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Masmoudi (2010) obtained global well-posedness for 2DMaxwell-Navier-Stokes system. In this paper, we reprove global existence
of regular solutions to the 2D system by using energy estimates and Brezis-Gallouet inequality. Also we obtain a blow-up criterion
for solutions to 3D Maxwell-Navier-Stokes system.

1. Introduction

In this paper, we consider Maxwell-Navier-Stokes equations
in R𝑑 (𝑑 = 2, 3) as follows:

𝜕V

𝜕𝑡
+ (V ⋅ ∇) V − ΔV + ∇𝑝 = 𝑗 × 𝐵 in R

𝑑
× (0, 𝑇) ,

𝜕𝐸

𝜕𝑡
− ∇ × 𝐵 = −𝑗 in R

𝑑
× (0, 𝑇) ,

𝜕𝐵

𝜕𝑡
+ ∇ × 𝐸 = 0 in R

𝑑
× (0, 𝑇) ,

∇ ⋅ V = ∇ ⋅ 𝐵 = 0 in R
𝑑

× (0, 𝑇) ,

𝑗 = 𝐸 + V × 𝐵,

(1)

subject to the initial data

V (𝑥, 0) = V0 (𝑥) , 𝐸 (𝑥, 0) = 𝐸0 (𝑥) ,

𝐵 (𝑥, 0) = 𝐵0 (𝑥) .
(2)

Here V, 𝐸, and 𝐵 : R𝑑 × (0, 𝑇) → R3 are vector fields defined
on R𝑑 (𝑑 = 2 or 3). Vector fields V, 𝐸, and 𝐵 denote fluid
velocity, electric fields and magnetic fields, respectively. 𝑝

denotes the scalar pressure and 𝑗 is the electric current given
by Ohm’s law. 𝑗 × 𝐵 represents the Lorentz force. Here we
put the viscosity and the electric resistivity to be 1 for the
simplification. Note that in 2D case, vector fields V, 𝐸, and 𝐵

can be understood as V(𝑥, 𝑡) = (V1(𝑥1, 𝑥2, 𝑡), V2(𝑥1, 𝑥2, 𝑡), 0),
and so forth.

For the compatibility of the initial data, we assume that

∇ ⋅ V0 = ∇ ⋅ 𝐵0 = 0. (3)

Since the divergence-free condition of the magnetic field
is conserved, ∇ ⋅ 𝐵 = 0 in (1) is not necessary in general if we
assume the divergence-free condition for the initial data of
the magnetic field inR𝑑. In many physical situations, current
displacement term 𝜕𝑡𝐸 is neglected because the physical coef-
ficient for this term is very small (∼1/𝑐

2, where 𝑐 denotes the
speed of light). But mathematically, the presence of the term
𝜕𝑡𝐸 in the second equation (Ampere-Maxwell equation) pre-
serves the hyperbolic nature of the Maxwell equation in the
Maxwell-Navier-Stokes equations (see [1, 2] and references
therein). Also we remark that full Maxwell-Navier-Stokes
equations have been used for the accurate computation of
electromagnetic hypersonics in aerothermodynamics (see [3,
4] and references therein). For further physical motivations,
see [5].

Neglecting the current displacement term, Maxwell-
Navier-Stokes system is reduced to the usual MHD system.
There have been many extensive mathematical studies for
the existence, blow-up criterion, and regularity criterion of
MHD and relatedmodels (see [6–12] and references therein).
Recently, Maxwell-Navier-Stokes system has been receiving
much mathematical attention after pioneering work of Mas-
moudi [2]. In [2], global existence of regular solutions to (1)
in R2 is proved by using the Besov-type �̃� space technique
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developed by Chemin and Lerner [13]. In [1, 14], the local
existence of mild solution and the global existence of (1) with
small data have been studied. Duan [15] studied large time
behaviour of solutions to (1). In [16], Ibrahim and Yoneda
obtained local-in-time existence for nondecaying initial data
in torus. Also Germain and Masmoudi [17] studied global
existence of solutions to Euler-Maxwell equations with small
data and Jang and Masmoudi [18] mathematically derived
Ohm’s law from the kinetic equation.

The aim of this paper is to study the global well-posedness
for (1) using the standard energy estimates. We obtain the
local-in-time existence of 𝐻

2 solution by using the standard
mollifier technique (see Proposition 4) and re-prove the
global existence of𝐻2 solution for 2DMaxwell-Navier-Stokes
system (see Theorem 1) by using standard energy estimates
and Brezis-Gallouet inequality, which was used to prove
global existence of regular solution for the partial viscous
Boussinesq equations by Chae [19]. Also we provide blow-up
criterion of regular solutions to 3D Maxwell-Navier-Stokes
equations (see Theorem 2).

