))) and the
nonlinear function in boundary condition (2) could be
written as 𝑔(𝑢(𝑎), 𝜒(𝑢(𝑇))).

Let𝛼, 𝛽 : Z[𝑎+1−ℎ, 𝑇] → R be given functions such that
𝛼(𝑘) ≤ 𝛽(𝑘) for 𝑧 ∈ Z[𝑎 + 1 − ℎ, 𝑇]. Introduce the following
sets:

𝑆 (𝛼, 𝛽)

= {𝑢 : Z [𝑎 − ℎ+1, 𝑇] 󳨀→ R : 𝛼 (𝑘) ≤ 𝑢 (𝑘) ≤ 𝛽 (𝑘) ,

𝑘 ∈ Z [𝑎 − ℎ + 1, 𝑇] } ,

𝑊 (𝛼, 𝛽) = {𝑥 ∈ R
𝑝+1

: 𝜒 (𝛼 (𝑇)) ≤ 𝑥 ≤ 𝜒 (𝛽 (𝑇))} ,

Ω
𝑘
(𝛼, 𝛽) = {𝑉 ∈ R

𝑟+2

: Ξ (𝛼 (𝜏 (𝑘))) ≤ 𝑉 ≤ Ξ (𝛽 (𝜏 (𝑘)))} ,

𝑘 ∈ Z [𝑎 + 1, 𝑇] .

(4)

Definition 1. The function 𝑔(𝑥, 𝑦) ∈ 𝐶([𝛼(𝑎), 𝛽(𝑎)] ×

𝑊(𝛼, 𝛽),R) is said to be from the class Λ(𝛼, 𝛽) if for 𝑥 ∈

[𝛼(𝑎), 𝛽(𝑎)] and for 𝑦
1
, 𝑦
2
∈ 𝑊(𝛼, 𝛽) : 𝑦

1
≤ 𝑦
2
the inequality

𝑔(𝑥, 𝑦
1
) ≤ 𝑔(𝑥, 𝑦

2
) holds and there exists a constant 𝛾 > 0

such that for 𝑢
1
, 𝑢
2
∈ [𝛼(𝑎), 𝛽(𝑎)] : 𝑢

2
≤ 𝑢
1
, the inequality

𝑔(𝑢
1
, V) − 𝑔(𝑢

2
, V) ≤ 𝛾(𝑢

1
− 𝑢
2
) holds for any V ∈ 𝑊(𝛼, 𝛽).

Remark 2. Note if the function 𝑔(𝑥, 𝑦) is from the class Λ(𝛼,

𝛽) then BVP (1)-(2) is from antiperiodic type.
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In connectionwith the construction of successive approx-
imations wewill introduce a couple of quasi-solutions of BVP
(1)-(2).

Definition 3. One will say that the functions 𝛼, 𝛽 ∈ Z[𝑎 − ℎ +

1, 𝑇] form a couple of quasi-solutions of BVP (1)-(2), if they
satisfy (1) and

𝑔 (𝛼 (𝑎) , 𝛽 (𝑇 − 𝜆
1
) , 𝛽 (𝑇 − 𝜆

2
) , . . . , 𝛽 (𝑇 − 𝜆

𝑝
) , 𝛽 (𝑇))

= 0,

𝑔 (𝛽 (𝑎) , 𝛼 (𝑇 − 𝜆
1
) , 𝛼 (𝑇 − 𝜆

2
) , . . . , 𝛼 (𝑇 − 𝜆

𝑝
) , 𝛼 (𝑇))

= 0,

𝛼 (𝑘) = 𝛼 (𝑎) , 𝛽 (𝑘) = 𝛽 (𝑎) ,

for 𝑘 ∈ Z [𝑎 − ℎ + 1, 𝑎 − 1] .

(5)

Definition 4. One will say that the functions 𝛼, 𝛽 ∈ Z[𝑎 − ℎ +

1, 𝑇] form a couple of quasi lower and upper solutions of BVP
(1)-(2), if

Δ𝛼 (𝑘 − 1)

≤ 𝑓(𝑘, 𝛼 (𝑘) , 𝛼 (𝜏
1
(𝑘)) , 𝛼 (𝜏

2
(𝑘)) , . . . ,

𝛼 (𝜏
𝑟
(𝑘)) , max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼 (𝑠))

Δ𝛽 (𝑘 − 1)

≥ 𝑓(𝑘, 𝛽 (𝑘) , 𝛽 (𝜏
1
(𝑘)) , 𝛽 (𝜏

2
(𝑘)) , . . . ,

𝛽 (𝜏
𝑟
(𝑘)) , min
𝑠∈Z[𝑘−ℎ,𝑘]

𝛽 (𝑠)) for 𝑘 ∈ Z [𝑎 + 1, 𝑇] ,

𝑔 (𝛼 (𝑎) , 𝛽 (𝑇 − 𝜆
1
) , 𝛽 (𝑇 − 𝜆

2
) , . . . , 𝛽 (𝑇 − 𝜆

𝑝
) , 𝛽 (𝑇))

≤ 0,

𝑔 (𝛽 (𝑎) , 𝛼 (𝑇 − 𝜆
1
) , 𝛼 (𝑇 − 𝜆

2
) , . . . , 𝛼 (𝑇 − 𝜆

𝑝
) , 𝛼 (𝑇))

≥ 0,

𝛼 (𝑘) = 𝛼 (𝑎) , 𝛽 (𝑘) = 𝛽 (𝑎) ,

for 𝑘 ∈ Z [𝑎 − ℎ + 1, 𝑎 − 1] .

(6)

4. Linear Delay Difference
Inequalities with Maxima

One will consider the following linear difference inequality
with maxima

Δ𝑢 (𝑘 − 1) ≤ −𝑄 (𝑘) 𝑢 (𝑘) −

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) 𝑢 (𝜏

𝑗
(𝑘))

− 𝑞 (𝑘) min
𝑠∈Z[𝑘−ℎ,𝑘]

𝑢 (𝑠) , 𝑘 ∈ Z [𝑎 + 1, 𝑇] ,

𝑢 (𝑘) = 𝑢 (𝑎) ≤ 0, 𝑘 ∈ Z [𝑎 − ℎ + 1, 𝑎 − 1] .

(7)

Lemma 5 (comparison result). Let the function 𝑢 : Z[𝑎 − ℎ +

1, 𝑇] → R satisfy inequalities (7) and

𝑇

∑

𝑙=𝑎+1

(𝑄 (𝑙) +

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑙) + 𝑞 (𝑙)) ≤ 1, (8)

where𝑄, 𝑞, 𝐶
𝑗
: Z[𝑎 + 1, 𝑇] → R

+
and 𝜏
𝑗
(𝑘) : Z[𝑎 + 1, 𝑇] →

Z[𝑎 + 1 − ℎ, 𝑇] : 𝑘 − ℎ ≤ 𝜏
𝑗
(𝑘) ≤ 𝑘 for 𝑗 ∈ Z[1, 𝑟], 𝑘 ∈

Z[𝑎 + 1, 𝑇].
Then 𝑢(𝑡) ≤ 0 for 𝑡 ∈ Z[𝑎 − ℎ + 1, 𝑇].

