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We introduce and study a new notion of relatively A-maximal m-relaxed monotonicity framework and discuss some properties
of a new class of generalized relatively resolvent operator associated with the relatively A-maximal m-relaxed monotone operator
and the new generalized Yosida approximations based on relatively A-maximalm-relaxed monotonicity framework. Furthermore,
we give some remarks to show that the theory of the new generalized relatively resolvent operator and Yosida approximations
associated with relatively A-maximal m-relaxed monotone operators generalizes most of the existing notions on (relatively)
maximal monotone mappings in Hilbert as well as Banach space and can be applied to study variational inclusion problems and
first-order evolution equations as well as evolution inclusions.

1. Introduction

In order to generalize other existing results on linear conver-
gence, including Rockafellar’s theorem (1976) on linear con-
vergence using the proximal point algorithm in a real Hilbert
space setting, Verma [1] introduced a new application-
oriented notion of relatively 𝐴-maximal monotonicity (so-
called 𝐻-monotonicity in [2] when the relative monotone
operator is an identity operator) framework, and then it
was applied to the approximation solvability of the following
general class of inclusion problems:

0 ∈ 𝑀 (𝑥) , (1)

where 𝑀 : H → 2
H is a multivalued operator on a real

Hilbert space H. Furthermore, the author pointed out that
“More significantly our approach based on the relatively
maximal monotonicity works more smoothly even to the
maximal monotone mapping𝑀 and corresponding classical
resolvent of 𝑀 than that of the results readily available in
literature, and the general linear convergence results on the
generalized proximal point algorithm based on the relatively
maximalmonotonicity can further be applied to theory of the
Douglas-Rachford splitting methods as well as to first-order
evolution equations based of Yosida approximations.”

It seems that the obtained results can be applied to
even more relaxed proximal point algorithm, where the
Yosida approximation does have a more broader role to the
Douglas-Rachford splitting methods [3] and further to first-
order evolution equations based on the relatively maximal
monotonicity [4]. Let us begin with the result of Eckstein and
Bertsekas [3] on the Douglas-Rachford splitting method and
the relaxed proximal point algorithm for maximal monotone
mappings. For more details, we recommend [5, 6] and the
references therein.

The notion of monotone operators was introduced inde-
pendently by Zarantonello [7] andMinty [8]. Interest in such
mappings stems mainly from their firm connection with the
following first-order evolution equation:

𝑑𝑥

𝑑𝑡
= −𝑀(𝑥) , 𝑥 (0) = 𝑥

0
, (2)

which is themodel in terms ofmany physical problems.What
is most interesting and important of the accretive mapping
was mainly from the fact that problem (1) is solvable if𝑀 is
an accretive and locally Lipschitz single-valued operator in
an appropriate Banach space. Further, if H is a real Hilbert
space and𝑀 : dom(𝑀) ⊂ H → H is an operator such that
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𝑀 is monotone and𝑅(𝐼+𝑀) = H, then, based on the Yosida
approximation

𝑀
𝜌
=
1

𝜌
(𝐼 − (𝐼 + 𝜌𝑀)

−1
) , (3)

for each given 𝑥
0

∈ dom(𝑀), there exists exactly one
continuous function 𝑥 : [0, 1) → H such that the evolution
equation (1) holds for all 𝑡 ∈ (0,∞) (see [9]), where the
derivative 𝑑𝑥/𝑑𝑡 = 𝑥

󸀠
(𝑡) exists in the sense of weak conve-

rgence, that is,

𝑥 (𝑡 + ℎ) − 𝑥 (𝑡)

ℎ
⇀ 𝑥
󸀠
(𝑡) as ℎ 󳨀→ 0. (4)

Recently, several problems that arise in differential equa-
tions, for instance, elliptic boundary value problems whose
linear parts possess Green’s function, can be put in operator
form as

𝑥 + 𝐾𝐹 (𝑥) = 0, (5)

where 𝐾 and 𝐹 are monotone operators (see [10–14] and the
references therein for more information).

LetH be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
let 2H denote the family of all the nonempty subsets of H.
A multifunction 𝐺 : H → 2

H is said to be a monotone
operator if

⟨𝑥 − 𝑦, 𝑢 − V⟩ ≥ 0

whenever 𝑥, 𝑦 ∈ H, 𝑢 ∈ 𝐺 (𝑥) , V ∈ 𝐺 (𝑦) .
(6)

It is said to be maximal monotone if, in addition, the graph

Graph (𝐺) = {(𝑥, 𝑢) ∈ H ×H | 𝑢 ∈ 𝐺 (𝑥)} (7)

is not properly contained in the graph of any other monotone
operators.

Such operators have been studied extensively because of
their role in convex analysis, certain partial differential equa-
tions, and differential inclusions. A fundamental problem
is that of determining an element 𝑥 such that 0 ∈ 𝐺(𝑥),
which includes minimization or maximization of functions,
variational inequality problems, quasivariational inequality
problems,minimax problems, and decision andmanagement
sciences. Furthermore, general maximal monotonicity has
played a crucial role by providing a powerful framework
to develop and use suitable proximal point algorithms in
studying convex programming and variational inequalities
in the literature. See, for example, [1–16] and the references
therein.

