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We examine the controllability problem for a class of neutral fractional integrodifferential equations with impulses and infinite
delay. More precisely, a set of sufficient conditions are derived for the exact controllability of nonlinear neutral impulsive fractional
functional equation with infinite delay. Further, as a corollary, approximate controllability result is discussed by assuming compa-
ctness conditions on solution operator.The results are established by using solution operator, fractional calculations, and fixed point
techniques. In particular, the controllability of nonlinear fractional control systems is established under the assumption that the
corresponding linear control system is controllable. Finally, an example is given to illustrate the obtained theory.

1. Introduction

Control theory is an area of application-oriented mathe-
matics which deals with the analysis and design of control
systems. In particular, the concept of controllability plays an
important role in various areas of science and engineering.
More precisely, the problem of controllability deals with the
existence of a control function, which steers the solution of
the system from its initial state to a final state, where the
initial and final states may vary over the entire space. Control
problems for various types of deterministic and stochastic
dynamical systems in infinite dimensional systems have been
studied in [1–6].

On the other hand, the impulsive differential systems
can be used to model processes which are subject to abrupt
changes, and which cannot be described by the classical
differential systems [7]. Moreover, impulsive control which
is based on the theory of impulsive equations, has gained
renewed interests due its promising applications towards
controlling systems exhibiting chaotic behavior. Therefore,
the controllability problem for impulsive differential and

integrodifferential systems in Banach spaces has been studied
extensively (see [8] and the references therein). Moreover,
fractional calculus has received great attention, because frac-
tional derivatives provide an excellent tool for the description
of memory and hereditary properties of various processes
[9]. Also, the study of fractional differential equations has
emerged as a new branch of applied mathematics, which
has been used for construction and analysis of mathematical
models in various fields of science and engineering [10].
Therefore, the problem of the existence of solutions for
various kinds of fractional differential systems has been
investigated in [11–13]. Very recently,Dabas andChauhan [14]
studied the existence, uniqueness, and continuous depen-
dence of mild solution for an impulsive neutral fractional
order differential equation with infinite delay by using the
fixed point technique and solution operator on a complex
Banach space.

Recently, many authors pay their attention to study
the controllability of fractional evolution systems [15, 16].
Wang and Zhou [17] investigated the complete controllability
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of fractional evolution systems without involving the com-
pactness of characteristic solution operators. Kumar and
Sukavanam [18] derived a new set of sufficient conditions
for the approximate controllability of a class of semilinear
delay control systems of fractional order by using contraction
principle and the Schauder fixed point theorem. Sakthivel
et al. [19] studied the controllability results for a class of
fractional neutral control systems with the help of semigroup
theory and fixed point argument. The minimum energy
control problem for infinite-dimensional fractional-discrete
time linear systems is discussed in [20]. Debbouche and
Baleanu [21] derived a set of sufficient conditions for the
controllability of a class of fractional evolution nonlocal
impulsive quasilinear delay integrodifferential systems by
using the theory of fractional calculus and fixed point
technique.

However, controllability of impulsive fractional inte-
grodifferential equations with infinite delay has not been
studied via the theory of solution operator. Motivated by this
consideration, in this paper, we investigate the exact control-
lability of a class of fractional order neutral integrodifferential
equations with impulses and infinite delay in the following
form:

𝐷
𝑞

𝑡
[𝑥 (𝑡) + 𝑔 (𝑡, 𝑥𝑡)] = 𝐴 [𝑥 (𝑡) + 𝑔 (𝑡, 𝑥𝑡)]

+ 𝐽
1−𝑞

𝑡
[𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥𝑡, 𝐻𝑥 (𝑡))] ,

𝑡 ∈ 𝐽 = [0, 𝑏] , 𝑡 ̸= 𝑡𝑘,

Δ𝑥 (𝑡𝑘) = 𝐼𝑘 (𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥0 = 𝜙 ∈Bℎ,

(1)

where 𝐷𝑞

𝑡
is the Caputo fractional derivative of order 𝑞, 0 <

𝑞 < 1; 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is an infinitesimal generator of
the solution operator, {𝑆𝑞(𝑡)}𝑡≥0 is defined on a Banach space
𝑋 with the norm ‖ ⋅ ‖𝑋; the control function 𝑢(⋅) is given in
𝐿
2
(𝐽, 𝑈), 𝑈 is a Banach space; 𝐵 is a bounded linear operator

from 𝑈 into 𝑋; the histories 𝑥𝑡 : (−∞, 0] → 𝑋 are defined
by 𝑥𝑡(𝜃) = 𝑥(𝑡 + 𝜃) belongs to an abstract phase space Bℎ

defined axiomatically, and 𝐼𝑘 : 𝑋 → 𝑋, 𝑘 = 1, 2, . . . , 𝑚 are
bounded functions. Also, the fixed times 𝑡𝑘 satisfy 0 ≤ 𝑡0 <
𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑚 < 𝑡𝑚+1 ≤ 𝑏, Δ𝑥(𝑡𝑘) = 𝑥(𝑡

+

𝑘
) − 𝑥(𝑡

−

𝑘
),

and 𝑥(𝑡+
𝑘
) = limℎ→0𝑥(𝑡𝑘 + ℎ) and 𝑥(𝑡

−

𝑘
) = limℎ→0𝑥(𝑡𝑘 − ℎ)

denote the right and left limits of 𝑥(𝑡) at 𝑡 = 𝑡𝑘, respectively.
Further, 𝑔 : 𝐽 × Bℎ → 𝑋, 𝑓 : 𝐽 × Bℎ × 𝑋 → 𝑋

are given functions; the term 𝐻𝑥(𝑡) is given by 𝐻𝑥(𝑡) =
∫
𝑡

0
𝐺(𝑡, 𝑠)𝑥(𝑠)𝑑𝑠, where 𝐺 ∈ 𝐶(𝐷, 𝑅+

) is the set of all positive
continuous functions on𝐷 = {(𝑡, 𝑠) ∈ 𝑅2

: 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏}.The
main aim of this paper is to obtain some suitable sufficient
conditions for the controllability results corresponding to
admissible control sets without assuming the semigroup is
compact. Further, we address the approximate controllability
issue for the considered fractional systems. In order to prove
the controllability results, we follow a technique similar to
that of [14, 19] with some necessary modifications.

2. Preliminaries

In this section, we will recall some basic definitions and
lemmas which will be used in this paper. Let 𝐿(𝑋) denote
the Banach space of bounded linear operators from 𝑋 into
𝑋 with the norm ‖ ⋅ ‖𝐿(𝑋). Let 𝐶(𝐽,𝑋) denote the space of all
continuous functions from 𝐽 into 𝑋 with the norm ‖𝑥‖ =

sup
𝑡∈𝐽
‖𝑥(𝑡)‖.

Now, we present the abstract space Bℎ [7]. Let ℎ :

(−∞, 0] → (0, +∞) be a continuous function with 𝑙 =
∫
0

−∞
ℎ(𝑡)𝑑𝑡 < +∞. For any 𝑎 > 0, define B = {𝜑 :

[−𝑎, 0] → 𝑋 such that 𝜑(𝑡) is bounded and measurable}
and equip the space B with the norm ‖𝜑‖

[−𝑎,0]
=

sup
𝑠∈[−𝑎,0]

‖𝜑(𝑠)‖, 𝜑 ∈ B. Further, define the space Bℎ =

{𝜑 : (−∞, 0] → 𝑋, for any 𝑐 > 0, 𝜑|[−𝑐,0] ∈ B with 𝜑(0) =
0 and∫0

−∞
ℎ(𝑠)‖𝜑‖

[𝑠,0]
𝑑𝑠 < +∞}. If Bℎ is endowed with the

norm ‖𝜑‖Bℎ = ∫
0

−∞
ℎ(𝑠)‖𝜑‖

[𝑠,0]
𝑑𝑠, 𝜑 ∈Bℎ, then (Bℎ, ‖ ⋅ ‖Bℎ

)

is a Banach space.
We assume that the phase space (Bℎ, ‖ ⋅ ‖Bℎ

) is a semi-
normed linear space of functions mapping (−∞, 0] into 𝑋
and satisfying the following fundamental axioms [22].