We state our main results in the following.

Theorem 1. Assume that (V0, 𝐸0, 𝐵0) ∈ 𝐻
2
(R2) and ∇ ⋅ V0 =

∇ ⋅ 𝐵0 = 0. Then, for any 𝑇 > 0, there exists a solution
to 2D Maxwell-Navier-Stokes system (1) such that (V, 𝐸, 𝐵) ∈

𝐶((0, 𝑇]; 𝐻
2
) and (∇V, 𝑗) ∈ 𝐿

2
(0, 𝑇; 𝐻

2
).

Theorem2. Suppose that (V0, 𝐸0, 𝐵0) ∈ 𝐻
2
(R3) and∇⋅V0 = ∇⋅

𝐵0 = 0. If 𝑇
∗, the maximal existence time of the local existence

of regular solution to 3D Maxwell-Navier-Stokes system (1), is
finite, then

∫

𝑇
∗

0

‖V (𝑡)‖
2

𝐿∞
+ ‖𝐵(𝑡)‖

8/3

𝐿∞
𝑑𝑡 = ∞. (4)

Remark 3. (1) As logarithmic inequality has been used in [2],
Brezis-Gallouet inequality gives logarithmic-type estimates.
But it provides double exponential bound compared with
exponential bound in [2].

(2) The presence of the current displacement term 𝜕𝑡𝐸

makes Maxwell-Navier-Stokes system do not enjoy the scal-
ing invariance property of the usual Navier-Stokes system,
V𝜆(𝑥, 𝑡) = 𝜆V(𝜆𝑥, 𝜆

2
𝑡). In Theorem 2, ∫

𝑇

0
‖V(𝑡)‖2

𝐿∞
𝑑𝑡 is con-

current with the usual scaling invariant norm of solutions to
3D Navier-Stokes equations.

The rest of this paper is organized as follows. In Section 2,
we provide the local-in-time existence of regular solution
to 2D and 3D Maxwell-Navier-Stokes systems and global
existence of 2D Maxwell-Navier-Stokes system with large
data. In Section 3, we provide the blow-up criterion for 𝐻

2

solution to 3D Maxwell-Navier-Stokes system.

2. Local Existence and Global Well-Posedness

At first, we note that one can have the energy identity in two
or three dimensions:

1

2

𝑑

𝑑𝑡
(‖V‖2
𝐿2

+ ‖𝐵‖
2

𝐿2
+ ‖𝐸‖

2

𝐿2
) +

𝑗

2

𝐿2
+ ‖∇V‖2

𝐿2
= 0. (5)

The previously energy inequality can be justified for local
in time regular solution in the following proposition. In the
following, 𝐶 denotes a harmless constant which may change
from one line to the other. We prove local-in-time existence
of 𝐻
2 solution using the standard energy estimates.

Proposition 4. Let (𝑢0, 𝐸0, 𝐵0) ∈ 𝐻
2
(R𝑑) (𝑑 = 2 or 3)

with ∇ ⋅ 𝑢0 = ∇ ⋅𝐵0 = 0. Then there exists 𝑇 = 𝑇(‖𝑢0‖𝐻2 ,

‖𝐸0‖𝐻2 , ‖𝐵0‖𝐻2) such that there exists a unique solution (𝑢, 𝐸,

𝐵) ∈ 𝐿
∞

(0, 𝑇; 𝐻
2
(R𝑑)) ∩ 𝐿𝑖𝑝(0, 𝑇; 𝐿

2
).

Proof. We use the mollifier method as described in [20].
Although the details are similar to [20], we provide some a
priori estimates for the reader’s sake. We consider the stan-
dard mollifier operator

J𝜖𝑓 = 𝜌𝜖 ∗ 𝑓, 𝜌𝜖 (⋅) =
1

𝜖𝑑
𝜌 (

⋅

𝜖𝑑
) , (6)

where 𝜌 ∈ 𝐶
∞

0
(R𝑑), and 𝜌 ≥ 0, ∫

R𝑑
𝜌𝑑𝑥 = 1.