Inspired and motivated by the research works going on
this field, the purpose of this paper is to introduce and
study a new notion of relatively𝐴-maximal𝑚-relaxedmono-
tonicity framework and discuss some properties of a new
class of generalized relatively resolvent operator associated
with the relatively 𝐴-maximal𝑚-relaxed monotone operator
and the new generalized Yosida approximations based on
relatively 𝐴-maximal 𝑚-relaxed monotonicity framework.
Furthermore, some remarks will be given to show that

the theory of the new generalized relatively resolvent operator
and Yosida approximations associated with relatively 𝐴-
maximal 𝑚-relaxed monotone operators generalizes most
of the existing notions on (relatively) maximal monotone
mappings in Hilbert as well as Banach space and can be
applied to study variational inclusion problems and first-
order evolution equations (inclusions).

2. Relatively 𝐴-Maximal
𝑚-Relaxed Monotonicity

Let H be a real Hilbert space endowed with a norm ‖ ⋅ ‖

and an inner product ⟨⋅, ⋅⟩, respectively, and let 2H denote the
family of all the nonempty subsets ofH.

In the sequel, let us recall some concepts and lemmas.

Definition 1. Let 𝐵 : H → H be a single-valued nonlinear
operator. Then operator 𝑓 : H → H is said to be

(i) 𝜉-strongly monotone if there exists a constant 𝜉 > 0

such that

⟨𝑓 (𝑥) − 𝑓 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝜉
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ H, (8)

(ii) 𝛼-strongly monotone with respect to 𝐵 if there exists
a constant 𝛼 > 0 such that

⟨𝑓 (𝑥) − 𝑓 (𝑦) , 𝐵 (𝑥) − 𝐵 (𝑦)⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ H,

(9)

(iii) cocoercive with respect to 𝐵 if

⟨𝑓 (𝑥) − 𝑓 (𝑦) , 𝐵 (𝑥) − 𝐵 (𝑦)⟩ ≥
󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)

󵄩󵄩󵄩󵄩

2
,

∀𝑥, 𝑦 ∈ H,

(10)

(iv) 𝑙-cocoercive with respect to𝐵 if there exists a constant
𝑙 > 0 such that

⟨𝑓 (𝑥) − 𝑓 (𝑦) , 𝐵 (𝑥) − 𝐵 (𝑦)⟩ ≥ 𝑙
󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)

󵄩󵄩󵄩󵄩

2
,

∀𝑥, 𝑦 ∈ H,

(11)

(v) 𝜇-Lipschitz continuous if there exists a constant 𝜇 > 0
such that
󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝜇
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ H; (12)

particularly, 𝑓 is called nonexpansive when 𝜇 = 1.

Example 2 (see [15]). Let 𝑇 : H → H be a nonexpansive
operator.Then 𝐼−𝑇 is 1/2-cocoercive with respect to 𝐼, where
𝐼 is the identity.

Definition 3. Let𝐻,𝐴, 𝐵 : H → H be single-valued opera-
tors. Then multivalued operator𝑀 : H → 2

H is said to be

(i) monotone with respect to 𝐵 if

⟨𝑢 − V, 𝐵 (𝑥) − 𝐵 (𝑦)⟩ ≥ 0, ∀ (𝑥, 𝑢) , (𝑦, V) ∈ Graph (𝑀) ,

(13)
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(ii) strictly monotone with respect to 𝐵 if𝑀 is monotone
with respect to 𝐵 and equality holds only if 𝑥 = 𝑦 for
all 𝑥, 𝑦 ∈ H,

(iii) 𝑟-strongly monotone with respect to 𝐵 if there exists
a constant 𝑟 > 0 such that

⟨𝑢 − V, 𝐵 (𝑥) − 𝐵 (𝑦)⟩ ≥ 𝑟󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
,

∀ (𝑥, 𝑢) , (𝑦, V) ∈ Graph (𝑀) ,

(14)

(iv) 𝑚-relaxed monotone with respect to 𝐵 if there exists
a constant𝑚 > 0 such that

⟨𝑢 − V, 𝐵 (𝑥) − 𝐵 (𝑦)⟩ ≥ −𝑚󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
,

∀ (𝑥, 𝑢) , (𝑦, V) ∈ Graph (𝑀) ,

(15)

(v) 𝑐-cocoercivewith respect to𝐵 if there exists a constant
𝑐 > 0 such that

⟨𝑢 − V, 𝐵 (𝑥) − 𝐵 (𝑦)⟩ ≥ 𝑐‖𝑢 − V‖2,

∀ (𝑥, 𝑢) , (𝑦, V) ∈ Graph (𝑀) ,

(16)

(vi) relatively maximal monotone with respect to 𝐵 if and
only if 𝑀 is monotone with respect to 𝐵 and 𝑅(𝐼 +
𝜌𝑀) = H for every 𝜌 > 0,

(vii) relatively𝐴-maximalmonotonewith respect to𝐵 if𝑀
is monotone with respect to 𝐵 and (𝐴+𝜌𝑀)(H) = H
for all 𝜌 > 0.

Example 4 (see [6]). (1) Let H = (−∞, +∞), 𝑀(𝑥) = −𝑥

and 𝐵(𝑥) = −(1/2)𝑥 for all 𝑥 ∈ H. Then 𝑀 is (relatively)
monotone with respect to 𝐵 but not monotone.

(2) Let H a real Hilbert space and 𝑀 : H → 2
H be a

maximalmonotone operator.Then the Yosida approximation
𝑀
𝜌
= 𝜌
−1
(𝐼 − 𝑅

𝑀

𝜌
) is relatively monotone with respect to the

resolvent operator 𝑅𝑀
𝜌
= (𝐼 + 𝜌𝑀)

−1.