(A1) If 𝑥 : (−∞, 𝑏] → 𝑋, 𝑏 > 0, is continuous on 𝐽
and 𝑥0 ∈ Bℎ, then for every 𝑡 ∈ 𝐽, the following
conditions hold:

(i) 𝑥𝑡 ∈Bℎ,
(ii) ‖𝑥(𝑡)‖ ≤ 𝐿‖𝑥𝑡‖Bℎ ,
(iii) ‖𝑥𝑡‖Bℎ ≤ 𝐶1(𝑡)sup0≤𝑠≤𝑡‖𝑥(𝑠)‖ + 𝐶2(𝑡)‖𝑥0‖Bℎ

,
where 𝐿 > 0 is a constant; 𝐶1 : [0, 𝑏] → [0,∞)

is continuous, 𝐶2 : [0,∞) → [0,∞) is locally
bounded, and 𝐶1, 𝐶2 are independent of 𝑥(⋅).

(A2) For the function 𝑥(⋅) in (A1), 𝑥𝑡 is a Bℎ-valued
function on [0, 𝑏].

(A3) The spaceBℎ is complete.

Definition 1 (see [10]). The Caputo derivative of order 𝑞 for a
function 𝑓 : [0,∞) → 𝑅 can be written as

𝐷
𝑞

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝑞−1

𝑓
(𝑛)
(𝑠) 𝑑𝑠 = 𝐼

𝑛−𝑞
𝑓
𝑛
(𝑡) ,

(2)

for 𝑛 − 1 < 𝑞 < 𝑛, 𝑛 ∈ 𝑁. If 0 < 𝑞 ≤ 1, then

𝐷
𝑞

𝑡
𝑓 (𝑡) =

1

Γ (1 − 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
−𝑞
𝑓
(1)
(𝑠) 𝑑𝑠. (3)

The Laplace transform of the Caputo derivative of order 𝑞 > 0
is given as

𝐿 {𝐷
𝑞

𝑡
𝑓 (𝑡) : 𝜆} = 𝜆

𝑞
𝑓 (𝜆) −

𝑛−1

∑

𝑘=0

𝜆
𝑞−𝑘−1

𝑓
(𝑘)
(0) ;

𝑛 − 1 < 𝑞 < 𝑛.

(4)
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The Mittag-Leffler type function in two arguments is
defined by the series expansion

𝐸𝑞,𝑝 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑞𝑘 + 𝑝)
=
1

2𝜋𝑖
∫
𝐶

𝜇
𝑞−𝑝
𝑒
𝜇

𝜇𝑞 − 𝑧
𝑑𝜇,

𝑞, 𝑝 > 0, 𝑧 ∈ C,

(5)

where 𝐶 is a contour which starts and ends at −∞ and
encircles the disc ‖𝜇‖ ≤ |𝑧|1/2 counter clockwise. The Laplace
transform of the Mittag-Leffler function is given as follows:

∫

∞

0

𝑒
−𝜆𝑡
𝑡
𝑝−1
𝐸𝑞,𝑝 (𝜔𝑡

𝑞
) 𝑑𝑡 =

𝜆
𝑞−𝑝

𝜆𝑞 − 𝜔
,

Re 𝜆 > 𝜔1/𝑞
, 𝜔 > 0,

(6)

and for more details (see [14]).

Definition 2 (see [9]). A closed and linear operator 𝐴 is
said to be sectorial if there are constants 𝜔 ∈ 𝑅, 𝜃 ∈

[𝜋/2, 𝜋], and 𝑀 > 0, such that the following two conditions
are satisfied:

(i) 𝜌(𝐴) ⊂ ∑
(𝜃,𝜔)

= {𝜆 ∈ 𝐶 : 𝜆 ̸= 𝜔, |arg(𝜆 − 𝜔)| < 𝜃},

(ii) ‖𝑅(𝜆, 𝐴)‖𝐿(𝑋) ≤ 𝑀/|𝜆 − 𝜔|, 𝜆 ∈ ∑(𝜃,𝜔)
.

Definition 3 (see [11]). Let 𝐴 be a linear closed operator with
domain𝐷(𝐴) defined on𝑋. One can call𝐴 the generator of a
solution operator if there exist𝜔 ≥ 0 and strongly continuous
functions 𝑆𝑞 : R

+
→ 𝐿(𝑥) such that {𝜆𝑞 : Re 𝜆 > 𝜔} ⊂ 𝜌(𝐴)

and

𝜆
𝑞−1
(𝜆

𝑞
𝐼 − 𝐴)

−1
𝑥 = ∫

∞

0

𝑒
−𝜆𝑡
𝑆𝑞 (𝑡) 𝑥 𝑑𝑡,

Re 𝜆 > 𝜔, 𝑥 ∈ 𝑋.

(7)

In this case, 𝑆𝑞 is called the solution operator generated by𝐴.

Consider the space

B𝑏 = {𝑥 : (−∞, 𝑏] → 𝑋 such that 𝑥|𝐽𝑘 ∈ 𝐶 (𝐽𝑘, 𝑋)

and there exist 𝑥 (𝑡−
𝑘
) and 𝑥 (𝑡+

𝑘
)

with 𝑥 (𝑡𝑘) = 𝑥 (𝑡
−

𝑘
) , 𝑥0 = 𝜙 ∈Bℎ,

𝑘 = 0, 1, 2, . . . , 𝑚} ,

(8)

where 𝑥|𝐽𝑘 is the restriction of 𝑥 to 𝐽𝑘 = (𝑡𝑘, 𝑡𝑘+1], 𝑘 =

0, 1, 2 . . . , 𝑚. Let ‖ ⋅ ‖B𝑏 be a seminorm inB𝑏 defined by

‖𝑥‖B𝑏
= sup

𝑠∈𝐽

‖𝑥 (𝑠)‖ +
𝜙
Bℎ
, 𝑥 ∈B𝑏. (9)

Lemma 4 (see [14]). If the functions 𝑔 : 𝐽 × Bℎ → 𝑋,
𝑓 : 𝐽 ×Bℎ × 𝑋 → 𝑋 satisfy the uniform Hölder condition
with the exponent 𝛽 ∈ (0, 1] and 𝐴 is a sectorial operator, then

a piecewise continuously differentiable function 𝑥 ∈ B0

𝑏
is a

mild solution of

𝐷
𝑞

𝑡
[𝑥 (𝑡) + 𝑔 (𝑡, 𝑥𝑡)] = 𝐴 [𝑥 (𝑡) + 𝑔 (𝑡, 𝑥𝑡)]

+ 𝐽
1−𝑞

𝑡
𝑓 (𝑡, 𝑥𝑡, 𝐻𝑥 (𝑡)) ,

𝑡 ∈ 𝐽 = [0, 𝑏] , 𝑡 ̸= 𝑡𝑘,

Δ𝑥 (𝑡𝑘) = 𝐼𝑘 (𝑥 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥0 = 𝜙 ∈Bℎ,

(10)

if 𝑥 is a solution of the following fractional integral equation:
𝑥 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝜙 (𝑡) , 𝑡 ∈ (−∞, 0] ,

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑔 (𝑡, 𝑥𝑡)

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)]

+𝑆𝑞 (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡
−

1
))

+𝑆𝑞 (𝑡 − 𝑡1) [𝑔 (𝑡1, 𝑥𝑡1
+ 𝐼1 (𝑥𝑡−

1

))

−𝑔 (𝑡1, 𝑥𝑡1
)] − 𝑔 (𝑡, 𝑥𝑡)

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡1, 𝑡2] ,

...
𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)]

+

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) 𝐼𝑖 (𝑥 (𝑡
−

𝑖
))

+

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) [𝑔 (𝑡𝑖, 𝑥𝑡𝑖
+ 𝐼𝑖 (𝑥𝑡−

𝑖

))

− 𝑔 (𝑡𝑖, 𝑥𝑡𝑖
)] − 𝑔 (𝑡, 𝑥𝑡)

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡𝑚, 𝑏] ,

(11)
where 𝑆𝑞(𝑡) is the solution operator generated by 𝐴 given by

𝑆𝑞 (𝑡) = 𝐸𝑞,1 (𝐴𝑡
𝑞
) =

1

2𝜋𝑖
∫
𝐵𝑟

𝑒
𝜆𝑡 𝜆

𝑞−1

𝜆𝑞 − 𝐴
𝑑𝜆, (12)

where 𝐵𝑟 denotes the Bromwich path.