We introduce the following regularized system of (1):

𝜕𝑡V
𝜖

+ J𝜖 (J𝜖V
𝜖

⋅ ∇)J𝜖V
𝜖

− ΔJ
2

𝜖
V𝜖 + ∇𝑝

𝜖

= J𝜖 (J
2

𝜖
𝑗
𝜖

× J𝜖𝐵
𝜖
) in R

𝑑
× (0, 𝑇) ,

𝜕𝑡𝐸
𝜖

− ∇ × J
2

𝜖
𝐵
𝜖

= −J
2

𝜖
𝑗
𝜖 in R

𝑑
× (0, 𝑇) ,

𝜕𝑡𝐵
𝜖

+ ∇ × J
2

𝜖
𝐸
𝜖

= 0 in R
𝑑

× (0, 𝑇) ,

∇ ⋅ V𝜖 = ∇ ⋅ 𝐵
𝜖

= 0 in R
𝑑

× (0, 𝑇) ,

𝑗
𝜖

= 𝐸
𝜖

+ J𝜖V
𝜖

× J𝜖𝐵
𝜖
,

(7)

with initial data (V𝜖
0
, 𝐸
𝜖

0
, 𝐵
𝜖

0
) = (J𝜖V0,J𝜖𝐸0,J𝜖𝐵0).

Taking the 𝐿
2 inner product of (7)1, (7)2, and (7)3 with V

𝜖,
𝐸
𝜖, 𝐵𝜖, respectively, we obtain

1

2

𝑑

𝑑𝑡
(
V
𝜖
2

𝐿2
+

𝐸
𝜖
2

𝐿2
+

𝐵
𝜖
2

𝐿2
)

+
∇J𝜖V

𝜖
2

𝐿2
+

J𝜖𝑗
𝜖
2

𝐿2

= −
1

2
∫
R𝑑

(J𝜖V
𝜖
) ⋅ ∇(J𝜖V

𝜖
)
2
𝑑𝑥

+ ∫
R𝑑

(∇ × J𝜖𝐵
𝜖
) ⋅ J𝜖𝐸

𝜖
𝑑𝑥

− ∫
R𝑑

(∇ × J𝜖𝐸
𝜖
) ⋅ J𝜖𝐵

𝜖
𝑑𝑥

+ ∫
R𝑑

(J
2

𝜖
𝑗
𝜖

× J𝜖𝐵
𝜖
) ⋅ J𝜖V

𝜖
𝑑𝑥

+ ∫
R𝑑

J
2

𝜖
𝑗
𝜖

⋅ (J𝜖V
𝜖

× J𝜖𝐵
𝜖
) 𝑑𝑥 = 0.

(8)
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We compute the derivative 𝐷
𝛼, 𝛼 is a multi-index such that

|𝛼| ≤ 2, of (7), multiply them by 𝐷
𝛼V𝜖, 𝐷

𝛼
𝐸
𝜖, and 𝐷

𝛼
𝐵
𝜖,

respectively, and integrate them over R𝑑 to obtain
1

2

𝑑

𝑑𝑡
(
V
𝜖
2

𝐻2
+

𝐸
𝜖
2

𝐻2
+

𝐵
𝜖
2

𝐻2
)

+
∇J𝜖V

𝜖
2

𝐻2
+

J𝜖𝑗
𝜖
2

𝐻2

≤ 𝐶
J𝜖V
𝜖

⊗ J𝜖V
𝜖𝐻2

∇J𝜖V
𝜖𝐻2

+ 𝐶

J
2

𝜖
𝑗
𝜖

× J𝜖𝐵
𝜖𝐻2

J𝜖V
𝜖𝐻2

+ 𝐶

J
2

𝜖
𝑗
𝜖𝐻2

J𝜖V
𝜖

× J𝜖𝐵
𝜖𝐻2

≤ 𝐶 (
J𝜖V
𝜖
4

𝐻2
+

J𝜖𝐵
𝜖
4

𝐻2
)

+
1

2
(
J𝜖∇V

𝜖
2

𝐻2
+

J𝜖𝑗
𝜖
2

𝐻2
) .

(9)

In the previouslymentioned,J𝜖V
𝜖
⊗J𝜖V
𝜖 denotes a tensor

(J𝜖V
𝜖

𝑖
J𝜖V
𝜖

𝑗
)1≤𝑗≤𝑑.

Using Picard’s theorem, these estimates imply local exis-
tence of solution.

The main ingredient of the proof of Theorem 1 is the
following Brezis-Gallouet inequality (logarithmic Sobolev
inequality):

𝑓
𝐿∞ ≤ 𝐶 (1 +

𝑓
𝐿2 +

∇𝑓
𝐿2(log

+Δ𝑓
𝐿2)
1/2

) ,

𝑓 ∈ 𝐻
2

(R
2
) .

(10)

Here log+𝑎 denotes log(𝑒 + 𝑎).

