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We establish some new oscillatory and asymptotic criteria for a class of third-order nonlinear dynamic equations with damping
term on time scales. The established results on one hand extend some known results in the literature on the other hand unify
continuous and discrete analysis. For illustrating the validity of the established results, we also present some applications for them.

1. Introduction

The theory of time scale, which was initiated by Hilger [1],
trying to treat continuous and discrete analysis in a consistent
way, has received a lot of attention in recent years. Various
investigations have been done by many authors. Among
these investigations, some authors have taken research in the
oscillatory and asymptotic properties of dynamic equations
on time scales, and there has been increasing interest in
obtaining sufficient conditions for the oscillation and asymp-
totic behavior of solutions of various dynamic equations
on time scales (e.g., we refer the reader to [2-20]). But
we notice that most of the investigations are concerned
with oscillatory and asymptotic properties of solutions of
first- or second-order dynamic equations on time scales,
while relatively less attention has been paid to oscillatory
and asymptotic properties of third-order dynamic equations
on time scales. For recent results about the oscillation and
asymptotic behavior of solutions of third-order dynamic
equations on time scales, we refer the reader to [21-33]. In
[34, 35], Saker researched oscillation of the following third-
order dynamic equations:

A
(ro [0 0)]) +a0 ey =0 ®

Based on the Riccati substitution and the analysis of the
associated Riccati dynamic inequality, some new sufficient
oscillatory conditions were presented.

Moreover, to our best knowledge, none of the existing
results deal with oscillatory and asymptotic behavior of
solutions of third-order nonlinear dynamic equations with
damping term on time scales, in which the damping term
brings new difficulty in obtaining oscillatory and asymptotic
criteria. We now list some important results.

In this paper, we are concerned with oscillatory and
asymptotic behavior of solutions of the third-order nonlinear
dynamic equation with damping term on time scales of the
following form:

(ar([r@)x* (t)]A)y)A

0 ([rox0]") +a0 f @ =0, teT,
(2)

where T is an arbitrary time scale, Ty = [t,,00)(|T, a, 1,
pq € Cu(Ty,R,), f € C(R,R) satisfying xf(x) >
0, f(x)/x¥ = L > 0for x#0,and y > 1 is a quotient of
two odd positive integers.

A solution of (2) is said to be oscillatory if it is neither
eventually positive nor eventually negative otherwise it is
nonoscillatory. Equation (2) is said to be oscillatory in case
all its solutions are oscillatory.

We will establish some new criteria of oscillatory and
asymptotic behavior for (2) by a generalized Riccati transfor-
mation technique in Section 2 and present some applications



for our results in Section 3. Throughout this paper, R denotes
the set of real numbers and R, = (0, o), while Z denotes the
set of integers. T denotes an arbitrary time scaleandt; € T,i =
1,2,...,5. On T we define the forward and backward jump
operators 0 € (T,T) and p € (T, T) such that o(t) = inf{s €
T,s >t} p(t) =sup{s € T,s < t}. Apointt € Twitht > inf T
is said to be left-dense if p(t) = ¢, right-dense if o (¢) = ¢, left-
scattered if p(t) < t, and right-scattered if o(¢) > . A function
f € (T,R) is called rd-continuous if it is continuous in right-
dense points and if the left-sided limits exist in left-dense
points, while f is called regressive if 1 + u(t) f(¢) # 0, where
u(t) = o(t)—t. C,q denotes the set of rd-continuous functions,
while R denotes the set of all regressive and rd-continuous
functions,and R* = {f | f € R, 1+ u(t) f(t) > 0,Vt € T}

Definition 1. For p € R, the exponential function is defined
by

e, (t,s) = exp (r &u) (p (1) AT) fors,teT. (3)

N

Remark 2. If T = R, then

e, (t,s) = exp <J.tp(r) dT), for s,t € R. (4)

IfT = Z, then

t—1

ep(t,s):l_[[1+p(‘r)], fors,teZ,s<t. (5

T=$

The following two theorems include some known prop-
erties on the exponential function.

Theorem 3 (see [36, Theorem 5.1]). If p € R and fixt, € T,
then the exponential function e (t,t,) is the unique solution of
the following initial value problem

YW =p®) y(),

y(t) =1

Theorem 4 (see [36, Theorem 5.2]). If p € R™, then ep(t, s) >
0 for Vs,t € T.

(6)

For more details about the calculus of time scales, we refer
to [37].

2. Main Results

For the sake of convenience, in the rest of this paper,
we set 8,(t,a) = j;([e_p,a(s,to)]l/V/al/Y(s))As, 8,(t,a) =

.[;(61(5’ a)/r(s))As.

Lemma 5. Suppose —p/a € R, and assume that

JOO [epa (s to)]w

_ 7
Y ® As = 00, 7)

1
J ——As = 0o, (8)
tO
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and (2) has an eventually positive solution x. Then there exists
a sufficiently large T\ € T such that

a0 ([rox0])"\
e_p/a(t:to) ) )

[r ) x* (t)]A >0 on [T},00);.