Proof. Assume that the claim of Lemma 5 is not true. Con-
sider the following two cases.

Case 1. Let 𝑢(𝑎) < 0. Therefore, there exists 𝜂 ∈ Z[𝑎 + 1, 𝑇]

such that 𝑢(𝑘) ≤ 0 for 𝑘 ∈ Z[𝑎 − ℎ + 1, 𝜂 − 1] and 𝑢(𝜂) > 0.
Denote min

𝑠∈Z[𝑎−ℎ+1,𝜂]𝑢(𝑠) = −𝜆 < 0. Let 𝜍 ∈ Z[𝑎, 𝜂],
𝜍 < 𝜂, be such that 𝑢(𝜍) = −𝜆.Then 𝑢(𝜏

𝑗
(𝑙)) ≥ −𝜆, 𝑗 ∈ Z[1, 𝑟],

and min
𝑠∈Z[𝑙−ℎ,𝑙] 𝑢(𝑠) ≥ −𝜆 for all 𝑙 ∈ Z[𝜍 + 1, 𝜂].

Therefore,

𝜆 < 𝑢 (𝜂) − 𝑢 (𝜍)

= (𝑢 (𝜂) − 𝑢 (𝜂 − 1)) + (𝑢 (𝜂 − 1) − 𝑢 (𝜂 − 2))

+ ⋅ ⋅ ⋅ + (𝑢 (𝜍 + 1) − 𝑢 (𝜍))

= Δ𝑢 (𝜂 − 1) + Δ𝑢 (𝜂 − 2) + ⋅ ⋅ ⋅ + Δ𝑢 (𝜍)

≤

𝜂

∑

𝑙=𝜍+1

(−𝑄 (𝑙) 𝑢 (𝑙) −

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑙) 𝑢 (𝜏

𝑗
(𝑙))

− 𝑞 (𝑙) min
𝑠∈Z[𝑙−ℎ,𝑙]

𝑢 (𝑠))

≤ 𝜆

𝜂

∑

𝑙=𝜍+1

(𝑄 (𝑙) +

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑙) + 𝑞 (𝑙))

≤ 𝜆

𝑇

∑

𝑙=𝑎+1

(𝑄 (𝑙) +

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑙) + 𝑞 (𝑙)) .

(9)

Inequality (9) contradicts (8).

Case 2. Let 𝑢(𝑎) = 0. Then there exists 𝜂 ∈ Z[𝑎, 𝑇 − 1] such
that 𝑢(𝑘) = 0 for 𝑘 ∈ Z[𝑎 + 1 − ℎ, 𝜂] and 𝑢(𝜂 + 1) ̸= 0.

Let 𝑢(𝜂+ 1) < 0. As in the proof of Case 1 for 𝑎 = 𝜂+ 1we
get a contradiction.

Let 𝑢(𝜂 + 1) > 0. Introduce the following sets:

Ω
𝜂
= {𝑗 ∈ Z [1, 𝑟] : 𝜏

𝑗
(𝜂 + 1) = 𝜂 + 1} ,

Ω
𝜂
= {𝑗 : 𝑗 ∈ Z [1, 𝑟] , 𝑗 ∉ Ω

𝜂
} .

(10)
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Note that the set Ω
𝜂
could be empty. Therefore, 𝑢(𝜏

𝑗
(𝜂 +

1)) = 𝑢(𝜂 + 1) > 0 for 𝑗 ∈ Ω
𝜂
and 𝑢(𝜏

𝑗
(𝜂 + 1)) = 0 for 𝑗 ∈ Ω

𝜂
.

Then from inequality (7) we get

(1 + 𝑄 (𝜂 + 1) + ∑

𝑗∈Ω𝜂

𝐶
𝑗
(𝜂 + 1))𝑢 (𝜂 + 1)

≤ −𝑞 (𝜂 + 1)min {0, 𝑢 (𝜂 + 1)} = 0.

(11)

The obtained contradiction proves 𝑢(𝜂 + 1) < 0.

5. Linear Delay Difference
Equations with Maxima

In connection with the computer realization of the suggested
method, we will give an algorithm for exact solving of the
initial value problem for the scalar linear delay-difference
equation with maxima (IVP)

Δ𝑢 (𝑘 − 1)

= −𝑄 (𝑘) 𝑢 (𝑘) − 𝑞 (𝑘) max
𝑠∈Z[𝑘−ℎ,𝑘]

𝑢 (𝑠)

−

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) 𝑢 (𝜏

𝑗
(𝑘)) + 𝑃 (𝑘) , 𝑘 ∈ Z [𝑎 + 1, 𝑇] ,

(12)

𝑢 (𝑘) = 𝑢 (𝑎) , 𝑘 ∈ Z [𝑎 − ℎ + 1, 𝑎 − 1] , (13)

where 𝑃 : Z[𝑎 + 1, 𝑇] → R, 𝑄, 𝑞, 𝐶
𝑗
: Z[𝑎 + 1, 𝑇] → R

+
,

and 𝜏
𝑗
(𝑘) : Z[𝑎 + 1, 𝑇] → Z[𝑎 + 1 − ℎ, 𝑇] : 𝑘 − ℎ ≤ 𝜏

𝑗
(𝑘) ≤ 𝑘

for 𝑗 ∈ Z[1, 𝑟], 𝑘 ∈ Z[𝑎 + 1, 𝑇].
Note that the unknown function 𝑢(𝑘) at any moment 𝑘 ∈

Z[𝑎 + 1, 𝑇] is included in the maximum function of the right
side part of (12) and it is not obvious to solve (12). We will
give the algorithm for obtaining the solution.

We will consider two cases with respect to the type of
delays 𝜏

𝑗
.

Case 1. Let the inequality 𝜏
𝑗
(𝑘) < 𝑘 hold for all 𝑗 ∈ Z[1, 𝑟],

𝑘 ∈ Z[𝑎 + 1, 𝑇].
Assume that the values 𝑢(𝑘) of the unknown solution are

obtained for all 𝑘 ∈ Z[𝑎 − ℎ + 1,𝑚], where 𝑚 < 𝑇. Now let
𝑘 = 𝑚 + 1.