Proof of Theorem 1. We provide a priori estimates on the
regular solutions. Let 𝑇 be a finite maximal time of existence
in Proposition 4. By obtaining𝐻

2 boundon (0, 𝑇] of solution,
we can continue solution beyond 𝑇 by using Proposition 4.

Taking curl operator on (1)1 and 𝜕𝑖 = 𝜕/𝜕𝑥𝑖 (𝑖 = 1, 2) oper-
ator on (1)2 and (1)3, we have

𝜕𝜔

𝜕𝑡
+ (V ⋅ ∇) 𝜔 − Δ𝜔 = ∇ × (𝑗 × 𝐵) , in R

2
× (0, 𝑇) ,

𝜕 (𝜕𝑖𝐸)

𝜕𝑡
− ∇ × 𝜕𝑖𝐵 = −𝜕𝑖𝑗, in R

2
× (0, 𝑇) ,

𝜕 (𝜕𝑖𝐵)

𝜕𝑡
+ ∇ × 𝜕𝑖𝐸 = 0, in R

2
× (0, 𝑇) .

(11)

(i) 𝐻
1 Estimates. Taking scalar product (11) with 𝜔, 𝜕𝑖𝐸, and

𝜕𝑖𝐵, respectively, and summing over 𝑖 = 1, 2, we have
1

2

𝑑

𝑑𝑡
‖𝜔‖
2

𝐿2
+ ‖∇𝜔‖

2

𝐿2
= ∫

R2
∇ × (𝑗 × 𝐵) ⋅ 𝜔 𝑑𝑥, (12)

1

2

𝑑

𝑑𝑡
‖∇𝐸‖
2

𝐿2
= ∑

𝑖

∫
R2

∇ × 𝜕𝑖𝐵 ⋅ 𝜕𝑖𝐸 𝑑𝑥 − ∫
R2

∇𝑗 ⋅ ∇𝐸 𝑑𝑥,

1

2

𝑑

𝑑𝑡
‖∇𝐵‖
2

𝐿2
= −∑

𝑖

∫
R2

∇ × 𝜕𝑖𝐸 ⋅ 𝜕𝑖𝐵 𝑑𝑥.

(13)

Using the identity

∫
R2

∇ × 𝜕𝑖𝐵 ⋅ 𝜕𝑖𝐸 𝑑𝑥 = ∫
R2

∇ × 𝜕𝑖𝐸 ⋅ 𝜕𝑖𝐵 𝑑𝑥 (14)

and 𝐸 = 𝑗 − V × 𝐵, we obtain

1

2

𝑑

𝑑𝑡
(‖∇𝐸‖

2

𝐿2
+ ‖∇𝐵‖

2

𝐿2
) +

∇𝑗

2

𝐿2

= ∫
R2

∇𝑗 ⋅ ∇ (V × 𝐵) 𝑑𝑥.

(15)

In the following, 𝜖 denotes a sufficiently small positive
number. Since it holds that ∇ × (𝑗 × 𝐵) = (𝐵 ⋅ ∇)𝑗, we
estimate the right-hand side of (12) using Young’s inequality
and interpolation inequality:


∫
R2

∇ × (𝑗 × 𝐵) ⋅ 𝜔 𝑑𝑥



≤ ‖𝐵‖𝐿4
∇𝑗

𝐿2‖𝜔‖𝐿4

≤ 𝐶‖𝐵‖
1/2

𝐿2
‖∇𝐵‖
1/2

𝐿2
‖𝜔‖
1/2

𝐿2
‖∇𝜔‖
1/2

𝐿2

∇𝑗
𝐿2

≤ 𝐶‖𝜔‖
2

𝐿2
‖∇𝐵‖
2

𝐿2
+ 𝜖‖∇𝜔‖

2

𝐿2
+ 𝜖

∇𝑗

2

𝐿2
,

(16)

where 𝜖 is a small positive number. Also we have


∫
R2

∇𝑗 ⋅ ∇ (V × 𝐵) 𝑑𝑥



≤ ∫
R2

∇𝑗
 |V| |∇𝐵| 𝑑𝑥

+ ∫
R2

∇𝑗
 |𝐵| |∇V| 𝑑𝑥 = 𝐼 + 𝐼𝐼.

(17)

We estimate

𝐼 ≤ 𝐶‖V‖2
𝐿∞

‖∇𝐵‖
2

𝐿2
+ 𝜖

∇𝑗

2

𝐿2
,

𝐼𝐼 ≤ ‖𝐵‖𝐿4‖∇V‖𝐿4
∇𝑗

𝐿2 ≤ 𝐶‖𝐵‖
2

𝐿2
‖∇V‖2
𝐿2

‖∇𝐵‖
2

𝐿2

+ 𝜖‖ΔV‖2
𝐿2

+ 𝜖
∇𝑗


2

𝐿2
.