Proof. By —p/a € R, we have e_, ,(t,£;) > 0. Since x is
eventually a positive solution of (2), there exists a sufficiently
large t, such that x(¢) > 0 on [t;, 00)y, and for ¢ € [t,,00),
we obtain that

A
a)([r (1) x* (t)]A)y

efp/a (t’ tO)

= (e_p/u (o) (a () ([r ) x° (t)]A>y>A

~(e_pya (8, to))Aa (t) ([r (£) x" (t)]A>y>

X (e-pra (B t0) €_pya (0 (6)10))

(a0 ([ro= (t)]A)V)A o ([roxto]")
e—p/u (G (t) > tO)

W E0)
e—p/a (0 (t) ’tO) ‘

(10)

Then a(t)([r()x"(1)]*) Je_ya
[t;,00)1, and together with a(t) > 0, e

(t,t,) is strictly decreasing on
,p/a(t, t,) > 0 we
deduce that [r(t)x*(H)]" is eventually of one sign. We claim
[r@®)x>®)]* > 0 on [t,,00)y. Otherwise, assume there exists
a sufficiently large t5 such that [r(®)x*®)]* < 0 on [t5,00)7.
Then

r) x> @) -r (t5) X8 (t5)

ey (st0)a®)] " [r 9% )]
= J 7y As
' [e_pa (5:t) @ (s)] (1)

< a' (t;) [r (t5) x* (ta)]A J-t [e—p/a (5>t0)]wAs

[e_pja (tsto)] Yy allv (s)

By (7), we have lim, _, oor(t)xA(t) = —00, and thus there exists
a sufficiently large t, € [t5,00) such that r(t)x"(t) < 0 on
[t4, 00)7. By the assumption [r()x*()]* < 0 one can see
r(t)x>(t) is strictly decreasing on [t,, 00)y, and then

o
As <1 (1) x> (1) L s
T W)

¢ A
x(t)—x(ty) = J re)x (s)

t, r(s
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Using (8), we have lim, _,  x(t) = —oo, which leads to a
contradiction. So [r(£)x*(#)]* > 0 on [t,, 00), and the proof
is complete with taking T, = t,. O

Lemma 6. Under the conditions of Lemma 5, furthermore,
assume that

|
Jim sup | [@
(e (1)
£ a(r)

XJ‘X’ q(s)

1/y
e o0 ) Ar|as

(13)

Then either there exists a sufficiently large T, € T such that
x2(t) > 0o0n [T, 00)y orlim, _,  x(t) = 0.

Proof. By Lemma 5, we deduce that x(t) is eventually of one
sign. So there exists a sufficiently large t; > t, such that either
x2(t) > 0 or x*(f) < 0 on [ts, 00)1, where t, is defined as
in Lemma 5. If x2(¢) < 0, together with x(t) is an eventually
positive solution of (2), we obtain lim, , , x(#) = « > 0 and
limtéoor(t)xA(t) = B < 0. We claim o = 0. Otherwise,
assume « > 0. Then x(f) > « on [t5,00)y, and for t €
[t5,00) ()T, an integration for (10) from ¢ to co yields

Cao([rox o))

e—p/a (t’ tO)

a ([rmx"0]")
e—p/a (t’ to)
@ —q(s) f (x(s))
+ J-t e_p/a (o (5),t0)A5
a0 ([ro = o]") (14)
e—p/a (t> tO)

© —Lg(s)x" (s)
+L e_pa (0 (5),10)

= - lim
t— 00

< - lim

t— 00

[ q(9)x ()
] o™

(09

oy q(s)
< -La J; eﬁp/u(o(s),to)‘As,

which is followed by
~[rox @)
1/
s _{L(Xy [ep/a (t:10) J"" q(s) AS” y'
a(t) £ € pa (0 (s),tp)

(15)

Substituting ¢ with 7 in (15), an integration for (15) with
respect to 7 from ¢ to co yields

r () x* (1)

= tlim r(t) x> () — LMY

© (e pla (T’ tO) o0 q(s)
A
% J; ( a(T) JT e_p/a (0 (S)’t()) )

oo <e_p/u (7.tp) JOO q(s)

a(r) T € pla (U (s), to)

1/y
) AT

1/y
As) AT

=ﬁ—ocL1/”J

t

< —aLl'l” J

t

* (e—p/u (1.t0) JOO q(s) AS>I/YAT
a@ ) e (0091 ’
(16)

which implies

x* (1)

_ 1/L 0 e—p/a(T’tO)
<ol J ( a()

o 1/y
X J LA5> At.
T e—p/a (0 (5) > tO)
17)

Substituting ¢ with & in (17), an integration for (17) with
respect to & from ¢ to t yields

x(t) - x(ts)
t
_ol MY R
s ol L [V (5)
% JOO <ep/a (T’ tO)
£ a(r)

XJ"" q(s)

_ A&.
T e—p/a (‘7(5)’%) 5

1y
As) AT

(18)

By (18) and (13) we have lim, _, . x(t) = —o0, which leads to
a contradiction. So one has « = 0, and the proof is complete.
O



Lemma 7. Suppose —p/a € R,, and assume that x is a
positive solution of (2) such that

[rex2®] >0, x2@)>00n[1],00);,  (19)

where T; € T is sufficiently large. Then for t € [T5,00)y, we
have

A8 (LT r“y O [ro = ©)]" }
[epra (t:10)] .
A () [r (6 x> 0] }
[efp/a (3 to)] . |

Proof. Take T; > max(Ty,T, ), where T}, T, are defined as
in Lemmas 5 and 6, respectively. By Lemma 5 we have a(t)
([r(t)xA(t)]A)y/e_p/‘Z (t,ty) strictly decreasing on [T}, 00). So

(20)

x(t) 282(t’T3*){

r()x™ () 2 r () X" (1) -7 (T3) X" (T7)

[ et wao] "o 0]
T3 [e_P/a (s, to)a(s)]w
A () [r (0 <" )]

[e—p/a (t, tO)] .