Definition 5. Let 𝐴, 𝐵 : H → H be two single-valued
operators. Then multivalued operator𝑀 : H → 2

H is said
to be relatively𝐴-maximal𝑚-relaxed monotone with respect
to 𝐵 if

(a) 𝑀 is𝑚-relaxed monotone with respect to 𝐵,
(b) (𝐴 + 𝜌𝑀)(H) = H for all 𝜌 > 0.

This is equivalent to stating that 𝑀 is relatively 𝐴-
maximal 𝑚-relaxed monotone with respect to 𝐵 if 𝑀 is 𝑚-
relaxedmonotone with respect to 𝐵 and (𝐴+𝜌𝑀) is maximal
monotone.

Remark 6. Obviously, if 𝐵 = 𝐼, then the relatively𝐴-maximal
𝑚-relaxed monotonicity becomes the 𝐴-monotonicity (so-
called 𝐴-maximal 𝑚-relaxed monotonicity or 𝐴-maximal
relaxed monotonicity [16]) introduced and studied in [15].
Further, if𝑚 = 0, that is,𝑀 is relatively 0-relaxed monotone
(in fact, monotone with respect to 𝐵), then the relatively

𝐴-maximal 𝑚-relaxed monotonicity reduces to relatively 𝐴-
maximal monotonicity [1] (also referred to as 𝐻-maximal
monotonicity relative to 𝐻 in [5] where 𝐵 = 𝐴 = 𝐻 and𝑀
is a single-valued operator). Therefore, the class of relatively
𝐴-maximal𝑚-relaxedmonotone operators provides unifying
frameworks for classes of (relatively) maximal monotone
operators and (relatively) 𝐻-maximal monotone operators.
For details about these operators, we refer the reader to [1–
6, 9] and the references therein.

Theorem 7. Let H be a real Hilbert space, 𝐴 : H → H
an 𝑟-strongly monotone single-valued operator with respect to
𝐵 : H → H, and 𝑀 : H → 2

H a relatively 𝐴-maximal
𝑚-relaxed monotone operator with respect to 𝐵 with 𝑟 > 𝑚.
Then the operator (𝐴 + 𝜌𝑀)

−1 is single-valued for 𝜌 > 0.

Proof. For any element 𝑢 ∈ H, let 𝑥, 𝑦 ∈ (𝐴+𝜌𝑀)
−1
(𝑢).Then

we have 𝑢 − 𝐴(𝑥) ∈ 𝜌𝑀(𝑥) and 𝑢 − 𝐴(𝑦) ∈ 𝜌𝑀(𝑦). Since𝑀
is relatively 𝐴-maximal 𝑚-relaxed monotone with respect to
𝐵, we have

⟨𝑢 − 𝐴 (𝑥) − (𝑢 − 𝐴 (𝑦)) , 𝐵 (𝑥) − 𝐵 (𝑦)⟩ ≥ −𝑚
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
,

(17)

that is,

𝑟
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
≤ ⟨𝐴 (𝑥) − 𝐴 (𝑦) , 𝐵 (𝑥) − 𝐵 (𝑦)⟩ ≤ 𝑚

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
.

(18)

It follows that 𝑥 = 𝑦 for 𝑟 > 𝑚.

Remark 8. If 𝑚 = 0, that is,𝑀 is 0-relaxed monotone, then
we can obtain the same result that the operator (𝐴+𝜌𝑀)

−1 is
single valued for 𝜌 > 0. However, the strongly monotonicity
of 𝐵 is not used but is applied in Proposition 2.1 of [1].

Definition 9. Let H be a real Hilbert space, 𝐴 : H → H
an 𝑟-strongly monotone single-valued operator with respect
to 𝐵 : H → H, and 𝑀 : H → 2

H a relatively 𝐴-maxi-
mal𝑚-relaxed monotone operator with respect to 𝐵 with 𝑟 >
𝑚. Then the generalized relatively resolvent operator 𝐽𝐴,𝐵

𝜌,𝑀
:

H → H is defined by

𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥) = (𝐴 + 𝜌𝑀)

−1

(𝑥) , ∀𝑥 ∈ H. (19)

Theorem10. LetH be a realHilbert space, nonlinear operator,
𝐵 : H → H 𝛽-Lipschitz continuous, 𝐴 : H → H an 𝑟-
stronglymonotone single-valued operator with respect to𝐵, and
𝑀 : H → 2

H a relatively 𝐴-maximal 𝑚-relaxed monotone
operator with respect to 𝐵 with 𝑟 > 𝑚. Then the generalized
relatively resolvent operator associated with𝑀 is 𝛽/(𝑟 − 𝜌𝑚)-
Lipschitz continuous with positive constant 𝜌 < 𝑟/𝑚.

Proof. For any 𝑥, 𝑦 ∈ H, by the definition of the resolvent
operator 𝐽𝐴,𝐵

𝜌,𝑀
, we now know

𝜌
−1
(𝑥 − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑥))) ∈ 𝑀(𝐽

𝐴,𝐵

𝜌,𝑀
(𝑥)) ,

𝜌
−1
(𝑦 − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))) ∈ 𝑀(𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)) .

(20)
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Since𝑀 is𝑚-relaxed monotone with respect to 𝐵, we have

𝜌
−1
⟨𝑥 − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑥)) − (𝑦 − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))) ,

𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))⟩

≥ −𝑚
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

.