Case 1.1. Let the following inequality be satisfied:

𝑃 (𝑘) − ∑
𝑟

𝑗=1
𝐶
𝑗
(𝑘) 𝑢 (𝜏

𝑗
(𝑘)) + 𝑢 (𝑘 − 1)

1 + 𝑄 (𝑘) + 𝑞 (𝑘)

≥ max {𝑢 (𝑘 − 𝑙) : 𝑙 = 1, 2, . . . , ℎ} .

(14)

Therefore, max
𝑠∈Z[𝑘−ℎ,𝑘]𝑢(𝑠) = 𝑢(𝑘). Then the unique

solution of IVP (12)-(13) is given by

𝑢 (𝑘) =

𝑃 (𝑘) − ∑
𝑟

𝑗=1
𝐶
𝑗
(𝑘) 𝑢 (𝜏

𝑗
(𝑘)) + 𝑢 (𝑘 − 1)

1 + 𝑄 (𝑘) + 𝑞 (𝑘)

. (15)

Case 1.2. Let inequality (14) be not satisfied for all 𝑙 ∈

Z[1, ℎ]. Therefore, there exists 𝑚 ∈ Z[1, ℎ] such that
max
𝑠∈Z[𝑘−ℎ,𝑘]𝑢(𝑠) = 𝑢(𝑘 − 𝑚).
Then the unique solution of IVP (12)-(13) is

𝑢 (𝑘)

=

𝑃 (𝑘) − ∑
𝑟

𝑗=1
𝐶
𝑗
(𝑘) 𝑢 (𝜏

𝑗
(𝑘)) + 𝑢 (𝑘 − 1) − 𝑞 (𝑘) 𝑢 (𝑘 − 𝑚)

1 + 𝑄 (𝑘)

.

(16)

Case 2. Let there exists at least one 𝑗 ∈ Z[1, 𝑟] and 𝑘 ∈ Z[𝑎 +

1, 𝑇] such that 𝜏
𝑗
(𝑘) = 𝑘.

Assume that the values 𝑢(𝑘) of the unknown solution are
obtained for all 𝑘 ∈ Z[𝑎 − ℎ + 1,𝑚], where𝑚 < 𝑇.

Now let 𝑘 = 𝑚 + 1. Introduce the following sets:

Ω
𝑘
= {𝑗 ∈ Z [1, 𝑟] : 𝜏

𝑗
(𝑘) = 𝑘} ,

Ω
𝑘
= {𝑗 : 𝑗 ∈ Z [1, 𝑟] , 𝑗 ∉ Ω

𝑘
} .

(17)

Note that the setΩ
𝑘
could be empty.Therefore, 𝑢(𝜏

𝑗
(𝑘)) =

𝑢(𝑘) for 𝑗 ∈ Ω
𝑘
and 𝑢(𝜏

𝑗
(𝑘)) < 𝑢(𝑘) for 𝑗 ∈ Ω

𝑘
. Equation (12)

is reduced to

(1 + 𝑄 (𝑘) + ∑

𝑗∈Ω𝑘

𝐶
𝑗
(𝑘))𝑢 (𝑘)

= 𝑢 (𝑘 − 1) − ∑

𝑗∈Ω𝑘

𝐶
𝑗
(𝑘) 𝑢 (𝜏

𝑗
(𝑘)) − 𝑞 (𝑘) max

𝑠∈Z[𝑘−ℎ,𝑘]
𝑢 (𝑠)

+ 𝑃 (𝑘) .

(18)

Case 2.1. Let the following inequality be satisfied

𝑃 (𝑘) + 𝑢 (𝑘 − 1) − ∑
𝑗∈Ω𝑘

𝐶
𝑗
(𝑘) 𝑢 (𝜏

𝑗
(𝑘))

1 + 𝑄 (𝑘) + ∑
𝑗∈Ω𝑘

𝐶
𝑗
(𝑘) + 𝑞 (𝑘)

≥ 𝑢 (𝑘 − 𝑠) , 𝑠 ∈ Z [1, ℎ] .

(19)

Therefore, max
𝑠∈Z[𝑘−ℎ,𝑘]𝑢(𝑠) = 𝑢(𝑘) and from (18) we

obtain the solution

𝑢 (𝑘) =

𝑃 (𝑘) − ∑
𝑗∈Ω𝑘

𝐶
𝑗
(𝑘) 𝑢 (𝜏

𝑗
(𝑘)) + 𝑢 (𝑘 − 1)

1 + 𝑄 (𝑘) + ∑
𝑗∈Ω𝑘

𝐶
𝑗
(𝑘) + 𝑞 (𝑘)

. (20)

Case 2.2. Let inequality (19) be not satisfied for all 𝑠 ∈ Z[1, ℎ].
Therefore, there exists 𝑚 ∈ Z[1, ℎ] such that

max
𝑠∈Z[𝑘−ℎ,𝑘]𝑢(𝑠) = 𝑢(𝑘 − 𝑚).
Then the unique solution of problem (12)-(13) is given by

𝑢 (𝑘)

=

𝑃 (𝑘)−∑
𝑗∈Ω𝑘

𝐶
𝑗
(𝑘) 𝑢 (𝜏

𝑗
(𝑘))+𝑢 (𝑘 − 1)−𝑞 (𝑘) 𝑢 (𝑘 − 𝑚)

1 + 𝑄 (𝑘) + ∑
𝑗∈Ω𝑘

𝐶
𝑗
(𝑘)

.

(21)
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6. Monotone-Iterative Method

We will give an algorithm for approximatly obtaining the
solution of themixed boundary value problem for the nonlin-
ear delay-difference equation with maxima (1)-(2) as a limit
of two monotone sequences.

Theorem 6. Let the following conditions be fulfilled:

(1) The functions 𝛼
0
, 𝛽
0
: Z[𝑎 − ℎ + 1, 𝑇] → R form a

couple of quasi lower and upper solutions of (1)-(2)
such that 𝛼

0
(𝑘) ≤ 𝛽

0
(𝑘) for 𝑘 ∈ Z[𝑎 − ℎ + 1, 𝑇].

(2) The function𝑓 : Z[𝑎+1, 𝑇]×R𝑟+2 → R is continuous
in Ω
𝑘
(𝛼
0
, 𝛽
0
) for any 𝑘 ∈ Z[𝑎 + 1, 𝑇] and for

𝑥, 𝑦 ∈ Ω
𝑘
(𝛼
0
, 𝛽
0
), 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑟+2
), 𝑦 =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑟+2
) with 𝑥

𝑗
≤ 𝑦
𝑗
, 𝑗 ∈ Z[1, 𝑟 + 2] the

inequality

𝑓 (𝑘, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑟+2
) − 𝑓 (𝑘, 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑟+2
)

≤ −𝑄 (𝑘) (𝑥
1
− 𝑦
1
) −

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) (𝑥

𝑗+1
− 𝑦
𝑗+1

)

− 𝑞 (𝑘) (𝑥
𝑟+2

− 𝑦
𝑟+2

)

(22)

holds, where the functions 𝑄, 𝑞, 𝐶
𝑗
: Z[𝑎 + 1, 𝑇] →

R
+
, 𝑗 ∈ Z[1, 𝑟], and inequality (8) is satisfied.