Let 𝑥𝑏(𝜙; 𝑢) be the state value of system (1) at terminal
time 𝑏 corresponding to the control 𝑢 and the initial value
𝜙 ∈ Bℎ. Introduce the set R(𝑏, 𝜙) = {𝑥𝑏(𝜙; 𝑢)(0) : 𝑢(⋅) ∈
𝐿
2
(𝐽, 𝑈)}, which is called the reachable set of system (1) at

terminal time 𝑏.

Definition 5. The fractional control system (1) is said to be
exactly controllable on the interval 𝐽 ifR(𝑏, 𝜙) = 𝑋.

Assume that the linear fractional differential control
system

𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + (𝐵𝑢) (𝑡) , 𝑡 ∈ [0, 𝑏] ,

𝑥 (0) = 𝜙 (0)

(13)
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is exactly controllable. It is convenient at this point to
introduce the controllability operator associated with (13) as

Γ
𝑏

0
= ∫

𝑏

0

𝑆𝑞 (𝑏 − 𝑠) 𝐵𝐵
∗
𝑆
∗

𝑞
(𝑏 − 𝑠) 𝑑𝑠, (14)

where 𝐵∗ denotes the adjoint of 𝐵, and 𝑆∗
𝑞
(𝑡) is the adjoint

of 𝑆𝑞(𝑡). It is straightforward that the operator Γ𝑏
0
is a linear

bounded operator [19].

Lemma 6. If the linear fractional system (13) is exactly
controllable if and only then for some 𝛾 > 0 such that ⟨Γ𝑏

0
𝑥, 𝑥⟩ ≥

𝛾‖𝑥‖
2, for all 𝑥 ∈ 𝑋 and consequently ‖(Γ𝑏

0
)
−1
‖ ≤ 1/𝛾.

In order to define the concept ofmild solution for the con-
trol problem (1), by comparison with the impulsive neutral
fractional equations given in [14], we associate problem (1) to
the integral equation

𝑥 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝜙 (𝑡) , 𝑡 ∈ (−∞, 0] ,

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑔 (𝑡, 𝑥𝑡)

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)]

+𝑆𝑞 (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡
−

1
))

+𝑆𝑞 (𝑡 − 𝑡1) [𝑔 (𝑡1, 𝑥𝑡1
+ 𝐼1 (𝑥𝑡−

1

))

−𝑔 (𝑡1, 𝑥𝑡1
)] − 𝑔 (𝑡, 𝑥𝑡)

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡1, 𝑡2] ,

...
𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)]

+

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) 𝐼𝑖 (𝑥 (𝑡
−

𝑖
))

+

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) [𝑔 (𝑡𝑖, 𝑥𝑡𝑖
+ 𝐼𝑖 (𝑥𝑡−

𝑖

))

−𝑔 (𝑡𝑖, 𝑥𝑡𝑖
)] − 𝑔 (𝑡, 𝑥𝑡)

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡𝑚, 𝑏] .

(15)

Definition 7. A function 𝑥 : (−∞, 𝑏] → 𝑋 is said to be
a mild solution for the system (1) if for each 𝑢 ∈ 𝐿2(𝐽, 𝑈),
𝑥0 = 𝜙 ∈ Bℎ on (−∞, 0]; Δ𝑥|𝑡=𝑡𝑘 = 𝐼𝑘(𝑥(𝑡

−

𝑘
)), 𝑘 = 1, . . . , 𝑚,

the restriction of 𝑥(⋅) to the interval [0, 𝑏) \ {𝑡1, . . . , 𝑡𝑚} is
continuous, and the integral equation (15) is satisfied.

3. Controllability Results

In this section, we formulate and prove a set of sufficient
conditions for the exact controllability of impulsive neutral
fractional control differential system (1) by using the solution
operator theory, fractional calculations, and fixed point
argument. To prove the controllability result, we need the
following hypotheses:

(H1) There exists a constant𝑀 > 0 such that


𝑆𝑞 (𝑡)

𝐿(𝑋)
≤ 𝑀, ∀𝑡 ∈ [0, 𝑏] . (16)

(H2) The function 𝑔 : 𝐽 × Bℎ → 𝑋 is continuous, and
there exists a constant 𝐿𝑔 > 0 such that

𝑔 (𝑡1, 𝜓1) − 𝑔 (𝑡2, 𝜓2)
𝑋
≤ 𝐿𝑔 (

𝑡1 − 𝑡2
 +
𝜓1 − 𝜓2

Bℎ
) ,

𝑡𝑖 ∈ 𝐽, 𝜓𝑖 ∈Bℎ, 𝑖 = 1, 2.

(17)

(H3) There exist constants 𝜇1 > 0 and 𝜇2 > 0 such that

𝑓 (𝑡, 𝜑, 𝑥) − 𝑓 (𝑡, 𝜓, 𝑦)
𝑋
≤ 𝜇1

𝜑 − 𝜓
Bℎ

+ 𝜇2
𝑥 − 𝑦

𝑋
,

𝑡 ∈ 𝐽, 𝜑, 𝜓 ∈Bℎ, 𝑥, 𝑦 ∈ 𝑋.

(18)

(H4) 𝐼𝑘 ∈ 𝐶(𝑋,𝑋), and there exist constants 𝜌 > 0 such
that

𝐼𝑘 (𝑥) − 𝐼𝑘 (𝑦)
𝑋
≤ 𝜌
𝑥 − 𝑦

𝑋
, 𝑥, 𝑦 ∈ 𝑋,

for each 𝑘 = 1, . . . , 𝑚.
(19)

(H5) The linear fractional system (13) is exactly control-
lable.

Theorem 8. Assume that the hypotheses (H1)–(H5) are sat-
isfied, then the fractional impulsive system (1) is exactly
controllable on 𝐽 provided that

�̂� = (1 +
1

𝛾
𝑀

2

𝐵
𝑀

2
) [𝑚𝑀𝜌 + 𝑚𝑀𝐿𝑔𝐶

∗

1
(2 + 𝜌)

+𝐿𝑔𝐶
∗

1
+𝑀𝑏 (𝜇1𝐶

∗

1
+ 𝜇2𝐻

∗
) ] < 1,

(20)

where 𝐶∗

1
= sup

0<𝜏<𝑏
𝐶1(𝜏) and 𝐻∗

= sup
𝑡∈[0,𝑏]

∫
𝑡

0
𝐺(𝑡, 𝑠)𝑑𝑠 <

∞.

Proof. For an arbitrary function 𝑥(⋅), choose the feedback
control function as follows:
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𝑢𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝐵
∗
𝑆
∗

𝑞
(𝑡1 − 𝑡) (Γ

𝑡1

0
)
−1

×[𝑥𝑡1
− 𝑆𝑞 (𝑡1) [𝜙 (0) + 𝑔 (0, 𝜙)] + 𝑔 (𝑡1, 𝑥𝑡1

) − ∫

𝑡1

0

𝑆𝑞 (𝑡1 − 𝑠) × 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠] , 𝑡 ∈ [0, 𝑡1] ,

𝐵
∗
𝑆
∗

𝑞
(𝑡2 − 𝑡) (Γ

𝑡2

0
)
−1

× [𝑥𝑡1
− 𝑆𝑞 (𝑡2) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑆𝑞 (𝑡2 − 𝑡1) 𝐼1 (𝑥 (𝑡

−

1
))

−𝑆𝑞 (𝑡2 − 𝑡1) [𝑔 (𝑡1, 𝑥𝑡1
+ 𝐼1 (𝑥𝑡−

1

)) − 𝑔 (𝑡1, 𝑥𝑡1
)] + 𝑔 (𝑡2, 𝑥𝑡2

) − ∫

𝑡2

0

𝑆𝑞 (𝑡2 − 𝑠) × 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠] , 𝑡 ∈ (𝑡1, 𝑡2] ,