As

X Jt [e*P/u (s, tO)]l/y

17 a'’v (s)
A () [r (6 x> 0]

[efp/a (3 to)] .

6, (615)
(21)
t— 00

T | ey (0(s),1
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and then

* 1/y A A
fos (t,tT3) {a ® [r @) x 1(,?] } .
v [e—p/a (3 to)]

Furthermore,

x(t) > x () - x(T;)

= Jt x4 (s) As
s

3

[ B {’ O]’ } s
wore [e-pa(s:20)] ™

. {al/” ® [r ()« (t)]A} (23)

i [e—p/u (3 to)] .

t *
XJ ) (S’Ts)

1 (s)

As

a7 () [r < )" }

[e—p/a @ tO)] .

8, (t,T5) {

which is the desired result. O

Lemma 8 (see [38, Theorem 41]). Assume that X and Y are
nonnegative real numbers. Then

AXY T -xt < -yt vas 1 (24)

Theorem 9. Suppose —p/a € R, and assume that (7), (8),
and (13) hold, and for all sufficiently large T,

1+1/y
lim sup <|Jt {LM(S)) o) [als) ()] + p(s)8, (s, T) [a(o ()1 (o (s))]

r(s)
(25)

_|:l’ (s) PA (s) + (y + 1) p(s)8, (s, T) [a (0 ()7 (o (s))]l/y :|Y+1 NN
(Y + 1) rl/(erl) (S) py/(y+1) (5) 61’/(}41) (5’ T) 5

where p, 1 are two given nonnegative functions on T with
p(t) > 0. Then every solution of (2) is oscillatory or tends to
zero.

Proof. Assume (2) has a nonoscillatory solution x on T,
Without loss of generality, we may assume x(f) > 0 on
[t,,00)r, where t; is sufficiently large. By Lemmas 5 and
6, there exists sufficiently large t, such that [r)x*®)]* >
0 on [t,,00)y, and either X2t > 0 on [t,,00)1 or

lim, _, . x(t) = 0. Now we assume X)) > 0on [t,, 00).
Define the generalized Riccati function:

(Fox*]")

CO=POa) e o)

+n(®)|.  (26)
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Then for t € [t,, 00)y, we have

@™ (1)

o {a(t)([r(t)xA (t)]A)y}A+ 20 ]A

XY (b) e_pa(t:19) x (t)

ao @) ([re @)= @m)]")

X €_p/a (o @),t,)

+p®)[a®n®)]" +p* B alo®) (o)

_p@)
XY (1)

y {(e,p/u (t.t,) (a o ([rm« (t)]A)y>

(e pa (1) a ) ([r ()" (t)]A)y>

A

% (e_ppa (t10) e_pya (0 (1), to))_l}

. XV (1) p* (1) - (2 (1)) p (t)
XV (£) X" (0 (1))

ato @) ([re@)=*@m)]")
efp/a (0 (t) > tO)
+p®)[a®)n®)]" +p* B alo®)n®)

_ P
XY ()

[ (et wry)

0 ([rox0]"))

X

-1

X (e_P/u (o (), to)) ]

A
P~ ()
BI0)

xY (1)

A
wwm%{pwuwm]

ao @) ([ro @)= @m)]")
X (@ (O) e (0 0),10)

+p@®[a®n®]®

:_P“>[quua»]+ o~ (t)
XV () Le_pa(0(t),te) ] plo(®)

w (o (1))

o® (t) <

_{mmﬂmfrwmmwumfwwﬁf
xV (0 () e_pa (o (1),tp)

xV (t)

5
+p®[amn®)]
qt)p(t) p" ()
<-L
= e_pa (0 (), t0) TG (t))w(a ®)
o)
xV (t)
ae®)([remx*@m)]")
X (0 (D) e_pyq (0 (), t0)
+p®)[a®)n®)]".
(27)

By [37, Theorem 1.93], we have (x'(1)* > yx]’_l(t)xA(t).

L a®p® p" ()
- +
e,p/a ((7 (t) 5 to) 1% (0 (t))
yx' () %8 (t)

xY (t)

w (o (1))

—p(t)[

ate®)([remx*@m]")
(@ )y (00, 5)

oM [a®)n®)]®
o a®p® Pt
e_pa (0 (0),15)  p(o (1))
_[ e (t) ]
x (o (1))
X{au@)rﬂuwpmxﬂﬂf}} (28)

r(t) [e—p/a (t, to)]l/y

IN

w (o (1))

ate®)([r@m)x* @m)]")
T 0 @®) e (00, k)

+p®[a®)n®)]*

q(t)p ) oA (8)
=-L
e_p/a (0 (),1,) " plo (t))w(o (t)
IOLICL)
r(t)
1+1/y
" C:EZEQ; ‘“(‘f(ﬂ)n(cr(t))]

+p®[a)n®)]".