(18)

Collecting previous estimates, we have

𝑑

𝑑𝑡
(‖𝜔‖
2

𝐿2
+ ‖∇𝐸‖

2

𝐿2
+ ‖∇𝐵‖

2

𝐿2
)

+ ‖∇𝜔‖
2

𝐿2
+

∇𝑗

2

𝐿2
≤ 𝐶‖𝜔‖

2

𝐿2
‖∇𝐵‖
2

𝐿2

+ 𝐶‖V‖2
𝐿∞

‖∇𝐵‖
2

𝐿2
+ 𝐶‖∇𝐵‖

2

𝐿2
‖∇V‖2
𝐿2

‖∇𝐵‖
2

𝐿2
.

(19)
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(ii) 𝐻
2 Estimates. Taking Δ operator on (1)1, (1)2, and (1)3 and

𝐿
2 scalar product with ΔV, Δ𝐸, and Δ𝐵, respectively, we have

1

2

𝑑

𝑑𝑡
‖ΔV‖2
𝐿2

+ ‖∇ΔV‖2
𝐿2

≤ 𝐶 ∫
R2

|∇V|

𝐷
2V


𝑑𝑥

+ ∫
R2

Δ (𝑗 × 𝐵)
 |ΔV| 𝑑𝑥 := 𝐼1 + 𝐼2,

1

2

𝑑

𝑑𝑡
(‖Δ𝐸‖

2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
) +

Δ𝑗

2

𝐿2

≤ ∫
R2

Δ𝑗
 |Δ (V × 𝐵)| 𝑑𝑥 := 𝐼3.

(20)

We estimate 𝐼1, 𝐼2, and 𝐼3 using interpolation inequality,
Young’s inequality, and Hölder’s inequality:

𝐼1 ≤ 𝐶‖∇V‖𝐿4‖ΔV‖𝐿4‖ΔV‖𝐿2

≤ 𝐶‖∇V‖1/2
𝐿2

‖ΔV‖3/2
𝐿2

‖∇ΔV‖1/2
𝐿2

≤ 𝐶‖∇V‖2/3
𝐿2

‖ΔV‖2
𝐿2

+ 𝜖‖∇ΔV‖2
𝐿2

,

(21)

𝐼2 ≤ 𝐶 ∫
R2

∇𝑗
 |∇𝐵| |ΔV| 𝑑𝑥

+ 𝐶 ∫
R2

Δ𝑗
 |𝐵| |ΔV| 𝑑𝑥

+ 𝐶 ∫
R2

𝑗
 |Δ𝐵| |ΔV| 𝑑𝑥 := 𝐼21 + 𝐼22 + 𝐼23.

(22)

Each term can be estimated by the standard interpolation
inequality and Young’s inequality as follows:

𝐼21 ≤ 𝐶
∇𝑗

𝐿4‖∇𝐵‖𝐿4‖ΔV‖𝐿2

≤ 𝐶
𝑗


1/4

𝐿2
Δ𝑗


3/4

𝐿2
‖𝐵‖
1/4

𝐿2
‖Δ𝐵‖
3/4

𝐿2
‖∇V‖1/2
𝐿2

‖∇ΔV‖1/2
𝐿2

≤ 𝐶
𝑗


2/3

𝐿2
‖𝐵‖
2/3

𝐿2
‖∇V‖4/3
𝐿2

‖Δ𝐵‖
2

𝐿2
+ 𝜖

Δ𝑗

2

𝐿2

≤ 𝐶 (
𝑗


2

𝐿2
+ ‖∇V‖2

𝐿2
) ‖Δ𝐵‖

2

𝐿2
+ 𝜖

Δ𝑗

2

𝐿2
,

𝐼22 ≤ 𝐶
Δ𝑗

𝐿2‖𝐵‖𝐿4‖ΔV‖𝐿4

≤ 𝐶
Δ𝑗

𝐿2‖𝐵‖
3/4

𝐿2
‖Δ𝐵‖
1/4

𝐿2
‖ΔV‖1/2
𝐿2

‖∇ΔV‖1/2
𝐿2

≤ 𝜖
Δ𝑗


2

𝐿2
+ 𝐶‖Δ𝐵‖

1/2

𝐿2
‖ΔV‖1/2
𝐿2

‖∇ΔV‖𝐿2

≤ 𝜖
Δ𝑗


2

𝐿2
+ 𝜖‖∇ΔV‖2

𝐿2
+ 𝐶

𝑗
𝐿2‖∇V‖𝐿2‖Δ𝐵‖

2

𝐿2
,

𝐼23 ≤ 𝐶
𝑗

𝐿∞‖Δ𝐵‖𝐿2‖ΔV‖𝐿2

≤ 𝐶
𝑗

𝐿2
Δ𝑗


1/2

𝐿2
‖Δ𝐵‖𝐿2‖∇V‖1/2

𝐿2
‖∇ΔV‖1/2

𝐿2

≤ 𝜖
Δ𝑗


2

𝐿2
+ 𝐶

𝑗

2/3

𝐿2
‖Δ𝐵‖
4/3

𝐿2
‖∇V‖2/3
𝐿2

‖∇ΔV‖2/3
𝐿2

≤ 𝜖
Δ𝑗


2

𝐿2
+ 𝜖‖∇ΔV‖2

𝐿2
+ 𝐶

𝑗
𝐿2‖∇V‖𝐿2‖Δ𝐵‖

2

𝐿2
.

(23)

𝐼3 can be written as

𝐼3 ≤ 𝐶 ∫
R2

Δ𝑗
 |∇V| |∇𝐵| 𝑑𝑥

+ 𝐶 ∫
R2

Δ𝑗
 |ΔV| |𝐵| 𝑑𝑥

+ 𝐶 ∫
R2

Δ𝑗
 |V| |Δ𝐵| 𝑑𝑥 := 𝐼31 + 𝐼32 + 𝐼33,

𝐼31 ≤ 𝐶
Δ𝑗

𝐿2‖∇V‖𝐿4‖∇𝐵‖𝐿4

≤ 𝐶
Δ𝑗

𝐿2‖∇V‖3/4
𝐿2

‖∇ΔV‖1/4
𝐿2

‖𝐵‖
1/4

𝐿2
‖Δ𝐵‖
3/4

𝐿2

≤ 𝜖
Δ𝑗


2

𝐿2
+ 𝜖‖∇ΔV‖2

𝐿2
+ 𝐶‖∇V‖2

𝐿2
‖Δ𝐵‖
2

𝐿2
.

(24)

The same as the estimate of 𝐼22, we obtain

𝐼32 ≤ 𝜖
Δ𝑗


2

𝐿2
+ 𝜖‖∇ΔV‖2

𝐿2

+ 𝐶
𝑗

𝐿2‖∇V‖𝐿2‖Δ𝐵‖
2

𝐿2
.

(25)

Also we have

𝐼33 ≤ 𝐶
Δ𝑗

𝐿2‖V‖𝐿∞‖Δ𝐵‖𝐿2 ≤ 𝜖
Δ𝑗


2

𝐿2
+ 𝐶‖V‖2

𝐿∞
‖Δ𝐵‖
2

𝐿2
.

(26)

Therefore, we have

𝑑

𝑑𝑡
(‖ΔV‖2

𝐿2
+ ‖Δ𝐸‖

2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
)

+ ‖∇ΔV‖2
𝐿2

+
Δ𝑗


2

𝐿2

≤ 𝐶 (1 + ‖∇V‖2
𝐿2

+
𝑗


2

𝐿2
+ ‖V‖2
𝐿∞

)

× (‖ΔV‖2
𝐿2

+ ‖Δ𝐵‖
2

𝐿2
) .

(27)

(iii) Use of Brezis-Gallouet Inequality. Using Brezis-Gallouet
inequality, we obtain

𝑑

𝑑𝑡
(‖ΔV‖2

𝐿2
+ ‖Δ𝐸‖

2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
)

+ ‖∇ΔV‖2
𝐿2

+
Δ𝑗


2

𝐿2

≤ 𝐶 (1 + ‖∇V‖2
𝐿2

+
𝑗


2

𝐿2
+ ‖V‖2
𝐿2

+ ‖∇V‖2
𝐿2

)

× (‖ΔV‖2
𝐿2

+ ‖Δ𝐸‖
2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
)

× log+ (‖ΔV‖2
𝐿2

+ ‖Δ𝐸‖
2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
) .