(3) The function 𝑔 ∈ Λ(𝛼
0
, 𝛽
0
).

(4) The functions 𝜏
𝑗
(𝑘) : Z[𝑎 + 1, 𝑇] → Z[𝑎 + 1 − ℎ, 𝑇] :

𝑘 − ℎ ≤ 𝜏
𝑗
(𝑘) ≤ 𝑘 for 𝑗 ∈ Z[1, 𝑟], 𝑘 ∈ Z[𝑎 + 1, 𝑇].

Then there exist two sequences of functions {𝛼
𝑛
}
∞

𝑛=0
and

{𝛽
𝑛
}
∞

𝑛=0
such that

(a) The functions 𝛼
𝑛
, 𝛽
𝑛
: Z[𝑎 − ℎ + 1, 𝑇] → R, (𝑛 = 1,

2, . . .) form a couple of quasi lower and upper solutions
of BVP (1)-(2).

(b) For 𝑘 ∈ Z[𝑎 − ℎ + 1, 𝑇] the inequalities

𝛼
0
(𝑘) ≤ 𝛼

1
(𝑘) ≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑛
(𝑘)

≤ ⋅ ⋅ ⋅ ≤ 𝛽
𝑛
(𝑘) ≤ ⋅ ⋅ ⋅ ≤ 𝛽

1
(𝑘) ≤ 𝛽

0
(𝑘)

(23)

hold.
(c) Both sequences are convergent on Z[𝑎 − ℎ + 1, 𝑇]

and their limits 𝛼(𝑘) = lim
𝑛→∞

𝛼
𝑛
(𝑘) and 𝛽(𝑘) =

lim
𝑛→∞

𝛽
𝑛
(𝑘) form a couple of quasi solutions of BVP

(1)-(2) in 𝑆(𝛼
0
, 𝛽
0
). In the case of uniqueness of the

solution of BVP (1)-(2) in 𝑆(𝛼
0
, 𝛽
0
) the equality 𝛼 ≡

𝛽 ≡ 𝑈 holds, where 𝑈 is the unique solution of (1)-(2)
in 𝑆(𝛼

0
, 𝛽
0
).

Proof. Note if 𝑢 ∈ 𝑆(𝛼
0
, 𝛽
0
), then 𝛼

0
(𝜏
𝑗
(𝑘)) ≤ 𝑢(𝜏

𝑗
(𝑘)) ≤

𝛽
0
(𝜏
𝑗
(𝑘)), 𝑗 ∈ Z[1, 𝑟], and max

𝑠∈Z[𝑘−ℎ,𝑘]𝛼0(𝑠) ≤

max
𝑠∈Z[𝑘−ℎ,𝑘]𝑢(𝑠) ≤ max

𝑠∈Z[𝑘−ℎ,𝑘]𝛽0(𝑠) for 𝑘 ∈ Z[𝑎 + 1, 𝑇].
Therefore, according to condition 2 of Theorem 6 if the
functions 𝑢, V ∈ 𝑆(𝛼

0
, 𝛽
0
) satisfy 𝑢(𝑘) ≤ V(𝑘) for

𝑘 ∈ Z[𝑎 − ℎ + 1, 𝑇], then for any 𝑘 ∈ Z[𝑎 + 1, 𝑇] the
inequality

𝑓 (𝑘, Ξ (𝑢 (𝜏 (𝑘)))) − 𝑓 (𝑘, Ξ (V (𝜏 (𝑘))))

≤ −𝑄 (𝑘) [𝑢 (𝑘) − V (𝑘)]

−

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) [𝑢 (𝜏

𝑗
(𝑘)) − V (𝜏

𝑗
(𝑘))]

− 𝑞 (𝑘) [ max
𝑠∈Z[𝑘−ℎ,𝑘]

𝑢 (𝑠) − max
𝑠∈Z[𝑘−ℎ,𝑘]

V (𝑠)]

(24)

holds.
We will give an algorithm for construction of successive

approximations to the unknown exact solution of BVP (1)-
(2).

Assume the functions𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
: Z[𝑎−ℎ+1, 𝑇] → R

and 𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑛
: Z[𝑎−ℎ+1, 𝑇] → R are constructed such

that

(H1) 𝛼
𝑗−1

(𝑘) ≤ 𝛼
𝑗
(𝑘), 𝛽

𝑗−1
(𝑘) ≥ 𝛽

𝑗
(𝑘) for 𝑗 ∈ Z[1, 𝑛], 𝑘 ∈

Z[𝑎 − ℎ + 1, 𝑇];

(H2) the functions 𝛼
𝑗
and 𝛽

𝑗
, 𝑗 ∈ Z[1, 𝑛] form a couple of

quasi lower and upper solutions of BVP (1)-(2);

(H3) 𝛼
𝑗
(𝑘) ≤ 𝛽

𝑗
(𝑘), 𝑘 ∈ Z[𝑎 − ℎ + 1, 𝑇], 𝑗 ∈ Z[1, 𝑛];

(H4) each function 𝛼
𝑗
, 𝑗 ∈ Z[1, 𝑛], is the unique solution

of the initial value problem for the linear difference
equation with maxima

Δ𝑥 (𝑘 − 1)

= 𝑃 (𝑘, 𝛼
𝑗−1

(𝑘)) − 𝑄 (𝑘) 𝑥 (𝑘) −

𝑟

∑

𝑙=1

𝐶
𝑙
(𝑘) 𝑥 (𝜏

𝑙
(𝑘))

− 𝑞 (𝑘) max
𝑠∈Z[𝑘−ℎ,𝑘]

𝑥 (𝑠) , 𝑘 ∈ Z [𝑎 + 1, 𝑇] ,

𝑥 (𝑎) = 𝛼
𝑗−1

(𝑎) −

1

𝛾

𝑔 (𝛼
𝑗−1

(𝑎) , 𝜒 (𝛽
𝑗
(𝑇)))

𝑥 (𝑘) = 𝑥 (𝑎) , 𝑘 ∈ Z [𝑎 − ℎ + 1, 𝑎 − 1] ,

(25)

where 𝑃 : Z[𝑎 + 1, 𝑇] × 𝑆(𝛼
0
, 𝛽
0
) → R is defined by

𝑃 (𝑘, 𝑢 (𝑘))

= 𝑓 (𝑘, Ξ (𝑢 (𝜏 (𝑘)))) + 𝑄 (𝑘) 𝑢 (𝑘)