...
𝐵
∗
𝑆
∗

𝑞
(𝑏 − 𝑡) (Γ

𝑏

0
)
−1

×[𝑥𝑏 − 𝑆𝑞 (𝑏) [𝜙 (0) + 𝑔 (0, 𝜙)] −

𝑚

∑

𝑖=1

𝑆𝑞 (𝑏 − 𝑡𝑖) 𝐼𝑖 (𝑥 (𝑡
−

𝑖
))

−

𝑚

∑

𝑖=1

𝑆𝑞 (𝑏 − 𝑡𝑖) [𝑔 (𝑡𝑖, 𝑥𝑡𝑖
+ 𝐼𝑖 (𝑥𝑡−

𝑖

)) −𝑔 (𝑡𝑖, 𝑥𝑡𝑖
)] + 𝑔 (𝑏, 𝑥𝑏)

−∫

𝑏

0

𝑆𝑞 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠] , 𝑡 ∈ (𝑡𝑚, 𝑏]

(21)

and define the operator Φ :B𝑏 → B𝑏 by

(Φ𝑥) (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝜙 (𝑡) , 𝑡 ∈ (−∞, 0] ,

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑔 (𝑡, 𝑥𝑡) + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑥 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] + 𝑆𝑞 (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡
−

1
)) + 𝑆𝑞 (𝑡 − 𝑡1) [𝑔 (𝑡1, 𝑥𝑡1

+ 𝐼1 (𝑥𝑡−
1

)) − 𝑔 (𝑡1, 𝑥𝑡1
)]

−𝑔 (𝑡, 𝑥𝑡) + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡1, 𝑡2] ,

...

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] +

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) 𝐼𝑖 (𝑥 (𝑡
−

𝑖
)) +

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) [𝑔 (𝑡𝑖, 𝑥𝑡𝑖
+ 𝐼𝑖 (𝑥𝑡−

𝑖

)) − 𝑔 (𝑡𝑖, 𝑥𝑡𝑖
)]

−𝑔 (𝑡, 𝑥𝑡) + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡𝑚, 𝑏] .

(22)

It should be noted that the control (21) transfers the system
(1) from the initial state 𝜙 to the final state 𝑥𝑏 provided that
the operator Φ has a fixed point. In order to prove the exact
controllability result, it is enough to show that the operatorΦ
has a fixed point inB𝑏.

Define the function 𝑦(⋅) : (−∞, 𝑏] → 𝑋 by

𝑦 (𝑡) = {
𝜙 (𝑡) , 𝑡 ∈ (−∞, 0] ,

0, 𝑡 ∈ [0, 𝑏] ,
(23)

then 𝑦0 = 𝜙. For each 𝑧 ∈ 𝐶(𝐽, 𝑅) with 𝑧(0) = 0, let the
function 𝑧 be defined by

𝑧 (𝑡) = {
0, 𝑡 ∈ (−∞, 0] ,

𝑧 (𝑡) , 𝑡 ∈ [0, 𝑏] .
(24)

If 𝑥(⋅) satisfies (15), then we can decompose 𝑥(⋅) as 𝑥(𝑡) =
𝑦(𝑡) + 𝑧(𝑡) for 𝑡 ∈ 𝐽, which implies that 𝑥𝑡 = 𝑦𝑡 + 𝑧𝑡 for 𝑡 ∈ 𝐽
and the function 𝑧(⋅) satisfies
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𝑧 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑔 (𝑡, 𝑦𝑡 + 𝑧𝑡)

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑦+𝑧 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) × 𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠))) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] + 𝑆𝑞 (𝑡 − 𝑡1) 𝐼1 (𝑦 (𝑡
−

1
) + 𝑧 (𝑡

−

1
)) + 𝑆𝑞 (𝑡 − 𝑡1)

× [𝑔 (𝑡1, 𝑦𝑡1
+ 𝑧𝑡1

+ 𝐼1 (𝑦𝑡−
1

+ 𝑧𝑡−
1

)) − 𝑔 (𝑡1, 𝑦𝑡1
+ 𝑧𝑡1

)] − 𝑔 (𝑡, 𝑦𝑡 + 𝑧𝑡)

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑦+𝑧 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠))) 𝑑𝑠, 𝑡 ∈ (𝑡1, 𝑡2] ,

...

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] +

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) 𝐼𝑖 (𝑦 (𝑡
−

𝑖
) + 𝑧 (𝑡

−

𝑖
))

+

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) [𝑔 (𝑡𝑖, 𝑦𝑡𝑖
+ 𝑧𝑡𝑖

+ 𝐼𝑖 (𝑦𝑡−
𝑖

+ 𝑧𝑡−
𝑖

)) − 𝑔 (𝑡𝑖, 𝑦𝑡𝑖
+ 𝑧𝑡𝑖

) − 𝑔 (𝑡, 𝑦𝑡 + 𝑧𝑡)]

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑦+𝑧 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠))) 𝑑𝑠, 𝑡 ∈ (𝑡𝑚, 𝑏] ,

(25)

where

𝑢𝑦+𝑧 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝐵
∗
𝑆
∗

𝑞
(𝑡1 − 𝑡) (Γ

𝑡1

0
)
−1

×[𝑥𝑡1
− 𝑆𝑞 (𝑡1) [𝜙 (0) + 𝑔 (0, 𝜙)] + 𝑔 (𝑡1, 𝑦𝑡1

+ 𝑧𝑡1
) − ∫

𝑡1

0

𝑆𝑞 (𝑡1 − 𝑠) 𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠)] , 𝑡 ∈ [0, 𝑡1] ,

𝐵
∗
𝑆
∗

𝑞
(𝑡2 − 𝑡) (Γ

𝑡2

0
)
−1

× [𝑥𝑡1
− 𝑆𝑞 (𝑡2) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑆𝑞 (𝑡2 − 𝑡1) 𝐼1 (𝑦 (𝑡

−

1
) + 𝑧 (𝑡

−

1
))

−𝑆𝑞 (𝑡2 − 𝑡1) [𝑔 (𝑡1, 𝑦𝑡1
+ 𝑧𝑡1

+ 𝐼1 (𝑦𝑡−
1

+ 𝑧𝑡−
1

)) − 𝑔 (𝑡1, 𝑦𝑡1
+ 𝑧𝑡1

)]

+𝑔 (𝑡2, 𝑦𝑡2
+ 𝑧𝑡2

) − ∫

𝑡2

0

𝑆𝑞 (𝑡2 − 𝑠) ×𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠))) 𝑑𝑠] , 𝑡 ∈ (𝑡1, 𝑡2] ,

...

𝐵
∗
𝑆
∗

𝑞
(𝑏 − 𝑡) (Γ

𝑏

0
)
−1

× [𝑥𝑏 − 𝑆𝑞 (𝑏) [𝜙 (0) + 𝑔 (0, 𝜙)] −

𝑚

∑

𝑖=1

𝑆𝑞 (𝑏 − 𝑡𝑖) 𝐼𝑖 (𝑦 (𝑡
−

𝑖
) + 𝑧 (𝑡

−

𝑖
))

−

𝑚

∑

𝑖=1

𝑆𝑞 (𝑏 − 𝑡𝑖) 𝑔 (𝑡𝑖, 𝑦𝑡𝑖
+ 𝑧𝑡𝑖

+ 𝐼𝑖 (𝑦𝑡−
𝑖

+ 𝑧𝑡−
𝑖

)) − 𝑔 (𝑡𝑖, 𝑦𝑡𝑖
+ 𝑧𝑡𝑖

) + 𝑔 (𝑏, 𝑦𝑏 + 𝑧𝑏)

−∫

𝑏

0

𝑆𝑞 (𝑏 − 𝑠) ×𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠))) 𝑑𝑠] , 𝑡 ∈ (𝑡𝑚, 𝑏] .

(26)

LetB0

𝑏
= {𝑧 ∈B𝑏 : 𝑧0 = 0 ∈Bℎ}. For any 𝑧 ∈B

0

𝑏
, we get

‖𝑧‖B0
𝑏

= sup
𝑠∈𝐽

‖𝑧(𝑠)‖𝑋 +
𝑧0
Bℎ

= sup
𝑠∈𝐽

‖𝑧(𝑠)‖𝑋, 𝑧 ∈B
0

𝑏
.