Using the following inequality (see [25, (2.17)]):

(= )Y s 1V1+1/y B (1 . l) Ay

Y Y

(29)



where u, v are constants and y > 1 is a quotient of two odd
positive integers, we obtain

[ w(o(t)
p(a(t))
. e @) 1

= S (o (1) + ;[a (@ )y (o ®)]

1+1/y
Cale®) (o (t))]

1+1/y

) <1 L1 ) a0 @) (@) ®)

y p (o (1)
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Setting
A=1+ l,
Y
o PO (BG) 0™ (@ (1)
T e )
YA—I
— yl/(wl)

Jro PA )+ (y+1) p(1) 8, (t.,) [a o (1) (o (£)]" .
(y+ 1) r10D () pr/re) (1) 870 (2, 1,)

A combination of (28) and (30) yields (32)
Using Lemma 8 in (31) we get that
w® (t) w” ()
11020 o) atn @) <11V o atrn o)
€ pla (0 (),t,) e_pra (0 (t),1))
L p®8 (t) [ale @) n@®)]" P13, (1) [ale @)@ @]
r(t) r ()
LT0p O+ (1) p8 (1) [a @ @) o @)]" 09" + 4+ Dp08, )@ ) @ )] |
r (t) P (0 (t)) (}/ + 1) 71/+1) (t) py/(yﬂ) (t) 51'/()41) (t, tz)
®) 8, (t.ty) 0 (o (¢ (33)
cao(p) -y ) 0T 0 O)
r(®) P (o (1) Substituting ¢ with s in (33), an integration for (33) with
(D respect to s from ¢, to t yields
¢ 1+1/y
q(s)p(s) s, )0 (st)[a(a(9)n(o(s))]
L———————-p(t
) { o) OO &5
+1
B [r(s) P2 () +(y+1)p(9)8, (s.1,) [a (o () (o ()] ]V (34)
(y + 1) 710D (5) pr/ o+ (5) 80V (51,)
XAs<w(t,) - w(t) <w(t,) < oo,
which contradicts (25). So the proof is complete. O joo R ds = co
t, 7(s) ,
1 | | O L (egta ()
n Theorem 9, if we take T for some special cases, then we J — J e
can obtain the following corollaries. w LT @) e a(7)
o 1/y
Corollary 10. Let T = R. Assume that X J Lds) dr] d& = oo,
T efp/a (S, tO)

(35)

and for all sufficiently large T,
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4P  p(9)8, (s T)[als)n(s)]
L {JT { epalaty POLOTEL ro
, — (36)
_[r<s)p )+ (r+1)p )3 (1) [a ()7 (0 (5)] y] ds} = oo
(y + 1) 7+ (5) pr/(reD) (s) 5}//(y+1) (s, T) )
Then every solution of (2) is oscillatory or tends to zero. io: 1 -
Corollary 11. Let T = Z and —p/a € R . Assume that = 76
N () Y
{Zt:o l r (E) TZ::E ( a (T) SZ‘:F e—p/a (5 + 1’t0) -
$ [epntom]” 7
s=t S oale) and for all sufficiently large T,
t—1 1+1/y
q(s)p(s) p()8, (s, T)[a(s+1)n(s+1)]
L%p{Z{LW POl DGy manel o
(38)

[+ D= pe) + ¢+ Ve 6 Dlats+ D+ 0] ]
(y + 1) PU0+D (5) pr/ D) (5) 80D (5 1) :

Then every solution of (2) is oscillatory or tends to zero.

q(s) p(s)
€_p/a (0(s),t)

t
lim sup {J <|L
t— 00 T

—p()[a®) )" +

Theorem 12. Suppose —p/a € R, and assume that (7), (8),
and (13) hold, and for all sufficiently large T,

Yo ()8, (5, T)8) " (0 (s),T)a (0 () (0 (5))
r(s)

(39)

[r©p @+ 29p (981 (T8} (0 (9), PICIONICAONN sl o
4yr (s)p ()8, (5 7)) (0 (s),T) )

where p, 1 are defined as in Theorem 9, then every solution of
(2) is oscillatory or tends to zero.

Proof. Assume (2) has a nonoscillatory solution x on T,.
Similar to Theorem 9, we may assume x(t) > 0 on [t;, 00)y,
where ¢, is sufficiently large. By Lemmas 5 and 6, there exists

sufficiently large t, such that [r()x*®]* > 0 on [t,, 00)y,
and either x*(t) > 0 on [ty, 00)y or lim, _, , x(t) = 0. Now
we assume x°(f) > 0 on [t,, 00)1. Let w(t) be defined as in
Theorem 9. By Lemma 7, we have the following observation:

x* (1)
x (t)

_8i(b0) {a“y ® [r () x* (t)]A} 1

r0 | [eu )] | x@®

_s(n) [ ool " o)
r (1) [e—p/a (t, to)]l/yxy (o))

(6t {aw (@) [re@®)x* @] } )
O fepale®,0)] " @ @)

A { a0 ) [r 0 ®)x* @ )] } o
r(t) [e—P/“ (o(t), to)]I/VxY (o (1)

A )[r 0 ) x* (@ 1)]" r

x (o (t),t,)
2 { [epya (0 0),20)] "
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_ 9, (t.ty) N (0 (1),1,) Using (40) in (28) we get that
- r(t)

ao @) ([ro @)= @m]")
e_pra (0 (1), 19) x7 (0 (1)) '

(40)

q)p(t) p" (t)

+ w _yxA ©
e_pa(0(t),ty)  plo(®)

A
w (t)< -L e

(@) -p() [

ale®)[(re®)=* @w)’]
xV (0 (t)) e—p/u (0 (t) > tO)

+p@®[a®n®]®

1 (t’ tz) 6;/71 (0 ) ,tz)
r (1)

q(t)p(t) R 0) 5
< - Le_P/u (O' (t) ,to) + p (U (t))w (G (t)) - yp (t)