+

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) 𝑢 (𝜏

𝑗
(𝑘)) + 𝑞 (𝑘) max

𝑠∈Z[𝑘−ℎ,𝑘]
𝑢 (𝑠) ;

(26)

(H5) each function 𝛽
𝑗
, 𝑗 ∈ Z[1, 𝑛], is the unique solution

of the initial value problem
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Δ𝑥 (𝑘 − 1)

= 𝑃 (𝑘, 𝛽
𝑗−1

(𝑘)) −Q (𝑘) 𝑥 (𝑘) −

𝑟

∑

𝑙=1

𝐶
𝑙
(𝑘) 𝑥 (𝜏

𝑙
(𝑘))

− 𝑞 (𝑘) max
𝑠∈Z[𝑘−ℎ,𝑘]

𝑥 (𝑠) , 𝑘 ∈ Z [𝑎 + 1, 𝑇] ,

𝑥 (𝑎) = 𝛽
𝑗−1

(𝑎) −

1

𝛾

𝑔 (𝛽
𝑗−1

(𝑎) , 𝜒 (𝛼
𝑗
(𝑇))) ,

𝑥 (𝑘) = 𝑥 (𝑎) , 𝑘 ∈ Z [𝑎 − ℎ + 1, 𝑎 − 1] .

(27)

Now we will explain how to construct the next approxi-
mations 𝛼

𝑛+1
and 𝛽

𝑛+1
.

Consider the initial value problem (25) for 𝑗 = 𝑛. Accord-
ing to Section 4 linear initial value problem (25) has a unique
solution 𝛼

𝑛+1
: Z[𝑎 − ℎ + 1, 𝑇] → R.

Define a function 𝑝
1
: Z[𝑎 − ℎ + 1, 𝑇] → R by 𝑝

1
(𝑘) =

𝛼
𝑛
(𝑘) − 𝛼

𝑛+1
(𝑘).

From claims (H2) and (H4) we get 𝑝
1
(𝑘) = 𝑝

1
(𝑎) for 𝑘 ∈

Z[𝑎 − ℎ + 1, 𝑎 − 1] and 𝑝
1
(𝑎) = (1/𝛾)𝑔(𝛼

𝑛
(𝑎), 𝜒(𝛽

𝑛
(𝑇))) ≤ 0.

Let 𝑘 ∈ Z[𝑎 + 1, 𝑇]. Then from claims (H1), (H4), and
inequality

max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛
(𝑠) − max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛+1

(𝑠)

≥ min
𝑠∈Z[𝑘−ℎ,𝑘]

(𝛼
𝑛
(𝑠) − 𝛼

𝑛+1
(𝑠))

(28)

we get

Δ𝑝
1
(𝑘 − 1) = −𝑄 (𝑘) [𝛼

𝑛
(𝑘) − 𝛼

𝑛+1
(𝑘)]

−

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) [𝛼

𝑛
(𝜏
𝑗
(𝑘)) − 𝛼

𝑛+1
(𝜏
𝑗
(𝑘))]

− 𝑞 (𝑘) [ max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛
(𝑠) − max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛+1

(𝑠)]

+ 𝑓 (𝑘, Ξ (𝛼
𝑛−1

(𝜏 (𝑘)))) − 𝑓 (𝑘, Ξ (𝛼
𝑛
(𝜏 (𝑘))))

+ 𝑄 (𝑘) [𝛼
𝑛−1

(𝑘) − 𝛼
𝑛
(𝑘)]

+

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) [𝛼

𝑛−1
(𝜏
𝑗
(𝑘)) − 𝛼

𝑛
(𝜏
𝑗
(𝑘))]

+ 𝑞 (𝑘) [ max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛−1

(𝑠) − max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛
(𝑠)]

≤ −𝑄 (𝑘) 𝑝
1
(𝑘) −

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) 𝑝
1
(𝜏
𝑗
(𝑘))

− 𝑞 (𝑘) min
𝑠∈Z[𝑘−ℎ,𝑘]

𝑝
1
(𝑠) .

(29)

According to Lemma 5 𝑝
1
(𝑘) ≤ 0 for 𝑘 ∈ Z[𝑎 − ℎ + 1, 𝑇].

Hence, 𝛼
𝑛
(𝑘) ≤ 𝛼

𝑛+1
(𝑘) for 𝑘 ∈ Z[𝑎 − ℎ + 1, 𝑇].

Consider the linear initial value problem (27) for 𝑗 = 𝑛.
According to Section 4 the linear initial value problems (27)
has a unique solution 𝛽

𝑛+1
: Z[𝑎 − ℎ + 1, 𝑇] → R.

Similarly as previously mentioned we prove 𝛽
𝑛
(𝑘) ≥

𝛽
𝑛+1

(𝑘) for 𝑘 ∈ Z[𝑎 − ℎ + 1, 𝑇]; that is, claim (H1) is satisfied
for 𝑗 = 𝑛 + 1.

Now we will prove (H3) for 𝑗 = 𝑛 + 1. Define a function
𝑝
2
: Z[𝑎 − ℎ + 1, 𝑇] → R by 𝑝

2
(𝑘) = 𝛼

𝑛+1
(𝑘) − 𝛽

𝑛+1
(𝑘).

From claims (H2), (H3), and condition 3 ofTheorem 6we
have 𝑝

2
(𝑘) = 𝑝

2
(𝑎) for 𝑘 ∈ Z[𝑎 − ℎ + 1, 𝑎 − 1]. Also,

𝑝
2
(𝑎) = 𝛼

𝑛
(𝑎) − 𝛽

𝑛
(𝑎)

+

1

𝛾

(𝑔 (𝛽
𝑛
(𝑎) , 𝜒 (𝛼

𝑛
(𝑇))) − 𝑔 (𝛼

𝑛
(𝑎) , 𝜒 (𝛽

𝑛
(𝑇))))

≤ 𝛼
𝑛
(𝑎) − 𝛽

𝑛
(𝑎)

+

1

𝛾

(𝑔 (𝛽
𝑛
(𝑎) , 𝜒 (𝛽

𝑛
(𝑇))) − 𝑔 (𝛼

𝑛
(𝑎) , 𝜒 (𝛽

𝑛
(𝑇))))

≤ 0.