(27)

Thus, (B0

𝑏
, ‖ ⋅ ‖B0

𝑏

) is a Banach space. Define the operatorΠ :
B0

𝑏
→ B0

𝑏
by
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Π𝑧 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑔 (𝑡, 𝑦𝑡 + 𝑧𝑡) + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑦+𝑧 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠))) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] + 𝑆𝑞 (𝑡 − 𝑡1) 𝐼1 (𝑧 (𝑡
−

1
)) + 𝑆𝑞 (𝑡 − 𝑡1)

× [𝑔 (𝑡1, 𝑦𝑡1
+ 𝑧𝑡1

+ 𝐼1 (𝑦𝑡−
1

+ 𝑧𝑡−
1

)) − 𝑔 (𝑡1, 𝑦𝑡1
+ 𝑧𝑡1

)] − 𝑔 (𝑡, 𝑦𝑡 + 𝑧𝑡)

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑦+𝑧 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠)

×𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠))) 𝑑𝑠, 𝑡 ∈ (𝑡1, 𝑡2] ,

...

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] +

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) 𝐼𝑖 (𝑧 (𝑡
−

𝑖
))

+

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) [𝑔 (𝑡𝑖, 𝑦𝑡𝑖
+ 𝑧𝑡𝑖

+ 𝐼𝑖 (𝑦𝑡−
𝑖

+ 𝑧𝑡−
𝑖

)) − 𝑔 (𝑡𝑖, 𝑦𝑡𝑖
+ 𝑧𝑡𝑖

)]

−𝑔 (𝑡, 𝑦𝑡 + 𝑧𝑡) + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑦+𝑧 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠)

×𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠))) 𝑑𝑠, 𝑡 ∈ (𝑡𝑚, 𝑏] .

(28)

It can be easily seen that the operator Φ has a fixed point if
and only ifΠ has a fixed point. Now, we will prove thatΠ has
a unique fixed point. In order to prove this, we show thatΠ is
a contraction mapping. Let 𝑧, 𝑧∗ ∈ B0

𝑏
, for all 𝑡 ∈ [0, 𝑡1], we

have

(Π𝑧) (𝑡) − (Π𝑧
∗
) (𝑡)

𝑋

≤
𝑔 (𝑡, 𝑦𝑡 + 𝑧𝑡) − 𝑔 (𝑡, 𝑦𝑡 + 𝑧

∗

𝑡
)
𝑋

+ ∫

𝑡

0


𝑆𝑞 (𝑡 − 𝜂) 𝐵𝐵

∗
𝑆
∗

𝑞
(𝑡1 − 𝜂) (Γ

𝑡1

0
)
−1𝑋

× [

𝑔 (𝑡1, 𝑦𝑡1

+ 𝑧𝑡1
) − 𝑔 (𝑡1, 𝑦𝑡1

+ 𝑧
∗

𝑡1
)
𝑋

+ ∫

𝑡1

0


𝑆𝑞 (𝑡1 − 𝑠)

𝐿(𝑋)

×
𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠)))

− 𝑓 (𝑠, 𝑦𝑠 + 𝑧
∗

𝑠
,

𝐻 (𝑦 (𝑠) + 𝑧
∗
(𝑠)))

𝑋
𝑑𝑠] 𝑑𝜂

+ ∫

𝑡

0


𝑆𝑞 (𝑡 − 𝑠)

𝐿(𝑋)

×
𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠)))

−𝑓 (𝑠, 𝑦𝑠 + 𝑧
∗

𝑠
, 𝐻 (𝑦 (𝑠) + 𝑧

∗
(𝑠)))

𝑋
𝑑𝑠

≤ 𝐿𝑔

𝑧𝑡 − 𝑧
∗

𝑡

Bℎ

+
1

𝛾
𝑀

2

𝐵
𝑀

2
∫

𝑡

0

[𝐿𝑔

𝑧𝑡 − 𝑧
∗

𝑡

Bℎ

+𝑀∫

𝑡1

0

(𝜇1
𝑧𝑠 − 𝑧

∗

𝑠

Bℎ
+ 𝜇2

×
𝐻 (𝑦 (𝑠) − 𝑧 (𝑠))

− 𝐻 (𝑦 (𝑠)

−𝑧
∗
(𝑠))
𝑋
) 𝑑𝑠] 𝑑𝜂

+𝑀∫

𝑡1

0

(𝜇1
𝑧𝑠 − 𝑧

∗

𝑠

Bℎ
+ 𝜇2

𝐻 (𝑦 (𝑠) − 𝑧 (𝑠))

−𝐻(𝑦(𝑠) − 𝑧
∗
(𝑠))
𝑋
)𝑑𝑠

≤ (1 +
1

𝛾
𝑀

2

𝐵
𝑀

2
) [𝐿𝑔𝐶

∗

1
+𝑀𝑏 (𝜇1𝐶

∗

1
+ 𝜇2𝐻

∗
)]

×
𝑧 − 𝑧

∗B0
𝑏

.

(29)
Similarly, for 𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1], 𝑘 = 1, 2, . . . , 𝑚, we can obtain
(Π𝑧) (𝑡) − (Π𝑧

∗
) (𝑡)

𝑋

≤

𝑘

∑

𝑖=1


𝑆𝑞 (𝑡 − 𝑡𝑖)

𝐿(𝑥)

𝐼𝑖 (𝑧 (𝑡
−

𝑖
)) − 𝐼𝑖 (𝑧 (𝑡

−

𝑖
))
𝑋

+

𝑘

∑

𝑖=1


𝑆𝑞 (𝑡 − 𝑡𝑖)

𝐿(𝑋)

× [



𝑔 (𝑡𝑖, 𝑦𝑡𝑖
+ 𝑧𝑡𝑖

+ 𝐼𝑖 (𝑦𝑡−
𝑖

+ 𝑧𝑡−
𝑖

))

−𝑔 (𝑡𝑖, 𝑦𝑡𝑖
+ 𝑧

∗

𝑡𝑖
+ 𝐼𝑖 (𝑦𝑡−

𝑖

+ 𝑧
∗

𝑡
−

𝑖

))

𝑋
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+

𝑔 (𝑡𝑖, 𝑦𝑡𝑖

+ 𝑧𝑡𝑖
) − 𝑔 (𝑡𝑖, 𝑦𝑡𝑖

+ 𝑧
∗

𝑡𝑖
)
𝑋
]

+
𝑔 (𝑡, 𝑦𝑡 + 𝑧𝑡) − 𝑔 (𝑡, 𝑦𝑡 + 𝑧

∗

𝑡
)
𝑋

+ ∫

𝑡

0


𝑆𝑞 (𝑡 − 𝜂) 𝐵𝐵

∗
𝑆
∗

𝑞
(𝑡𝑘+1 − 𝜂)(Γ

𝑡1

0
)
−1𝑋

× [

𝑘

∑

𝑖=1


𝑆𝑞(𝑡𝑘+1 − 𝑡𝑖)

𝐿(𝑥)

𝐼𝑖(𝑧(𝑡
−

𝑖
)) − 𝐼𝑖(𝑧(𝑡

−

𝑖
))
𝑋

+

𝑘

∑

𝑖=1


𝑆𝑞 (𝑡𝑘+1 − 𝑡𝑖)

𝐿(𝑋)

× [

𝑔 (𝑡𝑖, 𝑦𝑡𝑖

+ 𝑧𝑡𝑖
+ 𝐼𝑖 (𝑦𝑡−

𝑖

+ 𝑧𝑡−
𝑖

))

−𝑔 (𝑡𝑖, 𝑦𝑡𝑖
+ 𝑧

∗

𝑡𝑖
+ 𝐼𝑖 (𝑦𝑡−

𝑖

+ 𝑧
∗

𝑡
−

𝑖

))
𝑋

+

𝑔 (𝑡𝑖, 𝑦𝑡𝑖

+ 𝑧𝑡𝑖
) − 𝑔 (𝑡𝑖, 𝑦𝑡𝑖

+ 𝑧
∗

𝑡𝑖
)
𝑋
]