A A\Y ) 2
ato®)([r (@ ®)x* @ 1)]") S
e_pra (0 (1), t5) x¥ (0 (1)) +p(t)[a(t)n(t)

o amp® 0) P08 (6,)8) (0(0),t,)
e @®.50) o T )
(41)
2
x [% —a@@) )] +polawro)
B qa)p () s P18 (66,)8) (0(8),8)a* (0 (1)) (o (1)
= - L—e_p/a 0@ +pM[a®n@)] - oo
. r(t) pA (1) +2yp () &, (8. 1,) 8;71 (o@),ty)a(o®)no(®) (o (1)
r(®)p(o())
_ vp(t) 8 (t,t2)6;'_1 (o () stz)wz (o) < -L q(t)p(t) o[ (t)]A
r (00 (1) RPN CIORA R 1
P8, (56)8) (0 (t), 1)@ (0 ()7 (o (1)
r(t)
[r () p" (1) +2yp (1) &, (t,1,) 8Y ' (0 (1) . ty) a (o (D)) 7 (o (t))]2
+
4yr (1) p ()6, (t,1,) 80" (0 (t) . 1,) '
Substituting # with s in (41), an integration for (41) with respect
to s from ¢, to t yields
‘ q(s)p(s) r P98 (5.5) 80 (0(9),t,)a (0 () 7 (o ()
. {LW POl 7o
(42)

A y-1 2
0P @+ 2008 (58) 8 (009 1) alo (N n (0 ()] } As<w(ty) - w(t) <w(ty) < o,

4yr () p ()8, (5,£,) 82" (0 (s),t5)

which contradicts (39). So the proof is complete. O
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Based on Theorems 9 and 12, we will establish some
Philos-type oscillation criteria for (2).

Theorem 13. Suppose —p/a € R, and assume that (7), (8),

and (13) hold, and define D = {(t,s) | t > s > t,}. If there exists
a function H € C .4 (D, R) such that

0

. 1 ! q(s)p(s) A
tlingosup m 1L H(t,s) {Lm —p®)[als)n(s)] +

H (t,t) =0,
H (t,s) > 0,

for t >t

fort>s >t (43)

and H has a nonpositive continuous A— partial derivative
H%:(t,s) with respect to the second variable, and for all
sufficiently large T,

p(9)8, (s T) [a (o () (o ()]
o)

(44)

(y + 1) P+ (5) pr/r+d) (5) 87/ (5 )

r©p O+ 1)p©)8 6 DlaE )" ]
_[ e ] -

where p, n are defined as in Theorem 9. Then every solution of
(2) is oscillatory or tends to zero.

Proof. Assume (2) has a nonoscillatory solution x on T,
Without loss of generality, we may assume x(f) > 0 on
[t,, 00)1, where t, is sufficiently large. By Lemmas 5 and 6,
there exists sufficiently large £, such that [r(®)x®()]* > 0 on
[t,,00)y, and either x2(t) > 0 on [ty, 00)y or lim, _, . x(t) =
0. Now we assume x> (¢) > 0 on [t,, 00)1. Let w(t) be defined
as in Theorem 9. By (33) we have

q®)p ()

A
(a5 PO

—p®O[a)nE)]" +

1+1/y

NAOL (t:ty) [a (o ) n (o (t)]
r(t)

y+1

[ropt o+ G+1)p® s (tt) a6 ®)ne )]
(y + 1) r1/0+D) (£) pr/+D) (1) 5¥/(V“) (t,t,)

< - (t).

(45)

Substituting ¢ with s in (45) and multiplying both sides by
H(t, s) and then integrating with respect to s from ¢, to t yield

p()8, (1) [a(@ () n (@ (N

! q(s)p(s)
L H(t,s) <|L—ep/a 0610

r(s)

(46)

_P®ﬁ®+W+WMWﬁhmﬂﬁmﬂW@ww
(y +1) £ () pr/0+D (5) 81/ (5,1,

y+1
} As

<- Jt H(t,s)w™ (s)As = H (t,t,) w(t,) + Jt H* (t,s9)w(o(s))As< H(t,t,) 0 (t,) < H (t,t) w ().

t

Then

! qs)p(s)
L) H (t,s) {Lm P ) [a (s) n (5)]

PO (1) [a @) @6

r(s)

(y +1) £ () pr/4D (5) 81/ (s,1,)

_r@&@+wﬂw®&mmww@mw@mwyﬂ}M

q(s)p(s)

0

— tz —_— — A
_L H(t,s)«ILe_P/a 0oL p@)[a(s)n(s)]” +

p(5)8, (s,8,) [a (o (s) 7 (o (s)]"
r(s)

_[ r(9)p(s) + (y + Dp(s)8,(s.1,)[a (o () (o ()] ]vﬂ As
(y+ 1) PO (5) pr0+) (5) 810 (5,1,)



10 Abstract and Applied Analysis

p(5)3, (s.,) [a (o () (o ()]
o)

+rpuag{L—iﬂﬂﬁﬁlj—puna@wﬂaﬁ+

X e_pa(0(3), 10

_P@&w+wﬂm@&mmww@mw@mWY” Ac
(y + 1) 710+ (5) pr/@+1) (s) 5%”1) (s:t,)