(21)

This implies

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ⋅ 𝛽

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)

󵄩󵄩󵄩󵄩󵄩

≥
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩󵄩
𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))

󵄩󵄩󵄩󵄩󵄩

≥ ⟨𝑥 − 𝑦, 𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))⟩

≥ ⟨𝐴 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)) ,

𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))⟩

− 𝜌𝑚
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

≥ (𝑟 − 𝜌𝑚)
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

,

(22)

and so

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)

󵄩󵄩󵄩󵄩󵄩
≤

𝛽

𝑟 − 𝜌𝑚

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (23)

where 𝜌 ∈ (0, 𝑟/𝑚) is a constant. This completes the proof.

Remark 11. (1) If𝐴,𝑀, andH are the same as inTheorem 10
and 𝐵 : H → H is a nonexpansive operator, then the
generalized relatively resolvent operator associated with𝑀 is
1/(𝑟 − 𝜌𝑚)-Lipschitz continuous with constant 𝜌 ∈ (0, 𝑟/𝑚).

(2) If 𝑚 = 0, 𝐴, 𝐵, and H are the same as in Theorem 10
and 𝑀 is a relatively 𝐴-maximal monotone operator with
respect to 𝐵, then the generalized resolvent operator asso-
ciated with 𝑀 and defined by 𝑅𝑀,𝐴

𝜌,𝐵
= (𝐴 + 𝜌𝑀)

−1 is 𝛽/𝑟-
Lipschitz continuous.

(3) Moreover, Theorem 10 reduces to Proposition 2.11 in
[5] when𝑚 = 0 and𝑀 is a single-valued operator and 𝐵 = 𝐴
is 𝑟-strongly monotone.

Lemma 12. An 𝛼-strongly monotone and 𝜇-Lipschtiz continu-
ous operator 𝑓 : H → H is 𝛼/𝜇2-cocoercive.

Proof. By the monotonicity and Lipschtiz continuity of 𝑓, we
have

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜇

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ H,

⟨𝑓 (𝑥) − 𝑓 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

≥
𝛼

𝜇2

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)
󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ H.

(24)

Theorem 13. Let H be a real Hilbert space, 𝐴 : H → H
an 𝑟-strongly monotone operator with respect to 𝐵 : H → H

and 𝜎-Lipschitz continuous, and 𝑀 : H → 2
H a relatively

𝐴-maximal 𝑚-relaxed monotone operator with respect to 𝐵
with 𝑟 > 𝑚. Then the generalized relatively resolvent operator
associated with𝑀 satisfies

⟨𝑥 − 𝑦, 𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))⟩

≥
𝑟

𝜎2

󵄩󵄩󵄩󵄩󵄩
𝐴 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))

󵄩󵄩󵄩󵄩󵄩

2

− 𝜌𝑚
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

.

(25)

Proof. By the definition of the resolvent operator 𝐽𝐴,𝐵
𝜌,𝑀

, we
now know, for any 𝑥, 𝑦 ∈ H,

𝜌
−1
(𝑥 − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑥))) ∈ 𝑀(𝐽

𝐴,𝐵

𝜌,𝑀
(𝑥)) ,

𝜌
−1
(𝑦 − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))) ∈ 𝑀(𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)) .

(26)

Since𝑀 is𝑚-relaxed monotone with respect to 𝐵, we have

𝜌
−1
⟨𝑥 − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑥)) − (𝑦 − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))) ,

𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))⟩

≥ −𝑚
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

.

(27)

It follows from Lemma 12 that

⟨𝑥 − 𝑦, 𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))⟩

≥ ⟨𝐴 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)) ,

𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))⟩

− 𝜌𝑚
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

≥
𝑟

𝜎2

󵄩󵄩󵄩󵄩󵄩
𝐴 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥)) − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦))

󵄩󵄩󵄩󵄩󵄩

2

− 𝜌𝑚
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝑥) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

.

(28)

Corollary 14. Let H be a real Hilbert space, 𝐴 : H → H
an 𝑟-strongly monotone operator with respect to 𝐵 : H → H

and 𝜎-Lipschtiz continuous, and 𝑀 : H → 2
H a relatively

𝐴-maximal monotone operator with respect to 𝐵. Then the
generalized relatively resolvent operator associated with𝑀 and
defined by

𝑅
𝑀,𝐴

𝜌,𝐵
= (𝐴 + 𝜌𝑀)

−1 (29)

satisfies

⟨𝑥 − 𝑦, 𝐵 (𝑅
𝑀,𝐴

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀,𝐴

𝜌,𝐵
(𝑦))⟩

≥
𝑟

𝜎2

󵄩󵄩󵄩󵄩󵄩
𝐴 (𝑅
𝑀,𝐴

𝜌,𝐵
(𝑥)) − 𝐴 (𝑅

𝑀,𝐴

𝜌,𝐵
(𝑦))

󵄩󵄩󵄩󵄩󵄩
.

(30)



Abstract and Applied Analysis 5

Corollary 15. LetH be a real Hilbert space, 𝐵 : H → H 𝑡-
strongly monotone and 𝛽-Lipschitz continuous, and𝑀 : H →

2
H a relatively maximal monotone operator with respect to 𝐵.
Then the relatively classical resolvent operator associated with
𝑀 and defined by

𝑅
𝑀

𝜌,𝐵
= (𝐼 + 𝜌𝑀)

−1 (31)

satisfies
⟨𝑥 − 𝑦, 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))⟩

≥
𝑡

𝛽2

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑅
𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))

󵄩󵄩󵄩󵄩󵄩
.