+

𝑔 (𝑡𝑘+1, 𝑦𝑡𝑘+1

+ 𝑧𝑡𝑘+1
) − 𝑔 (𝑡𝑘+1, 𝑦𝑡𝑘+1

+ 𝑧
∗

𝑡𝑘+1
)
𝑋

+ ∫

𝑡𝑘+1

0


𝑆𝑞 (𝑡𝑘+1 − 𝑠)

𝐿(𝑋)

×
𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠)))

−𝑓(𝑠, 𝑦𝑠 + 𝑧
∗

𝑠
, 𝐻(𝑦(𝑠) + 𝑧

∗
(𝑠)))

𝑋
𝑑𝑠] 𝑑𝜂

+ ∫

𝑡

0


𝑆𝑞 (𝑡 − 𝑠)

𝐿(𝑋)

×
𝑓 (𝑠, 𝑦𝑠 + 𝑧𝑠, 𝐻 (𝑦 (𝑠) + 𝑧 (𝑠)))

−𝑓 (𝑠, 𝑦𝑠 + 𝑧
∗

𝑠
, 𝐻 (𝑦 (𝑠) + 𝑧

∗
(𝑠)))

𝑋
𝑑𝑠

≤ (1 +
1

𝛾
𝑀

2

𝐵
𝑀

2
) [𝑘𝑀𝜌 + 𝑘𝑀𝐿𝑔𝐶

∗

1
(2 + 𝜌) + 𝐿𝑔𝐶

∗

1

+𝑀𝑏 (𝜇1𝐶
∗

1
+ 𝜇2𝐻

∗
) ]
𝑧 − 𝑧

∗B0
𝑏

.

(30)

Thus, for all 𝑡 ∈ [0, 𝑏], we get the estimate

(Π𝑧)(𝑡) − (Π𝑧
∗
) (𝑡)

𝑋

≤ (1 +
1

𝛾
𝑀

2

𝐵
𝑀

2
) [𝑚𝑀𝜌 + 𝑚𝑀𝐿𝑔𝐶

∗

1
(2 + 𝜌) + 𝐿𝑔𝐶

∗

1

+𝑀𝑏 (𝜇1𝐶
∗

1
+ 𝜇2𝐻

∗
) ]
𝑧 − 𝑧

∗B0
𝑏

≤ �̂�
𝑧 − 𝑧

∗B0
𝑏

.

(31)

Thus, we have ‖(Π𝑧)(𝑡) − (Π𝑧∗)(𝑡)‖𝑋 ≤ �̂�‖𝑧 − 𝑧
∗
‖B0
𝑏

for all
𝑡 ∈ [0, 𝑏]. Since �̂� < 1, this implies that Π is a contraction
mapping, and hence, Π has a unique fixed point 𝑧 ∈ B0

𝑏
.

Thus, the system (1) is exactly controllable on [0, 𝑏].The proof
is complete.

However, the concept of exact controllability is very
limited for many dynamic control systems, and the app-
roximate controllability is more appropriate for these con-
trol systems instead of exact controllability. Taking this
into account, in this paper, we will also discuss the app-
roximate controllability result of the nonlinear impul-
sive fractional control system (1). The control system is
said to be approximately controllable if, for every initial
data 𝜙 and every finite time horizon 𝑏 > 0, an admis-
sible control process can be found such that the corr-
esponding solution is arbitrarily close to a given square
integrable final condition. Further, approximate controllable
systems are more prevalent, and often, approximate con-
trollability is completely adequate in applications. In rec-
ent years, for deterministic and stochastic control systems
including delay term, there are several papers devoted to
the study of approximate controllability [23–25]. Suka-
vanam and Kumar [26] obtained a set of conditions which
ensure the approximate controllability of a class of semi-
linear fractional delay control systems. Recently, Sakthivel
et al. [23] formulated and proved a new set of sufficient
conditions for approximate controllability of fractional dif-
ferential equations by using the fractional calculus theory and
solutions operators.

Definition 9. The fractional control system (1) is said to be
approximately controllable on [0, 𝑏] if the closure of the
reachable setR(𝑏, 𝜙) is dense in𝑋; that is,R(𝑏, 𝜙) = 𝑋.

Remark 10. Assume that the linear fractional control system

𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + (𝐵𝑢) (𝑡) , 𝑡 ∈ [0, 𝑏] ,

𝑥 (0) = 𝜙

(32)

is approximate controllable. Let us now introduce the oper-
ators associated with (32) as Γ𝑏

0
= ∫

𝑏

0
S𝑞(𝑏 − 𝑠)𝐵𝐵

∗S∗

𝑞
(𝑏 −

𝑠)𝑑𝑠, 𝑅(𝛼, Γ𝑏
0
) = (𝛼𝐼+Γ

𝑏

0
)
−1 for 𝛼 > 0. It should be mentioned

that the approximate controllability of (32) is equivalent to
the convergence of function 𝛼𝑅(𝛼, Γ𝑏

0
) to zero, as 𝛼 → 0

+

in the strong operator topology (see [23, 27] and references
therein).

Theorem 11. Assume that conditions (H1)–(H4) hold and that
the family {𝑆𝑞(𝑡) : 𝑡 > 0} is compact. In addition, assume
that the function 𝑓 is uniformly bounded and the linear system
associated with the system (1) is approximately controllable,
then the nonlinear fractional control system with infinite delay
(1) is approximately controllable on [0, b].

Proof. For each 𝛼 > 0, define the operatorΨ :B𝑏 → B𝑏 by
Ψ𝑥(𝑡) = 𝑧(𝑡), where
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𝑧 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝜙 (𝑡) , 𝑡 ∈ (−∞, 0] ,

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] − 𝑔 (𝑡, 𝑥𝑡) + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑥 (𝑠) 𝑑𝑠

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] + 𝑆𝑞 (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡
−

1
)) + 𝑆𝑞 (𝑡 − 𝑡1) [𝑔 (𝑡1, 𝑥𝑡1

+ 𝐼1 (𝑥𝑡−
1

)) − 𝑔 (𝑡1, 𝑥𝑡1
)]

−𝑔 (𝑡, 𝑥𝑡) + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡1, 𝑡2] ,

...

𝑆𝑞 (𝑡) [𝜙 (0) + 𝑔 (0, 𝜙)] +

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) 𝐼𝑖 (𝑥 (𝑡
−

𝑖
))

+

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) [𝑔 (𝑡𝑖, 𝑥𝑡𝑖
+ 𝐼𝑖 (𝑥𝑡−

𝑖

)) − 𝑔 (𝑡𝑖, 𝑥𝑡𝑖
)]

−𝑔 (𝑡, 𝑥𝑡) + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝐵𝑢𝑥 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡𝑚, 𝑏] ,

𝑢𝑥 (𝑡) =

{{{{{

{{{{{

{

𝐵
∗
𝑆
∗

𝑞
(𝑡1 − 𝑡) 𝑅 (𝛼, Γ

𝑡1

0
) 𝑝 (𝑥 (⋅)) , 𝑡 ∈ [0, 𝑡1] ,

𝐵
∗
𝑆
∗

𝑞
(𝑡2 − 𝑡) 𝑅 (𝛼, Γ

𝑡2
𝑡1
) 𝑝 (𝑥 (⋅)) , 𝑡 ∈ (𝑡1, 𝑡2] ,

...
𝐵
∗
𝑆
∗

𝑞
(𝑏 − 𝑡) 𝑅 (𝛼, Γ

𝑏

𝑡𝑚
) 𝑝 (𝑥 (⋅)) , 𝑡 ∈ (𝑡𝑚, 𝑏] ,

(33)

where

𝑝 (𝑥 (⋅))

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑥𝑡1
− 𝑆𝑞 (𝑡1) [𝜙 (0) + 𝑔 (0, 𝜙)] + 𝑔 (𝑡1, 𝑥𝑡1

)

−∫

𝑡1

0

𝑆𝑞 (𝑡1 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,

𝑥𝑡1
− 𝑆𝑞 (𝑡2) [𝜙 (0) + 𝑔 (0, 𝜙)]