<H(tty)w(t,) + H(tt,)

t2
xj L
to

s, PO (L) [ae ) )™
o)

q(s)p(s)

oy PO

) [ r(s)p™(s) + (p + Dp(s)3y (5, 5)[a (0 () 7 (o ()] ]yﬂ

As.
(y + 1) r/&*D (5) pr/0r+D) (5) 5)1//(y+1) (s.1,)
(47)
So
. 1 ‘ a)pls) s PO (st)[a@ )@ E)]
BT (t.15) {L e {Lep/a (0©)t) © @lain@l+ r(s)
_r@f@+wﬂwwmwmwﬂmMﬂquw As
(y + 1) PO+ (5) pr/0r+D) (5) 6;'/(”“) (s:t,)
(48)
ol q0pe) s, PO (st)[a )]
w(t)+ Jto Le—p/a (0(9),1)) p@le@n@l r(s)
_[r(s)pA(S) +(y+ Dp(s)8,(s,t,)[a (o (s) 7 (o (s))]l/y " As < 00
(y+ 1) r1/04D (5) pr/rD () 810 (s, 1) ’
which contradicts (44). So the proof is complete. ] Theorem 14. Suppose —p/a € R, and assume that (7), (8),
and (13) hold. Let H be defined as in Theorem 13, and for all
sufficiently large T,
, 1 ! q@s)p(s) A
tll)ngo sup —H (t, to) {Lo H (t,s) {L—ep/a (O‘ ©), to) P (s) [a (s) n (5)]
L PO TS (06),1)a ()7 (0 ) (49)

r(s)
[r(9)p" () +2yp ()8, (s T) 8} (0/(9). T)a (0 () (0 (s))] } }
_ As + = 00,

4yr (s) p(s) &, (s, T) 8L " (0 (s), T)

where p, 1 are defined as in Theorem 9. Then every solution of ~ on [t;,00)y, where ¢, is sufficiently large. By Lemmas 5

(2) is oscillatory or tends to zero. and 6, there exists sufficiently large ¢, such that [r®)x>®H]" >
0 on [t,,00)y, and either Xt > 0 on [t,,00)r or
Proof. Assume (2) has a nonoscillatory solution x on T,,. lim, _, ., x(t) = 0. Now we assume x2(t) > 0 on [t,,00)7. Let

Without loss of generality, we may assume x(t) > 0  w(t)be defined as in Theorem 9. By (41) we have
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Yo ()8, (£:£,)8) " (o (£) . 1,) @ (o (1)) 7 (0 (£))
r(t)

qit)p(t) .
el POlOnOF
_ ? (50)

[ropt 0 +2pp 08, (61,) 87 (0 (1), 1) a0 (1) n (0 1))]

—~ < - ().
4yr (1) p ()8, (t,1,) 8} (0 (1), 1,)

Substituting ¢ with s in (45), multiplying both sides by H(t, s),
and then integrating with respect to s from ¢, to t yield

t
[ s {L%“)) —p @ )]

e_pra (0(5), 10

+W@q@m@ﬂﬂ¢mfm@Ww@)
r(s)

) [7(5) p* () + 299 (5) 8, (5,£,) 8) ' (0 (5),1y) a (0 () (0 (5))]2 N (51)
4yr (s) p(s) 0, (5,1,) 87" (a (s),1,)

< - Jt H(t,s) @™ (s) As = H(tt,) w(t,) + J-t H (t,s) w (0 (s)) As
t, t

<H(tt)w(t) <H(tty) w(t,).
Then similar to Theorem 13, we obtain

ISP ()

‘ q(s)p(s) s PP)8(55)8) (0(5),1)a (0 ()7 (0(5)
’ {L A {Lm""” b o

0

[r©pt @+ 2008, (568 (09 ) ale ) @) } As}

dyr (s) p(s) 8, (s,1,) 6’2’71 (0 (s),t,)
(52)
2 q(s)p(s)

A
oy POEE]

Sw(t2)+J

to

+W@a@m@%ﬁ¢@fw@Ww@)
r(s)

[r(s)pA(s)4—2yp(s)81(gté)ég_l(a(s),tz)a(a(s))n(a(sn]z
4yr (s) p(s) 8, (s, 1) 8;71 (0(s),t)

s < 00,

which contradicts (44). So the proof is complete. O
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In Theorems 13 and 14, if we take H(Z, s) for some special
functions such as (t —s)" or In(¢/s), then we can obtain some

lim sup

t— 00

(t—1t0)"

q(s)p(s)

Abstract and Applied Analysis

corollaries. For example, if we take H(t,s) = (t —s)", m > 1,
then we have the following corollaries.

Corollary 15. Suppose —p/a € R, and assume that (7), (8),
and (13) hold, and for all sufficiently large T,

p(9)8, (T [a(o ()@ ()]

‘ m A
i “ o {Lm_" OlatmF re (53)

_[r<s>pA<s) + (4 Dp(3, (s Da(@ () (@ ()] ]V” N
(y + 1) r0+D) (5) pv/ 4D (5) 51’/(}’“) (s, T) '

Then every solution of (2) is oscillatory or tends to zero.

lim sup

t— 0o

(£ t,)"

Corollary 16. Suppose —p/a € R,, and assume that (7), (8),
and (13) hold, and for all sufficiently large T,

r(s) (54)

y-1 2 2
o J't t-s" 1L q)pls) () [a (s)r/(s)]A L (5)6,(s,T) 6, (o (s),T)a (o (s)n” (o(s))
t e_pra (0(5),t,)

4yr (s) p ()8, (5, T) 8L " (0 (5), T)

Then every solution of (2) is oscillatory or tends to zero.