(32)

Proof. By the similar method as in Theorem 7, we can know
that the relatively classical resolvent operator 𝑅𝑀

𝜌,𝐵
is single

valued via the stronglymonotonicity of𝐵 (see, [1, Proposition
2.3]). It follows from the definition of the resolvent operator
𝑅
𝑀

𝜌,𝐵
that, for any 𝑥, 𝑦 ∈ H,

𝜌
−1
(𝑥 − 𝑅

𝑀

𝜌,𝐵
(𝑥)) ∈ 𝑀(𝑅

𝑀

𝜌,𝐵
(𝑥)) ,

𝜌
−1
(𝑦 − 𝑅

𝑀

𝜌,𝐵
(𝑦)) ∈ 𝑀(𝑅

𝑀

𝜌,𝐵
(𝑦)) .

(33)

Since𝑀 is monotone with respect to 𝐵, we have
𝜌
−1
⟨𝑥 − 𝑅

𝑀

𝜌,𝐵
(𝑥) − (𝑦 − 𝑅

𝑀

𝜌,𝐵
(𝑦)) ,

𝐵 (𝑅
𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))⟩ ≥ 0,

(34)

that is,
⟨𝑥 − 𝑦, 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))⟩

≥ ⟨𝑅
𝑀

𝜌,𝐵
(𝑥) − 𝑅

𝑀

𝜌,𝐵
(𝑦) , 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))⟩

≥
𝑡

𝛽2

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑅
𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))

󵄩󵄩󵄩󵄩󵄩
.

(35)

Remark 16. Corollaries 14 and 15 are improved Propositions
2.2 and 2.4 in [1], respectively. In deed, the strongly mono-
tonicity of 𝐵 in Corollary 14 is not used and the cocoercivity
is simplified in Corollaries 14 and 15.

3. Generalized Yosida Approximations

In this section, based on Theorems 10 and 13, we shall
introduce generalized Yosida approximation of relatively 𝐴-
maximal𝑚-relaxed operator and give some properties of the
generalized Yosida approximation.

Definition 17. Let H be a real Hilbert space, 𝐴 : H → H

an 𝑟-strongly monotone operator with respect to 𝐵 : H →

H, and 𝑀 : H → 2
H a relatively 𝐴-maximal 𝑚-relaxed

monotone operator with respect to 𝐵 with 𝑟 > 𝑚. Then the
generalizedYosida approximation𝑀𝐴,𝐵

𝜌,𝑚
of relativelymaximal

𝑚-relaxed monotone operator𝑀 with respect to 𝐵 is defined
by

𝑀
𝐴,𝐵

𝜌,𝑚
= 𝜌
−1
(𝐴 − 𝐵 ∘ 𝐽

𝐴,𝐵

𝜌,𝑀
∘ 𝐴) , (36)

where 𝐽𝐴,𝐵
𝜌,𝑀

= (𝐴+𝜌𝑀)
−1 is the generalized resolvent operator

associated with relatively 𝐴-maximal 𝑚-relaxed monotone
operator𝑀 with respect to 𝐵.

Definition 18. Let H be a real Hilbert space, 𝐴 : H → H
an 𝑟-strongly monotone single-valued operator with respect
to 𝐵 : H → H, and𝑀 : H → 2

H a relatively 𝐴-maximal
monotone operator with respect to 𝐵. Then the generalized
Yosida approximation𝑀𝐴

𝜌,𝐵
of relatively maximal monotone

operator𝑀 with respect to 𝐵 is defined by

𝑀
𝐴

𝜌,𝐵
= 𝜌
−1
(𝐴 − 𝐵 ∘ 𝑅

𝑀,𝐴

𝜌,𝐵
∘ 𝐴) , (37)

where 𝑅𝑀,𝐴
𝜌,𝐵

= (𝐴 + 𝜌𝑀)
−1 is the generalized resolvent oper-

ator associatedwith relatively𝐴-maximalmonotone operator
𝑀 with respect to 𝐵.

Definition 19. LetH be a real Hilbert space, 𝐵 : H → H t-
strongly monotone, and𝑀 : H → 2

H a relatively maximal
monotone operator with respect to 𝐵. Then the Yosida
approximation of relatively maximal monotone operator 𝑀
with respect to 𝐵 is defined by

𝑀
𝜌,𝐵

= 𝜌
−1
(𝐼 − 𝐵 ∘ 𝑅

𝑀

𝜌,𝐵
) , (38)

where 𝑅𝑀
𝜌,𝐵

= (𝐼 + 𝜌𝑀)
−1 is the relatively classical resolvent

operator associated with relatively maximal monotone oper-
ator𝑀 with respect to 𝐵.

Based on definition of generalized Yosida approximation
and Theorem 10, now we give some property of the general-
ized Yosida approximation.

Theorem20. LetH be a realHilbert space, nonlinear operator
𝐵 : H → H 𝛽-Lipschtiz continuous, 𝐴 : H → H an 𝑟-
strongly monotone operator with respect to 𝐵 and 𝜎-Lipschtiz
continuous, and 𝑀 : H → 2

H relatively 𝐴-maximal 𝑚-
relaxed monotone with respect to 𝐵 with 𝑟 > 𝑚. Then the
generalized Yosida approximation 𝑀

𝐴,𝐵

𝜌,𝑚
of 𝑀 is (𝜎/𝜌)(1 +

𝛽
2
/(𝑟−𝜌𝑚))-Lipschitz continuous, where 𝜌 < 𝑟/𝑚 is a positive

constant.