(28)

Let 𝑦(𝑡) = ‖ΔV‖2
𝐿2

+ ‖Δ𝐸‖
2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
, and let 𝑧(𝑡) = 1 +

‖ΔV‖2
𝐿2

+ ‖𝑗‖
2

𝐿2
+ ‖V‖2
𝐿2

+ ‖∇V‖2
𝐿2
. Hence one has

𝑑

𝑑𝑡
𝑦 (𝑡) ≤ 𝐶𝑧 (𝑡) 𝑦 (𝑡) log+𝑦 (𝑡) . (29)

Since

∫

𝑇

0

𝑧 (𝑡) 𝑑𝑡 ≤ 𝐶 (1 + 𝑇) , (30)
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the bound of 𝑦(𝑡) is immediate as follows:

sup
0≤𝑡≤𝑇

(‖ΔV‖2
𝐿2

+ ‖Δ𝐸‖
2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
)

≤ (
ΔV0


2

𝐿2
+

Δ𝐸0

2

𝐿2
+

Δ𝐵0

2

𝐿2
)

× exp (exp (𝐶 (𝑇 + 1))) .

(31)

This completes the proof of Theorem 1.

3. Blow-Up Criterion for 3D
Maxwell-Navier-Stokes System

In this section, we provide a blow-up criterion for𝐻
2 solution

in Proposition 4 to 3D Maxwell-Navier-Stokes system.

Proof of Theorem 2. Assume that

∫

𝑇
∗

0

‖V (𝑡)‖
2

𝐿∞
+ ‖𝐵(𝑡)‖

8/3

𝐿∞
𝑑𝑡 < ∞, (32)

where 𝑇
∗ is the finite maximal existence time of a classical

solution.
Similar to the computation in Section 2, one has 𝐻

1

estimates of 𝐸 and 𝐵 as follows:

1

2

𝑑

𝑑𝑡
(‖∇𝐸‖

2

𝐿2
+ ‖∇𝐵‖

2

𝐿2
) +

∇𝑗

2

𝐿2

= ∫
R3

∇𝑗 ⋅ ∇ (V × 𝐵) 𝑑𝑥

≤ 𝐶‖∇(V × 𝐵)‖
2

𝐿2
+ 𝜖

∇𝑗

2

𝐿2

≤ 𝐶‖𝐵‖
2

𝐿∞
‖∇V‖2
𝐿2

+ 𝐶‖V‖2
𝐿∞

‖∇𝐵‖
2

𝐿2
+ 𝜖

∇𝑗

2

𝐿2
.

(33)

𝐻
1 estimates of V are as follows:

1

2

𝑑

𝑑𝑡
‖∇V‖2
𝐿2

+ ‖ΔV‖2
𝐿2

≤ ∫
R3

|V| |∇V| |ΔV| 𝑑𝑥

+ ∫
R3

𝑗 × 𝐵
 |ΔV| 𝑑𝑥

≤ 𝐶‖V‖2
𝐿∞

‖∇V‖2
𝐿2

+ 𝐶
𝑗 × 𝐵


2

𝐿2
+ 𝜖‖ΔV‖2

𝐿2
.

(34)

The estimate of ‖𝑗 × 𝐵‖
2

𝐿2
is provided in the following:

𝑗 × 𝐵

2

𝐿2
≤ 𝐶‖𝐸 × 𝐵‖

2

𝐿2
+ 𝐶‖(V × 𝐵) × 𝐵‖

2

𝐿2

≤ 𝐶‖𝐸‖
2

𝐿2
‖𝐵‖
2

𝐿∞
+ 𝐶‖V‖2

𝐿6
‖𝐵‖
4

𝐿6

≤ 𝐶‖𝐸‖
2

𝐿2
‖𝐵‖
2

𝐿∞
+ 𝐶‖∇V‖2

𝐿2
‖𝐵‖
4/3

𝐿2
‖𝐵‖
8/3

𝐿∞
.

(35)

Thus we have
𝑑

𝑑𝑡
(‖∇V‖2

𝐿2
+ ‖∇𝐸‖

2

𝐿2
+ ‖∇𝐵‖

2

𝐿2
)

+ ‖ΔV‖2
𝐿2

+
∇𝑗


2

𝐿2

≤ 𝐶 (1 + ‖V‖2
𝐿∞

+ ‖𝐵‖
8/3

𝐿∞
)

× (‖∇V‖2
𝐿2

+ ‖∇𝐸‖
2

𝐿2
+ ‖∇𝐵‖

2

𝐿2
) + 𝐶‖𝐵‖

2

𝐿∞
.

(36)

Gronwall’s inequality gives us that

‖(∇V, ∇𝐸, ∇𝐵)‖
2

𝐿∞(0,𝑇∗ ;𝐿2)
+

(ΔV, ∇𝑗)

2

𝐿2(0,𝑇∗ ;𝐿2)
≤ 𝐶 < ∞.