−𝑆𝑞 (𝑡2 − 𝑡1) 𝐼1 (𝑥 (𝑡
−

1
))

−𝑆𝑞 (𝑡2 − 𝑡1) [𝑔 (𝑡1, 𝑥𝑡1
+ 𝐼1 (𝑥𝑡−

1

))

− 𝑔 (𝑡1, 𝑥𝑡1
)] + 𝑔 (𝑡2, 𝑥𝑡2

)

−∫

𝑡2

0

𝑆𝑞 (𝑡2 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡1, 𝑡2] ,

...
𝑥𝑏 − 𝑆𝑞 (𝑏) [𝜙 (0) + 𝑔 (0, 𝜙)]

−

𝑚

∑

𝑖=1

𝑆𝑞 (𝑏 − 𝑡𝑖) 𝐼𝑖 (𝑥 (𝑡
−

𝑖
))

−

𝑚

∑

𝑖=1

𝑆𝑞 (𝑏 − 𝑡𝑖) [𝑔 (𝑡𝑖, 𝑥𝑡𝑖
+ 𝐼𝑖 (𝑥𝑡−

𝑖

))

−𝑔 (𝑡𝑖, 𝑥𝑡𝑖
)] + 𝑔 (𝑏, 𝑥𝑏)

−∫

𝑏

0

𝑆𝑞 (𝑏 − 𝑠) 𝑓 (𝑠, 𝑥𝑠, 𝐻𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡𝑚, 𝑏] .

(34)

One can easily show that for all 𝛼 > 0, the operator Ψ has
a fixed point by employing the technique used in Theorem 8
with some changes.

Let 𝑥𝛼(⋅) be a fixed point of Ψ. Further, any fixed point of
Ψ is a mild solution of (1) under the control

�̂�
𝛼
(𝑡) =

{{{{{{

{{{{{{

{

𝐵
∗
𝑆
∗

𝑞
(𝑡1 − 𝑡) 𝑅 (𝛼, Γ

𝑡1

0
) 𝑝 (𝑥

𝛼
) , 𝑡 ∈ [0, 𝑡1] ,

𝐵
∗
𝑆
∗

𝑞
(𝑡2 − 𝑡) 𝑅 (𝛼, Γ

𝑡2

0
) 𝑝 (𝑥

𝛼
) , 𝑡 ∈ (𝑡1, 𝑡2] ,

...
𝐵
∗
𝑆
∗

𝑞
(𝑏 − 𝑡) 𝑅 (𝛼, Γ

𝑏

0
) 𝑝 (𝑥

𝛼
) , 𝑡 ∈ (𝑡𝑚, 𝑏]

(35)

and satisfies

𝑥
𝛼
(𝑡1) = 𝑥𝑡1

− 𝛼𝑅 (𝛼, Γ
𝑡1

0
) 𝑝 (𝑥

𝛼
) , 𝑡 ∈ [0, 𝑡1] ,

𝑥
𝛼
(𝑡2) = 𝑥𝑡2

− 𝛼𝑅 (𝛼, Γ
𝑡2

0
) 𝑝 (𝑥

𝛼
) , 𝑡 ∈ (𝑡1, 𝑡2] ,

...

𝑥
𝛼
(𝑏) = 𝑥𝑏 − 𝛼𝑅 (𝛼, Γ

𝑏

0
) 𝑝 (𝑥

𝛼
) , 𝑡 ∈ (𝑡𝑚, 𝑏] .

(36)

Moreover, by the assumption that 𝑓 is uniformly bounded,
there exists𝑁 > 0 such that

∫

𝑏

0

𝑓(𝑠, 𝑥
𝛼

𝑠
, 𝐻𝑥

𝛼
(𝑠))


2
𝑑𝑠 ≤ 𝑏𝑁

2
, (37)

and consequently, the sequence {𝑓(𝑠, 𝑥𝛼
𝑠
, 𝐻𝑥

𝛼
(𝑠))} is bounded

in 𝐿
2
(𝐽, 𝑋). Then, there is a subsequence still denoted
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by {𝑓(𝑠, 𝑥𝛼
𝑠
, 𝐻𝑥

𝛼
(𝑠))} that converges weakly to say 𝑓(𝑠) in

𝐿
2
(𝐽, 𝑋). Now, we define

𝑤

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑥𝑡1
− 𝑆𝑞 (𝑡1) [𝜙 (0) + 𝑔 (0, 𝜙)]

+𝑔 (𝑡1, 𝑥
𝛼

𝑡1
) − ∫

𝑡1

0

𝑆𝑞 (𝑡1 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,

𝑥𝑡1
− 𝑆𝑞 (𝑡2) [𝜙 (0) + 𝑔 (0, 𝜙)]

−𝑆𝑞 (𝑡2 − 𝑡1) 𝐼1 (𝑥
𝛼
(𝑡

−

1
))

−𝑆𝑞 (𝑡2 − 𝑡1) [𝑔 (𝑡1, 𝑥
𝛼

𝑡1
+ 𝐼1 (𝑥

𝛼

𝑡
−

1

))

−𝑔 (𝑡1, 𝑥
𝛼

𝑡1
)] + 𝑔 (𝑡2, 𝑥

𝛼

𝑡2
)

−∫

𝑡2

0

𝑆𝑞 (𝑡2 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ (𝑡1, 𝑡2] ,

...
𝑥𝑏 − 𝑆𝑞 (𝑏) [𝜙 (0) + 𝑔 (0, 𝜙)]

−

𝑚

∑

𝑖=1

𝑆𝑞 (𝑏 − 𝑡𝑖) 𝐼𝑖 (𝑥
𝛼
(𝑡

−

𝑖
))

−

𝑚

∑

𝑖=1

𝑆𝑞 (𝑏 − 𝑡𝑖) [𝑔 (𝑡𝑖, 𝑥
𝛼

𝑡𝑖
+ 𝐼𝑖 (𝑥

𝛼

𝑡
−

𝑖

))

−𝑔 (𝑡𝑖, 𝑥
𝛼

𝑡𝑖
)] + 𝑔 (𝑏, 𝑥

𝛼

𝑏
)

−∫

𝑏

0

𝑆𝑞 (𝑏 − 𝑠) 𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ (𝑡𝑚, 𝑏] .

(38)

Now, for 𝑡 ∈ [0, 𝑡1], we have
𝑝 (𝑥

𝛼
) − 𝑤



=



∫

𝑡1

0

𝑆𝑞 (𝑡1 − 𝑠) [𝑓 (𝑠, 𝑥
𝛼

𝑠
, 𝐻𝑥

𝛼
(𝑠)) − 𝑓 (𝑠)] 𝑑𝑠



≤ sup
𝑡∈[0,𝑡1]



∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥
𝛼

𝑠
, 𝐻𝑥

𝛼
(𝑠)) − 𝑓 (𝑠)] 𝑑𝑠



.

(39)

Also, for 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝑖 = 1, . . . , 𝑚, we have
𝑝 (𝑥

𝛼
) − 𝑤



=



∫

𝑡𝑖+1

0

𝑆𝑞 (𝑡𝑖+1 − 𝑠) [𝑓 (𝑠, 𝑥
𝛼

𝑠
, 𝐻𝑥

𝛼
(𝑠)) − 𝑓 (𝑠)] 𝑑𝑠



≤ sup
𝑡∈(𝑡𝑖 ,𝑡𝑖+1]



∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥
𝛼

𝑠
, 𝐻𝑥

𝛼
(𝑠)) − 𝑓 (𝑠)] 𝑑𝑠



.

(40)

By using infinite-dimensional version of the Ascoli-Arzela
theorem, it is easy to show that an operator 𝑙(⋅) → ∫

⋅

0
𝑆𝑞(⋅ −

𝑠)𝑙(𝑠)𝑑𝑠 : 𝐿
1
(𝐽, 𝑋) → 𝐶(𝐽,𝑋) is compact. Hence, for all

𝑡 ∈ [0, 𝑏], we obtain that ‖𝑝(𝑥𝛼) − 𝑤‖ → 0 as 𝛼 → 0
+.