Proof. For any 𝑥, 𝑦 ∈ H, it follows fromTheorem 10 that we
have

󵄩󵄩󵄩󵄩󵄩
𝑀
𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦)

󵄩󵄩󵄩󵄩󵄩

= 𝜌
−1 󵄩󵄩󵄩󵄩󵄩

[𝐴 (𝑥) − 𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥)))]

− [𝐴 (𝑦) − 𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))]

󵄩󵄩󵄩󵄩󵄩

≤ 𝜌
−1
[
󵄩󵄩󵄩󵄩𝐴 (𝑥) − 𝐴 (𝑦)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩
]

≤ 𝜌
−1
[𝜎
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + 𝛽
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥)) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦))

󵄩󵄩󵄩󵄩󵄩
]
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≤ 𝜌
−1
[𝜎

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 +

𝛽
2

𝑟 − 𝜌𝑚

󵄩󵄩󵄩󵄩𝐴 (𝑥) − 𝐴 (𝑦)
󵄩󵄩󵄩󵄩]

≤ 𝜌
−1
𝜎(1 +

𝛽
2

𝑟 − 𝜌𝑚
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(39)

From Theorem 20 and (2) of Remark 11, we have the
following results.

Corollary 21. LetH be a real Hilbert space, 𝐵 : H → H 𝛽-
Lipschtiz continuous, 𝐴 : H → H an 𝑟-strongly monotone
operator with respect to 𝐵 and 𝜎-Lipschtiz continuous, and
𝑀 : H → 2

H relatively 𝐴-maximal monotone with respect
to 𝐵. Then the generalized Yosida approximation𝑀𝐴

𝜌,𝐵
of𝑀 is

(𝜎/𝜌)(1 + 𝛽
2
/𝑟)-Lipschitz continuous.

Corollary 22. LetH be a real Hilbert space, 𝐵 : H → H t-
strongly monotone and 𝛽-Lipschtiz continuous, and𝑀 : H →

2
H be relatively maximal monotone with respect to 𝐵. Then
the Yosida approximation𝑀

𝜌,𝐵
of𝑀 is 𝜌−1(1+𝛽2/𝑡)-Lipschitz

continuous.

Proof. For any 𝑥, 𝑦 ∈ H, it follows from the definition of the
resolvent operator 𝑅𝑀

𝜌,𝐵
that

𝜌
−1
(𝑥 − 𝑅

𝑀

𝜌,𝐵
(𝑥)) ∈ 𝑀(𝑅

𝑀

𝜌,𝐵
(𝑥)) ,

𝜌
−1
(𝑦 − 𝑅

𝑀

𝜌,𝐵
(𝑦)) ∈ 𝑀(𝑅

𝑀

𝜌,𝐵
(𝑦)) .

(40)

Since𝑀 is monotone with respect to 𝐵, we have

𝜌
−1
⟨𝑥 − 𝑅

𝑀

𝜌,𝐵
(𝑥) − (𝑦 − 𝑅

𝑀

𝜌,𝐵
(𝑦)) ,

𝐵 (𝑅
𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))⟩ ≥ 0.

(41)

That is

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ⋅ 𝛽

󵄩󵄩󵄩󵄩󵄩
𝑅
𝑀

𝜌,𝐵
(𝑥) − 𝑅

𝑀

𝜌,𝐵
(𝑦)

󵄩󵄩󵄩󵄩󵄩

≥
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑅
𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))

󵄩󵄩󵄩󵄩󵄩

≥ ⟨𝑥 − 𝑦, 𝐵 (𝑅
𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))⟩

≥ ⟨𝑅
𝑀

𝜌,𝐵
(𝑥) − 𝑅

𝑀

𝜌,𝐵
(𝑦) , 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))⟩

≥ 𝑡
󵄩󵄩󵄩󵄩󵄩
𝑅
𝑀

𝜌,𝐵
(𝑥) − 𝑅

𝑀

𝜌,𝐵
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

.

(42)

Thus, the rest of proof can be obtained from the proof of
Theorem 20 and it is omitted.

Theorem 23. Let H be a real Hilbert space, 𝐴 : H →

H an 𝑟-strongly monotone operator with respect to nonlinear
operator 𝐵 : H → H and 𝜎-Lipschtiz continuous, and

𝑀 : H → 2
H relatively 𝐴-maximal 𝑚-relaxed monotone

with respect to 𝐵 with 𝑟 > 𝑚. Then for all 𝑥, 𝑦 ∈ H, we have

⟨𝑀
𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦) , 𝐴 (𝑥) − 𝐴 (𝑦)⟩

≥ 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑀
𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

+
𝑟

𝜌𝜎2

󵄩󵄩󵄩󵄩󵄩
𝐴 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

− 𝑚
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥)) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦))

󵄩󵄩󵄩󵄩󵄩

2

−
1

𝜌

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

2

,

(43)

where𝑀𝐴,𝐵
𝜌,𝑚

= 𝜌
−1
(𝐴 − 𝐵 ∘ 𝐽

𝐴,𝐵

𝜌,𝑀
∘ 𝐴) is the generalized Yosida

approximation of relatively 𝐴-maximal 𝑚-relaxed monotone
operator𝑀 with respect to 𝐵 for 𝐽𝐴,𝐵

𝜌,𝑀
= (𝐴 + 𝜌𝑀)

−1 and

⟨𝑀
𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦) , 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥)))

− 𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))⟩

≥
𝑟

𝜌𝜎2

󵄩󵄩󵄩󵄩󵄩
𝐴 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

−
1

𝜌

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

2

− 𝑚
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥)) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦))

󵄩󵄩󵄩󵄩󵄩

2

.