(37)

Next, we consider 𝐻
2 estimates.

Integrating by parts and using Young’s inequality, it fol-
lows that

1

2

𝑑

𝑑𝑡
(‖Δ𝐸‖

2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
)

+
Δ𝑗


2

𝐿2
≤ 𝐶‖Δ (V × 𝐵)‖

2

𝐿2
+ 𝜖

Δ𝑗

2

𝐿2

≤ 𝐶‖ΔV‖2
𝐿2

‖𝐵‖
2

𝐿∞
+ 𝐶‖V‖2

𝐿∞
‖Δ𝐵‖
2

𝐿2

+ 𝐶‖∇V‖2
𝐿4

‖∇𝐵‖
2

𝐿4
+ 𝜖

Δ𝑗

2

𝐿2

≤ 𝐶‖ΔV‖2
𝐿2

‖𝐵‖
2

𝐿∞
+ 𝐶‖V‖2

𝐿∞
‖Δ𝐵‖
2

𝐿2

+ 𝐶‖V‖𝐿∞‖𝐵‖𝐿∞‖ΔV‖𝐿2‖Δ𝐵‖𝐿2 + 𝜖
Δ𝑗


2

𝐿2
.

(38)

Similarly, it follows that
1

2

𝑑

𝑑𝑡
‖ΔV‖2
𝐿2

≤ 𝐶‖∇ (V ⋅ ∇V)‖2
𝐿2

+ 𝐶
∇ (𝑗 × 𝐵)


2

𝐿2
+ 𝜖‖∇ΔV‖2

𝐿2

≤ 𝐶‖∇V‖4
𝐿4

+ 𝐶‖V‖2
𝐿∞

‖ΔV‖2
𝐿2

+ 𝐶‖∇𝐸‖
2

𝐿6
‖𝐵‖
2

𝐿3
+ 𝐶‖𝐸‖

2

𝐿6
‖∇𝐵‖
2

𝐿3

+ 𝐶‖∇ (V × 𝐵)‖
2

𝐿2
‖𝐵‖
2

𝐿∞
+ 𝐶‖V × 𝐵‖

2

𝐿3
‖ ∇𝐵‖

2

𝐿6
.

(39)

Using the interpolation inequality, one has

‖∇V‖4
𝐿4

≤ 𝐶‖V‖2
𝐿∞

‖ΔV‖2
𝐿2

. (40)

Interpolation inequality and Young’s inequality produce that

‖𝐸‖
2

𝐿6
‖∇𝐵‖
2

𝐿3

≤ 𝐶‖∇𝐸‖
2

𝐿2
‖∇𝐵‖𝐿2‖Δ𝐵‖𝐿2

≤ 𝐶‖∇𝐸‖
2

𝐿2
(‖∇𝐵‖

2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
) .

(41)

Similarly, we estimate that

‖∇ (V × 𝐵)‖
2

𝐿2
‖𝐵‖
2

𝐿∞

≤ 𝐶 (‖∇V‖2
𝐿3

‖∇𝐵‖
2

𝐿2
+ ‖∇V‖2

𝐿2
‖∇𝐵‖
2

𝐿3
) ,

‖V × 𝐵‖
2

𝐿3
‖∇𝐵‖
2

𝐿6
≤ 𝐶‖V‖2

𝐿∞
‖𝐵‖
2

𝐿3
‖Δ𝐵‖
2

𝐿2
.

(42)
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We already know that

‖(∇V, ∇𝐸, ∇𝐵)‖
2

𝐿∞(0,𝑇∗ ;𝐿2)
< 𝐶. (43)

Gathering all the estimates, we achieve

𝑑

𝑑𝑡
(‖ΔV‖2

𝐿2
+ ‖Δ𝐸‖

2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
)

+ ‖∇ΔV‖2
𝐿2

+
Δ𝑗


2

𝐿2

≤ 𝐶 (1 + ‖V‖2
𝐿∞

+ ‖𝐵‖
2

𝐿∞
)

× (1 + ‖ΔV‖2
𝐿2

+ ‖Δ𝐸‖
2

𝐿2
+ ‖Δ𝐵‖

2

𝐿2
) .

(44)

Using Gronwall’s inequality, we conclude that

‖(ΔV, Δ𝐸, Δ𝐵)‖
2

𝐿∞(0,𝑇∗ ;𝐿2)
+

(∇ΔV, Δ𝑗)

2

𝐿2(0,𝑇∗ ;𝐿2)
≤ 𝐶 < ∞.

(45)

This completes the proof of Theorem 2.
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