(30)

Let 𝑘 ∈ Z[𝑎 + 1, 𝑇]. From claims (H1), (H5), and inequality
(24) we get

Δ𝑝
2
(𝑘 − 1)

= 𝑓 (𝑘, Ξ (𝛼
𝑛
(𝜏 (𝑘)))) − 𝑓 (𝑘, Ξ (𝛽

𝑛
(𝜏 (𝑘))))

+ 𝑄 (𝑘) [𝛼
𝑛
(𝑘) − 𝛽

𝑛
(𝑘)]

+

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) (𝛼

𝑛
(𝜏
𝑗
(𝑘)) − 𝛽

𝑛
(𝜏
𝑗
(𝑘)))

+ 𝑞 (𝑘) [ max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛
(𝑠) − max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛽
𝑛
(𝑠)]

− 𝑄 (𝑘) 𝑝
3
(𝑘) −

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) 𝑝
3
(𝜏
𝑗
(𝑘))

− 𝑞 (𝑘) [ max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛+1

(𝑠) − max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛽
𝑛+1

(𝑠)]

≤ −𝑄 (𝑘) 𝑝
2
(𝑘) −

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) 𝑝
2
(𝜏
𝑗
(𝑘))

− 𝑞 (𝑘) min
𝑠∈Z[𝑘−ℎ,𝑘]

𝑝
2
(𝑠) .

(31)

In view of Lemma 5 it follows 𝑝
2
(𝑘) ≤ 0 for 𝑘 ∈ Z[𝑎 − ℎ +

1, 𝑇]; that is, claim (H3) is satisfied for 𝑗 = 𝑛 + 1.
Therefore, 𝛼

𝑛+1
, 𝛽
𝑛+1

∈ 𝑆(𝛼
0
, 𝛽
0
).

We will prove (H2) for 𝑗 = 𝑛 + 1.
From condition 3 ofTheorem 6, claim (H2) for 𝑗 = 𝑛 and

the construction of functions 𝛼
𝑛+1

and 𝛽
𝑛+1

we obtain
1

𝛾

𝑔 (𝛼
𝑛+1

(𝑎) , 𝜒 (𝛽
𝑛+1

(𝑇)))

≤

1

𝛾

𝑔 (𝛼
𝑛+1

(𝑎) , 𝜒 (𝛽
𝑛
(𝑇)))

=

1

𝛾

(𝑔 (𝛼
𝑛+1

(𝑎) , 𝜒 (𝛽
𝑛
(𝑇))) − 𝑔 (𝛼

𝑛
(𝑎) , 𝜒 (𝛽

𝑛
(𝑇))))
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+

1

𝛾

𝑔 (𝛼
𝑛
(𝑎) , 𝜒 (𝛽

𝑛
(𝑇)))

≤ 𝛼
𝑛+1

(𝑎) − 𝛼
𝑛
(𝑎) +

1

𝛾

𝑔 (𝛼
𝑛
(𝑎) , 𝜒 (𝛽

𝑛
(𝑇))) = 0,

1

𝛾

𝑔 (𝛽
𝑛+1

(𝑎) , 𝜒 (𝛼
𝑛+1

(𝑇)))

≥

1

𝛾

𝑔 (𝛽
𝑛+1

(𝑎) , 𝜒 (𝛼
𝑛
(𝑇)))

= −

1

𝛾

(𝑔 (𝛽
𝑛
(𝑎) , 𝜒 (𝛼

𝑛
(𝑇))) − 𝑔 (𝛽

𝑛+1
(𝑎) , 𝜒 (𝛼

𝑛
(𝑇))))

+

1

𝛾

𝑔 (𝛽
𝑛
(𝑎) , 𝜒 (𝛼

𝑛
(𝑇)))

≥ 𝛽
𝑛+1

(𝑎) − 𝛽
𝑛
(𝑎) +

1

𝛾

𝑔 (𝛽
𝑛
(𝑎) , 𝜒 (𝛼

𝑛
(𝑇))) = 0.

(32)

Let 𝑘 ∈ Z[𝑎+ 1, 𝑇]. From claims (H1), (H4), and inequal-
ity (24) we get

Δ𝛼
𝑛+1

(𝑘 − 1)

= 𝑓 (𝑘, Ξ (𝛼
𝑛
(𝜏 (𝑘)))) − 𝑄 (𝑘) [𝛼

𝑛+1
(𝑘) − 𝛼

𝑛
(𝑘)]

−

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) [𝛼

𝑛+1
(𝜏
𝑗
(𝑘)) − 𝛼

𝑛
(𝜏
𝑗
(𝑘))]

− 𝑞 (𝑘) [ max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛+1

(𝑠) − max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛
(𝑠)]

= 𝑓 (𝑘, Ξ (𝛼
𝑛+1

(𝜏 (𝑘))))

+ [𝑓 (𝑘, Ξ (𝛼
𝑛
(𝜏 (𝑘)))) − 𝑓 (𝑘, Ξ (𝛼

𝑛+1
(𝜏 (𝑘))))]

− 𝑄 (𝑘) [𝛼
𝑛+1

(𝑘) − 𝛼
𝑛
(𝑘)]

−

𝑟

∑

𝑗=1

𝐶
𝑗
(𝑘) [𝛼

𝑛+1
(𝜏
𝑗
(𝑘)) − 𝛼

𝑛
(𝜏
𝑗
(𝑘))]

− 𝑞 (𝑘) [ max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛+1

(𝑠) − max
𝑠∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛
(𝑠)]

≤ 𝑓 (𝑘, Ξ (𝛼
𝑛+1

(𝜏 (𝑘)))) .

(33)

Similarly, we prove

Δ𝛽
𝑛+1

(𝑘 − 1) ≥ 𝑓 (𝑘, Ξ (𝛽
𝑛+1

(𝜏 (𝑘)))) . (34)

From inequalities (32), (33), and (34) it follows the func-
tions 𝛼

𝑛+1
and 𝛽

𝑛+1
form a couple of quasi lower and upper

solution of BVP (1)-(2) onZ[𝑎 − ℎ + 1, 𝑇]; that is, claim (H2)
is satisfied for 𝑗 = 𝑛 + 1.

Following the suggested previous scheme we can con-
struct two sequences of functions {𝛼

𝑛
}
∞

𝑛=1
and {𝛽

𝑛
}
∞

𝑛=1
which

satisfy claims (H1)–(H5).
For any fixed 𝑘 ∈ Z[𝑎−ℎ+1, 𝑇] the sequences {𝛼

𝑛
}
∞

𝑛=0
and

{𝛽
𝑛
}
∞

𝑛=0
are monotone nondecreasing and monotone nonin-

creasing, respectively, and they are bounded by the functions

𝛼
0
and 𝛽

0
. Therefore, they are convergent; that is, there exist

functions 𝛼, 𝛽 : Z[𝑎 − ℎ + 1, 𝑇] → R such that

lim
𝑛→∞

𝛼
𝑛
(𝑘) = 𝛼 (𝑘) , lim

𝑛→∞

𝛽
𝑛
(𝑘) = 𝛽 (𝑘) ,

𝑘 ∈ Z [𝑎 − ℎ + 1, 𝑇] .

(35)

From claim (H3) it is clear that 𝛼, 𝛽 ∈ 𝑆(𝛼
0
, 𝛽
0
).