Moreover, from (36) we get for 𝑡 ∈ [0, 𝑡1],

𝑥
𝛼
(𝑡1) − 𝑥𝑡1


≤

𝛼𝑅 (𝛼, Γ

𝑡1

0
) (𝑤)



+

𝛼𝑅 (𝛼, Γ

𝑡1

0
)


𝑝 (𝑥
𝛼
) − 𝑤



≤

𝛼𝑅 (𝛼, Γ

𝑡1

0
) (𝑤)


+
𝑝 (𝑥

𝛼
) − 𝑤

 .

(41)

It follows from Remark 10 and (39) that ‖𝑥𝛼(𝑡1) − 𝑥𝑡1‖ → 0

as 𝛼 → 0
+. Similarly, in the view of (40), for 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1],

𝑖 = 1, . . . , 𝑚,

𝑥
𝛼
(𝑡𝑖+1) − 𝑥𝑡𝑖+1


→ 0 as 𝛼 → 0

+
. (42)

Thus, for all 𝑡 ∈ [0, 𝑏], we get ‖𝑥𝛼(𝑏) − 𝑥𝑏‖ → 0 as 𝛼 → 0
+.

This proves the approximate controllability of (1). The proof
is completed.

Example 12. Now, we present an example to illustrate the
abstract results of this paper which do not aim at generality
but indicate how our theorem can be applied to concrete
problems. Let 𝑋 = 𝐿

2
[0, 𝜋]. Define 𝐴 : 𝑋 → 𝑋

by 𝐴𝑧 = 𝑧
 with domain 𝐷(𝐴) = {𝑧 ∈ 𝑋 :

𝑧, 𝑧
 are absolutely continuous, 𝑧 ∈ 𝑋, 𝑧(0) = 𝑧(𝜋) = 0}.

Then, 𝐴 generates an analytic semigroup {𝑇(𝑡), 𝑡 > 0} in 𝑋,
and it is given by [14]

𝑇 (𝑡) 𝑧 =

∞

∑

𝑛=1

𝑒
−𝑛
2
𝑡
(𝑧, 𝑒𝑛) 𝑒𝑛, 𝑧 ∈ 𝑋, (43)

where 𝑒𝑛(𝑦) = √2/𝜋 sin 𝑛𝑦, 𝑛 = 1, 2, 3, . . . is the orthogonal
set of eigenvectors of 𝐴. Also, define an infinite dimensional
control space 𝑈 by 𝑈 = {𝑢 | 𝑢 = ∑

∞

𝑛=2
𝑢𝑛𝑒𝑛 with ∑

∞

𝑛=2
𝑢
2

𝑛
<

∞} with norm defined by ‖𝑢‖𝑈 = (∑
∞

𝑛=2
𝑢
2

𝑛
)
1/2. Define a

continuous linear map 𝐵 from 𝑈 to 𝑋 as 𝐵𝑢 = 2𝑢2𝑒1 +

∑
∞

𝑛=2
𝑢𝑛𝑒𝑛 for 𝑢 = ∑

∞

𝑛=2
𝑢𝑛𝑒𝑛 ∈ 𝑈.

Note that the subordination principle of solution operator
implies that 𝐴 is the infinitesimal generator of a solution
operator {𝑆𝑞(𝑡)}𝑡≥0. Since 𝑆𝑞(𝑡) is strongly continuous on
[0,∞), by the uniformly bounded theorem, there exists a
constant𝑀 > 0 such that ‖𝑆𝑞(𝑡)‖𝐿(𝑋)

≤ 𝑀 for 𝑡 ∈ [0, 𝑏] [14].
Consider the following fractional partial integrodifferen-

tial equation with infinite delay and control in the following
form:

𝑐
𝐷

𝑞

𝑡
[𝑥 (𝑡, 𝑦) + ∫

𝑡

−∞

𝑎 (𝑡, 𝑦, 𝑠 − 𝑡) 𝑄1 (𝑥 (𝑠, 𝑦)) 𝑑𝑠]

=
𝜕
2

𝜕𝑦2
[𝑥 (𝑡, 𝑦) + ∫

𝑡

−∞

𝑎 (𝑡, 𝑦, 𝑠 − 𝑡) 𝑄1 (𝑥 (𝑠, 𝑦)) 𝑑𝑠]

+
1

Γ (1 − 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
−𝑞

× [𝜇 (𝑠, 𝑦) + ∫

𝑠

−∞

𝐾 (𝑠, 𝑥, 𝜉 − 𝑠)

×𝑄2 (𝑥 (𝜉, 𝑦)) 𝑑𝜉

+ ∫

𝑠

0

𝑔 (𝜉, 𝑠) 𝑒
−𝑥(𝜉,𝑦)

𝑑𝜉] 𝑑𝑠,

𝑡 ∈ 𝐽 = [0, 1] , 𝑦 ∈ [0, 𝜋] , 𝑡 ̸= 𝑡𝑘,

(44)

with 𝑥(𝑡, 0) = 𝑥(𝑡, 𝜋) = 0, 𝑥(𝑡, 𝑦) = 𝜙(𝑡, 𝑦), 𝑡 ∈ (−∞, 0], 𝑦 ∈
[0, 𝜋], Δ𝑥(𝑡𝑖)(𝑦) = ∫

𝑡𝑖

−∞
𝑞𝑖(𝑡𝑖 − 𝑠)𝑥(𝑠, 𝑦)𝑑𝑠, and 𝑦 ∈ [0, 𝜋],
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where 𝜕𝑞
𝑡
is the Caputo fractional partial derivative of order

0 < 𝑞 < 1; 𝜇 : [0, 1] × [0, 𝜋] → [0, 𝜋] is continuous and in
𝑡; 𝑞𝑖 : 𝑅 → 𝑅 are continuous; 0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑛 < 𝑏 are
prefixed numbers; and 𝜙 ∈Bℎ.

Let ℎ(𝑠) = 𝑒
2𝑠, 𝑠 < 0, then 𝑙 = ∫

0

∞
ℎ(𝑠)𝑑𝑠 = 1/2. Let

Bℎ be the phase space endowed with the norm ‖𝜑‖Bℎ
=

∫
0

−∞
ℎ(𝑠)sup

𝜃∈[𝑠,0]
‖𝜑(𝜃)‖

𝐿2
𝑑𝑠. Let 𝑥(𝑡)(𝑦) = 𝑥(𝑡, 𝑦), and define

the bounded linear operator 𝐵 : 𝑈 → 𝑋 by (𝐵𝑢)(𝑡)(𝑦) =
𝜇(𝑡, 𝑦), 0 ≤ 𝑦 ≤ 𝜋, 𝑔(𝑡, 𝜙)(𝑦) = ∫0

−∞
𝑎(𝑡, 𝑦, 𝜃)𝑄1(𝜙(𝜃)(𝑦))𝑑𝜃,

𝐼𝑘(𝑥(𝑡
−

𝑖
))(𝑦) = ∫

𝑡𝑖

−∞
𝑞𝑖(𝑡𝑖−𝑠)𝑥(𝑠, 𝑦)𝑑𝑠, and𝑓(𝑡, 𝜙,𝐻𝑥(𝑡))(𝑦) =

∫
0

−∞
𝐾(𝑡, 𝑦, 𝜃)𝑄2(𝜙(𝜃)(𝑦))𝑑𝜃 + 𝐻𝑥(𝑡)(𝑦), where 𝐻𝑥(𝑡)(𝑦) =

∫
𝑡

0
𝑔(𝑠, 𝑡)𝑒

−𝑥(𝑠,𝑦)
𝑑𝑠 and 𝜙(𝜃)(𝑦) = 𝜙(𝜃, 𝑦), (𝜃, 𝑦) ∈ (−∞, 0] ×

[0, 𝜋]. Moreover, the linear fractional control system corre-
sponding to (44) is exactly controllable. Further, if we impose
suitable conditions on 𝑎, 𝐾, 𝑄1, 𝑄2, 𝑔, 𝑞𝑖, and 𝐵 to verify
assumptions onTheorem 8, then the system (44) can be writ-
ten in the abstract form of (1).Therefore, all the conditions of
Theorem 8 are satisfied, and hence, the nonlinear fractional
control system (44) is exactly controllable on [0, 𝑏].
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