(44)

Proof. From Lemma 12 andTheorem 13 that, we get

⟨𝐴 (𝑥) − 𝐴 (𝑦) , 𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))⟩

≥
𝑟

𝜎2

󵄩󵄩󵄩󵄩󵄩
𝐴 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

− 𝜌𝑚
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥)) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦))

󵄩󵄩󵄩󵄩󵄩

2

,

⟨𝑀
𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦) , 𝐴 (𝑥) − 𝐴 (𝑦)⟩

= ⟨𝑀
𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦) , 𝜌 [𝑀

𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦)]

+ [𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))]⟩

= 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑀
𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

+ ⟨𝑀
𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦) , 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥)))

−𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))⟩

= 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑀
𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜌
−1
⟨𝐴 (𝑥) − 𝐴 (𝑦) , 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥)))

−𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))⟩
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− 𝜌
−1
⟨𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦))) ,

𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))⟩

≥ 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑀
𝐴,𝐵

𝜌,𝑚
(𝑥) − 𝑀

𝐴,𝐵

𝜌,𝑚
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

+
𝑟

𝜌𝜎2

󵄩󵄩󵄩󵄩󵄩
𝐴 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐴 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

− 𝑚
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥)) − 𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦))

󵄩󵄩󵄩󵄩󵄩

2

−
1

𝜌

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝐽
𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑥))) − 𝐵 (𝐽

𝐴,𝐵

𝜌,𝑀
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

2

.

(45)

Remark 24. If 𝐵 is 𝛽-Lipschtiz continuous, 𝐴,𝑀, andH are
the same as inTheorem 20, and positive constant 𝜌 ∈ (0, (𝑟2−
𝜎
2
𝛽
2
)/𝑚𝛽𝜎

2
], then it is easy to see that𝑀𝐴,𝐵

𝜌,𝑚
is 𝜎/𝜌-Lipschitz

continuous, which is more application-enhanced than that of
(𝜎/𝜌)(1 + 𝛽

2
/(𝑟 − 𝜌𝑚)) in Theorem 20.

FromTheorem 23 and Corollaries 14 and 15, we have the
following results.

Corollary 25. LetH be a real Hilbert space, 𝐴 : H → H 𝑟-
stronglymonotone with respect to nonlinear operator𝐵 : H →

H and 𝜎-Lipschitz continuous, and𝑀 : H → 2
H relatively

𝐴-maximal monotone with respect to 𝐵. Then for all 𝑥, 𝑦 ∈ H,
we have

⟨𝑀
𝐴

𝜌,𝐵
(𝑥) − 𝑀

𝐴

𝜌,𝐵
(𝑦) , 𝐴 (𝑥) − 𝐴 (𝑦)⟩

≥ 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑀
𝐴

𝜌,𝐵
(𝑥) − 𝑀

𝐴

𝜌,𝐵
(𝑦)

󵄩󵄩󵄩󵄩󵄩

2

+
𝑟

𝜌𝜎2

󵄩󵄩󵄩󵄩󵄩
𝐴 (𝑅
𝑀,𝐴

𝜌,𝐵
(𝐴 (𝑥))) − 𝐴 (𝑅

𝑀,𝐴

𝜌,𝐵
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

−
1

𝜌

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑅
𝑀,𝐴

𝜌,𝐵
(𝐴 (𝑥))) − 𝐵 (𝑅

𝑀,𝐴

𝜌,𝐵
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

2

,

(46)

where𝑀𝐴
𝜌,𝐵

= 𝜌
−1
(𝐴 − 𝐵 ∘ 𝑅

𝑀,𝐴

𝜌,𝐵
∘ 𝐴) is the generalized Yosida

approximation of relatively 𝐴-maximal monotone operator𝑀
with respect to 𝐵 for 𝑅𝑀,𝐴

𝜌,𝐵
= (𝐴 + 𝜌𝑀)

−1 and

⟨𝑀
𝐴

𝜌,𝐵
(𝑥)−𝑀

𝐴

𝜌,𝐵
(𝑦) , 𝐵 (𝑅

𝑀,𝐴

𝜌,𝐵
(𝐴 (𝑥)))−𝐵 (𝑅

𝑀,𝐴

𝜌,𝐵
(𝐴 (𝑦)))⟩

≥
𝑟

𝜌𝜎2

󵄩󵄩󵄩󵄩󵄩
𝐴 (𝑅
𝑀,𝐴

𝜌,𝐵
(𝐴 (𝑥))) − 𝐴 (𝑅

𝑀,𝐴

𝜌,𝐵
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

−
1

𝜌

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑅
𝑀,𝐴

𝜌,𝐵
(𝐴 (𝑥))) − 𝐵 (𝑅

𝑀,𝐴

𝜌,𝐵
(𝐴 (𝑦)))

󵄩󵄩󵄩󵄩󵄩

2

.

(47)

Remark 26. If 𝑀 is a single-valued operator, 𝐵 = 𝐴 is 𝑟-
strongly monotone and 𝜎-Lipschtiz continuous, and 𝑟 = 𝜎

2,
that is, 𝐴 is cocoercive, then Corollary 25 is equivalent to
Proposition 3.3 in [5] without the condition that “𝐴∘𝑅𝑀,𝐴

𝜌,𝐴
∘𝐴

is cocoercive with respect to 𝐴,” where 𝑅𝑀,𝐴
𝜌,𝐴

= (𝐴 + 𝜌𝑀)
−1.