Remark 17. The established results above extend the main
results in [25, Theorems 2.1-2.4] except that the latter is
related to time delay.

Remark 18. In Theorems 12-14, if we take T for some special
time scales, we can obtain similar results as in Corollaries 10
and 11, which are omitted here.

In Theorems 9, 12, 13, and 14, if we let p = 0, then
e_pa(t:ty) = 1, and subsequently we obtain the follow-
ing four corollaries concerning oscillatory criteria of the

T

tlingo sup {J {Lq ) ps)—p@)[als) 17(5)]A +

(9" () +2yp (98, (s T8} (@ (5). T a(0 (N (o ()] } }
As ¢ =00

following equation:

(a(t)(b‘&)xA(ﬂ]A)y>A—kq(t)f(x(ﬂ)::0, feT,

(55)
Corollary 19. Assume (8) holds. If
R |
|, vt 6)
) t 1 00 1 00 1/y
tlingosup L, [m L (m L q(s) As> AT] A& = co.
(57)
and for all sufficiently large T,
p(©)8, (T [at (N )]™”
r(s)
(58)

(y + 1) rH/0+D) (5) pr/arD) (s) 5’{/(}”1) (,T)

[V(S)pA(S) +(p+ Dp()8, (s, T)[a (o ()7 (0 ()] ]y} . } )
_ Sr =00,
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where p, n are defined as in Theorem 9. Then every solution of

(2) is oscillatory or tends to zero.

lim sup <|J {Lq ) p(s)—p(s)[a(s)n(s)]

t— o0 T

13

Corollary 20. Assume that (8), (56), and (57) hold, and for
all sufficiently large T,

A, VP8 (T 8 0 (s),T)a (0 (s) 1 (o (5))

r(s)
(59)

[ () 0" (5) + 2P (98, ()&} (0(5), D) a (0 (9)) 7 (0 (5))] } }
As ¢ = 00,

4yr(s)p(s)8, (s, T) 8V (0 (5),T)

where p, n are defined as in Theorem 9. Then every solution of

(2) is oscillatory or tends to zero.

1
H(t,t,)

lim sup
t— 00

t
{LH(RS){LQS)P@)—P(U[aG)ﬂ@HA+

Corollary 21. Assume that (8), (56), and (57) hold. If for all
sufficiently large T,

p ()8, (s, T) [a(o ()7 (o ()]
r(s)

(60)

_[r(s)pA(s) +(y+ 1)p(s)8,(s, T)[a (o (s))n (o (5))]1“’ :|Y+1 Al C o
(y + 1)r1/(y+1) (s) py/(y+1) (s) 8¥/(y+1) (s, T) >

where p, 1, H are defined as in Theorems 9 and 13, respec-
tively, then every solution of (2) is oscillatory or tends to zero.

q(s)p(s)

Corollary 22. Assume that (8), (56), and (57) hold. If for all
sufficiently large T,

yp (5)8, (7)) (0 (s), T)a’ (0 (5)) 7 (0 (s))

. 1 ! A
M ) {L e {LW Trlenel R

4yr (s) p ()&, (s, T) )" (0 (), T)

where p, 1, H are defined as in Theorems 9 and 13, respec-
tively, then every solution of (2) is oscillatory or tends to zero.

Remark 23. In [34, Theorems 3.3-3.4] and [35, Theorems
2.7-2.9], Saker established some new oscillatory criteria for
the equation

A
(ro (0= ®)']) +a0 fxEE)=0 (@)

under the condition 7(t) < t. We note that the conditions
(8) and (56) in Corollaries 19-22 are consistent with those
in [34, (24)] and [35, (1.12)], which were used in [34,
Theorems 3.3-3.4] and [35, Theorems 2.7-2.9], respectively,
while r(t) = 1 is assumed in [34, 35]. Moreover, in the results
established above, the Riccati substitution function is defined
by w(t) = pOa(®) [([FOX O] /5 (E)e_ (¢ to)+1(0)] (see
Theorem 9), which is different form that in [34, Theorem 3.3]

[r(5) p™ (9) + 2yp ()8, (. T) 8" (0 (5), T a (0 () 7 (o (s))]” } }
As ¢ = 00,

(61)

and [35, Theorem 2.7], where the Riccati substitution func-
tion is defined by u(f) = ym/(ym)" = x%%/(x*)". Since
the Riccati substitution function is the most important fact in
establishing sufficient oscillatory conditions, so our results in
Corollaries 19-22 are essentially different from Saker’s results
in [34, 35].

3. Applications

In this section, we will present some applications for the
established results above. First we consider the following
third-order nonlinear differential equation with damping
term.

Example 24. Consider

[(tx" (t))y]’ N 1 (x” (t))Y

ty+1
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1
[P +1] =0, te[2,00),

+ ty+1

(63)

where y > 1 is a quotient of two odd positive integers.

We havein 2) T = R, a(t) = ¥, p(t) = q(t) = 1/t
f(x) = x¥[e* + 1], r(t) = 1, t, = 2. Then f(x)/x" =1
L, u(t) = o(t) -t = 0, and —p/a € R,. So e_P/a(t,tO)

e_p ja(t,2) = exp(- Jzt (p(s)/a(s))ds). Moreover, we have

1>exp<—Jt&ds>zl—Jt& s

2 al(s) 2 a(s)
t (64)
= —J 5 ds=1+—[t‘2V—2‘2V]>l
y+1 y 2
Then we have
1/y
o le_,, (ST o
[Plemtnl]
t al’v (s) 2 S (65)
J- Lals=oo
ty 7(8)

Abstract and Applied Analysis

Furthermore,
Iy
o 1 (o fe(nt) (° g0 )1
- d dr | d
jto !r(f) Jf; < a(r) L €_pla (5>t0) ’ ik
NN RN . "
_L |:L ( o L e (S)z)dS) dr | d&
1 0 0 /1 (o 1 1fy
> | [JQ (5] ) df]dg

=WLOOHOO ldr]dfz;rold&=oo.