Also for any 𝑘 ∈ Z[𝑎 + 1, 𝑇] the equalities

lim
𝑛→∞

[ max
𝑚∈Z[𝑘−ℎ,𝑘]

𝛼
𝑛
(𝑚)] = max

𝑚∈Z[𝑘−ℎ,𝑘]
[ lim
𝑛→∞

𝛼
𝑛
(𝑚)] ,

lim
𝑛→∞

[ max
𝑚∈Z[𝑘−ℎ,𝑘]

𝛽
𝑛
(𝑚)] = max

𝑚∈Z[𝑘−ℎ,𝑘]
[ lim
𝑛→∞

𝛽
𝑛
(𝑚)]

(36)

hold (for the proof see [19]).
We will prove that the limit 𝛼 is a solution of BVP (1)-(2)

on Z[𝑎 − ℎ + 1, 𝑇].
Taking a limit as 𝑛 → ∞ in the last equalities of (25) and

(27) we get𝛼(𝑘) = 𝛼(𝑎) and𝛽(𝑘) = 𝛽(𝑎) for 𝑘 ∈ Z[𝑎−ℎ+1, 𝑎−

1]. Also we obtain 𝛼(𝑎) = 𝛼(𝑎) − (1/𝛾)𝑔(𝛼(𝑎), 𝜒(𝛽(𝑇))) and
𝛽(𝑎) = 𝛽(𝑎) − (1/𝛾)𝑔(𝛽(𝑎), 𝜒(𝛼(𝑇))) or 𝑔(𝛼(𝑎), 𝜒(𝛽(𝑇))) = 0

and 𝑔(𝛽(𝑎), 𝜒(𝛼(𝑇))) = 0.
Taking a limit as 𝑛 → ∞ in the first equality of (25) and

(27) we get the functions 𝛼 and 𝛽 satisfy equality (1) for 𝑘 ∈

Z[𝑎 + 1, 𝑇].
Therefore, functions 𝛼 and 𝛽 form a couple of quasi solu-

tions of BVP (1)-(2) in 𝑆(𝛼
0
, 𝛽
0
).

If nonlinear boundary value problem (1)-(2) has an
unique solution 𝑈 in 𝑆(𝛼

0
, 𝛽
0
), then 𝛼 ≡ 𝛽 ≡ 𝑈.

7. Applications

Now we will give an example which exact solution will be
obtained by a computer realization of the suggested previous
algorithm. The example is a modification of the equation
𝑢(𝑘) = (𝐶𝑢

2
(𝑘−1))/(𝑢

2
(𝑘−1)+𝐷)which is used in population

biology to model a situation where the species survive if the
initial size of population is greater than a certain threshold.

Example 7. Consider the nonlinear boundary value problem
for the nonlinear difference equation with maxima

Δ𝑢 (𝑘 − 1)

=

0.1875(𝑢 (𝑘))
2

(𝑢 (𝑘))
2

+ 16

− 0.05𝑢 (𝜏 (𝑘)) − 0.05 max
𝑠∈Z[𝑘−3,𝑘]

𝑢 (𝑠) ,

for 𝑘 ∈ Z [3, 10] ,

(37)

𝑢 (0) = 𝑢 (1) = 𝑢 (2) , 𝑢 (2) − (𝑢 (2))
2

+ 𝑒
𝑢(10)

= 0, (38)

where 𝜏(𝑘) = 𝑘 − [√𝑘], 𝑘 ∈ Z[3, 10], and [𝑠] denotes the
integer part of the real number 𝑠; that is,

𝜏 (𝑘) =

{
{

{
{

{

𝑘 − 1 𝑘 = 3,

𝑘 − 2, 𝑘 = 4, 5, 6, 7, 8,

𝑘 − 3, 𝑘 = 9, 10.

(39)



8 Abstract and Applied Analysis

Table 1: Values of the successive lower/upper approximations 𝛼
𝑛
(𝑘) and 𝛽

𝑛
(𝑘), 𝑛 = 0, 1, 2, 3, 4, 5, 6, 7, 8.

𝑘 0 3 4 5 ⋅ ⋅ ⋅ 9 10
𝛽
0
(𝑘) 0.300000 0.300000 0.300000 0.300000 ⋅ ⋅ ⋅ 0.300000 0.300000

𝛽
1
(𝑘) 0.107373 0.102318 0.097378 0.092799 ⋅ ⋅ ⋅ 0.079779 0.077504

𝛽
2
(𝑘) −0.161693 −0.140751 −0.121361 −0.104382 ⋅ ⋅ ⋅ −0.054887 −0.045805

𝛽
3
(𝑘) −0.350522 −0.313072 −0.277815 −0.246387 ⋅ ⋅ ⋅ −0.150852 −0.132489

𝛽
4
(𝑘) −0.450828 −0.404758 −0.361295 −0.322444 ⋅ ⋅ ⋅ −0.203309 −0.180134

𝛽
5
(𝑘) −0.495330 −0.445438 −0.398367 −0.356278 ⋅ ⋅ ⋅ −0.226976 −0.201742

𝛽
6
(𝑘) −0.513731 −0.462242 −0.413672 −0.370244 ⋅ ⋅ ⋅ −0.236787 −0.210719

𝛽
7
(𝑘) −0.521346 −0.469185 −0.419987 −0.376000 ⋅ ⋅ ⋅ −0.240816 −0.214404

𝛽
8
(𝑘) −0.524570 −0.472122 −0.422654 −0.378427 ⋅ ⋅ ⋅ −0.242506 −0.215947

𝑢(𝑘) −0.526 −0.474 −0.424 −0.380 ⋅ ⋅ ⋅ −0.244 −0.217
𝛼
8
(𝑘) −0.529472 −0.476579 −0.426694 −0.382097 ⋅ ⋅ ⋅ −0.245037 −0.218253

𝛼
7
(𝑘) −0.532445 −0.479278 −0.429136 −0.384311 ⋅ ⋅ ⋅ −0.246548 −0.219624

𝛼
6
(𝑘) −0.538843 −0.485075 −0.434371 −0.389046 ⋅ ⋅ ⋅ −0.249751 −0.222525

𝛼
5
(𝑘) −0.551920 −0.496893 −0.445013 −0.398643 ⋅ ⋅ ⋅ −0.256153 −0.228299

𝛼
4
(𝑘) −0.576447 −0.518984 −0.464830 −0.416445 ⋅ ⋅ ⋅ −0.267835 −0.238790

𝛼
3
(𝑘) −0.617154 −0.555535 −0.497512 −0.445709 ⋅ ⋅ ⋅ −0.286810 −0.255788

𝛼
2
(𝑘) −0.677874 −0.610052 −0.546283 −0.489435 ⋅ ⋅ ⋅ −0.315694 −0.281933

𝛼
1
(𝑘) −0.783286 −0.704773 −0.631632 −0.567151 ⋅ ⋅ ⋅ −0.376223 −0.340584

𝛼
0
(𝑘) −1.000000 −1.000000 −1.000000 −1.000000 ⋅ ⋅ ⋅ −1.000000 −1.000000

Boundary value problem for the nonlinear delay differ-
ence equation with maxima (37)-(38) is from type (1)-(2),
where ℎ = 3, 𝑎 = 2, 𝑇 = 10, 𝑔(𝑢, V) = 𝑢 − 𝑢

2
+ 𝑒

V,
𝑓(𝑘, 𝑥, 𝑦, 𝑧) = 0.1875𝑥

2
/(𝑥
2
+ 16) − 0.05𝑦 − 0.05𝑧.