Corollary 27. LetH be a real Hilbert space, 𝐵 : H → H t-
strongly monotone and 𝛽-Lipschtiz continuous, and𝑀 : H →

2
H relatively maximal monotone with respect to 𝐵. Then for all
𝑥, 𝑦 ∈ H, we have

⟨𝑀
𝜌,𝐵

(𝑥) − 𝑀
𝜌,𝐵

(𝑦) , 𝑥 − 𝑦⟩

≥ 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑀
𝜌,𝐵 (𝑥) − 𝑀𝜌,𝐵 (𝑦)

󵄩󵄩󵄩󵄩󵄩

2

+
𝑡 − 𝛽
2

𝜌𝛽2

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑅
𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))

󵄩󵄩󵄩󵄩󵄩

2

,

(48)

where𝑀
𝜌,𝐵

= 𝜌
−1
(𝐼 − 𝐵 ∘ 𝑅

𝑀

𝜌,𝐵
) is the Yosida approximation of

relatively maximal monotone operator𝑀 with respect to 𝐵 for
𝑅
𝑀

𝜌,𝐵
= (𝐼 + 𝜌𝑀)

−1 and

⟨𝑀
𝜌,𝐵

(𝑥) − 𝑀
𝜌,𝐵

(𝑦) , 𝐵 (𝑅
𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))⟩

≥
𝑡 − 𝛽
2

𝜌𝛽2

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑅
𝑀

𝜌,𝐵
(𝑥)) − 𝐵 (𝑅

𝑀

𝜌,𝐵
(𝑦))

󵄩󵄩󵄩󵄩󵄩

2

.

(49)

Remark 28. (1) If 𝐵 = 𝐼 and 𝑡 = 𝛽 = 1 in Corollary 27, then
we have the classical theory of maximal monotone operators.
This is equivalent to stating that Corollary 27 represents a
generalization to (2) of Example 4. This would also clarify
the notational as well as theoretical differences between the
classical resolvent and relatively classical resolvent.

(2) From Corollary 27, we know that if 𝛽2 ≤ 𝑡 ≤ 𝛽, then
we have

⟨𝑀
𝜌,𝐵 (𝑥) − 𝑀𝜌,𝐵 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝜌

󵄩󵄩󵄩󵄩󵄩
𝑀
𝜌,𝐵 (𝑥) − 𝑀𝜌,𝐵 (𝑦)

󵄩󵄩󵄩󵄩󵄩

2

,

(50)

that is,

󵄩󵄩󵄩󵄩󵄩
𝑀
𝜌,𝐵 (𝑥) − 𝑀𝜌,𝐵 (𝑦)

󵄩󵄩󵄩󵄩󵄩
≤
1

𝜌

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (51)

and so 𝑀
𝜌,𝐵

is 1/𝜌-Lipschtiz continuous. Thus, more value-
added application can be gained than that of 𝜌−1(1 + 𝛽2/𝑡) in
Corollary 22.

4. Concluding Remarks

The purpose of this paper is to introduce and study a
new notion of relatively 𝐴-maximal𝑚-relaxed monotonicity
framework and to discuss some properties of a class of new
generalized relatively resolvent operator associated with the
relatively 𝐴-maximal 𝑚-relaxed monotone operator and the
new generalized Yosida approximations based on relatively
𝐴-maximal 𝑚-relaxed monotonicity framework. Because
the relatively 𝐴-maximal 𝑚-relaxed monotonicity includes
(relatively)𝐴-maximalmonotonicity, (relatively)𝐻-maximal
monotonicity, and (relatively) maximal monotonicity as
special cases, the theory of the new generalized relatively
resolvent operator and Yosida approximations associated
with relatively 𝐴-maximal 𝑚-relaxed monotone operators
generalizes most of the existing notions on (relatively) max-
imal monotone mappings to Hilbert as well as Banach space
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settings, and its applications range fromnonlinear variational
inequalities, equilibrium problems, optimization and control
theory, management and decision sciences, and mathemat-
ical programming to engineering sciences. Therefore, the
following two fields’ problems are worth studying in further
research.

On the one hand, we note that the classical Yosida appro-
ximation associated with classical maximal monotonicity
played a prominent role during the proof of the result of
applying the Douglas-Rachford splitting method for finding
a zero of the sum of two monotone mappings. Hence, it
follows fromTheorem 13 that we can generalize and improve
the main linear convergence results (i.e., Theorem 23) to
the variation inclusion problem (1.1) in [1, 3, 6] under the
framework of relatively 𝐴-maximal𝑚-relaxed monotonicity.

On the other hand, Theorems 20 and 23, that is, the
generalized Yosida regularization/approximation results, can
be applied to the solvability of the first-order differential
evolution inclusions of the following form:

𝑥
󸀠
(𝑡) + 𝑀 (𝑥 (𝑡)) ∋ 0 for 0 < 𝑡 < ∞,

𝑥 (0) = 𝑥
0
,

(52)

where 𝑀 : H → 2
H is relatively 𝐴-maximal 𝑚-relaxed

monotone, 𝑥 : [0,∞) → H is such that (52) holds, and the
derivative 𝑥󸀠(𝑡) exists in the sense of the weak convergence.
Further, the problem (52) becomes problem (2) when the
operator𝑀 : H → H is single valued, and the real problems
could arise due to the presence of the relatively relaxed
monotonicity achieving the uniqueness of the solution.
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