¢ v )" )2 ¢
(66)
On the other hand, for a sufficiently large T', we have
1/y
tle_ S, t ¢
vty - [ Lol
T all? (s) 217 Jros
(67)

So there exists a sufficiently large T* > T such that §, (¢, T) >
1fort € [T*, 00). Taking p(¢) = t¥, 5(t) = 0 in (36), we get
that

lim sup Jt L 1) p(s) _[ r(s)p'(s) ]y+l ds
oo T | epa(sito) (y + 1) P1/0+D) (5) pr/@r+) (5)5T/(Y+1) (s, T)

T Il y+1
= lim sup J L 1) p () - r(s)p (s) ds
e T e pra(Sito) [ (y+ 1) 70+ (5) pr/0+D) (5) 870 (5, 7)
t ] y+1
+I L ok [ ey [(y+1) ] ds (68)
T* efp/a (s, to) (Y + 1) rl/(y+1) (s) py/(y+1) (s) 8}’ y (s, T)
T ' y+1
> lim sup J L q4(s) p(s) _ r(s)p (s) s
toeo T | e (St0) [ (y+ 1) /0D (5) prfeD () 870D (6 )

t y+1
+J [1—<L> ]lds
T* y+1 s

So (35)-(36) all hold, and by Corollary 10 we deduce that
every solution of (63) is oscillatory or tends to zero.

Next we consider the following third-order difference
equation:

Example 25. Consider

1
ty+1

2 4 2 y M 3
A[(ta’x @) |+ == (A%x () + ny t) =0, )

t€[2,00),

where A denotes the difference operator, M > 0 is a constant,
and y > 1 is a quotient of two odd positive integers.
Wehavein 2) T = Z, a(t) = t', p(t) = q(t) = 1/t"",
f(x) = Mx¥, r(t) = 1, t, = 2. 'Then f(x)/x" > M =
L, ult)=0()-t=1,and
p®) 1

1
l—ut)—==1- >1-->0, 70
u()a(t) P 57 (70)

which implies —p/a € R_. So by [2, Lemma 2] we obtain

t
¢ pja(tt0) = €pja (62) 21~ L %AS
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t 1 t-1 1
=1- J- 2y+1 SarlAs=1- 2y+1
2 §=2 S
t-1
1
>1- L 52y+1d5
1 _ 1
=1+ [t-D-1]> -,
2y 2

“p(s)
e_pra (H:1g) < exp <— L Z—As) <1

s)
(71)
Then we have
Z [e 16-pra\Sto)| (s,to) ]l/y
s=tg al/y (S)
Z [e [6-pra($2)] (s, 2)]1/y
“e (72)
72
[e_ 2 (s, 2)]1/y 1 ©
Z p/ S m s; ; - oo,

Furthermore,

020: i (e_p/a (1,t0) OZO: q(s) >1/V
=t, r(ﬁ) 7= a(T) S=T e—p/a (S + 1’tO)

r(s)(p(s+1)—p(s))

15
_oo L e—p/a(T’z)
_EZZ [r(ﬁ) TE( a(r)
q(s) 1/y
S e pal(s+1,2)
0 —oo () 1y
1 1 1
> 21_/}’ ; ‘;E <g ; Sy+1> ]
] e/ o Uy
1 - | = 1
‘(zy)wgz Zz]
1 1
e AR T )“yzf
(73)

On the other hand, for a sufficiently large T' > 1, we have

1/y
21 [y, (s:to)] =
8 (,T)=y LV o L N L. (74)
L(5T) ;~ A7 GS) ngw 0

So there exists T* > T such that 8, (s, T) > 1fort € [T*, 00),.
Let p(t) = t¥, y(t) = 0in (38). Then by the inequality (t+1)? -
<yt + D« yZV_ItV_l, t > T", we obtain

s=T e—p/u (S +1, tO)

t—1
Agngosup{z {L w0 |

y + 1) 70D (5) /D) (5) 870D (5, T)

B

r(s)(p(s+1)—p(s))

-
q(s)p(s)
=1 -
Jim sup {_ZT{ € o (s+1,to) [(

Y+ 1) r/ 0D (5) pr/+D) (s) 5¥/(y+1> (s,T)

y+1}

r(s)(p(s+1)—p(s))

q(s)p(s) _[
(

t—1
+ L
s=T* e—p/u (S + 1>to)

y + 1) P10 () pr/+D) (5) 5?““” (s,T)

y+1
o

r(s)(p(s+1)—p(s))

T
> lim sup 1 > 1L TS [ 1+
e S| epalst o) | (y+1) 0 (5) o/ () 870D (5,T)

t-1 y+1 )
+ Z M—( 14 ) 2"_1]
y+1

s=T*

provided that M > (y/(y + 1))"“2”271. So (37) and (38) all
hold, and by Corollary 11 we obtain that every solution of (69)

y+1}

}—>OO,

is oscillatory or tends to zero under the condition M > (y/(y+
)iyt
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