The functions 𝛼
0
(𝑘) = −1 and 𝛽

0
(𝑘) = 0.3, 𝑘 ∈ Z[0, 10]

form a couple of quasi lower and upper solutions of (37), (38),
respectively, because 0 ≥ (0.1875∗0.3

2
)/(0.3

2
+16)−0.3/20−

0.3/20 = −0.028951212, 0 ≤ 0.1875/(1
2
+ 16) + 0.05 + 0.05 =

0.111029, −1 − (−1)
2

+ 𝑒
0.3

= −0.65014119 ≤ 0, and 0.3 −

(0.3)
2

+ 𝑒
−1

= 0.5778794 ≥ 0.
Consider the function 𝑔(𝑢, V) = 𝑢 − 𝑢

2
+ 𝑒

V which is
increasing in V. Let 𝑢

1
, 𝑢
2
, V ∈ [−1, 0.3] : 𝑢

2
≤ 𝑢
1
. Then

𝑔(𝑢
1
, V) − 𝑔(𝑢

2
, V) = (1 − 𝑢

1
− 𝑢
2
)(𝑢
1
− 𝑢
2
) ≤ 3(𝑢

1
− 𝑢
2
); that

is, 𝛾 = 3 and the boundary condition (38) is of antiperiodic
type.

Let 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
, 𝑧
1
, 𝑧
2
∈ [−1, 0.3], 𝑥

1
≤ 𝑥
2
, 𝑦
1
≤ 𝑦
2
, 𝑧
1
≤

𝑧
2
. Then

𝑓 (𝑘, 𝑥
1
, 𝑦
1
, 𝑧
1
) − 𝑓 (𝑘, 𝑥

2
, 𝑦
2
, 𝑧
2
)

=

0.1875𝑥
2

1

𝑥
2

1
+ 16

−

0.1875𝑥
2

2

𝑥
2

2
+ 16

− 0.05 (𝑦
1
− 𝑦
2
) − 0.05 (𝑧

1
− 𝑧
2
)

=

3 (𝑥
1
− 𝑥
2
) (𝑥
1
+ 𝑥
2
)

(𝑥
2

1
+ 16) (𝑥

2

2
+ 16)

− 0.05 (𝑦
1
− 𝑦
2
) − 0.05 (𝑧

1
− 𝑧
2
)

≤

−6 (𝑥
1
− 𝑥
2
)

(𝑥
2

1
+ 16) (𝑥

2

2
+ 16)

− 0.05 (𝑦
1
− 𝑦
2
) − 0.05 (𝑧

1
− 𝑧
2
)

≤

−3 (𝑥
1
− 𝑥
2
)

128

− 0.05 (𝑦
1
− 𝑦
2
) − 0.05 (𝑧

1
− 𝑧
2
) ;

(40)

that is, 𝑞(𝑘) = 0.05, 𝐶(𝑘) = 0.05, and 𝑄(𝑘) = 3/128. Note
that the inequality (8) is satisfied because∑10

𝑙=3
(3/128+0.05+

0.05) = 0.9875 < 1.
According to Theorem 6 the nonlinear boundary value

problem (37)-(38) has a solution 𝑢(𝑘) ∈ [−1, 0.3], 𝑘 ∈

Z[0, 10]. We will obtain 𝑢(𝑘) as a limit of two sequences of
successive approximations.

The approximation 𝛼
𝑛
, 𝑛 = 1, 2, . . ., is a solution of the

initial value problem for the linear delay difference equation
with maxima (25) which is reduced to
𝛼
𝑛
(𝑘) = 𝛼

𝑛
(𝑘 − 1) − 0.0234375𝛼

𝑛
(𝑘) − 0.05 max

𝑠∈Z[𝑘−3,𝑘]
𝛼
𝑛
(𝑠)

− 0.05𝛼
𝑛
(𝜏 (𝑘)) + 𝑃 (𝛼

𝑛−1
(𝑘)) , 𝑘 ∈ Z [3, 10] ,

𝛼
𝑛
(0)=𝛼

𝑛
(1)=𝛼

𝑛
(2)=

2

3

𝛼
𝑛−1

(2) +

1

3

(𝛼
𝑛−1

(2))
2

−

1

3

𝑒
𝛽𝑛−1(10)

,

(41)
and the approximation 𝛽

𝑛
, 𝑛 = 1, 2, . . ., is a solution of IVP

(27) which is reduced to
𝛽
𝑛
(𝑘) = 𝛽

𝑛
(𝑘 − 1) − 0.0234375𝛽

𝑛
(𝑘) − 0.05 max

𝑠∈Z[𝑘−3,𝑘]
𝛽
𝑛
(𝑠)

− 0.05𝛽
𝑛
(𝜏 (𝑘)) + 𝑃 (𝛽

𝑛−1
(𝑘)) , 𝑘 ∈ Z [3, 10] ,

𝛽
𝑛
(0) = 𝛽

𝑛
(1) = 𝛽

𝑛
(2)

=

2

3

𝛽
𝑛−1

(2) +

1

3

(𝛽
𝑛−1

(2))
2

−

1

3

𝑒
𝛼𝑛−1(10)

,

(42)

where 𝑃(𝑢) = 0.1875𝑢
2
/(𝑢
2
+ 16) + 0.0234375𝑢.

The algorithm for solving linear problems (41) and (42)
is given in Section 4. It is computer realized, and some of the
results are given in Table 1.
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From Table 1 it could be seen that the sequence {𝛼
𝑛
} is

increasing and the sequence {𝛽
𝑛
} is decreasing and 𝛼

𝑛
(𝑘) ≤

𝛽
𝑛
(𝑘), 𝑘 = Z[0, 10]. The unknown exact solution 𝑢(𝑘) ∈

[𝛼
8
(𝑘), 𝛽
8
(𝑘)], 𝑘 ∈ Z[0, 10] and its approximate values are

written in Table 1.
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